
This paper  is  a  discussion of a  methodology,  a  distributable  infor- 
mation  system  model, and an  experiment  used to identify poten- 
tial problems for supporting  such  a system. The  experimental 
model  was  designed and implemented in an  evolutionary  manner 
for the  purpose of studying the  feasibility of a  system with the 
postulated  attributes.  Incentives for distribution and design of 
the  study  introduce  the  two  main  topics-the  study  model  itself 
and the  implementation of the  study  model.  Results of the  study 
provide  insights  into  such factors in distributed  information  sys- 
tem structural  design  as  intercomponent  communication,  system 
control. and recoverv Dhilosonhv. 

A distributed  information  system  study 
by K. Ziegler, Jr. 

Over  the past several years, we have been working very closely 
with computer  users to determine ways of reducing the com- 
plexity associated with  new business functions and ways of tak- 
ing advantage of new technologies. One such technology is dis- 
tributed data processing, many concepts of which have been dis- 
cussed in the 1iterat~re.l.~ To test the feasibility of such  a new 
information system design, limited experiments and walk- 
throughs are designed to identify problem areas before they are 
encountered by the commercial marketplace.  Such  studies in- 
volve identifying generic areas  that require work, providing struc- 
ture for describing environmental  characteristics, and analyzing 
implementation alternatives. This paper  discusses insights de- 
rived from such a study concerning distributed information sys- 
tems. 

The key incentives  that  motivate  a business firm to  assess distrib- 
uted systems usually fall into  one or more of the following cate- 
gories: subjective,  economic,  technical, organizational, and  a  de- 
sire  to  reduce  the  operational  dependence on a single resource. 
Subjectively, management must assess distributed systems be- 

Copyright 1979  by  International Business Machines Corporation. Copying is per- 
mitted without payment of royalty provided that (1)  each reproduction is done 
without alteration and (2) the Journal reference and  IBM copyright notice are 
included on the first page. The title and  abstract may be used without  further 
permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from the Editor. 

374 ZIEGLER IBM SYST J 0 VOI. I R  0 NO 1 1979 



cause of industry pressure and for protection against a lost busi- 
ness opportunity. Economic considerations are those of potential 
savings in communication costs, the sharing of costly resources, 
a higher responsiveness to new business applications, and higher 
user productivity. Technical considerations stem from the oppor- 
tunity to reduce the response time for specific applications, to 
improve  availability to the end user, and to reduce the complexity 
associated with  trade-offs required for a single  node-system sup- 
porting  all applications. Organizationally, distribution with  com- 
munication  links provides a vehicle to relate data processing to 
organizational structures and organizational  information  flow. By 
separating and distributing business applications, the impact to 
the business by a single outage can  be reduced. One  application 
area that is being considered for distribution is  an  information 
system. The overall  goal of an  information system is to provide 
controlled access and sharing of data within  an organization. As 
dependency on these data grows, more  formalized techniques to 
manage the access and flow are required, and the organization 
soon recognizes a need for coordination, security, integrity, syn- 
chronization, consistency, timeliness, and availability. The or- 
ganization also recognizes their accompanying costs. 

An early approach to these matters was to implement a central- 
ized data base. This was  very  effective  initially. However, the 
centralization of data processing and development personnel 
present some problems. This had the effect of adding greater ef- 
fort on  maintaining satisfactory availability, large  up-front  plan- 
ning,  management of acceptable response time, responsiveness 
to users' application requirements, and maintenance of privacy. 
It also affected the organizational philosophies of the enter- 
p r i ~ e . ~ - ~  

A distributed information system purportedly allows  flexibility  by 
reducing  implementation constraints of traditional centralized in- 
formation systems. The intent of such systems is to provide a 
logically integrated information system while  providing for phys- 
ical distribution of data over two or more  computing facilities. 
Thus, an authorized user can access data from any of the partici- 
pating  computing facilities in the same manner as from a central- 
ized  information system. From an organizational standpoint, this 
capability puts data processing power  where  it is needed, while 
still  allowing  management control.' It also provides for more 
coordinated information flow  in decentrally organized enter- 
prises. 

Distribution of information emphasizes certain technical and 
managerial considerations. Technical considerations include as- 
sessments of the  following: a communications system to transmit 
data, dictionaries and directories to identify and locate the data, 
and data management systems to provide the required data syn- 

IBM SYST J VOL 18 NO 3 1979 ZIEGLER 375 



chronization, integrity, consistency, privacy, security, and data 
placement. Managerial considerations involve the following: for- 
mulation  and analysis of the effects of maintenance strategies, 
hidden costs and  risks associated with design, implementation, 
optimization, vendor coordination, legal aspects (interstate and 
international), auditing, system administration, standards, and re- 
sp~nsibility.~’~ 

Although there are numerous papers that define “distributed,” 
these definitions  depend on the perception of each user and  his I 
specific  application implementation. For this reason, the termi- 
nology  used  here  is intended to communicate concepts only, 
rather than to assert a standard. In this paper,  a node is  defined as 
a processor or processors with a single operating system. A dis- 
tributed system interconnects multiple  homogeneous  and hetero- 
geneous nodes to exchange data, share resources, and execute 
multiple  well-defined  and interrelated software components (pro- 
grams) in one or more nodes. Multiple  nodes are not  necessarily 
involved in any particular process; the system can  provide an in- 
tegrated appearance when  multiple  nodes are involved. 

The primary sources of difference between distributed and  non- 
distributed systems are in the distribution of control within the 
network and the nonmemory  connections between software com- 
ponents. Distribution of control involves the allocation, finding, 
and accessing of network resources and the synchronization of 
such services as update and maintenance. Nonmemory  communi- 
cations via channels and lines require more sophisticated pro- 
tocols to ensure data transfer. As an example, after a message  is 
sent, some acknowledgmefit of successful receipt is appropriate 
to indicate an error if the transfer has failed. If one examines the 
process of communication to  a subroutine at  a remote location, 
the increase in elapsed  time is apparent, as shown by comparing 
Figures 1A and 1B. 

Incentives for distribution 

Such  differences force new approaches to ensure adequate re- 
sponse time, availability, data integrity, backup, recovery, effi- 
cient use of resources, and security. These approaches may also 
require new procedures for processing business transactions, var- 
iations of redundant data distributed throughout the geographi- 
cally distributed information system, and schemes to periodically 
synchronize the data.g This  new environment involves techniques 
to determine the useful level of data distribution, the location of 
the data, internode and resource control strategies, and response- 
time managers, as well as monitors for evalbation and tuning.” 
Staff skills, combined  with  good alternatives in design, determine 
the degree of programmer and user transparency, economy, and 
manageability of the distributed system. 

I 376 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



PHYSICAL 
110 



As a result of the increase of on-line workloads, users often expe- 
rience degradation of system response time and availability. 
Users have also been required to submit to unplanned  ex- 
penditures for conversmn, rewrite, or “minor adjustments” to 
programs or the current way  of  doing business in order  to utilize 
the computer resource effectively. Consequently, users are be- 
coming  more result oriented. 

isolation Advances in computer technology  have emphasized the  desir- 
ability of dedicating business applications to autonomous small 
computer hardware and software. This provides the individual 
line  manager  with the ability to control his  own resources and 
service levels in a manner that transcends the methods of the cur- 
rently implemented, managed, and controlled centralized com- 
plex. This also isolates the user from  effects of unpredictable 
changes in priorities and system tuning. 

complexity The data processing department, in its effort to serve all users 
within  budget  and personnel constraints, must  manage the shar- 
ing  of resources in spite of the contradictory objectives of per- I 
formance, economy, availability, productivity, and responsive- 
ness. This effort is becoming  increasingly  more  difficult and often 
exceeds the technical staff’s ability. Loss of control has resulted 
from the increasing  number of software and hardware com- 
ponents and applications that must coexist.” 

Dedication of business applications to autonomous systems ap- 
pears to simplify the system management  and control tasks by 
reducing the number of component interdependencies and trade- 
offs . 

availability The distribution (or dedication) of hardware to business functions 
and also makes it  possible to reduce response time and communica- 

performance tions costs and provide  higher  availability. These advantages can 
be  realized if data and processing services can  be  placed at or 
near the point of work. Then the business application is less sus- 
ceptible to disruptions due to line outages and uninvolved  com- 
ponent failures. 

resource Distribution also allows for maximizing  isolation  while  providing 
sharing a high level of sharing of costly resources, e.g., high-speed  com- 

puting and mass storage, as shown in  Figure 2. The system char- 
acteristics thus far discussed appear to provide a solution to some 
of the limitations of centralized system complexes. An assess- 
ment of these characteristics is in order because it  is  becoming 
increasingly apparent that data requirements, performance, and 
availability needs will continue to grow as  data processing be- 
comes cheaper and  more integrated into the business organiza- 
tion itself. 

378 ZIEGLER IBM SYST J VOL I8 NO 3 1919 



Figure 2 Resource sharing 

COMPUTER 

BUSINESS 
APPLICATION 

I HIGH-SPEED 
COMPUTER I fJ STORAGF 

APPLICATION 
BUSINESS BUSINESS 

APPLICATION 
C D 

Motivation for study 

From a user perspective, the distribution of processing is a way of 
achieving simplicity, isolation  from other users of the system, and 
better service. However, the dedication of an entire node  and 
attached resources to service a specified set of users often  has 
economic shortcomings, because fixed components (such as op- 
erators, peripherals, and software) often increase when  the  work 
is split. 

Distribution may constrain the user to a limited set of data and 
services, unless changes are made to the information system im- 
plementation to allow data redundancy and  new data synchro- 
nization. This may result in less than  optimal resource utilization 
and  involve a net increase in total data processing expenses. This 
cost is one that many businesses appear willing to pay to satisfy 
the increase in demand  while  maintaining response time  and 
availability. Unfortunately, if left unchecked, this may result in a 
return to decentralized uncoordinated data processing, with  all 



Since data  are corporate resources, system  planners  must  focus 
on the  access  to  data,  and  the ability of several data  base manage- 
ment systems  to  cooperate.12  This implies that  system  coordina- 
tion and  network-wide  standards  are  even more important in a 
distributed  environment. 

In  an effort to determine the  best  approach  to distributing data 
while meeting immediate and long-range business  requirements, 
system  planners must understand  the  various  ways of implement- 
ing and distributing systems, with their  associated  strengths  and 
weaknesses.  It is important  for  the implementation to  be extend- 
ible without  stretching  the state of the  art.3 

Other  considerations  (outside  the  scope of this  paper) include or- 
ganizational  issue^,^-^ managerial and  economic  consideration^,^ 
costs minimi~ation,’~ international  systems,’  distributed  data 
base chara~terization,’~  sec~rity,’~ market  and  people  factors,” 
and the whole realm of data communications, just  to highlight a 
few. 

In current  literature  there are numerous  articles describing new 
variations of distribution of processing, data, and  applications, 
with new advantages  (and  some  disadvantages).  They involve 
such  terms as “partitioned,  replicated,  discrete,  horizontal,  and 
vertical”  for  data  base  distributions,  and  “centralized, repli- 
cated, global, and local”  for  directory  distribution^.'^''^''^ Note 
that the directory is a data  base of locations,  names,  access  au- 
thority,  etc.  that will be partitioned  and  replicated  for availability 
and  performance  reasons. 

I Design of study 

Among the  questions  that  vex the designer of a distributed  sys- 
tem, whose previous experience  has  been with centralized  sys- 
tems,  the following have  been  selected as important  to  this  study: 

0 Intercomponent  communication; 
0 System  control; 

Response  control; 
0 Recovery  responsibility. 

More specifically, we wished to  learn as much as possible regard- 
ing software  interfaces  and  support facilities for  distributed soft- 
ware  components. An information  system  was  used as the  test 
business  application.  The  study itself had the following objec- 
tives: 

0 Test  the technical feasibility of connecting IMS DB/DC appli- 
cations  into a heterogeneous information system  network 
without any  application program changes: 

I 380 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



~ ~~ ~ 

Determine the physical distribution of  IMS-like logical func- 
tions for  a single distributed information system  occurrence; 
Test system support facilities necessary  to  support such a dis- 
tributed implementation. 

We decided that the study design should try to maintain the  cur- 
rent application software  investment while providing distributed 
services,  because many current application programs depend on 
standard system and service  interfaces,  as well as certain  support 
functions.  These  support  functions  are termed the environment, 
which is often implied as a  basic  element of program logic. 

As an example,  the  automatic serialization and  backout of several 
transactions concurrently while updating the same  data segments 
within an IMS data base represent an implied  support  function. 
The IMS application programmer assumes this service and there- 
fore  provides no contingency for  its  absence.  Thus any study de- 
sign that proposes compatibility or coexistence  must  be able to 
simulate the  environment, so that  the application logic  may re- 
main untouched. In other  words, it would not be sufficient to pro- 
vide source  code compatibility without the appropriate environ- 
ment services. 

Program-to-program communications should include facilities to: intercomponent 
communication 

Locate the desired component (if it already exists); 
Initiate  a component (if  it is not currently active); 

0 Terminate a component when it is no longer needed; 
Transfer  control  to the component; 
Communicate without passing control; 
Recover from temporary  disruptions  (reconnect,  retransmit, 
etc .). 

These program-to-program communications were viewed as tak- 
ing one of two logical forms:  control or  data.  Control messages 
(commands) are sent  to  a  system  control  service  that handles 
such requests  as initiating a  program, locating a  component,  and 
terminating a program. Data messages (application communica- 
tions) are  sent  to  the  destination  software  component. Concep- 
tually this might be characterized as two  ports  into  a  network, 
one for  control,  the  other  for  data, as indicated in Figure 3. This 
allows control  services to be  outside the origin or destination 
nodes.  The  control port is analogous to  current  operating system 
supervisor service requests,  e.g., Supervisor Call (SVC) or branch 
entries.  Like  service  requests,  the  control  port need not be in 
session with a specific service.  The  request  is  routed  to  the appro- 
priate service only when needed. 

The data  port is  simply a way into  the network used for communi- 
cating with one or more other application programs. The messages 



Figure 3 Logical data ports and  control ports 

I NETWORK I \ 
I I-\\ / 

I \ /  
LOGICAL 
DATA  PORT 1\ COMMANDS 

\-] PROGRAM 
APPLICATION 

LOGICAL 

PORT 
DATA 

can  then be routed by the network to the  appropriate  destination, 
based on  a destination address within the message. 

Figure 4 Alternate path selection Message routing through data and control ports  provides  a way of 
minimizing the use of control blocks and also offers flexibility  in 
dealing with instantaneous  network  changes,  such as alternate 
destination,  alternate servicing, or intermittent outages, as in- 
dicated in Figure 4. 

Since a node could call other services,  either locally or on the 
network, we were faced with deciding whether  two application 
program interfaces should be provided-one for internal commu- 
nications (within the same node),  the  other  for  external communi- 
cations  (internode). If two  interfaces were available, the program- 
mer would have to decide which interface to  use, and that would 
make the program sensitive to its placement. An alternative 
would be to provide a single high-level application interface that 
treats all communications as internode.  The  issues  appeared  to be 
ones of storage integrity, security, and instruction  path length, 
where primary differences stem from program portability (inde- 
pendence) and the way of handling storage. 

For the purpose of this study, a single application interface was 
selected for both inter- and  intranode  communication, so as to 
protect  the software investment and reduce  storage integrity and 
security exposures,  at the price of additional path lengths. 

382 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



Figure 5 Backup  site  selection: (A) With peer control,  the  application  selects  the  backup  site; 
(6) With  hierarchical  control,  a  site  selector  selects  the  backup  site 

BACKUP 
FOR A 

PRIMARY 

A AND B 
FOR 

BACKUP 
FOR B 

A hierarchical  approach to managing  and controlling multiple 
processors that share resources employs a specific processor as 
the “master” and  all associated processors as “slaves.” The 
master is a critical resource that supplements many of the slave 
resources and services. When such dependencies are allowed, 
the operation of the slaves may  be disrupted if the master fails or 
is  made  unavailable for maintenance. An approach to solving this 
problem is to provide  multiple hierarchies, with the masters able 
to communicate with one another for access to outside data. 

Another technique to reduce disruptions is to provide an alternate 
master when  the  primary is unavailable. This introduces logistical 
problems in data-oriented systems, where the placement of the 

IBM SYST J VOL 18 NO 3 1979 ZIEGLER 



Figure 6 IMS multiple system coupling 

IMS/VS SYSTEM 
(SAN FRANCISCO) 

CUSTOMER 
DATA BASE 

FRANCISCO 
REGION) 

TERMINAL 
(SAN FRANCISCO) (SACRAMENTO)  (RENO) 

(3 (SAN FRANCISCO) 0 (PALO ALTO) 

n n 

"- A 
CUSTOMER 
DATA BASE 

ANGELES 
REGION) 

u (LOS ANGELES) 

data and control is essential to continued operation. A hierarchi- 
cal data-oriented system switch-over to a secondary master re- 
quires extensive application and dependent data insights. Passing 
control back to the original master involves extensive prior  plan- 
ning and support programs. 

Apeer  approach emphasizes autonomy, in which  all processors 
can  be masters. Each node and its applications are responsible for 
their own operation. If a program in another node wishes to ac- 
cess some external resource (data or service) node, the servicing 
node  manages  and controls the request. In this approach, each 
application is responsible for its own recovery. 

To compare and contrast the hierarchical and peer approaches, 
Figure 5 depicts two applications in a node, each with a different 
backup node and data base. The peer approach (Figure 5A) 
makes the application responsible for the selection. The hierar- 
chical approach (Figure 5B) provides a control function for re- 
covery site selection, on the basis of parameters and specific  fail- 
ure characteristics. 

384 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



Figure 7 (A) Example of remote file access using ClCSiVS 
(B) Example of remote DLil  access using ClCSiVS 

3DE 1 

ClCS  A 
I 

NODE 2 

ClCS E 
I 

CONTROL 
(FCP) 

CALL  DL/I 

RETURN 
CHECK  DIRECTORY 

CODE 
PSEl +CICS E 
PSE2  -LOCAL 

s 

3 
CICS/DL/I 

PSB DIRECTORY 
CONTROLLER 

PSEl LOCAL 

IMS multiple system coupling (Figure 6) is an example of a spe- 
cific peer  approach  implementation of a  distributed information 
system in which the  current unit of communication is at  the  IMS 
transaction  level. CICS~VS represents  another  possible implemen- 
tation of the  peer  approach,  and  its  current unit of communication 
is at the file call or Data  Language4 (DL/I) call level (Figure 7). 

The  peer  approach was selected  for  this  study  because it ap- 
peared to be an effective strategy  for managing resource  sharing 
while protecting  the primary owner of the  resource.  It  also  pro- 
vided flexibility to  control  resources in a  hierarchical  fashion. A 

IBM SYST 1 VOL 18 NO 3 1979 ZIEGLER 385 



hierarchy could be implemented when dependent  software  ser- 
vices were  distributed  to multiple nodes  such  that  they  were  func- 
tionally managed as a hierarchy, although the  nodes  are  peers  for 
resource  ownership  and  operating  systems. 

directory The design of the  directory  for  distributed  systems should accom- 
modate  the  transient  nature of nodes in a  network,  because  the 
nodes in a network  environment may not all be operable at any 
one  time.  Therefore,  the  directory design should accommodate 
the  dynamic  nature of network states and avoid excessively large 
space  consumption  for  nonessential  entries. To  address this, a 
structured  network of directories was selected. 

The  structure is provided by participating  components, whereby 
each  component identifies itself to  the  appropriate  directory  or 
directories  via  basic guidelines and  system  defaults.  Each data 
set,  therefore,  requires  some  scope-of-use  data  associated with it. 
For  example, if a data  set is intended  for  the  exclusive use of a 
particular  node  (e.g.,  the  one to which it is connected),  a  “node 
only” scope of use would be  indicated, and only the directory  for 
that  node would record  the entry. This  selection could be pro- 
vided via Job Control  Language (JCL), the  application  program, 
or  the  operator.  The  scope might be a node, a set of nodes,  or  the 
entire  network.  After  analysis, we decided that it is the  resource’s 
responsibility  to remove itself or  alter related data when a change 
occurs. We did this as an  alternative  to a system  that would re- 
quire a sophisticated  allocation/deallocation  function. 

asynchronous Time delays resulting from the  transfer of requests and data 
requests through a  network also required  attention.  Transactions  that  re- 

quire  services  or  data from other  nodes may experience  severe 
increases in overall  response time if requests  are  executed  seri- 
ally or synchronously, i.e., issue first request  and wait for re- 
sponse,  issue  next  request,  etc. Asynchronous request support 
allows the application to  issue multiple requests  before waiting 
for data  return  or receipt confirmation. This  tends  to  reduce  the 
transaction  response time experienced  for multiple geographi- 
cally distributed data  requests. Asynchronous  request  support  is 
illustrated in Figure 8. Other  ways of dealing with delays  greater 
than that of memory-to-memory transfer include: (1) packaging 
requests with some decision logic; (2) using change-type  re- 

Figure 8 AsYnchronous  requests quests,  e.g., ADD A to field B ,  as used in IMS/VS fast path malll 

as those  provided by a relational data  base  interface.”  These 
techniques  attempt  to  reduce  the  number of interactions  between 

NODE 1 storage data base  updates,  and (3) set-oriented  operations,  such 

GET B network  components  for  a  particular  transaction.  A  change-type 
G T C  request is illustrated in Figure 9B and  a  group-type  request in 
WAIT FOR A 
WAIT FOR B 
WAIT FOR C techniques  require  application program logic changes, they are 

Figure 9C. (Figure 9A is a traditional data  access.) Since all these 

candidates  for  use with new applications. 



Figure 9 (A) Traditional data access; (B) Change-type request; (C) Group-type request 

GET  FIELD  A 

WAIT 

A = A + o  

REPLACE 
WAIT 

ADD n TO A 

WAIT 

HOW  MANY  BLUE CARS’ 

WAIT 

SEND FIRST 10 
BLUE CAR OWNERS 

WAIT 

REQUEST 

ACCESSUR 
LOGIC 

NEW  A 

ACCESSUR 
LOGIC 

NEW  A 

n-FIELD ID 

NEW  A 

(6)  

REQUEST  LOGIC 

An error detection and recovery  strategy  also had to  be  estab- 
lished for a distributed  systems  environment.  A  controller  that 
detects  component  loss  and  controls valid response was consid- 
ered. We decided  that  this would require  extensive insights into 
individual transactions  and  associated  components.  The imple- 
mentation of a controller  approach was believed to be very com- 
plex and potentially troublesome,  because  a  failure could well 
bring down  the  entire  system. 

An alternative  to  such a controller is to  delegate responsibility to 
the  originator of a message. If a connection is interrupted,  the 
originator  must  sense  the  interruption  and  bear responsibility for 
initiating corrective  action, e.g., establish  a new connection,  seek 
an  alternate  path, wait for  restoration,  or ignore the loss. This is 
calledpoint-ofbrigin recovery, and  was  the  alternative  selected. 

A distributed  information  system  model 

The  next  step was to  derive  a  distributed information system  con- 
ceptual  model, shown in Figure 10. The  components of the model 

IBM SYST J VOL 18 NO 3 1979 ZIEGLER 



Figure 10 A conceptual  model of a 
distributed  information 
system 

0 TERMINAL 

MESSAGE 
FACILITY 

CONTROLLER 

MANIPULA- 
DATA 

LANGUAGE 
TlON 

MAPPING 
DATA 

FACILITY 

ACCESS 
DATA 

FACILITY 

APP 
PR 

DIRECTORY 
(DD/O) 

component 
description 

388 

could reside in one or in multiple nodes and  still  maintain their 
systemic relationship, in order to present a single  information 
system occurrence, such as is  shown in Figure 1 1 ,  with a cen- 
trally controlled information system and distributed data and soft- 
ware components. Geographic distribution of this  configura- 
tion  is of dubious value, whereas a local distribution has potential 
performance and capacity benefits. 

The distributed information system model  is an attempt to de- 
scribe the basic distributed functions that can be  mapped to any 
data base/data communications oriented system. The premise for 
this  model  is that multiple application implementations-not  nec- 
essarily using the same interface or same  facilities-must  be ac- 
commodated. For our purposes, programs  using and written for 
IMS were used for the base case application programs. 

For geographically distributed nodes, multiple autonomous infor- 
mation systems interrelated and interconnected via the network 
are more practical. Our  model accommodates a multilevel 
(among  all peers) information system with  single or multiple  do- 
main access capabilities to support the various levels of data dis- 
tribution. This approach is desirable because it accommodates 
various degrees of autonomy while  maintaining the appearance of 
an integrated information system. The key  is a comprehensive 
dictionary/directory. In this configuration, each occurrence of the 
information system can execute alone  and provide its own recov- 
ery, in order to maintain  availability for its specific (primary) set 
of users. 

The structural flexibility of the model enables the system imple- 
mentor to customize specific nodes to provide an economical or 
expedient configuration for addressing user needs without af- 
fecting business application programs. 

The  model also accommodates heterogeneous hardware or soft- 
ware architectures if the interfaces and service functions are 
maintained. This concept is analogous to the relationship be- 
tween such nodes as IBM 8 100 Information Systems and IBM Sys- 
tem/370, which, although they have  different hardware and soft- 
ware architectures, communicate via a common set of rules (pro- 
tocols) that were established by the Systems Network 
Architecture (SNA) and  implemented  using VTAM. 

The message  facility in Figure 1 1  provides terminal interface 
services (e.g., message formatting, logging messages, input  vali- 
dation, and the routing of messages to the appropriate controller 
component). It provides  point-of-origin service, and can  be  used 
to communicate with  multiple  information system controllers to 
provide performance benefits  with alternate or duplex system se- 
lection for availability and recovery. 

ZIEGLER IBM SYST J VOL 18 NO 3 1979 



The information system controller component  provides  for appli- 
cation  and  service  management, queuing messages,  and  synchro- 
nizing information system logs. Each information system domain 
has  one  controller  component.  The  controller  represents  the  focal 
point of each  occurrence. 

For productivity  purposes,  application  programs are encapsu- 
lated in an environment-an application  service -which manages 
the  interfaces used by the application  to  participate in the infor- 
mation system  software, as shown in Figure 12. 

A data  manipulation  language  facility provides a compiler-like 
service to translate  an  application  data manipulation language 
into  an  internal  data manipulation language. (This facility may be 
bypassed  for statically bound  programs  that  do  not utilize dynam- 
ically created  data manipulation commands.)  The  resultant  inter- 
nal data manipulation language statements  are  then  passed  to  the 
appropriate  data mapping facility. 

The data  mapping  facility is the  heart of the  model; it provides 
security  checking, logical request logging, data mapping, and  data 
building (for logical data  bases  that  are built dynamically for  the 
duration of a transaction).  Each  one  has  the exclusively con- 
trolled data  access facilities shown in Figure 13. The  data map- 
ping facility routes  and  controls  data  requests  to  other  peer infor- 
mation systems.  Communications among data mapping facilities 
provide for synchronizing the  internetwork  updates  and logs 
while still allowing them to  continue when failure  occurs.  The 
mapping facility is also responsible  for  the logical data  bases in 
terms of integrity,  performance,  backout,  and  recovery  for  each 
occurrence, as well as deadlock  detection  and  synchronization of 
redundant data between occurrences  at specified intervals.  The 
data mapping facility in this model detects  deadlocks by using 
timer signals (or “pops”)  and  status and  reservation  checks with 
the  other  data mapping facilities. 

The data mapping facility also  provides  the  Data Dictionary] 
Directory (DD/D) service, which contains information about  the 
data  and  data  bases  and  their  associated  locations. Although the 
scope of the information in such  a  data  dictionary  can  encompass 
all system logical and  physical  resources (including terminals, 
files, reports, etc.),  the  focus in our study was  on how to imple- 
ment it to find the location and  properties of a data element in a 
geographically distributed  system.  This  requires the selection of 
the  appropriate  data mapping facility through globally known 
symbolic names.  These  names  are  associated with logical ad- 
dresses,  and they are  resolved  to a physical node by the  network 
services. In a static  environment (one that  has all access  paths 
previously identified), such  elements  can be placed in all directo- 
ries.  In our  study,  however,  a  dynamic  environment  was more 
useful. 

IBM SYST J VOL 18 NO 3 1979 ZIEGLER 

Figure 11 Systemic  relationships 
are  maintained  from 
node to node; (A) is  the 
same as (B) 

NODE A 

INTERFACE 

CONTROLLER 

APPLICATION 

MANIPULATION 

MAPPING 

ACCESS 

I I 

(A) 

NODE 1 

INTERFACE 

r NODE 2 

CONTROLLER 

APPLICATION 

MANIPULATION 
I DATA I 
I 

NODE 3 
I 



Figure 12 Application  service pro- 
vides  the logic neces- 
sary  to  interface  with  the 
information  system 

NETWORK SOFTWARE 

3 90 

The data access facility provides  the logical data  interface with 
the  system  access  methods  and  storage  subsystems, e.g., VSAM 
and DL/I data  base  access  method  and language. It provides  such 
functions as pointer following and physical data  base  update log- 
ging, and is responsible for physical  data  base  access  and  recov- 
ery * 

Implementing the study model 

In order  to constrain  the  scope of the  study, only the minimal 
functions  and  options of a distributed  system  were  explored. 
Most of the effort concentrated on the novel areas introduced by 
distribution,  such as program-to-program communications, appli- 
cation  interfaces,  director  services,  and  distributed  control. 

A four-peer-node configuration was selected  for  testing.  The 
nodes were implemented with the use of VMi370, and  the Virtual 
Machine Communication Facility (VMCF) was  used as the vehicle 
by which the different virtual machines (nodes) could communi- 
cate  to  provide a multiple-node environment.  The  study model is 
shown in Figure 14. 

With the  exception of the  modules  that used VMCF and CPU timer 
facilities (which we referred  to as  “operating  system”), PL/I was 
used as the implementation programming language.  The  pro- 
grams  were designed to be easy  to  read,  debug,  and  rewrite.  The 
project entailed  the writing of fourteen  modules, with 2000 lines 
of assembler language code  and 3600 source lines of PL/I. 

The  implementation began with the  selection of an IMS sample 
data  base,  and an IMS transaction was coded  to  access  that  data 
base.  This  transaction  was  then  used  to  represent  an application 
program and was mapped into  the  distributed information system 
model.  The mapping process identified the  interfaces  and  services 
required  to  proceed with each functional component of the 
model, e.g.,  the application service  functions. 

The  next  step was to identify common services in the application 
service  component  that  could be provided by the  support  system. 
Once identified, this system logic was extracted  and placed in the 
operating  system  services, or network  transmission  services.  The 
interfaces and support  components  for  transmitting messages in a 
static predefined environment  were  then  coded  and  tested, using 
a driver program (some 300 lines of PL/I executable  code)  that 
provided an interactive  interface  for  the  application  and  acted as 
a master  console.  This  assisted in the  development of a protocol 
for communicating between  software  components  and  an appli- 
cation program interface  that  provided  for  the transmission of 
program-level data  among multiple nodes. 

ZIEGLER IBM SYST J VOL 18 NO 3 1979 



Figure 13 The controller is the data control point of each information system Occurrence 

- MESSAGE FACILITY MESSAGE FACILITY APPLICATION SERVICE APPLICATION SERVICE 

I i I 

J I +  

CONTROLLER 
DATA LANGUAGE 

(E G.. DL/I) 
FACILITY 

t t 
DATA MAPPING 

FACILITY 

c DATA ACCESS 
FACILITY 

rl I/OQUEUES 
DATA BASES 

DICTIONARY/ 
AND DATA 

DIRECTORY 

Subsequently, initialization and  control  strategies  for  a dynamic 
environment were designed, coded, and  tested.  This called for 
node and  network  control  services with associated  protocol  and 
command language enrichments. 

In  addition  to  the  information  system  components, five basic 
building blocks  were  developed  for our study.  They were the 
Node  Control  Interface (NCI), the System  Control  Interface (sCI), 
the  Network  Transmission  Subsystem (NTS), the 110 Device Sub- 
system (IODS), and the  Storage Device Subsystems (SDS, which 
was VSAM). These five components provided those primitive 
functions  (such as timers  and  interrupt,  vectoring, and storage 
management)  that  are generally available from any  operating  sys- 
tem or monitor. 

IBM SYST J 0 VOL 18 NO 3 1979 ZIEGLER 

0 
0 
0 

five basic 
building 
blocks 

391 



Figure 14 Study  model  using  the  Virtual  Machine  Control  Facility  (VMCF) 

Figure 15 Node  without  application 

I 
I NTS I R 

MACHINE 1 
VIRTUAL 

0 
N 
T 

NETWORK 
TRANSMISSION 

SUBSYSTEM 

OPERATING SYSTEM 

VIRTUAL 
MACHINE 2 MACHINE 3 

VIRTUAL 

4- 

VIRTUAL 
MACHINE 4 

"- 
I t I t VMCF 

VM/370 

J 

Figure 15 shows  a basic stand-alone  node  before  any application 
is  present.  The terminal is a control  console  used to communicate 
with those  operating  system  services  required to bring up any 
additional  components,  e.g., input/output  device  subsystem, 
storage  device  subsystem,  and application within this  node. In 
Figure 16, node 1 has an SCI, which provides facilities necessary 
to  locate  other  nodes in the  network  (nodes 2 and 3) and  has  the 
ability to initiate requests  to bring up  those  nodes. 

The  primary  source of control  comes from within each com- 
ponent in the  network.  Each  component  uses  the NTS, NCI, and 
SCI services to provide logical resource  control.  These  are primar- 
ily passive  services;  that  is,  they  are invoked via an application 
program request.  The NTS is invoked via an external  interrupt. 

The NTS provides  communication among components regardless 
of where  they  reside (local or remote). NTS can  be viewed as a 
memory-to-memory or node-to-node pipeline that is accessed via 
a very primitive interface  and  provides only point-to-point mes- 
sage transfer  service  between  application  programs or subsystem 
components.  For simplicity, the NTS end-to-end  protocol  for 
transferring  data  consists of a destination address, an origin ad- 
dress,  and a variable-length text, plus some security information. 

The  network  control  services  such as transmission  sequence 
checking,  alternate  pathing,  and  address  resolution are provided 

392 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



Figure 16 System  control  interface  hierarchy 

/ \ 

I NTS I NTS I 

by the NTS without intervention by the  application.  Network 
data-related  services  such as message sequence  checking, mes- 
sage retry, and  alternate  destination require significantly more 
heuristics. We decided that  these could best be provided by the 
application program, application  service, or application  sub- 
system on an  as-needed  basis. 

Each program opens apor t  to  the network through which it can 
issue SEND/RECElVE-type requests to any destination  component 
address known to the  NTS.  This  component  address is established 
via a  symbolic  address that is resolved into an explicit address by 
the NTS. Once  the explicit address  has  been  established,  the 
SENDiRECEIVEs are issued.  The  network  subsystem  also  provides 
a mailbox facility to which tickler messages to  the requesting 
component  can be sent.  This  was used as  a  time-out mechanism 
by the application program instead of setting a timer  and then 
handling timer  interrupts. It also provided a mechanism to keep 
track of outstanding  messages  and  to allow the program to regain 
control in order  to decide  whether  to  continue,  abort,  or  retry 
another  message. 

The NCI provides  the  bring-up,  bring-down,  and  resource alloca- 
tion services  that  are traditionally provided by the  operating  sys- 
tems. The NCI is logically separate from the  operating  system 
services,  since it provides only service  for managing resources 



The NCI also provides a  node  directory  service.  The  directory is 
the only way to find other  components local to  the  node,  e.g., 
users directly connected,  active  programs,  and  subsystem-named 
resources. 

The SCI provides  for locating global resources,  i.e., resources  out- 
side a  node (a network directory  service). Thus, SCI is inter- 
rogated if a  resource  outside  the local node is  to  be allocated or 
referenced. 

The NCI and  the SCI directory  and  directory  services  are function- 
ally the  same.  The  directories  contain log-on name, internal node 
and element identifier, component identifier, physical and logical 
locations,  lock/password,  and  authorization. 

The log-on name is the symbolic name by which the system and/ 
or node knows the  execution of a component.  Internal identifiers 
(implicit addresses)  are  created by the NTS at  port-open  time, and 
thus  provide  a way to address network components. A com- 
ponent identifier represents  the name of a  particular  component. 
Physical and logical location  entries provide symbolic location 
identifiers. Ordinarily these would not occur more than  once in 
the SCI. However, multiple entries may be  required to provide 
independence from the physical topology for  testing and backup. 
This  approach to network resource resolution supports such net- 
work management attributes as relocatable destinations, dynamic 
assignments, and adding new network  resources in a nondisrup- 
tive manner. 

The  lock/password  provides  the  directory with the locking facility 
against which inquiries for  this  component  can be checked. If a 
request is made and the appropriate key is  not supplied, the 
search is unsuccessful, and the  attempt may be  recorded as a 
security violation. The authorization field contains the key by 
which the component can be  accessed. During component inter- 
communication, each component can check an authorization be- 
fore providing access  to  that  component’s  service for that mes- 
sage. 

The NCI directory is aware only of components  that  have been 
identified to it. This reduces nonessential entry information re- 
dundancy within each directory (node or system).  The SCI direc- 
tory contains information on  components  that  have identified 
themselves and wish to be known by other  nodes. Only other SCI 
addresses  can  reoccur in each SCI directory.  This  results in two 
requests  for locating outside  components:  one  to  locate the other 
SCI address and the other to make a  request of the foreign SCI. 
This method of identifying and locating appears to be less difficult 
to maintain than multiple redundant  entries in multiple system 
control  interfaces in terms of purging unneeded entries  and  con- 

394 ZIEGLER IBM SYST J VOL 18 NO 3 1979 



tent  synchronizing.  The  method  also simplifies the creation  tasks 
associated with reestablishing communications  among  software 
components. 

The  application  interface is written in reentrant  code. Main stor- 
age is for message queues  and  control blocks that  are  set up at 
application initiation time.  The  application  service  conditions  the 
environment and acts  as  the  primary application interface  to  the 
network  and  other  components. Conditioning is similar to that 
used in the SNA bind process,  when logical units are conditioned 
at initiation.  The application interface also provides  options  to 
bypass  unwanted or unsupported  functions, in response  to  spe- 
cific service  requirements. 

If an application wishes to  send a message to  another application 
or system  resource,  the  application  interface  locates  the appli- 
cation or resource via the  appropriate  directory. The location 
request is followed by a SEND, which causes a message to be built 
and encapsulated within a header  that  contains  a  destination net- 
work address, message length,  optional  password, and event 
number. When messages arrive  at an  application program inter- 
face,  they  are scanned for an event  number. If that number is the 
awaited event number (a response  to  a SEND), the  data  are placed 
in the  appropriate program buffer and the  event number is deleted 
from the  outstanding  response  queue.  Should  the  outstanding 
message be timed out, the  event  number is deleted from the  out- 
standing response  queue  and a time-out status is returned  for  the 
response. If the number is for  another  message, i t  is queued on a 
message stack and awaits  the  program’s RECV request. 

It might be useful to  have  a  summary of our  decision  process  and 
reasons  for developing our  study model design. In our  design, we 
were  not  concerned with response implications that  were topol- 
ogy dependent, but only with the  actual  communication  func- 
tions. 

The IMS transactions would require no recompiles, program or 
interface  changes  to  conserve  the program investment.  The  inter- 
nal interface  was to use a  pass-the-message  data  interface as op- 
posed to  sharing  storage in order  to simplify the  interface and 
avoid locks and complications involving data integrity and secu- 
rity. Two ports-one for  data  and  one  for  control-were  selected 
to  accommodate  the physical distribution  and  separation of con- 
trol services and the  destination application program. A single 
port approach would require  a  sophisticated  intermediary to split 
the data and control flow if these  were physically distributed. 

The  peer node network  structure  and  peer  software  interface 
structure would provide a highly flexible approach  to  node  inde- 
pendence and hierarchical control  over  interdependent  sub- 

JBM SYST J * VOL 18 s NO 3 * 1979 ZlEGLER 



systems  and  components.  The  asynchronous  request interface 
would facilitate parallel requests by the  subsystem  software com- 
ponents to minimize serialization. The applications (IMS transac- 
tions) are neither designed for nor do they have  an interface for 
asynchronous  requests.  The point-of-origin component was se- 
lected as the entity responsible  for  the  successful completion of a 
transmission. This is preferable  to having multiple intermediate 
components  attempt  to  interact and track  messages.  The  latter 
strategy would require that all the participating components have 
extensive knowledge about  the application if a failure occurred. It 
was decided  that it would be easier from a logic and software 
standpoint  to  let  the originator determine whether  to  retry,  route 
to an alternate  destination, or try later. 

Concluding remarks 

Our  study model has allowed for  the testing of basic  support sys- 
tem component functions associated with bringing up a  node, 
connecting it  with other  nodes, locating and bringing up the infor- 
mation system  components, exploring various approaches to pro- 
viding distributed system control and program-to-program com- 
munication services for a  distributed information system, and the 
testing of a dynamic network directory  (or  directories)  at the sup- 
port systems level. The  study  has  also provided necessary walk- 
throughs and paper design of information system interface and 
data  dictionary/directory  requirements. Additionally, the study 
has provided insights into questions  associated with application 
programs communicating with one  another, with network  control 
services, and with node control  services.  Included among the 
questions  are what to  do when a failure is detected, how unsolic- 
ited messages are  handled, what application program changes 
have to  be made in order  to deal with such events  as  response- 
time fluctuations, lost responses, variable length inputs, and 
asynchronous  request  coordination. 

A good portion of our effort concerned the managing of re- 
sponses, failure detection,  maintenance,  testing, debugging, and 
problem determination. Time-out approaches were explored for 
response-time monitoring, failure, and deadlock  detection. 

Multicomponent and multinode maintenance required  a consid- 
erable effort because not all components could easily be brought 
to the same level of maintenance. This resulted in the require- 
ment for  a maintenance control  directory and a  coexistence phi- 
losophy for  change, where multiple levels of maintenance  are  ac- 
tive and communicating with one  another. 

Testing, debugging, and problem determination required transac- 
tion-oriented traces. With the number of components and nodes 

396 ZIEGLER IBM SYST J 0 VOL 18 0 NO 3 1979 



involved in our study model, and with  the absence of synchro- 
nization (e.g.,  a dump of the application and  all its related com- 
ponents at appropriate times), the only  useful  and  available 
method was to track a transaction through  the support and  appli- 
cation system components. To do this, each component was 
coded to identify  itself and its functional activities. 

This experiment aids our understanding of the subtle technical 
implications of a distributed information system. Additionally  it 
highlights  some areas we must explore further. Among the prob- 
lems  we foresee are the developing of automation of operational 
aspects associated with alternate data destination, retry and 
data commitment, unexpected messages, errors, and component 
losses. 

Among the conclusions we have reached as a result of the study 
presented in this paper are the following. An effective  application 
interface for  a distributed system must  provide services not in- 
cluded in current CALL or READ/WRITE interfaces. Many such 
services can be  provided  by  an  application service function. Ac- 
cess to data anywhere in the network within response-time ex- 
pectations requires application program interface enhancements 
(e.g., asynchronous requests, change commands, group calls, 
etc.) and logic  changes. A distributed directory is a feasible ap- 
proach to maintaining autonomy and providing access to network 
resources. Timer  facilities are critical to response, failure, dead- 
lock, and lost message detection. Greater-than-anticipated buffer 
and queue storage are required because of longer delays associ- 
ated with intercomponent communication across multiple  nodes 
when asynchronous or group-command approaches are imple- 
mented. 

A transaction-level trace facility  is necessary for debugging  and 
problem determination. Significant redundant functions can oc- 
cur in each component, which  highlights the benefit of reentrant 
codes, modular  program design, and the importance of mainte- 
nance controls. A tool to manage the maintenance levels  and ap- 
plications is necessary to manage  the various nodes’ software 
modules; the absence of such a tool cost many hours of debug- 
ging. 

We also determined that to distribute a specific occurrence of a 
distributed information system without  common storage requires 
extensive control data, redundancy, and sophisticated techniques 
to coordinate this control data  (e.g.,  a directory). 

Acknowledgments 

The author thanks R. Stevens, H. Titus, and W. Clement for their 
participation in and support of this project, with special thanks to 

IBM SYST 1 VOL I8 NO 3 1979 ZIEGLER 



F. Springer  and J .  Weissmann  for  providing  much of the VMi370 
expertise required  for testing the model. 

CITED  REFERENCES  AND  NOTES 
1 .  B .  H .  Liebowitz  and  J. H. Carson, Tutorial:  Distributed  Processing,  Comp- 

con 77 (Fifteenth  IEEE  Computer Society  International Conference, Wash- 
ington, DC,  September 6-9, 1977), IEEE,  Inc.,  New  York, NY (1977). 

2. A. L. Scherr, “Distributed data  processing,”lBM Systems Journal 17, No. 4, 

3. J.  C.  Emery  and B. Gilchrist,  “Managerial and economic issues in distributed 
computing,” Information  Processing 77 (IFIP  Conference  Proceedings,  To- 
ronto,  Canada, August 1977), North-Holland  Publishing Company, Amster- 
dam,  Netherlands (1977), pp. 945-955. This  is a management-oriented dis- 
cussion of distributed  processing, function,  and  data in terms of centralized 
and decentralized systems;  their benefits and  hazards. 

4. S. L. Mandell and F.  G .  Harold,  “Organized Intelligence: Oasis  for  MIS mi- 
rage,” Data  Management 15, No. 11, 16-22 (November 1977). Proposes  as a 
replacement  for MIS  an  Organization  Intelligence Network (OIN). The argu- 
ment is  for a  shift in emphasis from  the  term  “management”  that  has implied 
concentration  on  the decision-making process,  whereas “organizational” im- 
plies communication. An argument  for distribution of processing that  can still 
retain centralized authority is based  on this shift in emphasis. 

5 .  R. I .  Tricker  and B. Gilchrist, “The impact of information systems on  organi- 
zational thinking,”Information Processing 77 (IFIP  Conference Proceedings, 
Toronto,  Canada, August 1977), North-Holland  Publishing Company, Am- 
sterdam,  Netherlands (1977), pp. 213-221. Analyzes issues facing  strategic 
decision-makers  and  discusses  internal organizational problems, third  party 
involvement in the firm, and  environmental  changes  that  are  seen  as  con- 
straints on  information system  development. Included are  perspectives of 
power through  information: the  interrelatedness of information systems  and 
organizations;  the  shape of information systems;  coherence of organization 
(organizational, operational, technical), and organizational  intelligence. 

6 .  J .  F. Rockart, S .  Leventer, and C. V .  Bullen, Centralization us Decenfrali- 
zation of Information  Systems:  A  Preliminary  Model  for  Decision  Making, 
Sloan School,  Massachusetts  Institute of Technology, Cambridge, Massachu- 
setts (Draft). Provides a tabular  comparison in terms of centralized systems, 
decentralized systems,  and distributed systems  for general and organiza- 
tional considerations,  cost  factors,  personnel  considerations,  and program- 
ming and  operations technical considerations. Included is a summary of 
factors reported by a specific set of enterprises. 

7. C. W. Spangle, “The impact of distributed systems,” Computers  and  People 
26, No. 12, 7-10,  27 (December 1977). Provides a management overview of 
the  computer  industry  and  the changes  resulting  from  organizational and 
processor  changes. Also  included are  distributed processing and  its  associ- 
ated impact:  new  possibilities,  challenges,  management  involvement, chang- 
ing DP manager role, information systems  manager,  as well as  factors  for 
providing success in a distributed processing  system. 

8.  E.  H. Sibley, The Distribufed  Information  System:  Its  Architecture  and Man- 
agement, IFSM Technical Report  No. 11, University of Maryland,  Depart- 
ment of Information Systems  Management, College Park, MD 20742 (Novem- 
ber 1976). Discusses some of the challenges associated with designing and 
using  distributed  information systems from a managerial and technological 
standpoint. Included are  the following:  distributed  information system func- 
tions, general user  aspirations,  distributed  system  user  needs, international 
system  problems, information systems  architecture,  centralized  data archi- 
tecture, decentralized data  architectures, decentralized data with  centralized 
control, decentralized control, trade-offs in architecture,  design,  and manage- 
ment control. 

9. K .  Ziegler, Jr.,  “Distributed: A New  Impetus  for  Understanding  Data,” 

324-343 (1978). 



~~ 

i 
1 JCZTE Proceedings (JCITE,  Jerusalem,  Israel, 1978), pp. 31 1-318. Discusses 

the growing  requirement for  data  about  data  (meta  data)  and chronicles the 
trend  toward eliminating data  redundancy, sharing the  same  data,  and  the 

10. G. Belford,  “Optimization Problems in Distributed Data  Management,” Pro- 
ceedings of the Third International  Conference on Computer  Communication 
(Toronto,  Canada, August 1976), pp. 297-302. Presents  three  areas of distrib- 
uted data management (file allocation, file usage,  and  data organization) and 
the difficulties each  presents in optimally  organizing data.  References  current 
literature  on  the  subject. 

1 1 .  I. L. Auerbach,  “The Influence of Market  Factors in Future  Computer Devel- 
opment,” Future Systems:  State of the  Art Report, Infotech  International, 
Ltd., Maidenhead,  England (1978), pp. 63-77. Presents  current  trends in the 
data  processing  marketplace, in order  to  extrapolate  the  future.  The article 
considers  aspects of people,  control, technology, protocols  and  system archi- 
tectures. 

12. M. E. Deppe and J.  P.  Fry,  “Distributed  data  bases: A  summary of re- 
search,” Computer  Networks 1, No. 2, 130-138 (1976). Discusses  the ability 
for a number of data  base management systems  to  cooperate with one  another 
and  thereby  share  the  data.  Provides a  categorization of relevant research by 
reviewing current  approaches, program and  data  distribution, file distribu- 
tion, deadlock, and  distributed DBMS  control  systems. Also  provides some 
conclusions  as  to the state of the  art  and additional areas  that  require  re- 
search. 

13. D. N. Streeter, “Centralization or dispersion of computing facilities,” IBM 
Systems Journal 12, No. 3,283-301  (1973). Discusses cost  factors involved in 
computing centers  that  tend  to motivate  the centralization of computing  ser- 
vices. An evaluation and cost-minimization  solution is  presented. A strategy 
for linking large regional service  centers is proposed and  evaluated.  The dis- 
cussion  includes the following: tendency toward centralization,  advantages of 
centralization, economies of scale, duplication of data  base  maintenance,  ten- 
dency  toward  decentralization (user-computer communication cost), and  cen- 
tralization-dispersion  effects on  service quality  (queuing  model). 

14. E. Grapa, Characterization of a  Distributed  Data  Base  System, Thesis R-76- 
831, Illinois  University, Urbana, IL (October 1976). Presents a multiple copy 
(distributed)  data  base  system’s  approach  to synchronizing data  that includes 
three models  (updates  handled decentralized,  updates handled at a single site, 
and a reservation  approach).  The major flows and extensions of these models 
are  also  presented. 

15. H. B.  Becker,  “Securing Distributed  Systems:  Gaining By Losing Control,” 
Data  Management 16, No. 3,  24-31 (March 1978). Introduces basic functions 
of a network and discusses  the physical and logical security  aspects of each, 
including  surveillance, secure facility,  shielding,  password cryptography,  and 
secure  software. 

16. W. W. Chiu, “Performance of  file directory systems  for  data  bases in STAR 
and  distributed networks,” 1976 National  Computer  Conference,  AFIPS 
Conference  Proceedings (June 7-10, 1976) 45, 577-587 (1976). Discusses the 
trade-offs  associated with three  classes of file directories  for distributed data 
bases (centralized  directory system, local  directory systems,  and distributed 
directory  system) in cost  terms  for  communication,  storage,  code  translation, 
as well as  such  other  factors  as  query  rate,  update  rate, directory size,  and 
directory  response time. 

17. G. M. Booth, “Distributed  information systems,” 1976 National  Computer 
Conference, AFIPS Conference  Proceedings (June 7-10, 1976) 45, 789-795 
(1976). Introduces definitions of information network,  distributed processing 
and distributed  data  base  and  provides examples of the  varieties of data distri- 
bution.  These  examples include  horizontally  distributed  processing,  hierar- 
chically  distributed  processing of partitioned data  bases,  and replicated data 
bases.  The article also includes a discussion of dynamic load leveling and 
static  load leveling. 

I subsequent issues of providing data  redundancy in distribution systems. 

ZIEGLER 399 



18. H. S. Ames, “RDM-A Relational  Database  Machine,” Proceedings of the 
1977 SIGMOD  International  Conference of hfanagement of Data (Toronto, 
Canada, August 1977). Describes  an  architecture based  on  a  collection of mi- 
croprocessors,  each  capable of  independently processing a subset of the data 
base in parallel. 

GENERAL  REFERENCES  AND  NOTES 
H. B. Becker,  “Network planning-Preparing for distributed DP,” Datucomm 
User,  22-24 (January 1977). Discusses a structured and  planning  philosophy for 
distributed  processing networks  that includes  topology, volume, processing,  re- 
sponse, availability, security,  anticipated volume flow, processing  load,  and  re- 
sponse time requirements  to  derive  an optimum and economically  justifiable  net- 
work  configuration. 
G. M. Booth,  “The use of distributed data  bases in information networks,” Pro- 
ceedings  of  the First International  Conference on Computer  Communication 
(Washington, DC,  October 24-26, 1972), pp. 371-376. Introduces  theories of dis- 
tributed data  base creation and use in a computer  network. Distributed data  bases 
include  individual  files, company files, grouping files, duplicating files, and split- 
ting files. Also  discussed are  the  association of files with jobs  (user  control and 
software)  and  aspects of updating data  and maintaining integrity. 

R. G. Casey, ”Allocation of copies of a file  in an information network,” Pro- 
ceedings  of the Spring Joint Computer  Conference (AFIPS  Press,  Montvale, NJ )  
40,617-625 (1972). Discusses the impact of update traffic on the  number of copies 
of a file  in a  distributed file network and  presents a linear cost model to develop a 
least cost configuration. 
A. N .  Chandra, Some Considerations in the Design  of  Homogeneous  Distributed 
Data  Bases, Research  Report RC4125, IBM Thomas J. Watson Research  Center, 
Yorktown Heights,  NY 10598 (1972). Presents design considerations  for distrib- 
uted  data  bases in the  areas of compatibility with existing data  base  products, 
providing maximum flexibility to installation  managers to  customize their  sub- 
systems,  security, and  deadlock. 
W. W. Chiu and G. Ohlmacher,  “Avoiding deadlock in distributed  data  bases,’’ 
Proceedings  of the ACM  National  Symposium (March 1974), pp. 156-160. Dis- 
cusses deadlock  prevention mechanisms for  distributed data  base  systems using 
process  sets. 
CICSIVS Version I ,  Release 4 ,  SystemslApplication  Design  Guide, SC33-0068; 
available  through  the local IBM branch office. 
W. T.  Hardgrave, “Distributed database technology: An assessment,” Informa- 
tion & Management, 157-167 (August 1978). Provides an  overview of  distributed 
data  base technology  from  the standpoint of commercially  used systems.  The dis- 
cussion  includes the following: basic  terminology, some  rules of thumb, back-end 
and data  base  nodes, logical data  base design (including replication and partition- 
ing), data  base machine  interface language,  and a cursory  set of advantages  and 
disadvantages.  This article  also provides twenty-six references. 

IMSIVS Version I SystemIApplication  Design Guide, SH20-9025; available 
through the local IBM branch office. 
M. S. Loomis  and G. J.  Popek,  “A model for  data  base  distribution,” Trends  and 
Application 1976: Computer  Networks  Symposium  Proceedings (IEEE-National 
Bureau of Standards,  Gaithersburg,  MD,  November 1976), IEEE, Inc., New 
York, NY (1976), pp. 162-169. Explores issues  involved in distributed data  base 
performance  and describes a  model that  accommodates  networks with hetero- 
geneous processing nodes with both private and  shared  memories. Included are 
the following: a model of distributed  data  base, modeling parameters,  operational 
performance  evaluation, parallel processing effect of object  redundancy  and fre- 
quency of update, effects  on processing  costs,  and effects on transmission cost. 
R. Peebles and E. Manning, “System  architecture  for  distributed  data manage- 
ment,” Computer 11, No. 1,40-47  (January 1978). Provides an  authoritative  over- 



view of considerations  and  status of system  architectures  for distributed data 
management systems. Included are  discussions of the following architectural  ap- 
proaches: ( I )  integrated or loosely coupled  multiprocessors; (2) homogeneous  fed- 
erations;  and (3) heterogeneous  federations. Also presented  are fundamental 
problems (data integration, data  allocation,  data location, control of concurrent 
access,  security and  integrity) and  software change (CODASYL and operating 
system interfaces).  Examples of interprocess communication are  also  discussed. 
E. F. Severino,  “Data  bases  and  distributed  processing,” Computer  Decisions 9, 
No. 3, 40-43 (March 1977). Reviews  the basic attributes of horizontal and hier- 
archical distributed processing and  issues of where  the  data  are located  (distrib- 
uted data  base).  The  data distribution  trade-offs are  discussed in terms of central- 
ized and distributed data  bases. Included are  such issues as  redundancy, replica- 
tion, and  control. 

G .  R. Thomas, Distributed  Processing-A  Tutorial, Technical  Report  TR01.2063, 
IBM System  Products Division, Endicott, NY 13760. Reviews  some of the in- 
centives  for distribution and  discusses  EFTS, industry automation  systems,  and 
corporate  data communications utility examples for highlighting the  benefits of 
different distributed configurations.  Included is a  discussion of the  functions re- 
quired for  data  access,  resource  sharing,  communication,  and network  manage- 
ment. 

K .  M. Zemrowski,  “Problems of data  base use in a distributed data  network,” 
Proceedings  of  the  Fifteenth  Annual  Technical  Symposium (Washington,  DC 
Chapter of ACM,  June 1976), ACM,  New  York, NY (1976), pp. 51-58. Discusses 
such data  base issues as centralized and decentralized data,  users’ view of data, 
data  base  administration,  data  base  design, integrity, security, efficiency, and im- 
plications. 

K. Ziegler, Jr . ,  “Distributed data base-where are  you?” Information  Processing 
77 (IFIP  Conference Proceedings, Toronto,  Canada, August 1977), North-Holland 
Publishing Company,  Amsterdam,  Netherlands (1977), pp. 113-1 15. Introduces 
four functionally different categories of distribution  (distributed function, distrib- 
uted systems, distributed processing,  and distributed data)  and  discusses their 

K .  Ziegler, Jr . ,  “Distributed processing (technical overview),” Proceedings of 
SHARE 4 9 ,  (Washington, DC, August 22, 1977), pp. 1083-1105. Introduces a 
graphical  distribution classification technique  for  comparing different software 
distribution  implementations. I t  also  discusses several types of distributed data 
structures (distributed complete  DB, split  key DB, split structure DB, migrating 
DB,  architectural DB, and  redundant DB) and their  implications. 

The author is located  at the IBM Corporation,  Data  Processing 
Division, 1133 Westchester  Avenue,  White  Plains, N Y  10604. 

I Reprint Order No. (3321-5101. 

IBM SYST 1 VOL 18 NO 3 1979 ZIEGLER 401 


