Data stream linkage and the UNIX system

To the Editor:

In J. P. Morrison’s excellent paper ‘‘Data Stream Linkage Mech-
anism,”’' it is surprising that he makes no reference to a widely
used system that embodies many of the ideas he discusses—that
is, the UNIX time-sharing system.”” This system, which runs on a
variety of computers, allows users to quickly and easily connect
programs together by typing simple commands. As Morrison pre-
dicts, this makes programming easier and faster, and it also al-
lows existing programs to be hooked together in new ways to
solve new problems.

In the UNIX environment, every program that is run has a stan-
dard output file and a standard input file. Unless otherwise speci-
fied, these files are directed to the user’s terminal so that the out-
put from a command is normally presented to the user, and input
is read from the terminal keyboard. The input and output can be
diverted to disk files, devices such as printers and tapes, or, most
important, to other programs. Some examples may clarify this:
The command /s lists the names of the user’s files at the terminal,
and

Is >file.names

puts the names into the file file.names. (The character > means
to direct output to a file.) There is a formatting program called
pr that adds titles to its input file, optionally puts the file into a
multicolumn format, and puts the result on its standard output.
The command line

Is | pr =2 —h ‘‘My files”’

prints the file names in two columns with a header, and

Is | pr —2 ~h “*My files”’ >names.out

puts the same text into the file names.out.

A program that performs such a stream operation is called a fil-

ter. Given the existence of a filter [pr, which sends its input to
the high-speed printer spooler, then

Is i pr =2 —h ““My files” | lpr

prints the names in two columns on the high-speed printer.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royaity provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 18 @ NO 3 e 1979

Programs are connected with special pipe files, which have the
property of passing data from a writer to a reader. They can be
created by any program when they are needed. The implementa-
tion is such that it is irrelevant whether a program is reading from
or writing to a terminal, physical device, disk file, or pipe. The
same READ and WRITE calls apply equally to each. Programs writ-
ten in any combination of languages can be hooked together with-
out special effort, since they all use the same system calls to do
input and output. The pipe files are created by the command in-
terpreter when the command line is typed, so that no special con-
figuration step or precompilation is necessary. It is possible to
have more complex arrangements of pipes than the simple linear
arrangements shown here, but they seem to be much less gener-
ally useful. Similarly, it is possible to pass arbitrary binary data
though a pipe, but usually it is most convenient to pass text.

Several interesting things have resulted from this view of pro-
gramming. Rather than writing large programs with many op-
tions, people have tended to write simple, straightforward pro-
grams, and connect several together to achieve complicated ef-
fects. For example, the [s program mentioned above only lists file
information. On most systems, it would need options to route the
listing to the printer, control the listing format, etc., but in the
UNIX system, these operations are performed by separate pro-
grams.

As a more complex example, there is a word processing program
called troff which formats text for a typesetting machine (it is
somewhat like SCRIPT, which is available on IBM systems). At one
point some people wanted to add a facility to make the type-

setting of mathematical text, including special symbols and equa-
tions, easier. Rather than modifying troff, they wrote a pre-
processor called egn which translates a convenient equation input
language into the typesetter control codes that troff requires, but
leaves normal text alone. Then a user enters

eqn <input.file | troff

and the file input. file is processed by eqn to do the equation han-
dling, and then by troff to do the rest of the typesetting. Several
other froff preprocessors have been written, and they can be
strung together to do whatever processing is desired.

At another point, there was a need to detect spelling errors in
documents. A dictionary of commonly used words was available,
along with several utility programs, a transliteration filter, a gen-
eral purpose sorting program, a filter to remove duplicated lines
from a file, and a utility that compares two files and reports lines
found in one but not in the other. These elements were combined
into a pipeline that transliterates all strings of nonalphabetic char-
acters into carriage returns (to put one word per line), sorts the

IBM SYST J ¢ VOL 18 ¢ NO 3 o 1979

words, and removes duplicate occurrences of words, then prints
words that occur in the document but not in the dictionary. Com-
pare the few moments required in constructing this command line
to the effort that would be needed to write the equivalent program
in a conventional programming language.

For further details and many other examples, the reader is di-
rected to Reference 3.

Experience with the UNIX system has shown that the pipeline ap-
proach to programming can drastically reduce the effort required
to program new applications. Furthermore, a tool-oriented style
of programming develops.* Each program is seen not as an end in
itself, but rather as a tool, which, in combination with other tools
(be they programs, data processing equipment, or whatever) can
be used to get a job done. A well written program is like a screw-
driver in that it is designed for only one job and does that job well,
but inevitably it is used in many unanticipated ways to solve
problems far removed from its originally intended application.

One certainly would hope that this successful experience will in-
fluence future computing systems and make the job of data pro-
cessing easier.

CITED REFERENCES

1. J. P. Morrison, ‘‘Data Stream Linkage Mechanism,’’ IBM Systems Journal 17,
No. 4, 383-408 (1978).

2. D. M. Ritchie and K. Thompson, *‘The UNIX Time-Sharing System,”” Com-
munications of the ACM 17, No. 7, 365-375 (July 1974).

3. Bell System Technical Journal 57, No. 6, Part 2 (July-August 1978).

4. B. W. Kernighan and P. J. Plaugher, Software Tools, Addison-Wesley, Read-
ing, Massachusetts (1976).

John R. Levine

Data Processing Consultant
5532 Yale Station .
New Haven, Connecticut 06520

Author’s response

Mr. Levine is correct in observing that UNIX should have been
mentioned in my paper. 1 assumed that its ‘‘pipeline’’ concept
was simply a shorthand added to a conventional interactive com-
mand language, and that therefore it was not relevant to my topic.
I now find, however, that the concept does have relevance.

Followihg the publication of my paper, J. R. Mashey of Bell Tele-
phone Laboratories kindly sent me a number of documents that
describe UNIX."?* In addition, I have beéh in communication

IBM SYST J » VOL 18 ® NO 3 & 1979

with A. Springer of the IBM Cambridge Scientific Center, who has
made some comparisons between UNIX and VM/370 CMS, the IBM
system which UNIX most closely resembles.” Consequently I feel
that I have a much better understanding of this interesting sys-
tem, and I would like to make a few comments about the way
UNIX, VM/370 CMS, and DSLM seem to relate to each other.

The basic building block of UNIX, as in DSLM, is the process, a
program that runs asynchronously with other like programs, com-
municating with them by means of data streams. It is irrelevant
where the input to a process comes from, or where its output goes
(the terminal, files, or other processes may all be used), so pro-
cesses can be configured into networks without internal modifica-
tion (this is the basic requirement for what N. P. Edwards’ calls a
configurable architecture). UNIX has a command interpreter
called the shell, which supports a powerful, concise command
language, in which the user can specify how data flows between
processes, which functions are to run asynchronously with oth-
ers, and other relationships. '

For instance, extending the example in Mr. Levine’s letter, the
UNIX command

as source >output & Is | pr —2 —h ‘*Heading”’ | lpr

can be read, ‘‘Assemble source, directing the output to the file
called output; meanwhile, generate a list of files, format it into a
‘two-up’ listing with a specific heading, and send the result to the
high-speed printer.”” The ampersand indicates that the assembly,
once started, can proceed in parallel with the other processes.
The character > means that the standard output of the assembly,
which normally would go to the terminal, is to go to a file called
output (the character < would do the same for the srandard in-
put). The other three processes are linked by the pipe operator [,
which indicates that the standard output of one process is to be
connected to the standard input of another. Two or more pro-
cesses connected by pipes form a pipeline in UNIX terminology.
Thus the user actually has started four asynchronous processes
just by entering one command line at his terminal.

A quotation from Kernighan and Mashey® could be applied to
DSLM simply by reading queue for pipe: ‘Programs connected by
a pipe run concurrently, with the system taking care of buffering
and synchronization. The programs themselves are oblivious to
the 10 redirection. . . . The syntax is again concise and natural;
pipes are readily taught to nonprogramming users.”” (My italics.)

The article continues: ‘‘Although in principle the pipe notation
could be merely a shorthand for the longer form with temporaries
[temporary files to which input and output could be redirected
using < and >], there are significant advantages in running the

IBM SYST J @ VOL 18 ¢ NO 3 e 1979

processes concurrently, with hidden buffers instead of files serv-
ing as the data channels. . . .”” The authors go on to list a number
of the advantages.

Given that a process is independent of the source of its input and
of the destination of its output, it is not surprising that a UNIX
process has points of attachment (like DSLM’s ports) that are iden-
tified by numbers called file descriptors, which are relative to the
process itself. File descriptors 0, 1, and 2 are reserved, respec-
tively, for the functions of standard input, standard output (the
ones used by the pipe operator), and diagnostic output, while de-
scriptors 3 and up are available for process-specific files. (Stan-
dard input and output are initially assigned to the user’s terminal,
but they may be directed to files by the shell symbols < and > for
input and output, respectively, or to other processes by the pipe
operator.)

A difference of orientation between DSLM and UNIX is that, in
DSLM, a network normally is specified for an application during
the design process, whereas in UNIX, network specification is
controlled dynamically by the user. Several people have com-
mented that DSLM could be enhanced by allowing dynamic net-
work specification. Thus, network specification in UNIX is
“bound later’’ than in DSLM, but it is conceptually similar.

UNIX has marked similarities to VM/370 CMS in that both systems
support a command language in which the user constructs and
executes lists of commands for frequently used functions that are
more complex than a single command. In UNIX these command
lists are called shell procedures, and in CMS, EXEC’s. In both sys-
tems, a given command list can invoke other command lists. In
this way, every user builds his own personal *‘tool kit of useful
functions. Many applications can be written entirely in the com-
mand language, and the performance often is good enough that
no further programming is required. If improved performance is
desired, the user can do some performance evaluation and pick
the parts of the application that need to be enhanced.

One way in which cMs modules differ from UNIX processes is that
a CMS function usually is not independent of the source or the
destination of its input and output, unless independence was de-
signed in from the start (apart from the console stack mechanism,
which allows console commands to be obtained from a file). In
UNIX, on the other hand, all files look like streams of data bytes,
and to programs it is irrelevant where these streams are coming
from, or going. The same is true for a DSLM process, except that
the streams consist of records rather than bytes.

A further difference is that a CMS module cannot run overlapped
with other modules in the same virtual machine. Users often find

IBM SYST J ¢ VOL 18 @« NO 3 e 1979

that, when waiting for completion of a long-running job, such as
an assembly, they would like to continue entering commands but
cannot do so unless they use two virtual machines. In UNIX, on
the other hand, a single character suffices to specify that a pro-
cess is to run asynchronously with other programs.

In all three systems, applications tend to be implemented not as
large, monolithic systems, which would require long coding
stages before any results could be observed, but as structures of
many small, function-oriented modules, which can be connected
together, and tested individually or in networks of gradually in-
creasing size.

I am encouraged by the fact that UNIX has been well received by a
variety of users in a variety of environments, especially in univer-
sities (as of mid-1978, there were almost 1000 systems in operation
around the world®). This acceptance suggests that data-linked
asynchronous processes, far from being complex and esoteric
devices, in fact constitute a powerful and natural way of instruct-
ing computers to do what we want them to do. Comparison of
the three systems suggests that combining their essential features
would result in a powerful, natural, and easy-to-use man-machine
interface for both data processing professionals and other users.

CITED REFERENCES

1. The Bell System Technical Journal 57, No. 6, Part 2 (July-August 1978).
2. J. R. Mashey, ""PWB/UNIX Shell Tutorial,”’” Bell Telephone Laboratories,
Murray Hill, New Jersey 07974 (September 1977).
3. B. W. Kernighan and J. R. Mashey, *‘“The UNIX Programming Environment,”’
Software —Practice and Experience 9, 1-15 (1979).
. For detailed information on VM/370 and CMS, see IBM Systems Journal 18,
No. 1 (1979).
. N. P. Edwards, On the architectural requirements of an engineered system,
Research Report RC 6688, IBM Thomas J. Watson Research Center, York-
town Heights, New York 10598 (August 1977). (ITIRC AAA 77A004397.)

J. Paul Morrison

IBM Canada, Ltd.

Finance Industry Support and Development
Toronto, Ontario MSK 1B1

Reprint Order No. G321-5105.

IBM SYST J « VOL 18 e NO 3 & 1979

