The Distributed Processing Programming Executive (DPPX) is a
new, full-function operating system designed to support distrib-
uted processing with the IBM 8100 Information System. The func-
tional requirements of distributed processing and their solutions
in DPPX are discussed. The structure of the operating system is
outlined, and its advantages are analyzed. Highlighted are par-
ticular characteristics of the DPPX structure that uniquely support
distributed processing.

An operating system for distributed processing—DPPX
by S. C. Kiely

Small system architectures embodied in mini- and micro-
processors offer significant price/performance gains for certain
usages. These systems have made technically and economically
feasible the distribution of processing among several smaller pro-
cessors in place of one larger processor, and offer reliability and
availability advantages because of the reduced scope of the effect
of the failure of any one component. These technological ad-
vances have made possible the satisfaction of requirements that
have been evolving in the data processing user community over
the past several years. The motives for this evolution are diverse
and wide-ranging. Large centralized computers often tend to be-
come overloaded, to the extent that some displacement of their
workload is required. Placement of processing and data closer to
the end user can more closely reflect the organization of business
responsibilities in the organization of the data processing system.
Evolving needs and technologies have now come together in the
low-cost, full-function distributed processing systems embodied
in the 1BM 8100 Information System and the Distributed Process-
ing Programming Executive (DPPX) operating system. This article
discusses the requirements imposed on an operating system in-
tended to support distributed processing and describes the ap-
proaches taken with DPPX to deal with them.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 18 @ NO 4 e 1979

Distributed processing requirements

DPPX was designed using a definition of distributed processing
that reflects much of the work done on distributed processing re-
quirements by the GUIDE Futures division' and in the SHARE DDP
Project.

The essential properties of distributed processing were assumed
to be the following:

e Both function and data are dispersed in a network (not neces-
sarily geographically dispersed);
Function and data are dispersed on a coordinated basis, with
the coordination performed by one logical manager in the net-
work;
Nodes may be autonomous to some extent, but ultimately are
interdependent with other nodes for coordination and control,
and in some cases for other function or data.

Analysis of this definition has resulted in the identification of the
specific functional requirements, discussed in the following para-
graphs, for a distributed processing system.

Centralized management and control functions. The functions of
the system associated with managing or controlling the system—
such as data base administration or program library control—
have to be provided in a way that permits a single central site to
perform these functions for a network of distributed processors.
This capability permits an enterprise to implement meaningful
control while at the same time dispersing the data processing
closer to the end user.

Centralized maintenance and problem determination facilities.
The distributed system cannot require specialized data process-
ing skills at dispersed sites for reasons of geography and econom-
ics. However, data processing systems must be maintained and
errors corrected or circumvented. With the present state of the
art, these operations require the participation of trained person-
nel. Consequently, facilities are needed that provide the DP pro-
fessional with necessary access to the dispersed systems and
their data. '

Interactive transaction support. The applications for a distributed
computer are essentially the same as those for the larger, central-
ized computer. In general, the difference between the systems is
that distributed applications are simpler and require fewer oper-
ating system options. Both batch and interactive applications will
be implemented for distributed configurations. As is the case for
larger systems, most new applications will be interactive transac-
tion applications. Some applications require that stored data rec-
ords be maintained with integrity, so that the end user can rely on

IBM SYST J ¢ VOL 18 ¢ NO 4 * 1979

the result of an update operation. Many applications also require
complete recoverability of data, so that damage to data can be
repaired without loss of any completed updates. These require-
ments have been satisfied traditionally by supporting applications
as transactions, with a defined scope of recovery associated with
each transaction.

Distributed communications. Extensive interconnection capabil-
ity is required at a distributed node, including communications
with peer systems, with hierarchically defined hosts, and with ter-
minals. For migration and marketability, a wide variety of termi-
nal types and line disciplines must be supported. The distributed
system must also be very flexible, and network control must func-
tion dynamically, without requiring the system to be stopped to
introduce logical or physical configuration changes.

Support for distributed data. Applications must be able to access
or update data stored at host or peer systems. Data access may be
required interactively in real time, or the application may transfer
data in bulk in a batched mode.

Ease of installation, operation, and maintenance. The end users
of distributed systems should not be required to be skilled data
processing professionals. Therefore, the design must support the
operation and use of the system—as well as its installation and
support—in a simple and straightforward way. The system can-
not require a complicated SYSGEN process to be installed. The
end user cannot be required to undertake extensive training to
operate the system. The application of maintenance—both sys-
tem corrections and application program revisions—must be ac-
complished without knowledge of programming or complex tools.

Ease of application development. Distributed processing is partly
the outgrowth of continuing improvements in computing price/
performance as technology has advanced. Another implication of
this trend is that the cost of providing end-use data processing
applications is shifting from hardware costs to application pro-
gramming costs at an increasing rate. To the extent that appli-
cation programmer productivity is the principal bottleneck to pro-
ducing new applications, high productivity of the programmer is a
principal objective of the system.

Growth and migration. The collection of distributed nodes repre-
sents a significant user investment that must be protected from
changes in the application and the system configurations that will
certainly occur over time. Change, as a necessary adjunct to ap-
plication growth, must be accommodated by the system in a for-
giving, flexible, easy-to-implement fashion. Migration from an
existing installed base of applications to new, unforeseen appli-
cations must also be supported.

IBM SYST J @ VOL 18 ® NO 4 e 1979

Operating system structure. The structure must support all the
other user requirements and generally must offer a high degree of
flexibility and an absence of constraints. This leaves the user with
the ability to choose the desired level of function, to configure the
system’s function to meet specific needs of the application pro-
gram, and to modify and extend the system. The flexible oper-
ating system offers stable and well-defined programming inter-
faces.

DPPX as a distributed system

The Distributed Processing Programming Executive (DPPX) has
been designed to meet these requirements. It provides a compre-
hensive set of control program services and input-output ser-
vices, with high-level capability for interactive command pro-
cessing, transaction processing, simple batch processing, and
several facilities for interconnection with other processors, par-
ticularly System/370.

Facilities for central management, control, maintenance, and
problem determination are provided in conjunction with two Sys-
tem/370 Program Products, the Distributed Systems Executive
(DsX) and the Host Command Facility (HCF). DSX provides a gen-
eral capability for bidirectional data set transfer between the 8100
Information System and System/370, and HCF provides con-
nectivity for a System/370-attached IBM 3270 keyboard/display
with the interactive command facility of DPPX. In DPPX, pro-
grams, display maps, program corrections (PTFs), configuration
definitions, data set definitions, etc.—all system objects—have
been implemented as data sets. Therefore, the DSX capability in
fact provides system definition and content control from the Sys-
tem/370. Because DPPX implements a single command language
for user access to all system functions, the HCF actually provides
access to the entire range of local DPPX capability from the Sys-
tem/370 terminal, including DPPX operator function. The effect of
DSX and HCF, in concert with DPPX, is that of a unified, single
multinode system with a single resource management system.”

Requirements for transaction processing are addressed by the
DPPX Data Base and Transaction Management System (DTMS), a
licensed program that, in close cooperation with the base DPPX,
provides full transaction scheduling and transaction data recov-
ery and backout capabilities.

Distributed communications and data support are offered by DPPX
through the combination of rich, device-independent communica-
tions and data management support local to an 8100, with appli-
cation-to-application communications interfaces for a host Sys-
tem/370 and other 8100 systems.

IBM SYST J & VOL 18 ® NO 4 * 1979

Extensive interactive application development tools are provided
under an Interactive Command Facility (ICF), including full-
screen editing, interactive display map definition, language trans-
lators, interactive debugging, and the DPPX Development Man-
agement System (DMS), a licensed program that provides a ques-
tion/answer mode of interactive program development.

The 8100 with DPPX has a number of advanced design features
required for ease of installation, maintenance, and operation in a
distributed environment. For example, DPPX is designed to be in-
stalled directly, without a systems generation (SYSGEN) process
or off-line assembly of tables or system code. Tuning, selection of
options, or setting up of the configuration can be done on line
during production operation. In a few cases (primarily those re-
lated to tuning), the system must be reloaded (IPL) to make the
changes effective.

Dynamic change of system configuration, transaction processing,
and data base definitions illustrates the power of the DPPX design
features. A device type, such as tape drive support not previously
used, can be defined to the system on line during production oper-
ation. DPPX dynamically builds the required control program sup-
port for the device type. Adding new data bases or transactions
can be done on line during production operation as well. A new
transaction processing program and transaction can be added for
testing during production operations and tested with production
data bases. After completion of the test, any data base changes
are reset.

Single definition of resources has been incorporated. Previous
systems with transaction processing have frequently required
that resources be defined several times. For example, a data base
may have been defined to both the transaction processing system
and (as a data set) to the operating system. Similarly, terminals,
users, and programs may have been defined to the transaction
processing system, to the operating system, and to other com-
ponents. In DPPX, however, resources are defined once, and all
components share this common definition. The transaction pro-
cessing system in DPPX, that is, DTMS, has no knowledge of the
network or of terminal devices. It uses the authorization and user
characteristics provided to the operating system, and, in turn,
provides the operating system with information about its data
bases.

The result is simpler system software and greater ease of setting
up or modifying the system. Also, aprogrammed operator, which
is a system application, can be written to handle exception condi-
tions or to guide the operation of the system. The structure of
DPPX allows any terminal, as well as a local or remote 8100 appli-
cation, to control the operation of the system. This application

IBM SYST J ¢ VOL 18 @ NO 4 o 1979

can handle as many conditions as it chooses, sending others to a
terminal or printer for human operator action.

Restart after a failure is fully automatic. After each IPL, DPPX and
its optional transaction processing component, DTMS, check
whether the system closed properly the last time. If not, action is
automatically taken to back out incomplete transactions.

Problem determination and hardware diagnostics can be per-
formed on line, during production operation.

All these functions, including full operation of the system, can be
performed by a remote host System/370 terminal operator. Man-
agement of change (changing the configuration, replacing pro-
grams, applying fixes, adding new programs) can be done cen-
trally without user action at the distributed sites. Changes can be
applied to one or to many systems, with the central system keep-
ing track of the status of each system and ensuring that the
changes are made even if a failure occurs.

These features provide the ability to install and operate an 8100
with minimal impact upon users and personnel at distributed
sites, and, consequently, with greatly lessened personnel cost as-
sociated with the remote systems. By designing DPPX so that
change can be dynamic, largely unattended operation is possible
and most service and administrative functions can be performed
dynamically on line by a small central group at a host system.
Users embarking on distributed data processing can gain the ben-
efits of economy of scale in operations personnel associated with
any data processing installation configuration.

The remaining requirements for growth and migratability and the
structure of the operating system are the subjects of the rest of
this article.

DPPX structure

DPPX is constructed as a hierarchically defined set of layers. Lay-
ers are logically self-contained elements of the system, with de-
fined roles that can be thought of as levels of abstraction®* within
the system providing increasing independence and decreasing
awareness of details to the using programs as one advances verti-
cally upward through the hierarchy.

Within practical limits, functions are not duplicated among lay-
ers. Thus if one layer provides a capability, other layers use that
layer when the same capability is needed.

The elements of the system, then, relate hierarchically to one an-
other. In addition, the design of each system element has been

IBM SYST J ® VOL 18 ® NO 4 ¢ 1979

carried out with independence from other elements. Specifically,
this means that data relationships among elements are controlled
and formal (as contrasted with implicit and informal, as with
many System/360 and System/370 operating system designs).
Furthermore, an element must have what Myers calls strength® in
its functional definition, so that it can be both conceptually and
physically separable from other elements.

Because the function requirements for distributed data process-
ing are so extensive and broad, economy of design is crucial to
making the overall objectives achievable in a practical manner.
The layered structure of DPPX avoids redundancy, thereby ensur-
ing consistency while reducing total effort required to provide
function. Moreover, the separateness of system elements and the
layered structure lend an intellectual manageability to the product
that reduces the complexity of developing and later supporting or
extending the product. By avoiding redundant function (and re-
dundant user interfaces), the structure also contributes to an in-
herent simplicity that supports easy user-program design and de-
velopment. For example, DPPX data management has only one
data-recording format supporting all modes of data access by ap-
plications—sequential, relative, indexed, and recoverable data
base support. As a result, all the DPPX utilities, both on-line and
stand-alone, that support the manipulation of data can be com-
mon across the different logical organizations of the data. The
result is fewer commands to learn and use in developing and sup-
porting one’s applications.

Figure 1 depicts three major structural areas of DPPX: Control
Program Services, 1/0 Services, and Application Resource Man-
agement.

The Control Program is structured into three layers of function.
The base layer creates and supports the tasking structure of DPPX
and supplies the synchronization services that are implemented in
DPPX through queues and locks. A higher layer of extended super-
visor functions is based on the task structure and supports the
management of processor storage, logical storage, program con-
tents, timer services, and error management. A top layer of re-
source management functions (called ‘‘environment manage-
ment’’ in DPPX) supports the allocation and deallocation of re-
sources and the creation and termination of the environment, a
collection of resources that is the basis for resource allocation in
DPPX.

The structure of DPPX separates the allocation of resources from
the dispatching unit or task (DPPX uses the term thread to de-
scribe the dispatching unit.) In earlier systems, the task served
both purposes, thereby imposing unnecessary constraints on the
program’s flexibility in accessing resources. The DPPX thread may

IBM SYST J o, VOL 18 ¢ NO 4 ¢,1979

structural
advantages
of layering

control

program
design

I/0 services
design

Figure 1 DPPX structure

APPLICATIONS

APPLICATION RESOURCE MANAGERS

INTERACTIVE
COMMAND OTHERS
FACILITY

CONTROL PROGRAM SERVICES 1/0 SERVICES

£ss 1
1 1
PS-DATA l LL PS-TERM J

EXTENDED SUPERVISOR SERVICES] I
cs

ENVIRONMENT MANAGEMENT

MS

TRANSFORM]

]

BASIC SUPERVISOR SERVICES

in the course of its execution change the basis for its resource
accounting from one resource pool to another. For example, a
system function, such as the Data Base Manager, can change
from its own environment, i.e., resource pool, to the user’s envi-
ronment without having to switch execution to a different task.

The 1/0 Services are consistent with the functional layering of the
SNA architecture. Several illustrations of the advantages of care-
ful layering of function can be seen by examining the properties
of the DPPX 1/O Services design,® as shown in Figure 2. The lay-
ered /0 structure supports three facilities: (1) access to stored
data on disk, diskette, and tape; (2) access to presentation media
(terminals and printers); and (3) data exchange among application
programs. The problems to be solved in each case are significantly
different. Although their solutions in DPPX are structured similar-
ly, the roles of the layers in the three cases are different.

The layers of 10 Services should be viewed as independent and
configurable. Each layer is designed autonomously, presuming

IBM SYST J @ VOL 18 @ NO 4 e 1979

only the logical function and interface of the layers below it. This
design allows layers to be added, so as to vary the function per-
ceived by the application. Layers can be eliminated, so that un-
needed function is omitted (not just bypassed). Also, layers can
be replaced without interacting with subordinate or superior lay-
ers. For stored data, the layers have the following roles.’

External Support Services (ESS) adapt the application to the lay-
ers below it, handling changes in mode from application mode to
privilege mode, validity checking, and synchronization with the
application. This processing is organized into a separate layer so
that the other layers can use each other without the overhead
required for this processing. Thus mode changes, checking, etc.
are performed only once per application request.

Presentation Services (PS) provide the application program with a
logical view of data. For example, records of a sequential (entry-
sequenced) file on a disk may be stored at random locations on
the storage media, wherein the sequentialness is logical. The
same stored collection of records with the same physical organi-
zation can be viewed by an application as being randomly ad-
dressable on the basis of relative record numbers, that is, a dif-
ferent logical view of data. Thus, a different logical view of the
data is provided by a different Presentation Service. Note that
within the DPPX structure, the DTMS Data Base Manager is also a
PS layer. As a result, Data Base support can be provided for batch
programs as well as for interactive DTMS programs.

Media Services (MS) provide the common management functions
associated with the storing and retrieving of data and provide for
the sharing of direct-access data volumes on a data set basis. This
layer is the foundation for all stored data management in DPPX.
The MS interface is expressed in terms of a byte-addressable se-
quential space with storage and retrieval performed in units of
transfer called logical blocks. This interface is device-independ-
ent within either of two classes of devices, as represented by tape
and disk. The result is that the access methods in DPPX (i.e., Pre-
sentation Services) are structurally independent of unique service
characteristics and geometry, and therefore need not be modified
when a new device is added to the system.

10 Attachment Services (10AS) support physical V0. This layer
supports a channel program-like device-dependent interface to the
using layer or application, similar in function to the 0S or DOS
EXCP. It allows for full exploitation of all device features and
characteristics, at the cost to the application of providing for all
device and data management function. In the case of stored data
devices, the user of the 10AS interface is the owner of the device
and handles any sharing of the device.

IBM SYST J @ VOL 18 ® NO 4 1979

Figure 2)/O layers

ESS

VALIDITY
STATE CHANGE

Y
PS

RECORD —BLOCK

1

DATA
RECORD— g7REAM

¥

¥

MS
BLOCK—SECTOR

—TOPOLOGY
—PROTOCOLS

TRANSFORM

I10AS

For data presentation (keyboard/printers, keyboard/displays,
printers, card reader/punches) and data exchange (with other pro-
grams), the layers are different from those for stored data. The
overall structure, however, is symmetric with that of stored data.
Layers for communications are discussed in the following para-
graphs.

Presentation Services (PS) manage the application’s logical view
of the data and map the application data record (logical record) to
the appropriate transmission record (e.g., the 1BM 3270 display
data stream) for presentation at the device or for delivery to an-
other application. There are a variety of pS layers provided for
DPPX, including the Distributed Presentation Services (DPS) li-
censed program that supports displays and printers in a manner
analogous to IMS Message Formatting Services (MFS) or CICS
Basic Mapping Service (BMS). These Presentation Services have
user-defined maps to convert between the application logical rec-
ord and the device data stream. Other Presentation Service layers
handle a line-at-a-time format for printers, keyboard/printers, and
keyboard/displays (called PS-line/page) and the exchange of logi-
cal records between application programs (either other DPPX ap-
plications, System/370 IMS or CICS applications, or applications in
certain SNA cluster controllers, such as the 1BM 3630).

Communication Services (CS), in a link-independent manner,
manage the transmission of data in a network. They control the
path over which data flow in the network, thereby implementing
the path control and transmission control functions of SNA.

Transform Layers support non-SNA terminals by mapping the
communications protocols, function management protocols, and

if necessary the data stream of a non-SNA device to the appear-
ance of an SNA terminal or cluster controller. For example, the
IBM 2741 Start/Stop Terminal is mapped to the same SNA appear-
ance as the similar 1IBM 3767 Terminal. Locally attached 1BM 3277
Terminals and IBM 3284 Printers are mapped to the appearance of
an SNA IBM 3276 cluster controller and its attached displays and
printers. Because of its placement in the structure, the implemen-
tation of a Transform Layer can result in universal support of the
non-SNA terminal, i.e., for DTMS, ICF, and for applications, de-
pending only on the completeness of the mapping implemented.

1/0 Attachment Services (IOAS) provide physical link transmission
function. I0AS supports several line disciplines [e.g., Synchro-
nous Data Link Control (SDLC), Binary Synchronous Control
(BSC), or Start/Stop (s/S)] and provides physical link/station man-
agement. I0AS is independent of the types of terminals or stations
attached to the link and is unaware of network topology. It is the
analog to the Data Link Control (DLC) layer of SNA. This delinea-
tion of function permits the using layer(s) to be independent of the

IBM SYST J o VOL 18 ® NO 4 ¢ 1979

link methodology used to attach a terminal (e.g., local or remote,
link or loop). For SDLC multipoint links, 10AS provides the ap-
pearance of a point-to-point link with each of the attached sta-
tions.

The various versions of layers are generally intermixable. There-
fore, programming support for additional SNA equipment can the-
oretically be no more than a new table definition specifying a dif-
ferent combination of layers. In fact, during the design of DPPX,
additional terminals were included in the set of supported termi-
nals on that basis alone.

The Application Resource Management layer, based on the Con-
trol Program Services layer and 1/0 Services layer, creates a logi-
cal context within which applications can operate. An application
context is a specific usage of system primitives for managing re-
sources such as storage or processor resources. For instance, the
Application Resource Manager for transaction processing (DTMS)
sets up environments and schedules their use on a transaction-by-
transaction basis. As a result, main storage for the DTMS user is
allocated to optimize for short-duration processing.® DTMS does
not manage storage itself; rather, it creates the storage context for
the application. The actual management of the resource is per-
formed by the Storage Management element of the Control Pro-
gram.

In contrast, another Application Resource Manager, the Inter-
active Command Facility (ICF), is designed for interactive com-
mand processing and background job processing. It sets up envi-
ronments with a one-user-to-one-environment relationship, rec-
ognizing a requirement for a user’s address space (one of the
resources of an environment) to persist across many commands
in sequence. The result is a different appearance of storage, and
yet the same control-program Storage Manager has been used.

The Application Resource Managers also provide application
services that supplement the services provided by the Control
Program and /0 Services. For instance, ICF supports command
definition and parsing. DTMS supports program-initiated queuing
of transaction requests and special interprogram communication
facilities that permit performance optimizations.

One of the roles of an Application Resource Manager, then, is to
differentiate the appearance of the system to a using program in a
way that is meaningful and appropriate for that class of appli-
cation. Yet differentiation for its own sake is not introduced. A
command processor, such as DEBUG PROGRAM, is supported not
only by ICF but also by DTMS and the Remote Job Entry (RIE)
Workstation Facility (WSF) as well. DTMS provides its dif-
ferentiated view of the system with the ICF programming and user

IBM SYST J @ VOL 18 @ NO 4 e 1979

application
resource
management
design

binding
tradeoffs

tight
binding

interfaces included as a proper subset. The RIE Workstation Fa-
cility is built as a set of ICF Command Processors using an ICF
environment. Thus an RIE/WSF operator has full access to ICF
function and commands. The various Application Resource Man-
agers are structured in relation to one another so as to provide for
global uniformity and consistency across the system in both the
application programming and end-user interfaces.

DPPX binding services

Binding services are those functions that define, qualify, or name
resources managed by a service of the system, and thus con-
cretely relate those resources to the programs using them. Bind-
ing functions are those that cause a fixed relationship to be estab-
lished between the various logical objects of the system. For ex-
ample, binding functions specify that a program be located in a
defined address space at particular addressing values with access
to a specifically addressed terminal and a particular data set, etc.,
on behalf of a named user.

Structurally, the relationships of the binding functions in a system
to the other service functions are very important. The areas of
relationship that are important are as follows:

e Dependence or layering relationship of the binding function
with the other services of the system, i.e. whether run-time
services make use of or depend on the presence of the binding
services.

Packaging of the binding function with respect to the packag-
ing of other service function (e.g., OPEN vs. GET/PUT).

Time at which binding is permitted to occur.

Scope of a binding, whether permanent or temporary or re-
versible or not.

Granularity of the binding of various elements with respect to
other elements, i.e., can one binding (e.g., address space) be
changed without rebinding other entities such as devices or
data sets?

We now discuss these areas of relationship in terms of the choices
made in the design of DPPX and the reasons for them.

In general, the selected method of binding reflects a tradeoff be-
tween flexibility and optimization for performance. The following
example illustrates this point.

Data sets are defined as collections of records that contain fields.
A tight—or early—binding between a program and a data set is
one in which the actual machine instructions for performing oper-
ations with the data set are physically contained within the pro-

IBM SYST J e VOL 18 ® NO 4 ¢ 1979

gram. These instructions include absolute references to a disk
volume address and other locator information (e.g., cylinder/
track/record/field offset address). In this case, performance is op-
timized from the point of view that there are no extraneous link-
ages in the program to a Data Management routine. That is, there
are no instructions included for translating from a symbolic repre-
sentation of the location of data to the physical location. The only
instructions in the path for data access are those absolutely re-
quired to transfer the data.

In contrast to tight or early binding is loose—or late—binding be-
tween a program and a data set. Loose (or late) binding is one in
which the program contains symbolic (or indirect) references to
the data and to services that access the data. To take the opposite
extreme from the preceding tight-binding example, consider a
program that accesses logical fields of records within a data set
through a dictionary. Such a program accesses logical records
through an indexing technique, and accesses the physical location
of the data set through a catalog. In this way, the program has
achieved absolute isolation with respect to the data from changes
in the surrounding environment in which it operates. The pre-
mium paid for this flexibility is that instructions must be executed
to resolve each of the indirect references and to make each de-
ferred decision.

It is apparent that a range of choices exists between the two ex-
tremes of tight and loose binding. A traditional approach groups
some of the translation or mapping functions and most decisions
about access to the data set into a service called OPEN that the
program invokes only once during its execution. The program
thus incurs the overhead for the binding action at initialization
time, leaving a minimum of binding actions to be performed at
execution time.

Another choice for implementing binding is called prebinding.
Prebinding is any technique whereby the binding function, analo-
gous to OPEN processing, is executed prior to any execution by
the program. Real-time, sensor-based systems typically imple-
ment this form of binding via a program preparation step. The
performance advantages of this approach must be weighed
against the sacrificed flexibility. If the physical organization of the
data sets on the disk is changed, for example, the prebound pro-
gram must be reprocessed by the program preparation step in or-
der to function properly. If several programs are prebound to sev-
eral data sets, a change to the physical organization of the disk
requires analysis to determine all programs using the affected disk
areas and recreation of the affected object programs. This process
can be complex and time consuming, and requires the system to
be taken off line while both the disk organization changes and the
new versions of the programs are simultaneously implemented.

IBM SYST J @ VOL 18 e NO 4 o 1979

loose
binding

In a distributed processing environment, given the requirements
discussed earlier in this paper, system hardware and software
configurations are subject to frequent change. Also, one of our
givens has been that the system be maintainable without on-site
data processing skill. (Unattended operation is preferable.)
Where centralized system maintenance is implemented, the num-
ber of systems being centrally controlled tends to be large. The
sum of these factors effectively precludes a prebinding strategy
for general-purpose distributed systems. Flexibility and recon-
figurability are primary requirements that constrain the binding
technique implemented.

System stability requirements

An additional factor in system configurability is the disruption
potential of programming changes. If change is expected to occur
frequently, and assuming the system must be very reliable,
change obviously cannot be permitted to cause software instabil-
ity. Past experience with operating systems and the disruption
potential of change suggest areas that might profit from further
exploration.

Examining motives for configuration growth and change, the
most likely ones are either to add capacity or to add function.
Added function may take the form of new or revised applications
or a new device or terminal that offers additional new function.
The problems of maintaining stability in the face of application
changes are addressed in DPPX through such features of the sys-
tem as storage isolation mechanisms, a test mode in DTMS, and
security/integrity features. The problems of adding a new device
should be examined in the context of overall system mainte-
nance.

Generally, the risk of disruption is in proportion to the extent of
change introduced. A change to one hundred modules is one hun-
dred times more risky than a change to one module. It follows
that a strategy for minimizing the disruption associated with a
change should start by minimizing the number of elements in-
volved in the change. In operating systems and programming, this
approach is usually contradicted by the existence of corequisite
and prerequisite requirements. Two functionally independent
changes to a program become corequisite when they both modify
a common segment of a program. The modified common segment
implies that either both or neither of the changes may be installed,
but there cannot be one change without the other.

Further, when one change is implemented—assuming the imple-

mentation of prior changes—the prior changes become a prereq-
uisite for the new change. In operating systems, if a large number

IBM SYST J @ VOL 18 ® NO 4 ® 1979

Figure 3 DPPX component structure

COMPONENT C

[COMPONENT B

V" componenT a
——— " [_[._::_'_ |
-1 | 1 |
1PL | DEFINE |
/T INITIALIZATION J‘, RESOURCES
I_[.__ —_—_ [
o1 |

CONNECT/ | ALLOCATE
DISCONNECT LI—I RESOURCES MJ

Rty

ENVIRONMENT

TERMINATE _]lJ

SERVICE

AN

ENVIRONMENT

MANAGEMENT INTERACTIVE

1PL
CONNECTION ENVIRONMENT
INITIALIZATION SERVICES TERMINATION S OURCE COMMAND

DRIVER
PRIMITIVES

of changes are created they tend to form into a meshed network
of corequisite and prerequisite changes. It becomes quite difficult
if not impossible to separate one of a large set of interrelated
changes from all the others. And yet it is this separation that sup-
ports the notion of reducing the quantity of change to a minimum
in order to minimize disruption.

To attack this problem, DPPX has been provided with device sup-
port in a way that minimizes the number of elements of the sys-
tem that must change to add a new device. Specifically, the de-
vice support in DPPX embodied in the IO Services layered struc-
ture are designed to be self-contained, without corequisite
dependencies on other system functions. The primary difference
between DPPX and other systems in this regard is in the area of the
binding functions related to device support. These are the func-
tions of initializing the device and its control blocks in the system,
allocating the device to a program, reclaiming the device at job
termination, initializing an application program to use a device,
and defining the device to the system. In 05/360, for example,
these binding functions were all provided by separate com-
ponents of the system, namely, device and control block initial-
ization by NIP, program initialization by OPEN, device reclama-
tion by CLOSE and ABEND, and device definition by SYSGEN.

In DPPX, an operating system component has complete responsi-
bility for supporting its function in the system as well as providing
the main-line function. The DPPX component structure is illus-
trated in Figure 3. Here, one of the layers of the 1/O structure, for

IBM SYST] @ VOL 18 4 NO 4 & 1979

Figure 4 DPPX component layering

RESOURCE DEFINITION

REQUIRED AT INSTALLATION TIME

USE ALL

RESOURCE ALLOCATION AND SYSTEM

CONNECTION

REQUIRED AT BRING-UP TIME

FACILITIES
AND
SERVICES

SERVICE

REQUIRED AT RUN TIME

!

USE HIGHER-
LEVEL SERVICES

USE PEER OR
SUBSERVIENT
SERVICES ONLY

example, is responsible for providing the logic to initialize, allo-
cate or deallocate, connect or disconnect, and define resources.
Driving or sequencing mechanisms are provided to control or ini-
tiate processing for these system services. These mechanisms are
independent units and need not change. By structuring these sup-
porting binding functions as an integral part of the main function,
the number of system elements that must change for a new 1/0
device is reduced significantly. And since the component parts of
the system have functional strength, there is little likelihood of a
crossover corequisite between components.

The support for a new 1/0 device in DPPX thus generally consists
of a single 1/0 layer to be either added or replaced. The isolation
achieved through the layered structure further assists by masking
the new device from the balance of the operating system. The
affected VO layer may be treated as a new layer, and only applica-
tions that employ the new support need use it. All other existing
programs execute with no changed or new code in their execution
paths through the system. Through the use of this structure, a
technical base is firmly in place for nondisruptive growth in sys-
tem functions and /0 device support.

Technology trends

Technology advances have continued to improve computing
price/performance ratios at a dramatic rate, and changing cost
relationships have resulted in changing system designs. The evo-
lution of distributed processing is but one example of this effect.

By projecting the trends of technology into the future, distributed
systems can be seen to be growing in two dimensions. The first
dimension is function. If the price of computing is viewed as a
constant, the effect of technology trends on future distributed
systems is expected to result in significantly higher instruction
processing rates. Improved price performance ratios, in turn, are
expected to extend the capability of distributed systems to new
applications with higher CpU loading characteristics. Foreseen
applications are interactive graphics, noncoded information (NCI)
handling, and image character recognition. Judging from past
trends, gains of from five to ten times the current performance
levels are conceivable in the next decade.’

The second dimension of growth, if the CPU performance level is
held invariant, is expected to be reduced costs. Thus a processor
capable of performing today’s 8100 Information System appli-
cations might be expected during the next few years to perform at
the same level at the approximate cost of a display terminal
today. In other words, improving price/performance levels are
projected to extend the distributed processing capability into the
display terminal within ten years.

IBM SYST J e VOL 18 ¢ NO 4 e 1979

This view of future technology trends foresees distributed pro-
cessing as spanning a broad range of processor configurations
from a single terminal-like system to a multiple-terminal system
designed for a complex application mix with a high-performance
small processor.

The hypothetical single-terminal system can be viewed as having
all the requirements of the distributed system discussed so far.
There is one intrinsic difference, however. The hardware configu-
ration of the single-terminal system will probably be trivial com-
pared to the current 8100 system. Such a system might even be
fixed and unchangeable, in which case a different binding strategy
would probably be desirable or necessary.

The design of DPPX has been influenced by these long-range con-
siderations. Binding functions in operating systems have tended
to be structurally inseparable from their related service functions,
so that changes to one would dictate changes to the other.

DPPX defines binding functions as distinct structural elements,
logically separated from their related service functions. These
binding functions are further mapped onto the layered functional
structure, so that run-time services can operate as an independent
package. This mapped structure, illustrated in Figure 4, permits a
logical view of DPPX as the three distinct systems shown in Figure
5. Each successive system is based on its predecessor. A run-
time system is the base system. The bring-up system adds the
binding functions of connection and allocation. And the installa-
tion system adds the functions of resource definition (the sym-
bolic level of binding), built on the bring-up system.

DPPX implements late binding with options for preconnecting
(early OPEN processing) data sets and terminals in the interest of
transaction processing efficiency. Given the structure described
here, DPPX is structurally capable of supporting a future hypothet-
ical alternative implementation of the binding function. By re-
moving the bring-up system and replacing it with a prebinding
processor that builds the control blocks needed by the run-time
system, prebinding can be implemented if required to support a
single-terminal distributed system. Such a system can be built us-
ing the same run-time system for both a prebound single-terminal
system and a loosely bound multiapplication distributed system.

Summary

The 8100 Information System and the Distributed Processing Pro-
gramming Executive, DPPX, have been designed to serve as a dis-
tributed processor, with objectives aligned to meet specific re-
quirements considered to be essential for a centrally managed and

IBM SYST J e VOL 18 @ NO 4 o 1979

trends

in DPPX
binding
structure

Figure 5 Logical view of DPPX

INSTALLATION SYSTEM

RESOURCE DEFINITION

REQUIRED AT INSTALLATION TIME

BRING-UP SYSTEM

RESOURCE ALLOCATION AND
CONNECTION

REQUIRED AT BRING-UP TIME

EXECUTION SYSTEM

SERVICE
REQUIRED AT RUN TIME

controlled distributed system. The functional content of the oper-
ating system reflects these objectives. Further, the structure of
the system, including formal layering, functional isolation and
formalization of interfaces, and a structured approach to imple-
menting binding functions lends DPPX pervasive characteristics
that are considered necessary for a distributed system.

ACKNOWLEDGMENTS

The author gratefully acknowledges the team of designers respon-
sible for DPPX and their collective contributions to the concepts
and principles discussed in this paper. Most particularly, I thank
L. C. Thomason, H. R. Albrecht, W. P. Dunfee, and B. P. Lubart
as the originators of the foundations of the DPPX design. I also
acknowledge F. N. Stoppenbach for his substantive contributions
to this paper and to DPPX in the definition of distributed systems
requirements.

CITED REFERENCES

1. D. M. Bailey, D. Gade, J. Garneau, J. J. Lempe, A. L. Martin, and R. J.
Miller, Distributed Computing in the Early 1980’s —the Environment and the
Requirements, Report available from Guide International Corporation, Fu-
tures Division, Chicago, IL (August 1977).

. P. H. Enslow, Jr., What is a ‘Distributed’ Data Processing System?, IEEE
Computer Society, Long Beach, CA (January 1978), pp. 13-21.

. G. Goos, ‘‘Hierarchies,”” Advanced Course of Software Engineering, F. L
Bauer, editor, Springer-Verlag, Heidelberg (1973), pp. 29-46.

. E. W. Dijkstra, ‘‘The structure of the ‘THE’—multiprogramming system,”
Communications of the ACM 11, No. 5, 341-346 (May 1968).

. G. J. Myers, Reliable Software through Composite Design, Petrocelli/Char-
ter, New York (1975).

. H. R. Albrecht and L. C. Thomason, ‘‘VO facilities of the Distributed Pro-
cessing Programming Executive (DPPX),”” IBM Systems Journal 18, No. 4,
526-546 (1979, this issue).

. A. K. Fitzgerald and B. F. Goodrich, ‘‘Data Management for the Distributed
Processing Programming Executive (DPPX),’’ IBM Systems Journal 18, No.
4, 547-564 (1979, this issue).

. F. C. H. Waters, ‘*Design of the IBM 8100 Data Base and Transaction Man-
agement Systems—DTMS,”’ IBM Systems Journal 18, No. 4, 565-581 (1979,
this issue).

. T. A. Dolotta, M. I. Bernstein, R. S. Dickson, Jr., N. A. France, B. A.
Rosenblatt, D. M. Smith, and T. B. Steel, Jr., Data Processing in 1980-
1985, John Wiley & Sons, Inc., New York (1976), p. 68.

GENERAL REFERENCES

A. L. Scherr, “‘Distributed data processing,”” IBM Systems Journal 17, No. 4,
324-343 (1978).

G. M. Booth, ‘“‘Distributed information systems,”” AFIPS Conference Pro-
ceedings 45 (1976 National Computer Conference, June 7-10, 1976, New York
City), 789-794 (1976).

IBM SYST J ¢ VOL 18 ® NO 4 ¢ 1979

An Introduction to the IBM 8100 Information System, IBM Publication order
number GA27-2875-0, available through the local IBM branch office.

Distributed Processing Programming Executive (DPPX) General Information,
IBM Publication order number GC27-0400-0, available through the local IBM
branch office.

The author is located at the IBM System Communications Di-
vision laboratory, Kingston, NY 12401.

Reprint Order No. G321-5107.

IBM SYST J e VOL 18 @ NO 4 ¢ 1979

