
This  tutorial paper is intended for the  reader who is unfamiliar 
with computer  networks,  to  prepare  him  for  reading  the  more  de- 
tailed  technical  literature  on  the  subject.  The  approach  here is to 
start  with  an ordered list of the  functions  that  any network must 
provide  in tying two end users  together, and then  to indicate  how 
this  leads  naturally to layered peer  protocols  out of which the 
architecture of a  computer  network is constructed.  After  a dis- 
cussion of a f ew  block diagrams of private  (commercially  pro- 
vided)  and  public  (common carrier) networks,  the layer  and 
header  structures of SNA and DNA architectures  and  the X.25 in- 
terface  are briefly described. 

An introduction to network  architectures  and protocols 
by P. E. Green 

Ever  since  computer  users began accessing the machine re- 
sources  from  remote  terminals  over twenty-five years  ago, com- 
puter  networks  have  become  more  versatile,  more powerful, and, 
inevitably, more complex.  Today’s  computer  network^"^ range 
all the way from a single small processor  that  supports  one  or 
two  terminals to complicated interconnections in which tens of 
processing  units of various  sizes  are  interconnected to  one an- 
other  and to thousands of terminals,  often with various  forms 
of special multiplexors and controllers in between. 

As this evolution has  proceeded, so have  attempts  to  replace ad 
hoc methods of network design with systematic ways of organiz- 
ing,  understanding,  and  teaching  about  computer  network details. 
Today there is a way of looking at  networks in terms of layered 
architectures that all the  experts  use, but which is replete with its 
own jargon,  and unclear and seemingly conflicting definitions, 
which often make it  difficult to follow what is going on. 
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This paper aims at providing an  introduction to how computer 
networks work from two  perspectives: by briefly tracing the his- 
torical evolution of network  implementations,  and by summariz- 
ing some of today’s  layered  architectures.  These  architectures 
are  the  rules upon which the implementations are based. In the 
following section, we analyze  a list of the  basic  functions  that  the 
network provides in putting the  parties  that  the  network  serves 
into communication with one  another. This sets  the  stage  for  later 
discussion of layered  architectures. Following these  basic  func- 
tions is a discussion of the  evolution of private  network imple- 
mentations.  Introduced  next are  the closely related interface 
standards of the common carriers.  Finally,  matters previously 
presented are re-presented in terms of the underlying layered  ar- 
chitectures, which are  expressed explicitly in terms  ofprotocols. 

A framework for discussing  networks:  the total access  path 
between  end  users 

The basic function to be performed by any computer  network is 
the  provision of access  paths by which an  end user  at  one geo- 
graphical location can access  some  other  end  user at another  geo- 
graphical location. Depending on  the  particular  circumstances, 
the  pair of end users might be a terminal user  and  a  remote appli- 
cation program he or  she is invoking,  two  application programs 
interacting with one another,  one application program querying 
or updating a  remote file, and so forth. By uccess  path we mean 
the  sequence of functions  that  makes it possible for  one  end  user 
not only to be physically connected to the other, but to actually 
communicate with the  other in spite of errors of various  types and 
large differences in the  choices of speed,  format,  patterns of inter- 
mittency,  etc.  that  are  natural to each end  user individually. 

There are many ways of characterizing  networks, as  for  example 
the following: (1) according to the  particular application (banking, 
timesharing, etc.), ( 2 )  according to geography (in-plant, out- 
plant), (3) according  to  ownership  (public,  private),  and so forth. 
Another way of characterizing different network  types is to exam- 
ine  the topological character of the web of transmission lines that 
connect  together  the  nodes at which the different end  users  are 
located. Here, a  node is a  physical box such as a  computer,  con- 
troller, multiplexor, or  terminal.  Thus we have  the  various  net- 
work types  shown in Figure 1 .  

None of these  approaches really reveals  what the network is ac- 
tually doing. A much better  scheme is to  examine  the  total  reper- 
toire of functions  that the  network must provide in making up  an 
effective access path between two end users. By doing this in an 
ordered way, one is in a good position to characterize  the im- 
portant  features of both common  carrier  networks (of the  leased, 
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Table 1 Access  path  requirements 

To give a user  access  to  processor-based  resources,  someone must: 

Make sure a  trans- 
mission path  exists. 

See  that it talks in bits. 

Move  individual  messages. 

Provide economies  for inter- 
mittent use. 

Send messages  to  correct 
node and  correct sub- 
address within node. 
Bypass failed line or station. 

Accommodate buffer size; 
avoid  need to resend long 
messages. 

Resolve  mismatches between 
actual  and  accommodatable 
flow rates. 

Accommodate  end-user inter- 
mittency patterns. 

Accommodate  end-user  format, 
code, language requirements. 

Using 

Using 

Using 

Using 

Using 

Using 

Using 

Using 

Using 

Common  carrier provided 
links. 

Modems. 

DLCs. 

Dial-up;  multidropping, multi- 
plexing, packet and fast 
circuit  switching. 

Addressing,  routing. 

Packetizing-depacketizing. 

Buffering, flow control. 

Datagram,  transaction,  or 
session  dialogue  management. 

Protocol conversions. 

dial, fast circuit switched and  packet switched types  that we shall 
define later in this paper) and  the network designs of computer 
manufacturers.  Two typical examples of the latter  are the Sys- 
tems Network  Architecture (SNA) of IBM and DECNET of the 
Digital Equipment  Corporation.  Table 1 summarizes this dis- 
cussion. 

First,  someone must make sure that  a  set of physical transmission 
resources (lines) exist  that  run  from the origin node to  the destina- 
tion node, possibly by way  of intermediate  nodes. In out-plant 
situations (beyond one  contiguous  set of customer  premises), this 
is done by common currier provided  links,  either  terrestrial  or 
satellite. 

Then one must see  that  the two  ends of each line talk in bits using 
waveforms whose energy lies in a  frequency range accommo- 
dated by the lines. Modems (modulator-demodulator  units)  pro- 
vide this  function.6 

A capability must  also  be  provided  for making sure  that  the bit 
stream  received is an  error-free replica of the bit stream  trans- 
mitted. This is one of the  functions of data link control proto- 
c o l ~ " ~  that see to it that  successive  groups of bits (frames) all 
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arrive successfully at the  receiving  node.  This is done by check- 
ing at  the receiver  after  each  frame  to  see  whether  there  has  been 
a violation of an error  check of information bits against  redundant 
bits that  were  added  to  each  frame  at  the  transmitter. If a  frame is 
found to be in error a retransmission is requested. 

The art of Data Link Controls (DLCS) has advanced considerably 
from the simple but inefficient and inflexible asynchronous  (start- 
stop) DLCS, in which precious line capacity was wasted in adding 
to  each  character fixed bit patterns  for  synchronization. Synchuo- 
nous character-oriented DLCs (such as BISYNC) alleviate many of 
the  problems with start-stop,  but  have proved to retain several 
disadvantages, notably that  the  same  alphabet  set (for example 
ASCII or EBCDC) and the  same positions in a frame  are used for 
line control  characters,  text  characters,  and  device  control char- 
acters.  Thus,  a  character of text could be spuriously  converted by 
noise into a character  that signals the end of a frame, for  example. 
Another  disadvantage of having line control  characters  drawn 
from the  same  alphabet as device  control  and  text  characters is 
that  every time a new choice of alphabet  is  made for the peculiar 
needs of some  particular  end  user,  a new and different variant of 
the line control  results.  These difficulties as well as bit  efficiency 
problems and  other  problems  were alleviated in the new “bit- 
oriented”  DLCS,  such as  the High Level  Data Link Control 
(HDLC), Advanced Data Communication Control Protocol 
(ADCCP), and  Synchronous  Data  Link Control (SDLC), which is a 
subset of HDLC and ADCCP. In these  protocols, line control in- 
formation always occurs at its own same place in a frame.  Thus 
the  time origin of the  entire  frame must be  knocked  out of line 
in order  for link control  and  data  to  become  confused,  a much 
less likely circumstance  than to have  a  character in error.  The 
line control commands are specified as bit patterns  that  have 
nothing to  do with any alphabet set. High Level  Data Link Con- 
trol is the standard being developed by the  International  Stan- 
dards  Organization,  Advanced  Data Communication Control Pro- 
tocol is the standard of the American National  Standards  Insti- 
tute,  and  Synchronous  Data Link Control Protocol is the IBM 
version. 

The  next problem to be faced is to exploit the  intermittent 
(“bursty”) nature of most end  user traffic  by sharing  the  capacity 
of one line across many such  users. If each  end  user  were to send 
bit streams at a constant  rate,  networks  made  entirely of simple 
point-to-point lines of the right capacity would be  appropriate 
solutions. With multiple nodes  per leased line comes  the need to 
add to  the DLC certain link address fields and  control  characters 
that are used by the DLC elements  at  each  node to avoid conflict- 
ing attempts  to use the  line. Multistation DLCS thus perform time 
division  multiplexing or  interleaving of traffic from  various  sta- 
tions on  the same line. For  rarely used connections, dial-up links 
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offer a  solution.  Even  more  attractive economically are  the new 
fast  circuit  switched services with minimum  billing times down to 
a fraction of a second and  fractional-second time to connect. In 
circuit switching,  the common carrier commits a path through his 
system until the  users finish and break the  connection. In packet 
switching, which aims at dynamically sharing  intermittently used 
transmission  resources, the  user sends  properly  addressed  frames 
or  packets  to  the common carrier who delivers them individually. 

The  action  taken in response to  the addressing information is of 
course  the routing operation. We have just  encountered  this ad- 
dressinghouting  requirement on a single link connecting  several 
stations. When the nodes at which the  end  users  are  located  are 
separated by not just  one line but by one  or more intervening 
nodes and  links,  addressing and routing become  quite  elaborate, 
particularly if there is a multiplicity of possible  routes between 
the  two end user nodes."'" In  such a topologically complex net- 
work, upon failure of a  node or link, alternate  path routing pro- 
vides a powerful tool for  recovery. 

Before leaving the subject of addressing  and  routing, it should be 
noted that  a line connected to a  node often carries trafFic to  or 
from more  than  one  location within the  node. To resolve  the am- 
biguity, an intranode  addressing  and routing function is required 
in such  cases. 

buffering The  next  function  that  must  be provided is the buffering  of  in- 
coming messages until they  can be serviced,  and  the buffering of 
outgoing messages until they  can be carried  away by the  trans- 
mission line. Limitations on available buffer size and  the  desire 
for  fast  response  time,  together with the  aforementioned need to 
do  error checking on a  frame-by-frame basis (while avoiding the 
need to  retransmit long messages), lead to  the  need  to segment 
(packetize) outgoing bit streams  into  elements of reasonable size 
and similarly to reassemble  (depacketize) incoming bit streams. 

Next,  the  rate of  flow of outgoing packets  has to be regulated so 
as  neither  to overflow the buffers at  the receiving station  nor to 
leave  the receiving end  user waiting for more traffic. This can be 
accomplished by feeding back along part or all  of the  access  path 
from receiving node to transmitting node special pacing orflow 
control signals. There  are  many  options  here. For example,  the 
flow control signals sent  from  receiver  to  sender may simply turn 
off and on the emission of packets, they may tell  the  latter how 
many more  packets can for  the moment be safely sent,  or there 
may be  other  strategies." 

end-user The  next  function  needed  is a way for  the  end  user  to  use all the 
dialogue functions just listed to  set  up a dialogue with the  end  user  at  the 

other  end of the  access  path.  The  access  path  must  be managed 
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so that  the dialogue between  end  users  has the pattern of inter- 
mittency that  the end users  require. For example, the pair of users 
might be  such  that a single packet should flow  in just  one direc- 
tion. This simplest case  has  been  termed  the datagram type of 
dialogue (actually a monologue). Or there might be a tightly struc- 
tured transaction form of dialogue in which, for example, a single 
packet in one direction elicits a fixed number of reply  packets in 
the  other  direction. A third possibility is a session between  end 
users in which the flow  of packets back and  forth  is  part of a re- 
lated series of transactions.  In analogy with a  telephone  conver- 
sation, it would be as though an  access  path  were  set  up for each 
word,  each  sentence and its response, or for an entire  telephone 
call,  respectively.  In managing the dialogue, there is the need not 
only to  set up and  take  down  the dialogue, but while it is in 
progress to associate  related  packets with one  another,  and  to 
decide when an end  user  should listen and when it should talk. 

Once all the  elements just listed  are  provided,  the  access  path  can 
be considered  complete.  This is shown in Figure 2, where  the  ac- 
tions just discussed are listed in order.  Two  interesting things 
are immediately obvious:  The  elements occur in pairs and  the 
two  members of each  pair talk essentially  only to  each  other. 
For example, one modem talks to  the  other, ignoring both  details 
of the  transmission link and  the meaning of bits it is handling. As 
another  example,  a DLC element ignores what  its modem is doing 
about modulation and  demodulation and also  what the informa- 
tion field within a  frame  contains.  A DLC interacts only with the 
DLC at  the other end to  convey  the  frame successfully from the 
sending node to the receiving node on the  same  line,  and so forth. 

This pairwise  interaction, orpeer  interaction, of the  functions we 
have  enumerated is summarized in Figure 3 ,  which is derived di- 
rectly from Figure 2. Another way of thinking of Figure 3 is that it 
is in a  sense  the  inverse of one  end  user’s view of a  network. 
Thus,  instead of showing one  end  user  at  the  center of his net- 
work,  we show the  transmission facilities at  the  center and the 
two  end  users at  the  periphery.  The  access  path  across  the net- 
work is depicted  at  the  bottom  for illustrative cases of zero  and 
two intermediate  nodes. Note  that when the  access  path goes 
through intermediate  nodes, in each  intermediate  node it goes no 
higher in the layered structure  than  the routing operation. 

Several  caveats  are in order  about this seemingly tidy picture. 
For example, some generic functions  can  occur in more than  one 
layer.  Consider,  for  example, multiplexing, the interleaving of 
several traffic streams  as  they flow through the  same  path. We 
have  already met this  function in data link control.  It  also  occurs 
within the common carrier  transmission  system.  Moreover,  sev- 
eral  end  users  can  be multiplexed on one  transmission  path, and, 
as one  proceeds from a set of end  users  at a sending node inward 
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Figure 3 Peer pairs of access  path elements (The  modem  may be absent in local in-plant 
connections.) 

TERMINAL USER 

2 x-& """"""" 
TERMINAL PROCESSOR 

APPl JCATION PROGRAM 

x..& ..... ...... & .... \-I 
TERMINAL CLUSTER COMMUNICATION PROCESSOR 

CONTROLLER CONTROLLER 

in the  concentric  circles of Figure 3 ,  there is a  choice of options  as 
to  the  layer at which this merging might take  place. 

Also,  there is some interlayer communication of control informa- 
tion within the same node.  This  weakens  the  prior  statements  to 
the effect that  the  two  peer-related members of a given layer  at 
the  two  ends of the  access  path ignore the  contents of the bit 
stream  handed  down by the  next higher layer and are also not 
involved in the  service  provided to them by the  next lower layer. 
For example, in an intermediate  node, the routing function must 
supply to the DLC function an  address it can use in forwarding a 
message to  the proper  choice of several  stations on  the same link. 

network Not  shown in Figures 2 and 3 is network ~on t ro l , '~  the  set of func- 
control tions that  do  the  activation  and  deactivation of the  various por- 

tions of the  access  path shown, provide  some of the  control pa- 
rameters required in their  operation,  and manage recovery.  Net- 
work control  can  to various  degrees be centralized (in one  node) 
or decentralized  (no single node  dominant).  The many network 
control  functions  that are required in forming the  access  path  can 



0 Establishing  the  electrical transmission path  between  nodes. 
This may involve dial-up, which requires  that  appropriate 
telephone numbers be supplied  to  a participating node. 

0 Assigning data link addresses of stations, designating who is 
primary  or  secondary,  and activating the DLC-leVel function. 

0 Establishing  and updating routing tables  that tell each  node 
where to forward a message. If the message must  proceed on 
to  another  node, the  table  must  say which outgoing link to 
use. 

0 Establishing  and updating directories of all end  users in the 
network, and providing name-to-address  conversion. 

0 Establishing  and  later disestablishing the  datagram,  transac- 
tion,  or session connection out  to the  end  users.  Parameters 
must be supplied at  each  end t o  set up the specific dialogue 
convention required by the  end  user  at  that  end.  Queues of 
requests  and  responses within a session must be managed. 

0 Providing an interface to  the human network manager. This 
includes problem determination  functions,  such  as  error  re- 
porting,  testing, sending traces, and making measurements. 

In this section we have  introduced  the notion of layers of function 
as  they  occur in peer-related  pairs to form an  access  path through 
the  network. We have  also  mentioned  the  control of these  func- 
tions. Before discussing how these  ideas  are manifested in spe- 
cific network  protocols of the  computer  manufacturers and the 
public common carriers, let us return to a topological view  of 
things and examine in a little more  detail what computer  networks 
look like from that  standpoint. 

Networks of commercially provided access paths 

In order  to discuss the rationale of access  path implementations 
that  have  been of most interest, it is instructive to  sketch the his- 
torical evolution of private  networks  since  the 1960s. Let us look 
first at what has happened with large computers,  then mini- 
computers,  then common carrier  computer  network  services. 

The  earliest  systems  were  single-processor  batch  systems  that 
later evolved to support a few local terminals. True teleprocessing 
(remote  access of a terminal end  user  to  an  application program in 
a processor) came with systems  such  as  that  shown in Figure 4, 
of which a typical example  was  the IBM System/370 running the 
Basic Telecommunications  Access Method (BTAM). Essentially 
all the  processing  was  concentrated in the  central  host  processor, 
as befitted the technology available at that  time. Of the  various 
access  path functions we have  enumerated in Table 1,  only ele- 
mentary DLC-leVel functions  were performed outboard of the 
host, specifically in a transmission control unit, which was often 
hard-wired and not programmable.  The  other  functions  were 
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Figure 5 Distribution of terminal-specific code in an early teleprocessing system 
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never cleanly layered,  as in Figure 3 ,  but  were so spread  out 
among the different software  systems (as shown in Figure 5 )  that 
a  change in the configuration of a line or its attached terminal 
required reprogramming in all these  software  systems. Terminal 
cluster  controllers performed the  device  control  functions,  but 
essentially  none of the  communication  access  path  functions. 
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What proved  to be a particularly inconvenient  restriction was the 
lack of line  sharing or terminal  sharing. By this is meant that, 
since a given line and all the terminals on  it were part of the access 
path to only one  and  the  same application program, if a user 
wanted to  access two  different applications (e.g., savings ac- 
counts  and  credit  checking) he required two  terminals and two 
lines. 

The  next step came  around 1974, with systems  such  as  that of 
Figure 6 ,  of which a  typical  example was the System/370 with 
software  and  hardware  releases referred to  as  Systems  Network 
Architecture (SNA) generations 1 and 2.1417 The transmission  con- 
trol unit gave way to a programmable communication  controller 
that  handled all data link control  and  a  great  deal  more. In the 
communication controller code,  the host  communication  access 
method code, and  the  cluster  controller code, a significant at- 
tempt was made to delineate  function  into  layers, as in Figure 3 .  
Thanks to  the availability of microcomputers  and  lowered  cost of 
main and  secondary  storage, it began to be possible to execute 
limited application code, including that involving significant data 
bases, in the cluster  controllers,  and (for some non-IBM realiza- 
tions) in the communication controller. Most significantly, this 
design allowed terminals to  share a line to  separate applications 
located in the same host  and  to  do  the  same thing with applica- 
tions in the cluster  controller.  Moreover, it allowed access  paths 
between  host application programs and cluster  controller appli- 
cation programs. 

It  was  soon clear that this did not go far  enough. Many users had 
multiple processors individually serving tree networks such as that 
of Figure 6. These  networks  could  not  intercommunicate.  A given 
terminal user frequently wanted  an  access  path to an application 
in a  diferent  host from the  one  that normally served  him,  and it 
was either uneconomical or infeasible to run a second copy of that 
application in  his own host just  to provide this  service.  Moreover, 
it became  desirable  for  one  application  to talk to a remote  other 
application.  These capabilities were needed for  sharing  processor 
resources among locations  and  for improving system avail- 
ability through  remote  backup.  These  requirements led to the 
computer  networking solution  shown in Figure 7C, realized in 
Systems  Network  Architecture with Advanced Communication 
Function (SNAIACF), which is also known as SNA-3.'* In this  ar- 
rangement, any terminal can gain an  access  path  to any of the 
applications in any of the  hosts. Application-to-application access 
paths are also  supported.  Figure 7C shows  several of the  tree 
structures of Figure 6 (schematized in Figure 7B,  just  as Figure 
7A abbreviates Figure 4) connected  together  into  a mesh of trees 
(as in Figure  1F) by physical paths between communication con- 
trollers. Thus, an SNA tree  network can be characterized as a 
hierarchical network with network  control  centralized in the 
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In the world of minicomputers,  networks  have  evolved  somewhat 
differently. Originally, minicomputers were used individually for 
stand-alone, real-time or  batch  processing or  for supporting  a few 
simple terminals. When the  need developed for connecting these 
together, it was found desirable to  do this in a strictlypeer style of 
interconnection  rather  than the peer-plus-hierarchical  pattern just 
discussed.  Peer  connection  had been used in the ARPA network,lg 
and the flexibility of this mode of operation  undoubtedly had a 
strong influence on minicomputer networking. In  the  peer mode 
of interconnection, no one  computer  does  network  control  for  the 
other;  there is no masterhlave  distinction  and no identifiable cen- 
tral control  point.  Network  control  steps  are managed in each 
node more or less  symmetrically. In principle this allows a wide 
range of topologies to be implemented, but requires special pro- 
cedures  for managing routing tables, flow control,  directory  func- 
tions,  and  recovery  operations, especially when the  network  con- 
sists of a large number of nodes. Presumably these problems will 
be thoroughly understood as  peer  networks with decentralized 
network  control  evolve. 

One of the  better known of the  peer  computer  network designs is 
the DECNET offering of the Digital Equipment Corporation.*' The 
DECNET design has  been  implemented not only for  the mini- 
computers of the DEC product line (e.g., PDP-8 and PDP-11) but  also 
for the high end (e.g., DECSYSTEM-IO). The  ultimate objective is to 
connect  the machines together in a mesh (as in Figure 1E) or in a 
hierarchy (as in Figure 7D),  or  other arrangements. In fact, a 
natural user evolution for minicomputer users  has  been  for inde- 
pendent  users  to  start with stand-alone  minicomputers of roughly 
equal  power,  later to connect  them  together,  and still later to 
connect  this  set to a single large host.  This bollom-up evolu- 
tionary pattern may  be contrasted with the top-down pattern of 
network growth  experienced by many users of large  machines, as 
just  described. 

Networks of access paths provided by carriers 

In commercially provided networks,  such  as  the IBM and DEC of- 
ferings just described,  the  physical transmission-level function 
between  nodes in the  network is, of course,  provided by the com- 
mon carriers.  The  carriers  have been investigating whether  there 
is any technical reason why other functions of Figure 3 at a higher 
level than  the  transmission  level might not  also be provided by 
them-for example,  the  next level up,  the management of error- 
free  frame transmission using standard  data link controls.  The 
accompanying paper by Halsey,  Hardy,  and Powning'l details  the 
status of common carrier offerings and  data  network  interfaces. 

The  common  carriers are in fact taking steps  not only to improve 
service  at  the transmission level,  but to provide higher-level serv- 
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ices. At the transmission level,  an urgent need of the  data process- 
ing community has been to have dial-up service with much faster 
connect  times  and much shorter minimum  billing increments than 
ordinary voice grade dial-up service  provides.  There  has  also 
been the need to improve the space-division modem-to-machine 
interface,  such as V.24, by providing a combined space-  and time- 
division interface of wider generality.  These  needs  have been met 
by the X.21 Recommendation2' of the  international  standards 
body,  the  International  Consultative  Committee  for Telephony 
and  Telegraphy (CCITT). The  twenty-one (or fewer) wires of V.24, 
each performing one  and only one  function, are replaced in X.21 
by up to eight wires of which one is used in each  direction  to send 
bit patterns  for specific control  functions. By this  means,  the 
repertoire of control  functions is flexible and  expandable. In 
particular, it is meant to  be used for dialing and  disconnecting 
at  data  processing bit stream speeds, thus  serving as  the basis of 
fast  circuit  switching common carrier  networks. 

packet Packet switchingz3 seems to have been inspired by the idea of 
switching sharing communication channel  capacity  across  a number of 

users by implementing the  same time-slicing philosophy  that had 
earlier  proved so successful in sharing the  execution power of a 
single processor  across many user  processes.  Every  user  node 
that  interfaces  a  packet-switched common carrier  makes  a  con- 
tract with the  carrier  to hand him  bit streams  already segmented 
(packetized) as we have  described in the beginning of this  paper, 
with each  packet  supplemented with a  header  saying, among 
other  things,  to which other  user  node he wishes  the  packet de- 
livered. Widespread interest in packet switching on the  part of the 
carriers  has led them to  standardize  this  contract in the form of 
the CCITT Recommendation X.25,24 which is discussed in the  next 
section. 

The  contract includes an  agreement on the  electrical  interface, 
the  data link control, how the remote  user is to  be  addressed, 
packet  size,  and how the flow of packets  toward  and  out of the 
carrier's  network is to be regulated.  The  contract  also includes 
some network  control  functions  such as protocols  for establishing 
and disestablishing the  access  path.  Thus  two  user  nodes  (say  A 
and B) each  agree to exchange  packets with the  carrier  network 
using the X.25 standard  and  the  carrier  agrees  to deliver to B 
properly  addressed  packets  from A and vice versa.  The combined 
actions of ( 1 )  the X.25 interface of A to  the  network, (2) the X.25 
interface of B to the  network,  and (3) the  network, provide a full 
duplex path, termed  a virtual  circuir, between the higher-level 
function at the  two  nodes. 

There is currently  some  debate  over  whether a special form of 
virtual  circuit, called the datagram mode of operation  and  re- 
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ferred to earlier in this paper,  ought  to be supported  under X.25. 
There,  the  duration of the  contract is essentially only one  packet 
long. 

Fast  circuit switching and  packet switching both offer the  user  the 
economies of paying for  the  transmission  service only to the ex- 
tent that it is  used.  Fast  circuit switching has  the  particular  advan- 
tage over packet switching that once  the  transmission  path  has 
been set  up, it is totally transparent.  That  is,  except  for  uncontrol- 
lable random  errors,  the bit stream  out is the same as  the bit 
stream in for  a period of time whose  duration is up to  the user. 
Packet switching, although highly nontransparent  (since  the  user 
is required to adhere to what  the  contract  says  about  packet 
length,  rate of flow, header structure, etc.)  does allow the  carrier 
to offer the  user more of the  access  path  function  discussed  ear- 
lier in this  paper  than  does  fast circuit switching. 

Network architectures and protocols 

The  precise definition of the  functions  that a computer network 
and  its  components should perform is its architecture. Exactly by 
what software  code or hardware  these  functions are actually per- 
formed is the  implementation, which is supposed  to  adhere  to  the 
architecture. Both the  data  processing  and  carrier communities 
have expressed their network  ideas in layered,  peer  architectures 
that in one way or  another  resemble Figure 3 .  Communication 
architecture is different from processor  architecture or storage 
subsystem  architecture in that it always involves apairwise inter- 
action of two parties. For  example,  as we have said earlier in this 
paper,  a DLC element in one  node  interacts with a DLC element in 
another;  the routing functions in two nodes interact specifically 
with each  other,  and so forth.  The  set of agreements  for  each of 
these  pairwise  interactions may be termed a  protocol,  and  thus 
we  find network  architecture specified in terms of protocols for  
communication between pairs of peer-level layers. A network 
protocol  consists of the following three  elements: (1) syntax- 
the structure of commands and responses in either$eld-formatted 
(header  bits)  or  character-string  form; ( 2 )  semantics-the  set of 
requests to be issued,  actions  to  be  performed,  and  responses 
returned by either  party;  and (3) timing-specification of ordering 
of events. 

We shall now briefly discuss SNA, DECNET, and X.25 from this 
point of view, saying something  about  semantics  and  syntax  and 
nothing about timing.  All three of these  structures make strict def- 
initions of protocols  between the two members of a pair of func- 
tions at  the same level (although in  different nodes),  but leave details 
of interaction of adjacent layers in the same node to be decided by 
the  implementer. They are all slightly different in the way they 
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usually converted user information 
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DATA FLOW CONTROL 
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DATA LINK CONTROL 

NODE 1 

'\ SERIAL BIT STREAM 
"" OBSERVE0 ON THE  LINK 

LINK 

EU 

PS 

DFC 

TC 

PC 

DLC 

NODE 2 

asslgn functlons to the  dMerent  layers, in spite of the  fact mar 
these  assignments may at first glance appear  to be equivalent. 

other  hand, X.25 is not an end-to-end  protocol,  but a node-to- 
packet  network  protocol; it manages  the  access  path from a  user 
node to  the immediately adjacent node internal to  the packet net- 
work.  End  user  to  end  user  functions are  transitory, occurring 
only during call establishment  and  disestablishment. 

SNA Figure 8 shows  the  layers in two SNA nodes. No intermediate 
nodes are  shown, but in practice  one or more of these could exist 
along the  access  path.  Furthermore,  the  layers  at  one  end could 
be in more  than  one physical box. For example,  at  the host end, 

and 125), or function roughly corresponding  to  Link  Control ana 
Path  Control could be  in the  software of a separate communica- 
tion controller  and  the  rest in the  host.  Or it might be possible to 
move almost all the  access  path  functions  out to afront-end com- 
munications processor, leaving the host processor  freer  to concen- 
trate its resources on application processing. At the terminal end, 
all the functions shown might be in the same box in the  case of an 

be in the  cluster  controller  that  supports a number of "dumb" 
terminals. 
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Figure 9 DNA architectural lavers: cormare with  Fiaure 3 
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line. On an outbound  message, TC adds to  the RU a  Request/Re- 
sponse  Header (RH) on behalf of itself and DFC, PC adds a Trans- 
mission Header  (TH),  and DLC adds  a Link Header (LH) and Link 
Trailer (LT). Inbound,  each  layer  strips off its appropriate  header 
(and trailer)  and  forwards  what is left. If there  is multiplexing 
within PS there is still another  header,  namely,  the  Function Man- 
agement  (FM)  header,  not  shown. All  of this  illustrates  the fol- 
lowing important  property of peer  protocols: It is by means of 
the header that belongs to a given layer of the  protocol  that  the 
interaction of the  peer  pair  constituting  that  layer  takes  place. 

DNA The  architecture on which the DECNET implementations are 
based is DNA (DEC Network  Architecture.)20  In  the DNA set of 
protocols, illustrated in Figure 9, there  are  three  basic  layers, of 
which the bottom  two  are  architected (Le., the protocols  are  de- 
fined) and  the  top  one is a user implementation,  or (in the  case of 
file management)  vendor-supplied.  The  bottom  two  layers of DNA 
correspond roughly to  the  bottom three  layers of SNA, as shown 
in Figure 8.  The Physical Link  Level is exactly  the DLC level of 
Figures 3 and 8, the  preferred realization being the DEC line con- 
trol, Digital Data  Communications Message Protocol (DDCMP). 
DDCMP is character-oriented (like BISYNC), but  has many of the 
characteristics of bit-oriented DLCS. As in SDLC, for  example, 
control  and  data  characters are distinguished positionally. 

The Logical Link Level layer,  as defined by the Network  Serv- 
ices  Protocol, is roughly analogous  to  Path  Control plus Trans- 
mission Control in SNA. Internal and external  routing  take place 
here,  as  does packetizing/depacketizing, network flow control, 
and  the  establishment  and  disestablishment of much of the  access 
path.  Provision is allowed for nOn-FIFO (first-in-first-out) arrival 
of packets. 
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Figure 10 Layers in X.25 
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The X.25 protocol is illustrated in Figure 10. The X.21 protocol, 
mentioned earlier in this paper, is specified for providing the elec- 
trical interface  between  the user node  and the nearest  Data 
Switching Equipment (DSE) node  owned by the  carrier.  The X.25 
specification allows for  use of  X.21 bis (in which the  interface 
appears  to  each user as a V.24 interface)  as an interim solution. 
As Figure 10 shows,  this  nearest  node can be on  the  customer’s 
premises (in which case  the  customer’s  access link is the multi- 
wire X.21 set)  or off-premises (in which case  the  access link is a 
telephone  company  provided line). In Figure 10, stations  1  and 2 
are  the  Data Terminal Equipments (DTES) or business machines. 
Packets P1 and P3 are intended  for  station (DTE) 2 and  packet P2 
is intended  for  some  other  station.  The  Frame  Level  protocol, 
which manages error-free  transfers of strings of packets  to and 
from the packet  network, is equivalent to  the DLC layer of SNA 
and  the Physical Link layer of DNA. The  Frame  Level  protocol 
uses one of two  variants of HDLC. The  preferred  one  at  the mo- 
ment appears  to be “Link  Access  Protocol B,” specified as the 
full-duplex Asynchronous  Balanced  mode of HDLC. Here  each of 
the  two DLC stations is neither solely a primary station  nor a sec- 
ondary  station, but a “combined”  station  that is able to take re- 
sponsibility unilaterally for  transmission  and  recovery. 
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The  Packet Level protocol  produces  the Virtual Circuits (vCS) 
referred to earlier.  There may be  one or many (as in Figure 10) I 
vcs multiplexed onto  one  access line. These may be$xed  (as- 
signed upon initial subscription to  the service  and always in 
place) or switched (invoked ab initio as needed).  These virtual 
circuits  have  end-to-end aspects during setup  or takedown of the 
vc and  end-to-network  aspects  otherwise. For example, flow 
control  operates only to  regulate traffic between the user node 
and  the  network. After a vc is initially set  up,  the  addressing is 
between  each  end node and  the  network,  not  between  end  users. 
These  are clearly end-to-network  functions.  But in initially estab- 
lishing the VC, the  end-user  node  must know how to  address  the 
other  end-user  node. This is clearlv an end-to-end  function. 

of the  two  customer-owned  end nodes and  the  network.  The 
packet  carrier  appears in this diagram in roughly the position 
where a single intermediate  node would appear in Figures 8 and 
9. If an SNA or DECNET system  operates  across  an X.25 packet 
carrier  facility,  there are  some divided responsibilities. For ex- 
ample,  the SNA and DECNET implementations  have Specific 
rules about  packet  size,  addressinghouting, flow control, internal 
multiplexing of flows, and  recovery from error  and  lost-  or dupli- 
cated-message  conditions. When X.25 services are  used,  these 
responsibilities may overlap with those  that  the  carrier is willing 
to  undertake.  The  accompanying  paper by Corr  and  Nealz6 dis- 
cusses how these  overlaps may be resolved. 

Before ending this brief review of network  protocols,  archi- 
tectures,  and  implementations, it should be  mentioned  that  there 
is considerable  interest  and  activityz6 in the  standards bodies that 
have defined HDLC, X.21,  X.25, etc. in standardizing  even higher- 
level functions  than  those  represented by the  Packet  Level of 
X.25. This is being attempted by adding four  more  layers  above 
the X.25 Packet  Level, making seven in all. (The  bottom  four 
layers provide end-to-end access path function roughly equivalent 
to  the  bottom  two levels of DNA shown in Figure 9 and  the  bot- 
tom three levels of SNA shown in Figure 8.) This rapidly becomes 
as much of a  data  processing  end-user  issue as a communications 
issue,  and  because of the bewildering variety of special  end-user 
needs to  be  accommodated,  one may expect  this difficult task  to 
succeed only very slowly. 

Concluding remarks 

Even  though  networks  have  been growing more  complicated, 
they should be getting easier  to dissect  and  understand as sys- 
tematic formalization and  layering  become more pervasive in the 
implementations. One reason  for  persistence of complexity is 
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that, until now,  the  architects  have  carried  a  heavier  burden  than 
is commonly realized of maintaining compatibility with individual 
software  and  hardware  product offerings that  antedated  the  evo- 
lution of systematic, clearly layered  sets of network  protocols. 
These  earlier offerings are gradually disappearing or in later  re- 
leases are adhering more and  more  to  the  strict  terms of the  archi- 
tecture.  The modularization means  that new ideas ought to be 
more easily  incorporated  without producing system-wide  dis- 
ruptions.  continuing  research will provide  such new ideas. 
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