
Forum

Data stream linkage and the UNlX system

To the Editor:

In J. P. Morrison’s excellent paper “Data Stream Linkage Mech-
anism,”’ it is surprising that he makes no reference to a widely
used system that embodies many of the ideas he discusses-that
is, the UNIX time-sharing ~ y s t e m . ” ~ This system, which runs on a
variety of computers, allows users to quickly and easily connect
programs together by typing simple commands. As Morrison pre-
dicts, this makes programming easier and faster, and it also al-
lows existing programs to be hooked together in new ways to
solve new problems.

In the UNIX environment, every program that is run has a stan-
dard output file and a standard input file. Unless otherwise speci-
fied, these files are directed to the user’s terminal so that the out-
put from a command is normally presented to the user, and input
is read from the terminal keyboard. The input and output can be
diverted to disk files, devices such as printers and tapes, or, most
important, to other programs. Some examples may clarify this:
The command Is lists the names of the user’s files at the terminal,
and

1s >file.names

puts the names into the filefile.names. (The character > means
to direct output to a file.) There is a formatting program called
p r that adds titles to its input file, optionally puts the file into a
multicolumn format, and puts the result on its standard output.
The command line

Is I pr -2 -h “My files”

prints the file names in two columns with a header, and

1s I pr -2 -h “My files” >names.out

puts the same text into the file names.out.

A program that performs such a stream operation is called a j f -
fer. Given the existence of a filter fpr, which sends its input to
the high-speed printer spooler, then

1 1s I pr - 2 - h “My files” I lpr

I prints the names in two columns on the high-speed printer.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

470 FORUM 1BM SYST J VOL 18 0 NO 3 1979

Programs are connected with special pipe files, which have the
property of passing data from a writer to a reader. They can be
created by any program when they are needed. The implementa-
tion is such that it is irrelevant whether a program is reading from
or writing to a terminal, physical device, disk file, or pipe. The
same READ and WRITE calls apply equally to each. Programs writ-
ten in any combination of languages can be hooked together with-
out special effort, since they all use the same system calls to do
input and output. The pipe files are created by the command in-
terpreter when the command line is typed, so that no special con-

~ figuration step or precompilation is necessary. It is possible to
~ have more complex arrangements of pipes than the simple linear

arrangements shown here, but they seem to be much less gener-
ally useful. Similarly, it is possible to pass arbitrary binary data
though a pipe, but usually it is most convenient to pass text.

Several interesting things have resulted from this view of pro-
gramming. Rather than writing large programs with many op-
tions, people have tended to write simple, straightforward pro-
grams, and connect several together to achieve complicated ef-
fects. For example, the Is program mentioned above only lists file
information. On most systems, it would need options to route the
listing to the printer, control the listing format, etc., but in the
UNIX system, these operations are performed by separate pro-
grams.

As a more complex example, there is a word processing program
called f r o 8 which formats text for a typesetting machine (it is
somewhat like SCRIPT, which is available on IBM systems). At one
point some people wanted to add a facility to make the type-
setting of mathematical text, including special symbols and equa-
tions, easier. Rather than modifying t rof , they wrote a pre-
processor called eqn which translates a convenient equation input
language into the typesetter control codes that troflrequires, but
leaves normal text alone. Then a user enters

eqn 4nput.file I troff

and the file input.Jile is processed by eqn to do the equation han-
dling, and then by frog to do the rest of the typesetting. Several
other t ro f preprocessors have been written, and they can be
strung together to do whatever processing is desired.

At another point, there was a need to detect spelling errors in
documents. A dictionary of commonly used words was available,
along with several utility programs, a transliteration filter, a gen-
eral purpose sorting program, a filter to remove duplicated iines
from a file, and a utility that compares two files and reports lines
found in one but not in the other. These elements were combined
into a pipeline that transliterates all strings of nonalphabetic char-

words, and removes duplicate occurrences of words, then prints
words that occur in the document but not in the dictionary. Com-
pare the few moments required in constructing this command line
to the effort that would be needed to write the equivalent program
in a conventional programming language.

For further details and many other examples, the reader is di-
rected to Reference 3.

Experience with the UNIX system has shown that the pipeline ap-
proach to programming can drastically reduce the effort required
to program new applications. Furthermore, a tool-oriented style
of programming develop^.^ Each program is seen not as an end in
itself, but rather as a tool, which, in combination with other tools
(be they programs, data processing equipment, or whatever) can
be used to get a job done. A well written program is like a screw-
driver in that it is designed for only one job and does that job well,
but inevitably it is used in many unanticipated ways to solve
problems far removed from its originally intended application.

One certainly would hope that this successful experience will in-
fluence future computing systems and make the job of data pro-
cessing easier.

CITED REFERENCES
1 . J . P. Morrison, “Data Stream Linkage Mechanism,” ZBM Systems Journal 17,

2. D. M. Ritchie and K. Thompson, “The UNIX Time-sharing System,” Com-

3. Bell System Technical Journal 57, No. 6, Part 2 (July-August 1978).
4. B. W. Kernighan and P. J. Plaugher, Software Tools, Addison-Wesley, Read-

No. 4, 383-408 (1978).

munications of thr ACM 17, No. 7, 365-375 (July 1974).

ing, Massachusetts (1976).

John R. Levine
Data Processing Consultant
5532 Yale Station
New Haven, Connecticd 86520

Author’s response

Mr. Levine is correct in observing that UNIX should have been
mentioned in my paper. I assumed that its “pipeline” concept
was simply a shorthand added to a conventional interactive com-
mand language, and that therefore it was not relevant to my topic.
I now find, however, that the concept does have relevance.

Followhg the publication of my paper, J. R. Mashey of Beli Tele-
phone Laboratories kindly sent me a number of documents that

