
An automatic programming approach has been developed for the
use of sensor based computers (IBM System17 and Seriesll) for
energy management in buildings. The purpose is to aid the facili-
ties engineer who is unfamiliar with programming and who re-
quires a system that can be dejined by a sequence of questions
and answers. Programmers can add or modify application source
programs to extend the system to other user-defined.functions.

Automatic programming for energy management
using sensor based computers

by M. J. Shah

It has been more than 15 years since digital computers were in-
troduced for process control. Digital control systems have
evolved from systems such as the IBM 1710 and 1800 to special
controllers that use microprocessors. The hardware cost has
dropped considerably, yet the cost of installing computer control
systems in sensor based applications has remained relatively
high. This is partly because of the rising cost of system com-
ponents other than the digital computer itself, one such com-
ponent being the system software.

In the early 1960’s, the cost of digital control systems was high
enough so that computer vendors provided manpower for one-of-
a-kind installations, in cooperation with the manpower provided
by the customer. Successful installations for digital computer
control required many man-years of effort.

As hardware costs started to decrease in the late 1960’s, and as
computer vendors began to understand the real-time control envi-
ronment in the process industries, several multiprogramming
real-time executive programs were developed by the computer
industry. These general-purpose process control programs were

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST 1 VOL 18 NO 3 1979 SHAH 457

forerunners of the executive programs subsequently provided on
the larger business computers. Control computers, with small
available main storage, provided multiprogramming in many par-
titions with a large number of pre-emptive interrupt and priority
levels (386 on the IBM 1800) to satisfy the fast response required
for plant alarm conditions.

Application programs such as IBM’s PROSPRO and DDC pro-
grams’” were subsequently developed with a forms oriented ap-
proach to provide information on variables controlled or mon-
itored by the digital computer system. These programs eliminated
a substantial portion of the programming effort for system instal-
lation, so that plant monitoring and alarm functions, in many
cases, could be started within only a few weeks of the hardware
installation. The time was reduced if the system executive was
generated prior to the computer installation and all the forms for
plant variables were filled in to provide data for the supervisory
programs such as DDC and PROSPRO before the system arrived.
Several weeks still were required, of course, for programmers
and engineers to prepare for the installation. And beyond the
plant monitoring function, considerable effort was required to im-
plement control functions, often extending into months after the
initial installation.

In the early 1970’s, further reduction in hardware cost was re-
flected in systems such as the IBM System/7 for sensor based ap-
plications. A host program preparation facility was developed for
generating the System17 real-time operating system, as well as
application programs, on large systems such as System/360 for
subsequent transmission to a System/7. In addition, the Appli-
cation Program Generator (APG),3 a PL/I-like language, was devel-
oped to further reduce software effort. In spite of these develop-
ments, and the availability of specialized application packages for
System/7, the installation effort was not reduced dramatically, in
part because many customer installations could not justify a full-
time programmer. Thus computer vendors were forced to provide
extensive software support.

With the introduction of yet smaller and less expensive process
control systems such as the IBM Seriedl, it has become manda-
tory to strive toward a programmerless environment in many ap-
plications so that the benefits of digital computer control can be
provided with a reasonable software/hardware cost ratio.

Application requirements

As opposed to a batch data processing environment, real-time
sensor based applications require some special user interfaces to

L
0 Interfaces must be defined between the user device (control

point) and the digital and analog hardware input/output ad-
dresses on the computer.
Decisions must be made regarding alarm scanning frequency,
program scheduling for alarm and normal functions, priority
assignments, and system resource allocation.

0 Programs must be scheduled according to application require-
ments, such as controlled device cycling in energy manage-
ment applications.
A multiprogramming executive interface to the system super-
visor must provide all time-dependent inputs with assigned
priority levels and specify which programs are to occupy
which partitions, in order to optimize memory usage.
Files of different sizes on bulk memory (disk or diskette) must
be allocated for the user’s environment, which varies with the
number of sensors, control points, and alarm points and the
length of time the user wishes to retain data logs.

Basically, the user must be able to tailor an application program,
its supporting supervisor, and the associated bulk files by using
“fill-in-the-blanks” forms. Questions on the forms should ad-
dress the user’s application; they should not require users to pro-
vide program specifications. Suggested default values should be
provided in case the user is not sure of the answers at the begin-
ning.

A programming automation approach used in a specific appli-
cation is described below. The application is energy management
in a building, using IBM System/7 and Series/]. The task is to en-
able a facilities engineer who is unfamiliar with programming to
define his system by means of questions and answers. In addition,
a facility also should be provided that enables programmers to
modify application programs or add new programs to extend the
functions of the system.

Facilities energy management

Facilities energy management was chosen for this programming
approach because a large number of digital control systems have
been installed successfully for this application. Furthermore, be-
cause of the continually increasing cost of energy, energy man-
agement provided a potential computer application for smaller
users who are unsophisticated in programming. The user environ-
ment can range from total unfamiliarity with control computers
(as in many department stores, for example) to the sophistication
of a large industrial facility with a trained programming staff. The
application does not require a great deal of control complexity, so
the success of this approach can be measured independently of

Essentially, in this application, the digital computer performs the
following functions:

e

e

Monitors power consumption from one or more power me-
ters, comparing it with time-dependent target and maximum
consumptions. When specified targets are exceeded, selected
devices are turned off for periods specified by the user.
Turns devices on and off according to the time of day, and
periodically cycles devices during their on period, as during
the first shift.
Monitors large numbers of alarm-condition points and over-
rides control of one or more devices according to whether the
alarm points are on or off. Alarm conditions may arise if val-
ues of temperature, pressure, or flow in air conditioning
equipment exceed limits, or if the environmental temperature
or humidity exceeds limits, or if the security of an area is vio-
lated.
Controls inlet air dampers based on outside air enthalpy; ad-
justs device ofs times according to outdoor temperature and
interfaces to control panels in facility control rooms.

Details of this application are given in References 4 and 5.

Device control functions are performed by digital output from the
control computer. Power consumption, alarm signals, and tem-
perature and humidity measurements are read from digital input.

Any problems that involve noise isolation or signal loss generally
are handled through a hardware interface between the sensor and
the computer system. Interface noise problems are not in-
significant, but experience with large numbers of systems has led
to standard designs for minimizing them.

Automatic program generation on System/7

In a previous paper,6 the author described a “fill-in-the-blanks’’
approach to generating power management application software
for the IBM System/7. That work is described here briefly because
the Series/l approach evolved from experience with the System/7
program, and the Systeml7 program involved some new concepts
in program automation for sensor based applications.

The operating system for System/7, referred to as MSP/7 (Modular
System Program for Sy~tem/7) ,~ is created by specifying param-
eters for system macros (coding the macros) and assembling them
to prepare a system nucleus. Nucleus preparation involves speci-
fying hardware addresses for data processing 1/0, sensor based
110, and timers, as well as scheduling the frequency with which
application programs are to run under the operating system and

460 SHAH IBM SYST J VOL 18 NO 3 1979

L
Figure 1 Application prototype (in part) before processing with user answers 1
x : I F (: L A D A P T I V E 4 ‘ N O ’ l * : L L A

D C L A D A P T I V (: & M E T E R S) B I T E X T i
D C L A U P T U N T (:P,METERSI F I X E D B I N (15) E X 1 i

* : L L A
DCL ALLMSG (: & M E T E R S) B I T (1) E X T E R N A L ;
/ * POWER CONSUMPTION FOR EACH SWITCH. TO R E I N I T I A L I Z E D V I A * /
/ X O P E R A T O R S T A T I O N .
D C L CONSSWT(:&METERS~:&MAXUNSl F I X E D B I N A R Y l l 5 1 E X 1 i
D C L F P E R I O U (: & M E T E R S) F I X E D B I N A R Y (1 5) E X T i
D C L I B A N D (: & M E T E R S) E X T i ~

CMPR-LOOP:
DO S = I S E T TO T D T S W (M l - M A X F A N (M) i

I S E T C M P (M 1 = 5 + 1 ;
I F I C N T L T B (M , S l > ZERO

x : I F I : L L O C K I N G E O ‘ N O ’) * : N N E

* :NNE
I : I F (: L O V E R I D E E 4 ‘ N O ’ 1 X : N N F

I L O C K (M I S l

I I O V E R I D I M , S)

Figure 2 Application source (in part) after processing the prototype

D C L A D A P T I V (0 2) B I T E X T ;
DCL ADPTUNT (0 2 1 F I X E D B I N (1 5 1 E X 1 ;

/* POWER CONSUMPTION FOR EACH SWITCH. TO B E I N I T I A L I Z E D V I A * I

DCL ALLMSG (0 2 1 B I T (1) E X T E R N A L i

/ X O P E R A T O R S T A T I O N ~~ ~~

D C L C U N S S W T l 0 2 , D l O l F I X E D B I N A R Y (1 5 1 E X 1 i
U C L F P E R I O O (0 2 1 F I X E D B I N A R Y (1 5 1 E X 1 i
D C L I B A N D (0 2 1 E X T ;

CMPR-LOOP:
DO S = I S E T T O T O T S W (M l - M A X F A N (M) i

I S E T C M P (M) = 5 + 1 i
I F I C N T L T B l M , S I > Z E R O

I L O C K (M , S I
I I O V E R I U (M ~ S 1
I C H I L L S W (M s S 1

T H E N GO T O N E X T - S W I T C H i

specifying the initial startup program at program load time. To
avoid difficulties for the facilities engineer who is unfamiliar with
programming, it is desirable to automate this process.

The fill-in-the-blanks facility for provides some degree of
automation for preparing the MSP/7 nucleus, with a reasonable
degree of validity checking of answers. This facility was extended
to tailor a complete application source program, step by step as
follows:

The application source, written in the high-level language of
APG/7, is made into a “prototype” which is processed accord-
ing to the user’s answers to form a compilable source. Por-
tions of the prototype are shown in Figure 1, and the program
source after processing is illustrated in Figure 2. Dimensions
are filled in, source code is eliminated, repeated, or retained,
and variables are defined, all based on the user’s answers.
A file containing the APG fill-in-the-blanks answers for gener-
ating the System/7 operating system macro source was itself
made into a prototype, which was processed according to a
minimum of user answers. This in effect allowed the creation
of system parameters such as the number of multiprogram
partitions, and it allowed specification of the storage location
of programs based on user answers regarding machine mem-

IBM SYST J VOL 18 NO 3 1979 SHAH 461

Figure 3 Question forms for application requirements

c c
1 2 2 1

U N I T S -

F A N S - -

I B M S Y S T E M / 7 A P P L I C A T I O N P R O G R A M G E N E R A T O R
M E T E R F O R M (L E V E L 0 2 1

*** M E T C R S P E C I F I C A T I O N * * *
M E T E R -

c c 1 7
U S E T H I S F O R M T O D E S C R I B E E A C H P O W E R M E T E R
I N Y O U R S Y S T E M .

C O M P L E T E
A 3 P A G E

O N E F O R M
F O R M ; S o

F O R E A C H M E T E R .
B E S U R E T O C O M P L

T H I S I S
E T E A L L P A G E S

S P E C I F Y A U N I Q U E M E T E R N U M B E R (0 1 - 3 2 1 I N
C O L U M N S 1 A N D 8 .

- 0 H O W M A N Y P O N E R C O N S U M I N G U N I T S A R E M O N I T O R E D
BY T H I S M E T E R ? I N C L U D E F A N S (S E C O N D A R Y U N I T S) ,
I F A N Y .
S P E C I F Y F R O M 0 0 1 T O 7 0 4
(D E F A U L T = O O G l

H o l d M A N Y F A N S (S E C O N D A R Y U N I T S) A R E M O N I T O R E D
B Y T H I S M E T E R ?
S P E C I F Y F R O M 0 0 0 T O 7 0 4

C H I L L S W -

A D P T C O N - - -

A D P T U N T - -

A D P T P R C - -

A D P T F A C - -

R E F E R T O T H E ' F A N S ' Q U E S T I O N O N T H E q P M A p C O N F *
F O R M (L E V E L 0 1) .
(D E F A U L T = O O Z I

M C T E R ?
I S A C H I L L S W I T C H A T T A C H E D T O T H I S

R E F E R T O T H E ' C I I I L L S W ' Q U E S T I O N O N T H E
' P M A P C O N F ' F O R M (L E V E L 0 1) .

S P E C I F Y Y E S O R N O
I S ' F L O A T I N G T A R G E T ' U S E D F O R T H I S M E T E R ?

I F Y E S , A N S N E R T H E N E X T 3 Q U E S T I O N S .
R E F E R TO T H E ' A D A P T I V ' Q U E S T I O N O N T H E
' P M A P C O N F ' F O R M (L E V E L 0 1) .
(D E F A U L T = N O J

W H A T IS T n E P E R C E N T A G E o r T H E T O T A L NUMBER O F
U N I T S O N T H I S M E T E R T H A T M U S T B E S H U T D O W N
B E F O R E A D A P T I V E A D J U S T M E N T S W l L L B E M A D E ?
S P E C I F Y F R O M 0 1 T O 5 0
(D E F A U L T = S O I

B Y W H A T P E R C E N T A G E I S T H E F L O A T I N G T A R G E T
T O B E A D J U S T E D U P OR DOIdN?
S P E C I F Y F R D M 01 T O 5 0
(D E F A U L T = I O J

B Y W H A T P E R C E N T A G E I S T H E F L O A T I N G T A R G E T
T O B E A D J U S T E D U P OR DOIdN?
S P E C I F Y F R D M 01 T O 5 0

B Y W H A T F A C T O R W I L L T H E F L O A T I N G T A R G E T (K W S X J
B E M U L T I P L I E D WHEN I T I S C H E C K E D A G A I N S T T H E
C U R R E N T P O W E R U S E D (K W U S E D I TO D E T E R M I N E I F T H E

KW (K 1 1 S 1 V A L U E ? T H I S P E R M I T S R A P I D U P U A R D A D -
F L O A T I N G T A R G E T S H O U L D B E R E S E T T O T H E S T A N D A R D

J U S T E I E N T OF T H E F L O A T I N G T A R G E T W H E N L A R G E L O A D

C H A N G E F R O M N I G H T S H I F T T O D A Y S H I F T .
I N C R E A S E S O C C U R B E T W E E N T I M E Z O N E S , S U C H A S T H E

S P E C I F Y F R O M 0 2 T O 1 0
(D E F A U L T = 0 3 J

Figure 4 Application answer prototype (in part) for system configuration
C O N F I G S T G S Z : & S T O R A G E
C O N F I G A S M
C O N F I G P R O G S 1 0

Y E S

1:

x : I F (: & D I S K E Q ' Y E S ' 1 x : c c c

IF (: a D u m p E q ! Y E S * I X : B B Z *: I F I : & P A T C H E Q ' Y E S ' 1 X : B B z
* : I F (: & P R I N T E O ' N O ' 1 x : c C c
* : B B Z
S C H E D S C H L E V E L 2

S C H E D U S E R S C H D Y E S
S C H E D S C H E D 1

~~

S C H E D M A X S C H D 1 2
C Y C L I C
C Y C L I C
C Y C L I C

0 1
0 1
0 1

C Y C L I C
C Y C L I C
C Y C L I C
C Y C L I C

~~

0 2
0 2
0 2
03

C O U N T S
P R O G R A M

O F F S E T

C O U N T S
P R O G R A M

O F F S E T
P R O G R A M

POWRCHK
: & I N T E R V A L < P M A P C O N F >

POWR'
6 0 7

: & S C H E D S S < P M A P C O N F >
6 3
POWRMSG

~~

C Y C L I C 0 3 C O U N T S 3 0 0
C Y C L I C 0 3 O F F S E T 2 0 5

C Y C L I C 0 4 P R O G R A M POWRCPW

C Y C L I C 0 4 O F F S E T 6 1
C Y C L I C 0 4 C O U N T S 3 6 0 0

C Y C L I C 0 5 P R O G R A M P M A P S C H

x : I F (: & D I S K E Q ' N O ' I * : F F F

C Y C L I C 05 C O U N T S : B I N T E R V A L < P M A P C O N F >
C Y C L I C 0 5 U F F S E T 602
* : F F F

462 SHAH

ory size and whether the system incorporates disk storage.
Some typical questions are shown in Figure 3 . Figure 4 illus-
trates part of the answer prototype as processed using an-
swers to the questions in Figure 3.

0 The job control language required to assemble the system su-
pervisor and compile the application programs created in the
first two steps was also made into a prototype file. This file
was processed according to user answers, creating a system
tailored to fit the application requirements based on the user’s
machine configuration.

In essence, the user answers questions on forms prepared for the
application, enters the answers by means of a keyboard or
punched cards, and follows a prescribed ten-step procedure to
generate his system. The ten steps themselves could have been
automated, but an inaccurate answer, recognized at the end of
system generation, could require total system regeneration. In
addition, it was decided to provide the user with system informa-
tion between procedural steps. Further, a programmer can inter-
cede between steps to add or modify application programs or
modify the system nucleus. Depending on the complexity of the
user’s application, total system generation, after specifying the
user answers, took 5 to 12 hours of Systeml7 time.

In almost all System/7 energy management installations, systems
engineering assistance was required for system generation. When
the stepwise procedure was followed, program generation and in-
stallation went smoothly. Difficulties arose when program modifi-
cations and functional extensions to the application were re-
quired, mainly because it was necessary to have operational
knowledge of nucleus generation, system macro definitions, the
job control procedure for the compiler, the assembler, the linkage
editor, and the source language.

Major objections to this procedure on System/7 can be summa-
rized as follows:

0 System generation took several hours and, in most cases, re-
quired a System/7 larger than the erergy-management Sys-
tem/7.

0 Changes in some answers to the system questions required
regeneration of the system.

0 Program modification or extension required not only knowl-
edge of APG/7, but availability of the APG/7 compiler and
macro assembler at the system generation site, and familiarity
with the System/7 program preparation facility job control lan-
guage.

Clearly, automation must go further for systems such as the IBM

than that for System17, and program preparation is to be mini-
mized if not entirely eliminated.

Energy management with Seriedl

The IBM Series/l is a sensor based digital computer system with
bulk memory on a fixed disk as well as on removable diskettes.
With certain access frequency restrictions, the diskettes can be
used for programs as well as data.

From the standpoint of cost justification, the application has to be
diskette based rather than disk based. All interdependencies
among the real-time executive, the language compiler, and the
application are to be avoided as much as possible so the user will
need no additional training or background to modify the appli-
cation program. The application system had to be self contained
and easy to modify with a simple, high-level language, both for
writing new application programming modules and for modifying
the standard programs included with the application. These re-
quirements were addressed as described in the following para-
graphs.

The architecture of the energy management real-time supervisor
for Series11 is based on the System17 LABS17 and EDXI7 pro-
g r a m ~ . ~ , ~ Support in the supervisor was restricted to the 110
devices used in the application.

A subset of EDXI7 was chosen as the high-level language for the
application program, with certain additions and modifications in
the input/output commands. Data queuing features were added
for communication between asynchronously executing modules.
The command set provides a PLh-type language via structured
macros, but it is simpler and more primitive, and it is closer to
assembler language.

The system generation step is eliminated by providing all execut-
able programs in object form on a diskette. As is shown below,
the program architecture made the execution programs independ-
ent of variations in most user requirements.

A forms oriented, step-by-step personalization procedure was in-
cluded for entering all data about the user’s facility. This informa-
tion was stored in data tables on a diskette. All the tables were
constructed with reasonable default values for as many param-
eters as possible when user answers were omitted. Diskette file
space was allocated for a maximum number of control and mon-
itor points.

The program was designed with functional modules, so that the
user could start up his installation within minutes by responding,

464 SHAH IBM SYST J VOL 18 NO 3 1979

Figure 5 Facsimile of power management application initialization form and prompted ques-
tions at initial-program-load time

Inllialhatlan Form

Answer* Entered

1. Meterfactor(000.001-999 999) 0

2. Pulseavallable(Y/N) 0

3 Demandcalculatlontype(l=sildtngwlndow, 2=1ntegrated) b

4 Demand Increment s ize(l5 - I20 seconds) 0

5. Demand Interval 51ze(5-120 mlnutes) 0

11. Operations monrtor used on DO polnt2 (Y/N)

12 Automatlcrestartclockavallable(Y/N) 0

13. FC/PM 3features used (Y/N) 0

14 Dlgl ta l dewce addressmgused (Y/N) 0

1 5 'Totalnumberofdevices(l-95:l 256ifd~g~taldev~ceaddress~ngofFC/PM3used) 0

16 Total numberafmonltorlngpolnts(0 95) 0

1 7 Numberof~ntegratedDI/DOcardsused(l-5)

'Entry must be made

>ENTER METER FACTOR:

> P U L S E A V A I L A B L E ? (V / N I :

>ENTER DEMAND CALCULATION TYPE:

>ENTER DEMAND INCREMENT S IZE :

> E N T E R D E M A N D I N T E R V A L S I Z E :

>OPS MONITOR USED ON D O P O I N T 2 (V / N l :

> A U T O R E S T A R T C L O C K A V A I L A B L E ? (V / N l :

>FC/PM 3 F E A T U R E S U S E D ? (V / N l : .
> D I G I T A L D E V I C E A D D R E S S I N G U S E D ? (V / N) :

>ENTER TOTAL NUMBER OF D E V I C E S :

>ENTER TOTAL NUMBER OF M O N I T O R I N G P O I N T S :

>ENTER NUMBER O F I N T E G R A T E D D I / D O C A R D S U S E D (1 - 5) :

at initial-program-load time, to the prompts shown in Figure 5.
The user could then progress by providing on-line data about his
control and monitoring points and his facilities control strategies.
The application also was divided into operational modes, so when
the user provides data for an individual function, the correspond-
ing functional mode can be activated. Table 1 shows the various
application modes and their functional descriptions.

All communication between program modules regarding the
user's facility is via data tables which, with default values, are on
the application program diskette. Diskette tables and files for logs
are pre-allocated for the maximum building facility supported by
the program. The user is thus relieved of having to allocate files
based on his particular requirements. The tables, based on user

IBM SYST 1 VOL 18 NO 3 1979 SHAH

Table 1 Application modes and their corresponding functions

Mode Function Actions

1 Power monitoring Consumption pulses read.
Demand interval report printed.

2 Alarm monitoring Monitor points read.
Alarm sounded, if required.
Standby function available.
DVON, DVOF, DVRS commands usable.

3 Time-of-day stadstop All devices placed and maintained in time-
control of-day state.

4 Cyclic startktop control All cyclic control devices (defined on device
parameter forms) are cycled during time-of-
day on time.

5 Demand control All demand control devices (defined on de-
vice parameter forms) are controlled.

6 Extended condition Extended condition switch feature becomes
switch control active.

7 Enthalpy control Outside air inlet damper under computer
control.

8 Outside air strategy Certain device off-times (defined on temper-
control ature-dependent basic parameter form and

temperature-dependent device off-time
form) are modified when there is an environ-
mental temperature change.

answers to personalization parameters, are built in main storage
for each functional mode when the mode is activated by the user.
The same table storage is released when related functional modes
are deactivated. The GETMAIN and FREEMAIN commands in the
application language allow this function. The storage table ad-
dresses were always maintained in a system vector table, which
was used by programs to address data in the various tables. The
personalization parameters are developed from forms which are
described in Reference 10.

Utilities are provided for users who want to modify programs and
extend the application functions by programming their own mod-
ules. The utilities include a function for translating a module writ-
ten in the EDX subset language into an executable program, as
well as library facilities for allocating, copying, listing, and modi-
fying files on a diskette, and a source library editor with Tso-like
commands to edit, insert, and modify source text for program
modules. Because the system is diskette based and has limited
bulk storage, certain size restrictions are required, such as a max-
imum of 425 program source statements and 30 new user mod-
ules.

For users who have no need to modify programs, as well as for
those with a programming background who want to modify or add
program modules, the system is totally self contained. It does not
depend on any other operating system or program preparation
facility, and no knowledge of compiler or assembler operation is
required.

The need for a job control language is eliminated by using simple
commands for library utility functions, for source editing, and in
the programming language itself. Wherever possible, utility func-
tions are designed to operate in a conversational format so as to
minimize operator errors. Details of the commands are given in
Reference 10.

Although program preparation utilities can be used only off line,
requiring the application to be stopped, the program source can
be modified and translated into a load module in 10 to 20 minutes,
excluding time required for printing during translation and oper-
ator entries for the source editor. This is possible because the
program architecture allows each application module to function
separately, communicating via common tables, with the supervi-
sor performing relocatable loading. As long as program modifica-
tion is preplanned and source changes involve no more than 10 to
15 lines in a module, the entire application can be brought back on
line within an hour.

Application generation on Seriedl

This section shows the steps a user follows to modularize, or per-
sonalize, the program for his building facility. The personal-
ization programs execute in a transient area while the application
is running, so the user can change parameters in his facility after
his initial specifications, or he can activate additional control and
monitoring points after specifying their characteristics by person-
alization.

The user is given forms to fill out, providing information about his
facility. Several types of forms are used, depending on the func-
tions chosen. The forms are described in Reference 10. An initial-
ization form provides the basic system parameters required to
start up the application, including the number of control and mon-
itoring points, the user’s power meter factor, the method used by
the utility company in calculating peak demand, and the number
of digital input/output cards used.

After the program is initialized, the system can start the power
meter monitoring function and can generate consumption reports
(mode 1 in Table 1) . The system can start monitoring alarms and
time of day functions (modes 2 and 3) as soon as the user has per-

IBM SYST 1 * VOL 18 * NO 3 * 1919 SHAH

sonalized data for at least one device and one monitoring point.
As personalization progresses for more devices and monitoring
points, they are brought under system control. Device control
specifications can be changed on line by first deactivating system
control of the device, then restoring it after the changes have been
made. Other functions, such as device cycling (mode 4), demand
control (mode 9 , enthalpy control (mode 7), temperature con-
ditioning of device cycling (mode 8), and device control override
with logical combination of multiple monitoring point status, can
be activated as their personalization data is completed, using
operator commands and requests. See References 4 and 10 for
details of these forms and for prompts and operator procedures.

Once a user has preplanned the control strategies for his facility
and transferred the information to the personalization forms, he
generally can start his application on the same day the Series/l is
installed and wiring is completed to the Series/l through a manual
control panel.

Description of results

The results of the System/7 approach, discussed above, point out
the pitfalls of long program generation times and of dependence,
for program modification, on knowledge of compilers, supervisor
control programs, and a job control language. In most cases, up
to two weeks were required for program preparation and installa-
tion. Almost all the System/7 installations involved program mod-
ification or application extensions, so the success of our ap-
proach on System/7 cannot be measured objectively.

For Seriesll , the application has been installed at several building
facilities, including some within IBM. In the first few installations,
a hardware interface for the building and the computer (that is, a
manual control panel) was already available since a Series/l was
replacing a System/7. The program was personalized and the sys-
tem brought on line in one to two days in these cases. In one
location, additional program functions were activated after the
required temperature and humidity sensors were linked to the Se-
ries/l. Meanwhile the system was on line, performing normal fa-
cilities control functions.

Judging by data available from various installations to date, the
reception of this approach to program automation has been en-
thusiastic. Compared with previously experienced delays in pro-
gram installation, the reduction in system installation time has
had a remarkable effect on the acceptance of computers by facili-
ties management personnel.

A limited number of users have employed the program prepara-
tion facility to alter programs to match existing control panel in-

468 SHAH IBM SYST J VOL 18 NO 3 1979

terfaces and add other program modules. In almost all cases, the
alteration was accomplished easily. Some programmers have ob-
jected to the size restriction imposed on user programs because of
limited diskette space as well as the fixed directory allocation.
Once a programmer is convinced of the advantages of modular
architecture, however, the objection to size restrictions tends to
become less vigorous.

Oddly, in new Series/l energy management installations, the re-
sponsibility for delays in installation startup has shifted back to
hardware, specifically the interface panels and wiring that pro-
vide the control and monitoring path from the computer to the
user’s equipment. With proper planning and analysis of the build-
ing facility to provide personalization data for the program, it is
not unusual for energy savings to be achieved the first week after
hardware installation is complete.

CITED REFERENCES

1. 1800 Process Supervisory Program (PROSPRO11800) Application Descrip-
tion, IBM Systems Library, order number GH20-0261, available through IBM
branch offices.

2. IBM 1800 Time-sharing Executive System Concepts and Techniques, IBM
Systems Library, order number GC26-3703, available through IBM branch
offices.

3. IBM System17 Application Program Generator (APGI7) General Information
Manual, IBM Systems Library, order number GH20-1162, available through
IBM branch offices.

4. System17 APGI7 Power Management Handbook, IBM Systems Library, or-
der number SB30-0617, available through IBM branch offices.

5. Introducing IBM Facility ControllPower Management 2, 2M, and 3 General
Information Manual, IBM Systems Library, order number GH30-0094, avail-
able through IBM branch offices.

6. M. J. Shah, “A fill-in-the-blanks approach to generating a real time control
system,’’ Proceedings of the IBM Automatic Programming Symposium,
Yorktown Heights, 1975, IBM Thomas J. Watson Research Center, York-
town Heights, New York 10598.

7. Understanding MSPI7, order number GC34-0027, and MSPl7 Installation
Guide, order number GC34-0031, IBM Systems Library, available through
IBM branch offices.

8. D. L. Raimondi, H. M. Gladney, G . Hochweller, R. W. Martin, and L. L.
Spencer, “LABSI7-a distributed real-time operating system,” IBM Systems
Journal 15, No. I , 81-101 (1976).

9. System17 Event Driven Executive Program DescriptionlOperations Manual,
IBM Systems Library, order number SB30-0812, available through IBM
branch offices.

10. IBM Series11 Facility ControllPower Management 2, 2M, and 3 User’s
Guide, order number SH30-0119, and Facility ControllPower Management 2
and 3 Application Program Utilities Reference Manual, order number SH30-
0177, IBM Systems Library, available through IBM branch offices.

The author is a senior industry analyst at the IBM Application
Development Center, P .O. Box 2328, Menlo Park, CA 94025.

Reprint Order No. (3321-5104.

IBM SYST J VOL 18 NO 3 1979 SHAH 469

