This paper is a discussion of a methodology, a distributable infor-
mation system model, and an experiment used to identify poten-
tial problems for supporting such a system. The experimental
model was designed and implemented in an evolutionary manner
for the purpose of studying the feasibility of a system with the
postulated attributes. Incentives for distribution and design of
the study introduce the two main topics—the study model itself
and the implementation of the study model. Results of the study
provide insights into such factors in distributed information sys-
tem structural design as intercomponent communication, system
control, and recovery philosophy.

A distributed information system study
by K. Ziegler, Jr.

Over the past several years, we have been working very closely
with computer users to determine ways of reducing the com-
plexity associated with new business functions and ways of tak-
ing advantage of new technologies. One such technology is dis-
tributed data processing, many concepts of which have been dis-
cussed in the literature."® To test the feasibility of such a new

information system design, limited experiments and walk-
throughs are designed to identify problem areas before they are
encountered by the commercial marketplace. Such studies in-
volve identifying generic areas that require work, providing struc-
ture for describing environmental characteristics, and analyzing
implementation alternatives. This paper discusses insights de-
rived from such a study concerning distributed information sys-
tems.

The key incentives that motivate a business firm to assess distrib-
uted systems usually fall into one or more of the following cate-
gories: subjective, economic, technical, organizational, and a de-
sire to reduce the operational dependence on a single resource.
Subjectively, management must assess distributed systems be-

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

ZIEGLER IBM SYST J ¢ VOL 18 ¢ NO 3 & 1979




cause of industry pressure and for protection against a lost busi-
ness opportunity. Economic considerations are those of potential
savings in communication costs, the sharing of costly resources,
a higher responsiveness to new business applications, and higher
user productivity. Technical considerations stem from the oppor-
tunity to reduce the response time for specific applications, to
improve availability to the end user, and to reduce the complexity
associated with trade-offs required for a single node-system sup-
porting all applications. Organizationally, distribution with com-
munication links provides a vehicle to relate data processing to
organizational structures and organizational information flow. By
separating and distributing business applications, the impact to
the business by a single outage can be reduced. One application
area that is being considered for distribution is an information
system. The overall goal of an information system is to provide
controlled access and sharing of data within an organization. As
dependency on these data grows, more formalized techniques to
manage the access and flow are required, and the organization
soon recognizes a need for coordination, security, integrity, syn-
chronization, consistency, timeliness, and availability. The or-
ganization also recognizes their accompanying costs.

An early approach to these matters was to implement a central-
ized data base. This was very effective initially. However, the
centralization of data processing and development personnel
present some problems. This had the effect of adding greater ef-
fort on maintaining satisfactory availability, large up-front plan-
ning, management of acceptable response time, responsiveness
to users’ application requirements, and maintenance of privacy.
It also affected the organizational philosophies of the enter-

prise.*®

A distributed information system purportedly allows flexibility by
reducing implementation constraints of traditional centralized in-
formation systems. The intent of such systems is to provide a
logically integrated information system while providing for phys-
ical distribution of data over two or more computing facilities.
Thus, an authorized user can access data from any of the partici-
pating computing facilities in the same manner as from a central-
ized information system. From an organizational standpoint, this
capability puts data processing power where it is needed, while
still allowing management control.” It also provides for more
coordinated information flow in decentrally organized enter-
prises.

Distribution of information emphasizes certain technical and
managerial considerations. Technical considerations include as-
sessments of the following: a communications system to transmit
data, dictionaries and directories to identify and locate the data,
and data management systems to provide the required data syn-
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chronization, integrity, consistency, privacy, security, and data
placement. Managerial considerations involve the following: for-
mulation and analysis of the effects of maintenance strategies,
hidden costs and risks associated with design, implementation,
optimization, vendor coordination, legal aspects (interstate and
international), auditing, system administration, standards, and re-
sponsibility.*®

Although there are numerous papers that define ‘‘distributed,”
these definitions depend on the perception of each user and his
specific application implementation. For this reason, the termi-
nology used here is intended to communicate concepts only,
rather than to assert a standard. In this paper, anode is defined as
a processor or processors with a single operating system. A dis-
tributed system interconnects multiple homogeneous and hetero-
geneous nodes to exchange data, share resources, and execute
multiple well-defined and interrelated software components (pro-
grams) in one or more nodes. Multiple nodes are not necessarily
involved in any particular process; the system can provide an in-
tegrated appearance when multiple nodes are involved.

The primary sources of difference between distributed and non-
distributed systems are in the distribution of control within the
network and the nonmemory connections between software com-
ponents. Distribution of contro] involves the allocation, finding,
and accessing of network resources and the synchronization of
such services as update and maintenance. Nonmemory communi-
cations via channels and lines require more sophisticated pro-
tocols to ensure data transfer. As an example, after a message is
sent, some acknowledgmetit of successful receipt is appropriate
to indicate an error if the transfer has failed. If one examines the
process of communication to a subroutine at a remote location,
the increase in elapsed time is apparent, as shown by comparing
Figures 1A and 1B.

Incentives for distribution

Such differences force new approaches to ensure adequate re-
sponse time, availability, data integrity, backup, recovery, effi-
cient use of resources, and security. These approaches may also
require new procedures for processing business transactions, var-
iations of redundant data distributed throughout the geographi-
cally distributed information system, and schemes to periodically
synchronize the data.® This new environment involves techniques
to determine the useful level of data distribution, the location of
the data, internode and resource controtl strategies, and response-
time managers, as well as monitors for evaluation and tuning.'
Staff skills, combined with good alternatives in design, determine
the degree of programmer and user transparency, economy, and
manageability of the distributed system.
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Figure 1 Example connection comparison: (A) Flow using memory-to-memory connection;
(B) Flow using nonmemory connection
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As a result of the increase of on-line workloads, users often expe-
rience degradation of system response time and availability.
Users have also been required to submit to unplanned ex-
penditures for conversion, rewrite, or ‘‘minor adjustments’’ to
programs or the current way of doing business in order to utilize
the computer resource effectively. Consequently, users are be-
coming more result oriented.

Advances in computer technology have emphasized the desir-
ability of dedicating business applications to autonomous small
computer hardware and software. This provides the individual
line manager with the ability to control his own resources and
service levels in a manner that transcends the methods of the cur-
rently implemented, managed, and controlled centralized com-
plex. This also isolates the user from effects of unpredictable
changes in priorities and system tuning.

The data processing department, in its effort to serve all users
within budget and personnel constraints, must manage the shar-
ing of resources in spite of the contradictory objectives of per-
formance, economy, availability, productivity, and responsive-
ness. This effort is becoming increasingly more difficult and often
exceeds the technical staff’s ability. Loss of control has resulted
from the increasing number of software and hardware com-
ponents and applications that must coexist."'

Dedication of business applications to autonomous systems ap-
pears to simplify the system management and control tasks by
reducing the number of component interdependencies and trade-
offs.

The distribution (or dedication) of hardware to business functions
also makes it possible to reduce response time and communica-
tions costs and provide higher availability. These advantages can
be realized if data and processing services can be placed at or
near the point of work. Then the business application is less sus-
ceptible to disruptions due to line outages and uninvolved com-
ponent failures.

Distribution also allows for maximizing isolation while providing
a high level of sharing of costly resources, e.g., high-speed com-
puting and mass storage, as shown in Figure 2. The system char-
acteristics thus far discussed appear to provide a solution to some
of the limitations of centralized system complexes. An assess-
ment of these characteristics is in order because it is becoming
increasingly apparent that data requirements, performance, and
availability needs will continue to grow as data processing be-
comes cheaper and more integrated into the business organiza-
tion itself.
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Figure 2 Resource sharing
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Motivation for study

From a user perspective, the distribution of processing is a way of
achieving simplicity, isolation from other users of the system, and
better service. However, the dedication of an entire node and
attached resources to service a specified set of users often has
economic shortcomings, because fixed components (such as op-
erators, peripherals, and software) often increase when the work
is split.

Distribution may constrain the user to a limited set of data and
services, unless changes are made to the information system im-
plementation to allow data redundancy and new data synchro-
nization. This may result in less than optimal resource utilization
and involve a net increase in total data processing expenses. This
cost is one that many businesses appear willing to pay to satisfy
the increase in demand while maintaining response time and
availability. Unfortunately, if left unchecked, this may result in a
return to decentralized uncoordinated data processing, with all
the disadvantages experienced in the pre-data base era.
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Since data are corporate resources, system planners must focus
on the access to data, and the ability of several data base manage-
ment systems to cooperate.'” This implies that system coordina-
tion and network-wide standards are even more important in a
distributed environment,

In an effort to determine the best approach to distributing data
while meeting immediate and long-range business requirements,
system planners must understand the various ways of implement-
ing and distributing systems, with their associated strengths and
weaknesses. It is important for the implementation to be extend-
ible without stretching the state of the art.’?

Other considerations (outside the scope of this paper) include or-
ganizational issues,’ ® managerial and economic considerations,’
costs minimization,"” international systems,8 distributed data
base characterization," security,"” market and people factors,"
and the whole realm of data communications, just to highlight a
few.

In current literature there are numerous articles describing new
variations of distribution of processing, data, and applications,
with new advantages (and some disadvantages). They involve
such terms as ‘‘partitioned, replicated, discrete, horizontal, and
vertical’” for data base distributions, and ‘‘centralized, repli-
cated, global, and local’” for directory distributions.'*'*'" Note
that the directory is a data base of locations, names, access au-
thority, etc. that will be partitioned and replicated for availability
and performance reasons.

Design of study

Among the questions that vex the designer of a distributed sys-
tem, whose previous experience has been with centralized sys-
tems, the following have been selected as important to this study:

¢ Intercomponent communication;
e System control;

& Response control;

& Recovery responsibility.

More specifically, we wished to learn as much as possible regard-
ing software interfaces and support facilities for distributed soft-
ware components. An information system was used as the test
business application. The study itself had the following objec-
tives:

e Test the technical feasibility of connecting IMS DB/DC appli-
cations into a heterogeneous information system network
without any application program changes:
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Determine the physical distribution of 1Ms-like logical func-
tions for a single distributed information system occurrence;
Test system support facilities necessary to support such a dis-
tributed implementation.

We decided that the study design should try to maintain the cur-
rent application software investment while providing distributed
services, because many current application programs depend on
standard system and service interfaces, as well as certain support
functions. These support functions are termed the environment,
which is often implied as a basic element of program logic.

As an example, the automatic serialization and backout of several
transactions concurrently while updating the same data segments
within an IMS data base represent an implied support function.
The 1MS application programmer assumes this service and there-
fore provides no contingency for its absence. Thus any study de-
sign that proposes compatibility or coexistence must be able to
simulate the environment, so that the application logic may re-
main untouched. In other words, it would not be sufficient to pro-
vide source code compatibility without the appropriate environ-
ment services.

Program-to-program communications should include facilities to:

Locate the desired component (if it already exists);

Initiate a component (if it is not currently active);
Terminate a component when it is no longer needed;
Transfer control to the component;

Communicate without passing control;

Recover from temporary disruptions (reconnect, retransmit,
etc.).

These program-to-program communications were viewed as tak-
ing one of two logical forms: control or data. Control messages
(commands) are sent to a system control service that handles
such requests as initiating a program, locating a component, and
terminating a program. Data messages (application communica-
tions) are sent to the destination software component. Concep-
tually this might be characterized as two ports into a network,
one for control, the other for data, as indicated in Figure 3. This
allows control services to be outside the origin or destination
nodes. The control port is analogous to current operating system
supervisor service requests, €.g., Supervisor Call (SVC) or branch
entries. Like service requests, the control port need not be in
session with a specific service. The request is routed to the appro-
priate service only when needed.

The data port is simply a way into the network used for communi-
cating with one or more other application programs. The messages
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Figure 4 Alternate path selection
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can then be routed by the network to the appropriate destination,
based on a destination address within the message.

Message routing through data and control ports provides a way of
minimizing the use of control blocks and also offers flexibility in
dealing with instantaneous network changes, such as alternate
destination, alternate servicing, or intermittent outages, as in-
dicated in Figure 4.

Since a node could call other services, either locally or on the
network, we were faced with deciding whether two application
program interfaces should be provided—one for internal commu-
nications (within the same node), the other for external communi-
cations (internode). If two interfaces were available, the program-
mer would have to decide which interface to use, and that would
make the program sensitive to its placement. An alternative
would be to provide a single high-level application interface that
treats all communications as internode. The issues appeared to be
ones of storage integrity, security, and instruction path length,
where primary differences stem from program portability (inde-
pendence) and the way of handling storage.

For the purpose of this study, a single application interface was
selected for both inter- and intranode communication, so as to
protect the software investment and reduce storage integrity and
security exposures, at the price of additional path lengths.
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Figure 5 Backup site selection: (A) With peer control, the application selects the backup site;
(B) With hierarchical control, a site selector selects the backup site
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A hierarchical approach to managing and controlling multiple
processors that share resources employs a specific processor as
the ‘‘master’” and all associated processors as ‘‘slaves.’” The
master is a critical resource that supplements many of the slave
resources and services. When such dependencies are allowed,
the operation of the slaves may be disrupted if the master fails or
is made unavailable for maintenance. An approach to solving this
problem is to provide multiple hierarchies, with the masters able
to communicate with one another for access to outside data.

Another technique to reduce disruptions is to provide an alternate
master when the primary is unavailable. This introduces logistical
problems in data-oriented systems, where the placement of the
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Figure 6 IMS muttiple system coupling
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data and control is essential to continued operation. A hierarchi-
cal data-oriented system switch-over to a secondary master re-
quires extensive application and dependent data insights. Passing
control back to the original master involves extensive prior plan-
ning and support programs.

A peer approach emphasizes autonomy, in which all processors
can be masters. Each node and its applications are responsible for
their own operation. If a program in another node wishes to ac-
cess some external resource (data or service) node, the servicing
node manages and controls the request. In this approach, each
application is responsible for its own recovery.

To compare and contrast the hierarchical and peer approaches,
Figure S depicts two applications in a node, each with a different
backup node and data base. The peer approach (Figure 5A)
makes the application responsible for the selection. The hierar-
chical approach (Figure 5B) provides a control function for re-
covery site selection, on the basis of parameters and specific fail-
ure characteristics.

ZIEGLER IBM SYST J @ VOL 18 ® NO 3 & 1979




Figure 7 (A) Example of remote file access using CICS/VS
(B) Example of remote DL /I access using CICS/VS
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IMS multiple system coupling (Figure 6) is an example of a spe-
cific peer approach implementation of a distributed information
system in which the current unit of communication is at the IMS
transaction level. CICS/VS represents another possible implemen-
tation of the peer approach, and its current unit of communication
is at the file call or Data Language/I (DL/) call level (Figure 7).

The peer approach was selected for this study because it ap-
peared to be an effective strategy for managing resource sharing
while protecting the primary owner of the resource. It also pro-
vided flexibility to control resources in a hierarchical fashion. A
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hierarchy could be implemented when dependent software ser-
vices were distributed to multiple nodes such that they were func-
tionally managed as a hierarchy, although the nodes are peers for
resource ownership and operating systems.

directory  The design of the directory for distributed systems should accom-
modate the transient nature of nodes in a network, because the
nodes in a network environment may not all be operable at any
one time. Therefore, the directory design should accommodate
the dynamic nature of network states and avoid excessively large
space consumption for nonessential entries. To address this, a
structured network of directories was selected.

The structure is provided by participating components, whereby
each component identifies itself to the appropriate directory or
directories via basic guidelines and system defaults. Each data
set, therefore, requires some scope-of-use data associated with it.
For example, if a data set is intended for the exclusive use of a
particular node (e.g., the one to which it is connected), a ‘*node
only”’ scope of use would be indicated, and only the directory for
that node would record the entry. This selection could be pro-
vided via Job Control Language (JCL), the application program,
or the operator. The scope might be a node, a set of nodes, or the
entire network. After analysis, we decided that it is the resource’s
responsibility to remove itself or alter related data when a change
occurs. We did this as an alternative to a system that would re-
quire a sophisticated allocation/deallocation function.

asynchronous  Time delays resulting from the transfer of requests and data

requests through a network also required attention. Transactions that re-

quire services or data from other nodes may experience severe

increases in overall response time if requests are executed seri-

ally or synchronously, i.e., issue first request and wait for re-

sponse, issue next request, etc. Asynchronous request support

allows the application to issue multiple requests before waiting

for data return or receipt confirmation. This tends to reduce the

transaction response time experienced for multiple geographi-

cally distributed data requests. Asynchronous request support is

illustrated in Figure 8. Other ways of dealing with delays greater

than that of memory-to-memory transfer include: (1) packaging

requests with some decision logic; (2) using change-type re-

Figure 8 Asynchronous requests quests, e.g., ADD A to field B, as used in IMS/VS fast path maiu

storage data base updates, and (3) set-oriented operations, such

as those provided by a relational data base interface.'® These

techniques attempt to reduce the number of interactions between

NeOES 73 network components for a particular transaction. A change-type

ﬂ—. request is illustrated in Figure 9B and a group-type request in

wooea —  Figure 9C. (Figure 9A is a traditional data access.) Since all these

c techniques require application program logic changes, they are
candidates for use with new applications.
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Figure 9 (A) Traditional data access; (B) Change-type request; (C) Group-type request
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An error detection and recovery strategy also had to be estab-
lished for a distributed systems environment. A controller that
detects component loss and controls valid response was consid-
ered. We decided that this would require extensive insights into
individual transactions and associated components. The imple-
mentation of a controller approach was believed to be very com-
plex and potentially troublesome, because a failure could well
bring down the entire system.

An alternative to such a controller is to delegate responsibility to
the originator of a message. If a connection is interrupted, the
originator must sense the interruption and bear responsibility for
initiating corrective action, e.g., establish a new connection, seek
an alternate path, wait for restoration, or ignore the loss. This is
called point-of-origin recovery, and was the alternative selected.

A distributed information system model

The next step was to derive a distributed information system con-
ceptual model, shown in Figure 10. The components of the model
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Figure 10 A conceptual model of a
distributed  information
system
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could reside in one or in multiple nodes and still maintain their
systemic relationship, in order to present a single information
system occurrence, such as is shown in Figure 11, with a cen-
trally controlled information system and distributed data and soft-
ware components. Geographic distribution of this configura-
tion is of dubious value, whereas a local distribution has potential
performance and capacity benefits.

The distributed information system model is an attempt to de-
scribe the basic distributed functions that can be mapped to any
data base/data communications oriented system. The premise for
this model is that multiple application implementations—not nec-
essarily using the same interface or same facilities—must be ac-
commodated. For our purposes, programs using and written for
IMS were used for the base case application programs.

For geographically distributed nodes, multiple autonomous infor-
mation systems interrelated and interconnected via the network
are more practical. OQur model accommodates a multilevel
(among all peers) information system with single or multiple do-
main access capabilities to support the various levels of data dis-
tribution. This approach is desirable because it accommodates
various degrees of autonomy while maintaining the appearance of
an integrated information system. The key is a comprehensive
dictionary/directory. In this configuration, each occurrence of the
information system can execute alone and provide its own recov-
ery, in order to maintain availability for its specific (primary) set
of users.

The structural flexibility of the model enables the system imple-
mentor to customize specific nodes to provide an economical or
expedient configuration for addressing user needs without af-
fecting business application programs.

The model also accommodates heterogeneous hardware or soft-
ware architectures if the interfaces and service functions are
maintained. This concept is analogous to the relationship be-
tween such nodes as 1BM 8100 Information Systems and 1BM Sys-
tem/370, which, although they have different hardware and soft-
ware architectures, communicate via a common set of rules (pro-
tocols) that were established by the Systems Network
Architecture (SNA) and implemented using VTAM.

The message facility in Figure 11 provides terminal interface
services (e.g., message formatting, logging messages, input vali-
dation, and the routing of messages to the appropriate controller
component). It provides point-of-origin service, and can be used
to communicate with multiple information system controllers to
provide performance benefits with alternate or duplex system se-
lection for availability and recovery.
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The information system controller component provides for appli-
cation and service management, queuing messages, and synchro-
nizing information system logs. Each information system domain
has one controller component. The controller represents the focal
point of each occurrence.

For productivity purposes, application programs are encapsu-
lated in an environment—an application service —which manages
the interfaces used by the application to participate in the infor-
mation system software, as shown in Figure 12.

A data manipulation language facility provides a compiler-like
service to translate an application data manipulation language
into an internal data manipulation language. (This facility may be
bypassed for statically bound programs that do not utilize dynam-
ically created data manipulation commands.) The resultant inter-
nal data manipulation language statements are then passed to the
appropriate data mapping facility.

The data mapping facility is the heart of the model; it provides
security checking, logical request logging, data mapping, and data
building (for logical data bases that are built dynamically for the
duration of a transaction). Each one has the exclusively con-
trolled data access facilities shown in Figure 13. The data map-
ping facility routes and controls data requests to other peer infor-
mation systems. Communications among data mapping facilities
provide for synchronizing the internetwork updates and logs
while still allowing them to continue when failure occurs. The
mapping facility is also responsible for the logical data bases in
terms of integrity, performance, backout, and recovery for each
occurrence, as well as deadlock detection and synchronization of
redundant data between occurrences at specified intervals. The
data mapping facility in this model detects deadlocks by using
timer signals (or ‘‘pops’’) and status and reservation checks with
the other data mapping facilities.

The data mapping facility also provides the Data Dictionary/
Directory (DD/D) service, which contains information about the
data and data bases and their associated locations. Although the
scope of the information in such a data dictionary can encompass
all system logical and physical resources (including terminals,
files, reports, etc.), the focus in our study was on how to imple-
ment it to find the location and properties of a data element in a
geographically distributed system. This requires the selection of
the appropriate data mapping facility through globally known
symbolic names. These names are associated with logical ad-
dresses, and they are resolved to a physical node by the network
services. In a static environment (one that has all access paths
previously identified), such elements can be placed in all directo-
ries. In our study, however, a dynamic environment was more
useful.
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Figure 12 Application service pro-
vides the logic neces-
sary to interface with the
information system
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The data access facility provides the logical data interface with
the system access methods and storage subsystems, €.g., VSAM
and DL/ data base access method and language. It provides such
functions as pointer following and physical data base update log-
ging, and is responsible for physical data base access and recov-

ery.

Implementing the study modei

In order to constrain the scope of the study, only the minimal
functions and options of a distributed system were explored.
Most of the effort concentrated on the novel areas introduced by
distribution, such as program-to-program communications, appli-
cation interfaces, director services, and distributed control.

A four-peer-node configuration was selected for testing. The
nodes were implemented with the use of vM/370, and the Virtual
Machine Communication Facility (VMCF) was used as the vehicle
by which the different virtual machines (nodes) could communi-
cate to provide a multiple-node environment. The study model is
shown in Figure 14.

With the exception of the modules that used VMCF and CPU timer
facilities (which we referred to as ‘‘operating system’’), PL/I was
used as the implementation programming language. The pro-
grams were designed to be easy to read, debug, and rewrite. The
project entailed the writing of fourteen modules, with 2000 lines
of assembler language code and 3600 source lines of PL/I.

The implementation began with the selection of an IMS sample
data base, and an IMS transaction was coded to access that data
base. This transaction was then used to represent an application
program and was mapped into the distributed information system
model. The mapping process identified the interfaces and services
required to proceed with each functional component of the
model, e.g., the application service functions.

The next step was to identify common services in the application
service component that could be provided by the support system.
Once identified, this system logic was extracted and placed in the
operating system services, or network transmission services. The
interfaces and support components for transmitting messages in a
static predefined environment were then coded and tested, using
a driver program (some 300 lines of PL/1 executable code) that
provided an interactive interface for the application and acted as
a master console. This assisted in the development of a protocol
for communicating between software components and an appli-
cation program interface that provided for the transmission of
program-level data among multiple nodes.
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Figure 13 The controller is the data control point of each information system occurrence

APPLICATION SERVICE

MESSAGE FACILITY

—

MESSAGE FACILITY APPLICATION SERVICE

TERMINAL

DATA LANGUAGE
CONTROLLER FACILITY
(EG.,DL/I)

T

¥

DATA MAPPING
FACILITY

L

DATA ACCESS
FACILITY

DATA ACCESS
FACILITY

DATA BASES
AND DATA

DICTIONARY/
DIRECTORY

1/0 QUEUES

N N~

Subsequently, initialization and control strategies for a dynamic
environment were designed, coded, and tested. This called for
node and network control services with associated protocol and
command language enrichments.

In addition to the information system components, five basic
building blocks were developed for our study. They were the
Node Control Interface (NCI), the System Control Interface (SCI),
the Network Transmission Subsystem (NTS), the /0 Device Sub-
system (1I0DS), and the Storage Device Subsystems (SDS, which
was VSAM). These five components provided those primitive
functions (such as timers and interrupt, vectoring, and storage
management) that are generally available from any operating sys-
tem or monitor.
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Figure 15 Node without application
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Figure 14 Study model using the Virtual Machine Control Facility (VMCF)
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Figure 15 shows a basic stand-alone node before any application
is present. The terminal is a control console used to communicate
with those operating system services required to bring up any
additional components, e.g., input/output device subsystem,
storage device subsystem, and application within this node. In
Figure 16, node 1 has an SCI, which provides facilities necessary
to locate other nodes in the network (nodes 2 and 3) and has the
ability to initiate requests to bring up those nodes.

The primary source of control comes from within each com-
ponent in the network. Each component uses the NTS, NCI, and
ScI services to provide logical resource control. These are primar-
ily passive services; that is, they are invoked via an application
program request. The NTS is invoked via an external interrupt.

The NTS provides communication among components regardless
of where they reside (local or remote). NTS can be viewed as a
memory-to-memory or node-to-node pipeline that is accessed via
a very primitive interface and provides only point-to-point mes-
sage transfer service between application programs or subsystem
components. For simplicity, the NTS end-to-end protocol for
transferring data consists of a destination address, an origin ad-
dress, and a variable-length text, plus some security information.

The network control services such as transmission sequence
checking, alternate pathing, and address resolution are provided
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Figure 16 System control interface hierarchy

NODE 1

by the NTS without intervention by the application. Network
data-related services such as message sequence checking, mes-
sage retry, and alternate destination require significantly more
heuristics. We decided that these could best be provided by the
application program, application service, or application sub-
system on an as-needed basis.

Each program opens a port to the network through which it can
issue SEND/RECEIVE-type requests to any destination component
address known to the NTS. This component address is established
via a symbolic address that is resolved into an explicit address by
the NTS. Once the explicit address has been established, the
SEND/RECEIVES are issued. The network subsystem also provides
a mailbox facility to which tickler messages to the requesting
component can be sent. This was used as a time-out mechanism
by the application program instead of setting a timer and then
handling timer interrupts. It also provided a mechanism to keep
track of outstanding messages and to allow the program to regain
control in order to decide whether to continue, abort, or retry
another message.

The NCI provides the bring-up, bring-down, and resource alloca-
tion services that are traditionally provided by the operating sys-
tems. The NCI is logically separate from the operating system
services, since it provides only service for managing resources
upon request. It provides no automatic control services such as
monitoring.
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The NC1 also provides a node directory service. The directory is
the only way to find other components local to the node, e.g.,
users directly connected, active programs, and subsystem-named
resources.

The sci1 provides for locating global resources, i.e., resources out-
side a node (a network directory service). Thus, SCI is inter-
rogated if a resource outside the local node is to be allocated or
referenced.

The NCI and the SCI directory and directory services are function-
ally the same. The directorie¢s contain log-on name, internal node
and element identifier, component identifier, physical and logical
locations, lock/password, and authorization.

The log-on name is the symbolic name by which the system and/
or node knows the execution of a component. Internal identifiers
(implicit addresses) are created by the NTS at port-open time, and
thus provide a way to address network components. A com-
ponent identifier represents the name of a particular component.
Physical and logical location entries provide symbolic location
identifiers. Ordinarily these would not occur more than once in
the scl. However, multiple entries may be required to provide
independence from the physical topology for testing and backup.
This approach to network resource resolution supports such net-
work management attributes as relocatable destinations, dynamic
assignments, and adding new network resources in a nondisrup-
tive manner.

The lock/password provides the directory with the locking facility
against which inquiries for this component can be checked. If a
request is made and the appropriate key is not supplied, the
search is unsuccessful, and the attempt may be recorded as a
security violation. The authorization field contains the key by
which the component can be accessed. During component inter-
communication, each component can check an authorization be-
fore providing access to that component’s service for that mes-
sage.

The NCI directory is aware only of components that have been
identified to it. This reduces nonessential entry information re-
dundancy within each directory (node or system). The SCI direc-
tory contains information on components that have identified
themselves and wish to be known by other nodes. Only other SCI
addresses can reoccur in each SCI directory. This results in two
requests for locating outside components: one to locate the other
SCI address and the other to make a request of the foreign SCI.
This method of identifying and locating appears to be less difficult
to maintain than multiple redundant entries in multiple system
control interfaces in terms of purging unneeded entries and con-
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tent synchronizing. The method also simplifies the creation tasks
associated with reestablishing communications among software
components.

The application interface is written in reentrant code. Main stor-
age is for message queues and control blocks that are set up at
application initiation time. The application service conditions the
environment and acts as the primary application interface to the
network and other components. Conditioning is similar to that
used in the SNA bind process, when logical units are conditioned
at initiation. The application interface also provides options to
bypass unwanted or unsupported functions, in response to spe-
cific service requirements.

If an application wishes to send a message to another application
or system resource, the application interface locates the appli-
cation or resource via the appropriate directory. The location
request is followed by a SEND, which causes a message to be built
and encapsulated within a header that contains a destination net-
work address, message length, optional password, and event
number. When messages arrive at an application program inter-
face, they are scanned for an event number. If that number is the
awaited event number (a response to a SEND), the data are placed
in the appropriate program buffer and the event number is deleted
from the outstanding response queue. Should the outstanding
message be timed out, the event number is deleted from the out-
standing response queue and a time-out status is returned for the
response. If the number is for another message, it is queued on a
message stack and awaits the program’s RECV request.

It might be useful to have a summary of our decision process and
reasons for developing our study model design. In our design, we
were not concerned with response implications that were topol-
ogy dependent, but only with the actual communication func-
tions.

The IMS transactions would require no recompiles, program or
interface changes to conserve the program investment. The inter-
nal interface was to use a pass-the-message data interface as op-
posed to sharing storage in order to simplify the interface and
avoid locks and complications involving data integrity and secu-
rity. Two ports—one for data and one for control—were selected
to accommodate the physical distribution and separation of con-
trol services and the destination application program. A single
port approach would require a sophisticated intermediary to split
the data and control flow if these were physically distributed.

The peer node network structure and peer software interface
structure would provide a highly flexible approach to node inde-
pendence and hierarchical control over interdependent sub-
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systems and components. The asynchronous request interface
would facilitate parallel requests by the subsystem software com-
ponents to minimize serialization. The applications (IMS transac-
tions) are neither designed for nor do they have an interface for
asynchronous requests. The point-of-origin component was se-
lected as the entity responsible for the successful completion of a
transmission. This is preferable to having multiple intermediate
components attempt to interact and track messages. The latter
strategy would require that all the participating components have
extensive knowledge about the application if a failure occurred. It
was decided that it would be easier from a logic and software
standpoint to let the originator determine whether to retry, route
to an alternate destination, or try later.

Concluding remarks

Our study model has allowed for the testing of basic support sys-
tem component functions associated with bringing up a node,
connecting it with other nodes, locating and bringing up the infor-
mation system components, exploring various approaches to pro-
viding distributed system control and program-to-program com-
munication services for a distributed information system, and the
testing of a dynamic network directory (or directories) at the sup-
port systems level. The study has also provided necessary walk-
throughs and paper design of information system interface and
data dictionary/directory requirements. Additionally, the study
has provided insights into questions associated with application
programs communicating with one another, with network control
services, and with node control services. Included among the
questions are what to do when a failure is detected, how unsolic-
ited messages are handled, what application program changes
have to be made in order to deal with such events as response-
time fluctuations, lost responses, variable length inputs, and
asynchronous request coordination.

A good portion of our effort concerned the managing of re-
sponses, failure detection, maintenance, testing, debugging, and
problem determination. Time-out approaches were explored for
response-time monitoring, failure, and deadlock detection.

Multicomponent and multinode maintenance required a consid-
erable effort because not all components could easily be brought
to the same level of maintenance. This resulted in the require-
ment for a maintenance control directory and a coexistence phi-
losophy for change, where multiple levels of maintenance are ac-
tive and communicating with one another.

Testing, debugging, and problem determination required transac-
tion-oriented traces. With the number of components and nodes
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involved in our study model, and with the absence of synchro-
nization (e.g., a dump of the application and all its related com-
ponents at appropriate times), the only useful and available
method was to track a transaction through the support and appli-
cation system components. To do this, each component was
coded to identify itself and its functional activities.

This experiment aids our understanding of the subtle technical
implications of a distributed information system. Additionally it
highlights some areas we must explore further. Among the prob-
lems we foresee are the developing of automation of operational
aspects associated with alternate data destination, retry and
data commitment, unexpected messages, errors, and component
losses.

Among the conclusions we have reached as a result of the study
presented in this paper are the following. An effective application
interface for a distributed system must provide services not in-
cluded in current CALL or READ/WRITE interfaces. Many such
services can be provided by an application service function. Ac-
cess to data anywhere in the network within response-time ex-
pectations requires application program interface enhancements
(e.g., asynchronous requests, change commands, group calls,
etc.) and logic changes. A distributed directory is a feasible ap-
proach to maintaining autonomy and providing access to network
resources. Timer facilities are critical to response, failure, dead-
lock, and lost message detection. Greater-than-anticipated buffer
and queue storage are required because of longer delays associ-
ated with intercomponent communication across multiple nodes
when asynchronous or group-command approaches are imple-
mented.

A transaction-level trace facility is necessary for debugging and
problem determination. Significant redundant functions can oc-
cur in each component, which highlights the benefit of reentrant
codes, modular program design, and the importance of mainte-
nance controls. A tool to manage the maintenance levels and ap-
plications is necessary to manage the various nodes’ software
modules; the absence of such a tool cost many hours of debug-

ging.

We also determined that to distribute a specific occurrence of a
distributed information system without common storage requires
extensive control data, redundancy, and sophisticated techniques
to coordinate this control data (e.g., a directory).
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