
This tutorial paper is intended for the reader who is unfamiliar
with computer networks, to prepare him for reading the more de-
tailed technical literature on the subject. The approach here is to
start with an ordered list of the functions that any network must
provide in tying two end users together, and then to indicate how
this leads naturally to layered peer protocols out of which the
architecture of a computer network is constructed. After a dis-
cussion of a f ew block diagrams of private (commercially pro-
vided) and public (common carrier) networks, the layer and
header structures of SNA and DNA architectures and the X.25 in-
terface are briefly described.

An introduction to network architectures and protocols
by P. E. Green

Ever since computer users began accessing the machine re-
sources from remote terminals over twenty-five years ago, com-
puter networks have become more versatile, more powerful, and,
inevitably, more complex. Today’s computer network^"^ range
all the way from a single small processor that supports one or
two terminals to complicated interconnections in which tens of
processing units of various sizes are interconnected to one an-
other and to thousands of terminals, often with various forms
of special multiplexors and controllers in between.

As this evolution has proceeded, so have attempts to replace ad
hoc methods of network design with systematic ways of organiz-
ing, understanding, and teaching about computer network details.
Today there is a way of looking at networks in terms of layered
architectures that all the experts use, but which is replete with its
own jargon, and unclear and seemingly conflicting definitions,
which often make it difficult to follow what is going on.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission

This paper aims at providing an introduction to how computer
networks work from two perspectives: by briefly tracing the his-
torical evolution of network implementations, and by summariz-
ing some of today’s layered architectures. These architectures
are the rules upon which the implementations are based. In the
following section, we analyze a list of the basic functions that the
network provides in putting the parties that the network serves
into communication with one another. This sets the stage for later
discussion of layered architectures. Following these basic func-
tions is a discussion of the evolution of private network imple-
mentations. Introduced next are the closely related interface
standards of the common carriers. Finally, matters previously
presented are re-presented in terms of the underlying layered ar-
chitectures, which are expressed explicitly in terms ofprotocols.

A framework for discussing networks: the total access path
between end users

The basic function to be performed by any computer network is
the provision of access paths by which an end user at one geo-
graphical location can access some other end user at another geo-
graphical location. Depending on the particular circumstances,
the pair of end users might be a terminal user and a remote appli-
cation program he or she is invoking, two application programs
interacting with one another, one application program querying
or updating a remote file, and so forth. By uccess path we mean
the sequence of functions that makes it possible for one end user
not only to be physically connected to the other, but to actually
communicate with the other in spite of errors of various types and
large differences in the choices of speed, format, patterns of inter-
mittency, etc. that are natural to each end user individually.

There are many ways of characterizing networks, as for example
the following: (1) according to the particular application (banking,
timesharing, etc.), (2) according to geography (in-plant, out-
plant), (3) according to ownership (public, private), and so forth.
Another way of characterizing different network types is to exam-
ine the topological character of the web of transmission lines that
connect together the nodes at which the different end users are
located. Here, a node is a physical box such as a computer, con-
troller, multiplexor, or terminal. Thus we have the various net-
work types shown in Figure 1 .

None of these approaches really reveals what the network is ac-
tually doing. A much better scheme is to examine the total reper-
toire of functions that the network must provide in making up an
effective access path between two end users. By doing this in an
ordered way, one is in a good position to characterize the im-
portant features of both common carrier networks (of the leased,

IBM SYST 1 VOL 18 NO 2 1979 GREEN

access
path

requirements

data
link

control

204

Table 1 Access path requirements

To give a user access to processor-based resources, someone must:

Make sure a trans-
mission path exists.

See that it talks in bits.

Move individual messages.

Provide economies for inter-
mittent use.

Send messages to correct
node and correct sub-
address within node.
Bypass failed line or station.

Accommodate buffer size;
avoid need to resend long
messages.

Resolve mismatches between
actual and accommodatable
flow rates.

Accommodate end-user inter-
mittency patterns.

Accommodate end-user format,
code, language requirements.

Using

Using

Using

Using

Using

Using

Using

Using

Using

Common carrier provided
links.

Modems.

DLCs.

Dial-up; multidropping, multi-
plexing, packet and fast
circuit switching.

Addressing, routing.

Packetizing-depacketizing.

Buffering, flow control.

Datagram, transaction, or
session dialogue management.

Protocol conversions.

dial, fast circuit switched and packet switched types that we shall
define later in this paper) and the network designs of computer
manufacturers. Two typical examples of the latter are the Sys-
tems Network Architecture (SNA) of IBM and DECNET of the
Digital Equipment Corporation. Table 1 summarizes this dis-
cussion.

First, someone must make sure that a set of physical transmission
resources (lines) exist that run from the origin node to the destina-
tion node, possibly by way of intermediate nodes. In out-plant
situations (beyond one contiguous set of customer premises), this
is done by common currier provided links, either terrestrial or
satellite.

Then one must see that the two ends of each line talk in bits using
waveforms whose energy lies in a frequency range accommo-
dated by the lines. Modems (modulator-demodulator units) pro-
vide this function.6

A capability must also be provided for making sure that the bit
stream received is an error-free replica of the bit stream trans-
mitted. This is one of the functions of data link control proto-
c o l ~ " ~ that see to it that successive groups of bits (frames) all

GREEN IBM SYST 1 VOL 18 NO 2 1979

arrive successfully at the receiving node. This is done by check-
ing at the receiver after each frame to see whether there has been
a violation of an error check of information bits against redundant
bits that were added to each frame at the transmitter. If a frame is
found to be in error a retransmission is requested.

The art of Data Link Controls (DLCS) has advanced considerably
from the simple but inefficient and inflexible asynchronous (start-
stop) DLCS, in which precious line capacity was wasted in adding
to each character fixed bit patterns for synchronization. Synchuo-
nous character-oriented DLCs (such as BISYNC) alleviate many of
the problems with start-stop, but have proved to retain several
disadvantages, notably that the same alphabet set (for example
ASCII or EBCDC) and the same positions in a frame are used for
line control characters, text characters, and device control char-
acters. Thus, a character of text could be spuriously converted by
noise into a character that signals the end of a frame, for example.
Another disadvantage of having line control characters drawn
from the same alphabet as device control and text characters is
that every time a new choice of alphabet is made for the peculiar
needs of some particular end user, a new and different variant of
the line control results. These difficulties as well as bit efficiency
problems and other problems were alleviated in the new “bit-
oriented” DLCS, such as the High Level Data Link Control
(HDLC), Advanced Data Communication Control Protocol
(ADCCP), and Synchronous Data Link Control (SDLC), which is a
subset of HDLC and ADCCP. In these protocols, line control in-
formation always occurs at its own same place in a frame. Thus
the time origin of the entire frame must be knocked out of line
in order for link control and data to become confused, a much
less likely circumstance than to have a character in error. The
line control commands are specified as bit patterns that have
nothing to do with any alphabet set. High Level Data Link Con-
trol is the standard being developed by the International Stan-
dards Organization, Advanced Data Communication Control Pro-
tocol is the standard of the American National Standards Insti-
tute, and Synchronous Data Link Control Protocol is the IBM
version.

The next problem to be faced is to exploit the intermittent
(“bursty”) nature of most end user traffic by sharing the capacity
of one line across many such users. If each end user were to send
bit streams at a constant rate, networks made entirely of simple
point-to-point lines of the right capacity would be appropriate
solutions. With multiple nodes per leased line comes the need to
add to the DLC certain link address fields and control characters
that are used by the DLC elements at each node to avoid conflict-
ing attempts to use the line. Multistation DLCS thus perform time
division multiplexing or interleaving of traffic from various sta-
tions on the same line. For rarely used connections, dial-up links

IBM SYST J VOL 18 NO 2 1979 GREEN

addressing
and
routing

205

offer a solution. Even more attractive economically are the new
fast circuit switched services with minimum billing times down to
a fraction of a second and fractional-second time to connect. In
circuit switching, the common carrier commits a path through his
system until the users finish and break the connection. In packet
switching, which aims at dynamically sharing intermittently used
transmission resources, the user sends properly addressed frames
or packets to the common carrier who delivers them individually.

The action taken in response to the addressing information is of
course the routing operation. We have just encountered this ad-
dressinghouting requirement on a single link connecting several
stations. When the nodes at which the end users are located are
separated by not just one line but by one or more intervening
nodes and links, addressing and routing become quite elaborate,
particularly if there is a multiplicity of possible routes between
the two end user nodes."'" In such a topologically complex net-
work, upon failure of a node or link, alternate path routing pro-
vides a powerful tool for recovery.

Before leaving the subject of addressing and routing, it should be
noted that a line connected to a node often carries trafFic to or
from more than one location within the node. To resolve the am-
biguity, an intranode addressing and routing function is required
in such cases.

buffering The next function that must be provided is the buffering of in-
coming messages until they can be serviced, and the buffering of
outgoing messages until they can be carried away by the trans-
mission line. Limitations on available buffer size and the desire
for fast response time, together with the aforementioned need to
do error checking on a frame-by-frame basis (while avoiding the
need to retransmit long messages), lead to the need to segment
(packetize) outgoing bit streams into elements of reasonable size
and similarly to reassemble (depacketize) incoming bit streams.

Next, the rate of flow of outgoing packets has to be regulated so
as neither to overflow the buffers at the receiving station nor to
leave the receiving end user waiting for more traffic. This can be
accomplished by feeding back along part or all of the access path
from receiving node to transmitting node special pacing orflow
control signals. There are many options here. For example, the
flow control signals sent from receiver to sender may simply turn
off and on the emission of packets, they may tell the latter how
many more packets can for the moment be safely sent, or there
may be other strategies."

end-user The next function needed is a way for the end user to use all the
dialogue functions just listed to set up a dialogue with the end user at the

other end of the access path. The access path must be managed

206 GREEN IBM SYST J VOL 18 NO 2 1979

so that the dialogue between end users has the pattern of inter-
mittency that the end users require. For example, the pair of users
might be such that a single packet should flow in just one direc-
tion. This simplest case has been termed the datagram type of
dialogue (actually a monologue). Or there might be a tightly struc-
tured transaction form of dialogue in which, for example, a single
packet in one direction elicits a fixed number of reply packets in
the other direction. A third possibility is a session between end
users in which the flow of packets back and forth is part of a re-
lated series of transactions. In analogy with a telephone conver-
sation, it would be as though an access path were set up for each
word, each sentence and its response, or for an entire telephone
call, respectively. In managing the dialogue, there is the need not
only to set up and take down the dialogue, but while it is in
progress to associate related packets with one another, and to
decide when an end user should listen and when it should talk.

Once all the elements just listed are provided, the access path can
be considered complete. This is shown in Figure 2, where the ac-
tions just discussed are listed in order. Two interesting things
are immediately obvious: The elements occur in pairs and the
two members of each pair talk essentially only to each other.
For example, one modem talks to the other, ignoring both details
of the transmission link and the meaning of bits it is handling. As
another example, a DLC element ignores what its modem is doing
about modulation and demodulation and also what the informa-
tion field within a frame contains. A DLC interacts only with the
DLC at the other end to convey the frame successfully from the
sending node to the receiving node on the same line, and so forth.

This pairwise interaction, orpeer interaction, of the functions we
have enumerated is summarized in Figure 3 , which is derived di-
rectly from Figure 2. Another way of thinking of Figure 3 is that it
is in a sense the inverse of one end user’s view of a network.
Thus, instead of showing one end user at the center of his net-
work, we show the transmission facilities at the center and the
two end users at the periphery. The access path across the net-
work is depicted at the bottom for illustrative cases of zero and
two intermediate nodes. Note that when the access path goes
through intermediate nodes, in each intermediate node it goes no
higher in the layered structure than the routing operation.

Several caveats are in order about this seemingly tidy picture.
For example, some generic functions can occur in more than one
layer. Consider, for example, multiplexing, the interleaving of
several traffic streams as they flow through the same path. We
have already met this function in data link control. It also occurs
within the common carrier transmission system. Moreover, sev-
eral end users can be multiplexed on one transmission path, and,
as one proceeds from a set of end users at a sending node inward

IBM SYST J VOL 18 0 NO 2 1979 GREEN

Figure 3 Peer pairs of access path elements (The modem may be absent in local in-plant
connections.)

TERMINAL USER

2 x-& """""""
TERMINAL PROCESSOR

APPl JCATION PROGRAM

x..& & \-I
TERMINAL CLUSTER COMMUNICATION PROCESSOR

CONTROLLER CONTROLLER

in the concentric circles of Figure 3 , there is a choice of options as
to the layer at which this merging might take place.

Also, there is some interlayer communication of control informa-
tion within the same node. This weakens the prior statements to
the effect that the two peer-related members of a given layer at
the two ends of the access path ignore the contents of the bit
stream handed down by the next higher layer and are also not
involved in the service provided to them by the next lower layer.
For example, in an intermediate node, the routing function must
supply to the DLC function an address it can use in forwarding a
message to the proper choice of several stations on the same link.

network Not shown in Figures 2 and 3 is network ~on t ro l , '~ the set of func-
control tions that do the activation and deactivation of the various por-

tions of the access path shown, provide some of the control pa-
rameters required in their operation, and manage recovery. Net-
work control can to various degrees be centralized (in one node)
or decentralized (no single node dominant). The many network
control functions that are required in forming the access path can

0 Establishing the electrical transmission path between nodes.
This may involve dial-up, which requires that appropriate
telephone numbers be supplied to a participating node.

0 Assigning data link addresses of stations, designating who is
primary or secondary, and activating the DLC-leVel function.

0 Establishing and updating routing tables that tell each node
where to forward a message. If the message must proceed on
to another node, the table must say which outgoing link to
use.

0 Establishing and updating directories of all end users in the
network, and providing name-to-address conversion.

0 Establishing and later disestablishing the datagram, transac-
tion, or session connection out to the end users. Parameters
must be supplied at each end t o set up the specific dialogue
convention required by the end user at that end. Queues of
requests and responses within a session must be managed.

0 Providing an interface to the human network manager. This
includes problem determination functions, such as error re-
porting, testing, sending traces, and making measurements.

In this section we have introduced the notion of layers of function
as they occur in peer-related pairs to form an access path through
the network. We have also mentioned the control of these func-
tions. Before discussing how these ideas are manifested in spe-
cific network protocols of the computer manufacturers and the
public common carriers, let us return to a topological view of
things and examine in a little more detail what computer networks
look like from that standpoint.

Networks of commercially provided access paths

In order to discuss the rationale of access path implementations
that have been of most interest, it is instructive to sketch the his-
torical evolution of private networks since the 1960s. Let us look
first at what has happened with large computers, then mini-
computers, then common carrier computer network services.

The earliest systems were single-processor batch systems that
later evolved to support a few local terminals. True teleprocessing
(remote access of a terminal end user to an application program in
a processor) came with systems such as that shown in Figure 4,
of which a typical example was the IBM System/370 running the
Basic Telecommunications Access Method (BTAM). Essentially
all the processing was concentrated in the central host processor,
as befitted the technology available at that time. Of the various
access path functions we have enumerated in Table 1, only ele-
mentary DLC-leVel functions were performed outboard of the
host, specifically in a transmission control unit, which was often
hard-wired and not programmable. The other functions were

IBM SYST J VOL I8 0 NO 2 1979 GREEN

Figure 4 Typical teleprocessing
system of the 1960% such
as Systeml360; dotted
and dashed lines are ac-
cess paths

ACCESS

CATION
ACCESS

"0

PROCESSOR

early
systems

209

Figure 5 Distribution of terminal-specific code in an early teleprocessing system

APPLICATION
PROGRAM A

KEYBOARO/PRINTER -
APPLICATION
PROGRAM B

I \ I APPLICATION
PROGRAM C

I
I

KEYBOARD/PRINTER OB/OC
SUBSYSTEM

I
I

I
I I
I I

I
I i I

I

\
\.

\ \
I
I

I I I

I
I I I

\
\

I COMMUNICATION CONTROLLER I I

CLUSTER CONTROLLER COMPUTER SUBSYSTEM

KEYBOARD PRINTER CARD I/O

PRINTER

PRINTER

never cleanly layered, as in Figure 3 , but were so spread out
among the different software systems (as shown in Figure 5) that
a change in the configuration of a line or its attached terminal
required reprogramming in all these software systems. Terminal
cluster controllers performed the device control functions, but
essentially none of the communication access path functions.

210 GREEN IBM SYST J VOL 18 NO 2 1979

What proved to be a particularly inconvenient restriction was the
lack of line sharing or terminal sharing. By this is meant that,
since a given line and all the terminals on it were part of the access
path to only one and the same application program, if a user
wanted to access two different applications (e.g., savings ac-
counts and credit checking) he required two terminals and two
lines.

The next step came around 1974, with systems such as that of
Figure 6 , of which a typical example was the System/370 with
software and hardware releases referred to as Systems Network
Architecture (SNA) generations 1 and 2.1417 The transmission con-
trol unit gave way to a programmable communication controller
that handled all data link control and a great deal more. In the
communication controller code, the host communication access
method code, and the cluster controller code, a significant at-
tempt was made to delineate function into layers, as in Figure 3 .
Thanks to the availability of microcomputers and lowered cost of
main and secondary storage, it began to be possible to execute
limited application code, including that involving significant data
bases, in the cluster controllers, and (for some non-IBM realiza-
tions) in the communication controller. Most significantly, this
design allowed terminals to share a line to separate applications
located in the same host and to do the same thing with applica-
tions in the cluster controller. Moreover, it allowed access paths
between host application programs and cluster controller appli-
cation programs.

It was soon clear that this did not go far enough. Many users had
multiple processors individually serving tree networks such as that
of Figure 6. These networks could not intercommunicate. A given
terminal user frequently wanted an access path to an application
in a diferent host from the one that normally served him, and it
was either uneconomical or infeasible to run a second copy of that
application in his own host just to provide this service. Moreover,
it became desirable for one application to talk to a remote other
application. These capabilities were needed for sharing processor
resources among locations and for improving system avail-
ability through remote backup. These requirements led to the
computer networking solution shown in Figure 7C, realized in
Systems Network Architecture with Advanced Communication
Function (SNAIACF), which is also known as SNA-3.'* In this ar-
rangement, any terminal can gain an access path to any of the
applications in any of the hosts. Application-to-application access
paths are also supported. Figure 7C shows several of the tree
structures of Figure 6 (schematized in Figure 7B, just as Figure
7A abbreviates Figure 4) connected together into a mesh of trees
(as in Figure 1F) by physical paths between communication con-
trollers. Thus, an SNA tree network can be characterized as a
hierarchical network with network control centralized in the

IBM SYST J VOL 18 NO 2 1979 GREEN

Systems
Network
Architecture

computer
networking

Figure 6 Typical teleprocessing
system of the 1970% such
as SysteW37O with SNA

1

STORAGE
ACCESS
METHOD BASES

APPLICA-

COMMUNI-
~~~~~~ PROCESSOR 

METHOD 

211 





In the world of minicomputers,  networks  have  evolved  somewhat 
differently. Originally, minicomputers were used individually for 
stand-alone, real-time or  batch  processing or  for supporting  a few 
simple terminals. When the  need developed for connecting these 
together, it was found desirable to  do this in a strictlypeer style of 
interconnection  rather  than the peer-plus-hierarchical  pattern just 
discussed.  Peer  connection  had been used in the ARPA network,lg 
and the flexibility of this mode of operation  undoubtedly had a 
strong influence on minicomputer networking. In  the  peer mode 
of interconnection, no one  computer  does  network  control  for  the 
other;  there is no masterhlave  distinction  and no identifiable cen- 
tral control  point.  Network  control  steps  are managed in each 
node more or less  symmetrically. In principle this allows a wide 
range of topologies to be implemented, but requires special pro- 
cedures  for managing routing tables, flow control,  directory  func- 
tions,  and  recovery  operations, especially when the  network  con- 
sists of a large number of nodes. Presumably these problems will 
be thoroughly understood as  peer  networks with decentralized 
network  control  evolve. 

One of the  better known of the  peer  computer  network designs is 
the DECNET offering of the Digital Equipment Corporation.*' The 
DECNET design has  been  implemented not only for  the mini- 
computers of the DEC product line (e.g., PDP-8 and PDP-11) but  also 
for the high end (e.g., DECSYSTEM-IO). The  ultimate objective is to 
connect  the machines together in a mesh (as in Figure 1E) or in a 
hierarchy (as in Figure 7D),  or  other arrangements. In fact, a 
natural user evolution for minicomputer users  has  been  for inde- 
pendent  users  to  start with stand-alone  minicomputers of roughly 
equal  power,  later to connect  them  together,  and still later to 
connect  this  set to a single large host.  This bollom-up evolu- 
tionary pattern may  be contrasted with the top-down pattern of 
network growth  experienced by many users of large  machines, as 
just  described. 

Networks of access paths provided by carriers 

In commercially provided networks,  such  as  the IBM and DEC of- 
ferings just described,  the  physical transmission-level function 
between  nodes in the  network is, of course,  provided by the com- 
mon carriers.  The  carriers  have been investigating whether  there 
is any technical reason why other functions of Figure 3 at a higher 
level than  the  transmission  level might not  also be provided by 
them-for example,  the  next level up,  the management of error- 
free  frame transmission using standard  data link controls.  The 
accompanying paper by Halsey,  Hardy,  and Powning'l details  the 
status of common carrier offerings and  data  network  interfaces. 

The  common  carriers are in fact taking steps  not only to improve 
service  at  the transmission level,  but to provide higher-level serv- 

IBM SYST J VOL 18 o NO 2 1979 GREEN 



ices. At the transmission level,  an urgent need of the  data process- 
ing community has been to have dial-up service with much faster 
connect  times  and much shorter minimum  billing increments than 
ordinary voice grade dial-up service  provides.  There  has  also 
been the need to improve the space-division modem-to-machine 
interface,  such as V.24, by providing a combined space-  and time- 
division interface of wider generality.  These  needs  have been met 
by the X.21 Recommendation2' of the  international  standards 
body,  the  International  Consultative  Committee  for Telephony 
and  Telegraphy (CCITT). The  twenty-one (or fewer) wires of V.24, 
each performing one  and only one  function, are replaced in X.21 
by up to eight wires of which one is used in each  direction  to send 
bit patterns  for specific control  functions. By this  means,  the 
repertoire of control  functions is flexible and  expandable. In 
particular, it is meant to  be used for dialing and  disconnecting 
at  data  processing bit stream speeds, thus  serving as  the basis of 
fast  circuit  switching common carrier  networks. 

packet Packet switchingz3 seems to have been inspired by the idea of 
switching sharing communication channel  capacity  across  a number of 

users by implementing the  same time-slicing philosophy  that had 
earlier  proved so successful in sharing the  execution power of a 
single processor  across many user  processes.  Every  user  node 
that  interfaces  a  packet-switched common carrier  makes  a  con- 
tract with the  carrier  to hand him  bit streams  already segmented 
(packetized) as we have  described in the beginning of this  paper, 
with each  packet  supplemented with a  header  saying, among 
other  things,  to which other  user  node he wishes  the  packet de- 
livered. Widespread interest in packet switching on the  part of the 
carriers  has led them to  standardize  this  contract in the form of 
the CCITT Recommendation X.25,24 which is discussed in the  next 
section. 

The  contract includes an  agreement on the  electrical  interface, 
the  data link control, how the remote  user is to  be  addressed, 
packet  size,  and how the flow of packets  toward  and  out of the 
carrier's  network is to be regulated.  The  contract  also includes 
some network  control  functions  such as protocols  for establishing 
and disestablishing the  access  path.  Thus  two  user  nodes  (say  A 
and B) each  agree to exchange  packets with the  carrier  network 
using the X.25 standard  and  the  carrier  agrees  to deliver to B 
properly  addressed  packets  from A and vice versa.  The combined 
actions of ( 1 )  the X.25 interface of A to  the  network, (2) the X.25 
interface of B to the  network,  and (3) the  network, provide a full 
duplex path, termed  a virtual  circuir, between the higher-level 
function at the  two  nodes. 

There is currently  some  debate  over  whether a special form of 
virtual  circuit, called the datagram mode of operation  and  re- 

214 GREEN IBM SYST J VOL 18 NO 2 1979 



ferred to earlier in this paper,  ought  to be supported  under X.25. 
There,  the  duration of the  contract is essentially only one  packet 
long. 

Fast  circuit switching and  packet switching both offer the  user  the 
economies of paying for  the  transmission  service only to the ex- 
tent that it is  used.  Fast  circuit switching has  the  particular  advan- 
tage over packet switching that once  the  transmission  path  has 
been set  up, it is totally transparent.  That  is,  except  for  uncontrol- 
lable random  errors,  the bit stream  out is the same as  the bit 
stream in for  a period of time whose  duration is up to  the user. 
Packet switching, although highly nontransparent  (since  the  user 
is required to adhere to what  the  contract  says  about  packet 
length,  rate of flow, header structure, etc.)  does allow the  carrier 
to offer the  user more of the  access  path  function  discussed  ear- 
lier in this  paper  than  does  fast circuit switching. 

Network architectures and protocols 

The  precise definition of the  functions  that a computer network 
and  its  components should perform is its architecture. Exactly by 
what software  code or hardware  these  functions are actually per- 
formed is the  implementation, which is supposed  to  adhere  to  the 
architecture. Both the  data  processing  and  carrier communities 
have expressed their network  ideas in layered,  peer  architectures 
that in one way or  another  resemble Figure 3 .  Communication 
architecture is different from processor  architecture or storage 
subsystem  architecture in that it always involves apairwise inter- 
action of two parties. For  example,  as we have said earlier in this 
paper,  a DLC element in one  node  interacts with a DLC element in 
another;  the routing functions in two nodes interact specifically 
with each  other,  and so forth.  The  set of agreements  for  each of 
these  pairwise  interactions may be termed a  protocol,  and  thus 
we  find network  architecture specified in terms of protocols for  
communication between pairs of peer-level layers. A network 
protocol  consists of the following three  elements: (1) syntax- 
the structure of commands and responses in either$eld-formatted 
(header  bits)  or  character-string  form; ( 2 )  semantics-the  set of 
requests to be issued,  actions  to  be  performed,  and  responses 
returned by either  party;  and (3) timing-specification of ordering 
of events. 

We shall now briefly discuss SNA, DECNET, and X.25 from this 
point of view, saying something  about  semantics  and  syntax  and 
nothing about timing.  All three of these  structures make strict def- 
initions of protocols  between the two members of a pair of func- 
tions at  the same level (although in  different nodes),  but leave details 
of interaction of adjacent layers in the same node to be decided by 
the  implementer. They are all slightly different in the way they 

IBM SYST J VOL 18 NO 2 1979 GREEN 

architecture 
vs 
implementation 

215 



usually converted user information 

END USER 

RESENTATION SERVICES 

DATA FLOW CONTROL 

RANSMISSION CONTROL 

PATH  CONTROL 

DATA LINK CONTROL 

NODE 1 

'\ SERIAL BIT STREAM 
"" OBSERVE0 ON THE  LINK 

LINK 

EU 

PS 

DFC 

TC 

PC 

DLC 

NODE 2 

asslgn functlons to the  dMerent  layers, in spite of the  fact mar 
these  assignments may at first glance appear  to be equivalent. 

other  hand, X.25 is not an end-to-end  protocol,  but a node-to- 
packet  network  protocol; it manages  the  access  path from a  user 
node to  the immediately adjacent node internal to  the packet net- 
work.  End  user  to  end  user  functions are  transitory, occurring 
only during call establishment  and  disestablishment. 

SNA Figure 8 shows  the  layers in two SNA nodes. No intermediate 
nodes are  shown, but in practice  one or more of these could exist 
along the  access  path.  Furthermore,  the  layers  at  one  end could 
be in more  than  one physical box. For example,  at  the host end, 

and 125), or function roughly corresponding  to  Link  Control ana 
Path  Control could be  in the  software of a separate communica- 
tion controller  and  the  rest in the  host.  Or it might be possible to 
move almost all the  access  path  functions  out to afront-end com- 
munications processor, leaving the host processor  freer  to concen- 
trate its resources on application processing. At the terminal end, 
all the functions shown might be in the same box in the  case of an 

be in the  cluster  controller  that  supports a number of "dumb" 
terminals. 

216 GREEN IBM SYST J VOL 18 NO 2 1979 





Figure 9 DNA architectural lavers: cormare with  Fiaure 3 

USER- 
SUPPLIED 
PROGRAM 

NETWORK 
SERVICES 
PROTOCOL 

(NSP) 

COMMUNICATIONS 
DIGITAL DATA 

dESSAGE  PROTOCOL 
(DOCMP) 

PROCESSOR 

I DAPH I FILE  CONTROL  MESSAGES 
DATARECORDS 

rl SERIAL BIT STREAM 
OBSERVED 
ON THE LINK 

u 
I INK 

DATA 

PROTOCOL 
ACCESS 

NSP 

DDCMP 

PROCESSOR 

line. On an outbound  message, TC adds to  the RU a  Request/Re- 
sponse  Header (RH) on behalf of itself and DFC, PC adds a Trans- 
mission Header  (TH),  and DLC adds  a Link Header (LH) and Link 
Trailer (LT). Inbound,  each  layer  strips off its appropriate  header 
(and trailer)  and  forwards  what is left. If there  is multiplexing 
within PS there is still another  header,  namely,  the  Function Man- 
agement  (FM)  header,  not  shown. All  of this  illustrates  the fol- 
lowing important  property of peer  protocols: It is by means of 
the header that belongs to a given layer of the  protocol  that  the 
interaction of the  peer  pair  constituting  that  layer  takes  place. 

DNA The  architecture on which the DECNET implementations are 
based is DNA (DEC Network  Architecture.)20  In  the DNA set of 
protocols, illustrated in Figure 9, there  are  three  basic  layers, of 
which the bottom  two  are  architected (Le., the protocols  are  de- 
fined) and  the  top  one is a user implementation,  or (in the  case of 
file management)  vendor-supplied.  The  bottom  two  layers of DNA 
correspond roughly to  the  bottom three  layers of SNA, as shown 
in Figure 8.  The Physical Link  Level is exactly  the DLC level of 
Figures 3 and 8, the  preferred realization being the DEC line con- 
trol, Digital Data  Communications Message Protocol (DDCMP). 
DDCMP is character-oriented (like BISYNC), but  has many of the 
characteristics of bit-oriented DLCS. As in SDLC, for  example, 
control  and  data  characters are distinguished positionally. 

The Logical Link Level layer,  as defined by the Network  Serv- 
ices  Protocol, is roughly analogous  to  Path  Control plus Trans- 
mission Control in SNA. Internal and external  routing  take place 
here,  as  does packetizing/depacketizing, network flow control, 
and  the  establishment  and  disestablishment of much of the  access 
path.  Provision is allowed for nOn-FIFO (first-in-first-out) arrival 
of packets. 

218 GREEN IBM SYST J VOL 18 NO 2 1979 



Figure 10 Layers in X.25 

PACKETLEVEL 

FRAME  LEVEL 

PHYSICAL LEVEL 

HIGHER-LEVEL 
FUNCTIONS 

NEW 

HIGH-LEVEL 
DATA LINK 
CONTROL 

(HDLC) 

X2161S 

1 
x2  1 

STATION 1 DIGITAL 
TERMINAL EQUlPMENl 
(DTE) 

IST DlGlTAl 
REST OF 

SWlTCHlNC 
EQUlPMENl 

INTERNAL 
MESH NETWORK 

DATA COMMUNICATION 
TERMINATING EQUlPMENl 

L REST OF 

7 - - ” E  STATION 2 

The X.25 protocol is illustrated in Figure 10. The X.21 protocol, 
mentioned earlier in this paper, is specified for providing the elec- 
trical interface  between  the user node  and the nearest  Data 
Switching Equipment (DSE) node  owned by the  carrier.  The X.25 
specification allows for  use of  X.21 bis (in which the  interface 
appears  to  each user as a V.24 interface)  as an interim solution. 
As Figure 10 shows,  this  nearest  node can be on  the  customer’s 
premises (in which case  the  customer’s  access link is the multi- 
wire X.21 set)  or off-premises (in which case  the  access link is a 
telephone  company  provided line). In Figure 10, stations  1  and 2 
are  the  Data Terminal Equipments (DTES) or business machines. 
Packets P1 and P3 are intended  for  station (DTE) 2 and  packet P2 
is intended  for  some  other  station.  The  Frame  Level  protocol, 
which manages error-free  transfers of strings of packets  to and 
from the packet  network, is equivalent to  the DLC layer of SNA 
and  the Physical Link layer of DNA. The  Frame  Level  protocol 
uses one of two  variants of HDLC. The  preferred  one  at  the mo- 
ment appears  to be “Link  Access  Protocol B,” specified as the 
full-duplex Asynchronous  Balanced  mode of HDLC. Here  each of 
the  two DLC stations is neither solely a primary station  nor a sec- 
ondary  station, but a “combined”  station  that is able to take re- 
sponsibility unilaterally for  transmission  and  recovery. 

IBM SYST J VOL 18 NO 2 1979 GREEN 

X.25 

219 



The  Packet Level protocol  produces  the Virtual Circuits (vCS) 
referred to earlier.  There may be  one or many (as in Figure 10) I 
vcs multiplexed onto  one  access line. These may be$xed  (as- 
signed upon initial subscription to  the service  and always in 
place) or switched (invoked ab initio as needed).  These virtual 
circuits  have  end-to-end aspects during setup  or takedown of the 
vc and  end-to-network  aspects  otherwise. For example, flow 
control  operates only to  regulate traffic between the user node 
and  the  network. After a vc is initially set  up,  the  addressing is 
between  each  end node and  the  network,  not  between  end  users. 
These  are clearly end-to-network  functions.  But in initially estab- 
lishing the VC, the  end-user  node  must know how to  address  the 
other  end-user  node. This is clearlv an end-to-end  function. 

of the  two  customer-owned  end nodes and  the  network.  The 
packet  carrier  appears in this diagram in roughly the position 
where a single intermediate  node would appear in Figures 8 and 
9. If an SNA or DECNET system  operates  across  an X.25 packet 
carrier  facility,  there are  some divided responsibilities. For ex- 
ample,  the SNA and DECNET implementations  have Specific 
rules about  packet  size,  addressinghouting, flow control, internal 
multiplexing of flows, and  recovery from error  and  lost-  or dupli- 
cated-message  conditions. When X.25 services are  used,  these 
responsibilities may overlap with those  that  the  carrier is willing 
to  undertake.  The  accompanying  paper by Corr  and  Nealz6 dis- 
cusses how these  overlaps may be resolved. 

Before ending this brief review of network  protocols,  archi- 
tectures,  and  implementations, it should be  mentioned  that  there 
is considerable  interest  and  activityz6 in the  standards bodies that 
have defined HDLC, X.21,  X.25, etc. in standardizing  even higher- 
level functions  than  those  represented by the  Packet  Level of 
X.25. This is being attempted by adding four  more  layers  above 
the X.25 Packet  Level, making seven in all. (The  bottom  four 
layers provide end-to-end access path function roughly equivalent 
to  the  bottom  two levels of DNA shown in Figure 9 and  the  bot- 
tom three levels of SNA shown in Figure 8.) This rapidly becomes 
as much of a  data  processing  end-user  issue as a communications 
issue,  and  because of the bewildering variety of special  end-user 
needs to  be  accommodated,  one may expect  this difficult task  to 
succeed only very slowly. 

Concluding remarks 

Even  though  networks  have  been growing more  complicated, 
they should be getting easier  to dissect  and  understand as sys- 
tematic formalization and  layering  become more pervasive in the 
implementations. One reason  for  persistence of complexity is 

220 GREEN IBM SYST J VOL 18 NO 2 1979 



that, until now,  the  architects  have  carried  a  heavier  burden  than 
is commonly realized of maintaining compatibility with individual 
software  and  hardware  product offerings that  antedated  the  evo- 
lution of systematic, clearly layered  sets of network  protocols. 
These  earlier offerings are gradually disappearing or in later  re- 
leases are adhering more and  more  to  the  strict  terms of the  archi- 
tecture.  The modularization means  that new ideas ought to be 
more easily  incorporated  without producing system-wide  dis- 
ruptions.  continuing  research will provide  such new ideas. 

ACKNOWLEDGMENT 

The  author  thanks R.  J. Cypser, A. Endres, R. F. Steen,  and  an 
anonymous reviewer for  their helpful comments. 

CITED  REFERENCES 
1. R.  J.  Cypser, Communications  Architecture for Distributed Systems, Addi- 

son-Wesley Publishing Company, Reading, MA (1978). 
2. P.  E.  Green, Jr. and R .  W. Lucky  (Editors), Computer  Communications, 

IEEE  Press, New  York (1975). 
3 .  M.  Schwartz, Computer-Communication  Network  Design  and  Analysis, 

Prentice-Hall,  Inc., Englewood Cliffs, NJ (1977). 
4 .  D. W. Davies and D. L. A. Barber, Communications  Networks for Comput- 

ers,  John Wiley & Sons,  Inc.,  New York (1973). 
5 .  L. Kleinrock, Queuing Systems,  Volume 11, John Wiley & Sons,  Inc.,  New 

Y  ork ( 1 976). 
6 .  J .  R. Davey,  “Modems,” Proceedings of the IEEE 60, 1284-1292 (November 

1972). See also J. R.  Davey,  “Modems,” reprinted in P.  E.  Green,  Jr.  and R. 
W.  Lucky  (Editors), Computer  Communications, IEEE  Press, New  York 

7. R. J. Cypser, Communications  Architecture for  Distributed  Systems, Addi- 
son-Wesley Publishing Company, Reading, MA (1978), Chapter 1 1 .  

8. J.  P.  Gray,  “Line  control  procedures,” Proceedings of the IEEE 60, 1301- 
1312 (November 1972). See  also  J.  P.  Gray,  “Line  control  procedures,”  re- 
printed in P. E.  Green,  Jr.  and R .  W. Lucky  (Editors), Computer  Communi- 
cations, IEEE  Press, New  York (1975), pp. 212-223. 

9. B. W.  Stutzman,  “Data communication  control procedures,” Computing 
Surveys 4, No. 4, 197-220 (December 1972). 

10. M. Schwartz, Com~uter-Communications  Network  Desinn  and  Analvsis. 

(1975), pp. 188-1%. 

1 

1: 

- 
Prentice-Hall, Inc., Englewood Cliffs, NJ (1977), Chapters 2 and 11. 

I .  L.  Kleinrock, Queuing Systems,  Volume 1 1 ,  John Wiley & Sons;  Inc., New 
York (1976), Chapter 6.  

2.  L.  Kleinrock,  “On flow control in computer  networks,” Proceedings of the 
International  Communications  Conference  (Toronto) (June 1978), pp. 27.2- 
27.5. 

3 .  J. P. Gray,  “Network  services in Systems  Network  Architecture,” IEEE 
Transactions on Communications COM-25, No. 1 ,  104-116 (January 1977). 

4. J. H .  McFadyen,  “Systems  Network Architecture: An overview,” IBM Sys- 
tems Journal 15, No. 1 ,  4-23 (1976). 

5 .  P.  G. Cullum, “The transmission subsystem in Systems  Network Archi- 
tecture,” IBM Systems Journal 15, No. l ,  24-38  (1976). 

6. W. S.  Hobgood,  “The role of the  Network Control  Program in Systems  Net- 
work Architecture,” IBM Systems Journal 15, No. 1 ,  39-52  (1976). 

17. H. R. Albrecht and K. D.  Ryder,  “The Virtual Telecommunications Access 
Method:  A Systems  Network  Architecture  perspective,” IBM Systems  Jour- 
nal 15, No. 1, 53-80  (1976). 

IBM SYST J VOL 18 NO 2 1979 GREEN 



18. Introduction to  Advanced  Communication  Function, Order  Number GC30- 
3033, IBM Corporation,  Data  Processing Division,  White  Plains, New York 
10504. 

19. P. E.  Green,  Jr.  and R. W. Lucky  (Editors), Computer  Communications, 
IEEE  Press,  New York (1975). See reprinted papers  on  the ARPA network. 

20. G .  E.  Conant  and S.  Wecker,  “DNA,  an  architecture  for  heterogeneous com- 
puter  networks,” Proceedings  of the Third International  Conference on Com- 
puter  Communications  (Toronto) (1976), pp. 618-625. 

21. J.  Halsey, L. Hardy, and L. Powning, “Public data networks: Their evolu- 
tion,  interface,  and  status,” IBM Systems  Journal 18, No. 2, 223-243 (1979, 
this  issue). 

22. H.  Folts, “X.21, the  international interface for new synchronous  data net- 
works,” Proceedings of the International  Communications  Conference  (San 
Francisco) (June 1975), pp. 1.15-1.19. 

23. L. Roberts,  “Data by the packet,” IEEE Spectrum II, No. 2,46-51 (February 
1 974). 

24. A. Rybczinski, B. Wessler, R. Despres,  and  J. Wedlake, “A new  communica- 
tion protocol for accessing data networks-the  international packet mode in- 
terface,” AFIPS  Conference  Proceedings,  National  Telecommunications 
Conference 45, 477-482 (June 1971). 

25. SNA Format  and  Protocol  Reference  Manual, Order  Number SC30-3112, 
IBM Corporation,  Data  Processing Division, White Plains, NY 10504. 

26. F. P. Corr  and  D. H. Neal, “SNA  and emerging  international standards,” 
IBM Systems Journal 18, No. 2, 244-262  (1979, this issue). 

Reprint Order No. G321-5093. 


