This tutorial paper is intended for the reader who is unfamiliar
with computer networks, to prepare him for reading the more de-
tailed technical literature on the subject. The approach here is to
start with an ordered list of the functions that any network must
provide in tying two end users together, and then to indicate how
this leads naturally to layered peer protocols out of which the
architecture of a computer network is constructed. After a dis-
cussion of a few block diagrams of private (commercially pro-
vided) and public (common carrier) networks, the layer and
header structures of SNA and DNA architectures and the X.25 in-
terface are briefly described.

An introduction to network architectures and protocols
by P. E. Green
Ever since computer users began accessing the machine re-

sources from remote terminals over twenty-five years ago, com-
puter networks have become more versatile, more powerful, and,

inevitably, more complex. Today’s computer networks"® range
all the way from a single small processor that supports one or
two terminals to complicated interconnections in which tens of
processing units of various sizes are interconnected to one an-
other and to thousands of terminals, often with various forms
of special multiplexors and controllers in between.

As this evolution has proceeded, so have attempts to replace ad
hoc methods of network design with systematic ways of organiz-
ing, understanding, and teaching about computer network details.
Today there is a way of looking at networks in terms of layered
architectures that all the experts use, but which is replete with its
own jargon, and unclear and seemingly conflicting definitions,
which often make it difficult to follow what is going on.
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This paper aims at providing an introduction to how computer
networks work from two perspectives: by briefly tracing the his-
torical evolution of network implementations, and by summariz-
ing some of today’s layered architectures. These architectures
are the rules upon which the implementations are based. In the
following section, we analyze a list of the basic functions that the
network provides in putting the parties that the network serves
into communication with one another. This sets the stage for later
discussion of layered architectures. Following these basic func-
tions is a discussion of the evolution of private network imple-
mentations. Introduced next are the closely related interface
standards of the common carriers. Finally, matters previously
presented are re-presented in terms of the underlying layered ar-
chitectures, which are expressed explicitly in terms of protocols.

A framework for discussing networks: the total access path
between end users

The basic function to be performed by any computer network is
the provision of access paths by which an end user at one geo-
graphical location can access some other end user at another geo-
graphical location. Depending on the particular circumstances,
the pair of end users might be a terminal user and a remote appli-
cation program he or she is invoking, two application programs
interacting with one another, one application program querying
or updating a remote file, and so forth. By access path we mean
the sequence of functions that makes it possible for one end user
not only to be physically connected to the other, but to actually
communicate with the other in spite of errors of various types and
large differences in the choices of speed, format, patterns of inter-
mittency, etc. that are natural to each end user individually.

There are many ways of characterizing networks, as for example
the following: (1) according to the particular application (banking,
timesharing, etc.), (2) according to geography (in-plant, out-
plant), (3) according to ownership (public, private), and so forth.
Another way of characterizing different network types is to exam-
ine the topological character of the web of transmission lines that
connect together the nodes at which the different end users are
located. Here, a node is a physical box such as a computer, con-
troller, multiplexor, or terminal. Thus we have the various net-
work types shown in Figure 1.

None of these approaches really reveals what the network is ac-
tually doing. A much better scheme is to examine the total reper-
toire of functions that the network must provide in making up an
effective access path between two end users. By doing this in an
ordered way, one is in a good position to characterize the im-
portant features of both common carrier networks (of the leased,
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Figure 1 Six network topologies:
(A) Star; (B) Multidrop;
(C) Loop; (D) Tree; (E)
Mesh; (F) Mesh of trees
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Table 1 Access path requirements

To give a user access to processor-based resources, someone must:

Make sure a trans- Using Common carrier provided
mission path exists. links.

See that it talks in bits. Using Modems.
Move individual messages. Using DLCs.

Provide economies for inter- Using Dial-up; multidropping, multi-
mittent use. plexing, packet and fast
circuit switching.

Send messages to correct Using Addressing, routing.
node and correct sub-

address within node.

Bypass failed line or station.

Accommodate buffer size; Packetizing-depacketizing.
avoid need to resend long
messages.

Resolve mismatches between Buffering, flow control.
actual and accommodatable
flow rates.

Accommodate end-user inter- Datagram, transaction, or
mittency patterns. session dialogue management.

Accommodate end-user format, Protocol conversions.
code, language requirements.

dial, fast circuit switched and packet switched types that we shall
define later in this paper) and the network designs of computer
manufacturers. Two typical examples of the latter are the Sys-
tems Network Architecture (SNA) of I1BM and DECNET of the
Digital Equipment Corporation. Table 1 summarizes this dis-
cussion.

First, someone must make sure that a set of physical transmission
resources (lines) exist that run from the origin node to the destina-
tion node, possibly by way of intermediate nodes. In out-plant
situations (beyond one contiguous set of customer premises), this
is done by common carrier provided links, either terrestrial or
satellite.

Then one must see that the two ends of each line talk in bits using
waveforms whose energy lies in a frequency range accommo-
dated by the lines. Modems (modulator-demodulator units) pro-
vide this function.®

A capability must also be provided for making sure that the bit
stream received is an error-free replica of the bit stream trans-
mitted. This is one of the functions of data link control proto-
cols”™ that see to it that successive groups of bits (frames) all
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arrive successfully at the recejving node. This is done by check-
ing at the receiver after each frame to see whether there has been
a violation of an error check of information bits against redundant
bits that were added to each frame at the transmitter. If a frame is
found to be in error a retransmission is requested.

The art of Data Link Controls (DLCs) has advanced considerably
from the simple but inefficient and inflexible asynchronous (start-
stop) DLCs, in which precious line capacity was wasted in adding
to each character fixed bit patterns for synchronization. Synchro-
nous character-oriented DLCs (such as BISYNC) alleviate many of
the problems with start-stop, but have proved to retain several
disadvantages, notably that the same alphabet set (for example
ASCII or EBCDC) and the same positions in a frame are used for
line control characters, text characters, and device control char-
acters. Thus, a character of text could be spuriously converted by
noise into a character that signals the end of a frame, for example.
Another disadvantage of having line control characters drawn
from the same alphabet as device control and text characters is
that every time a new choice of alphabet is made for the peculiar
 needs of some particular end user, a new and different variant of
the line control results. These difficulties as well as bit efficiency
problems and other problems were alleviated in the new *‘bit-
oriented’” DLCs, such as the High Level Data Link Control
(HDLC), Advanced Data Communication Control Protocol
(ADCCP), and Synchronous Data Link Control (SDLC), which is a
subset of HDLC and ADCCP. In these protocols, line control in-
formation always occurs at its own same place in a frame. Thus
the time origin of the entire frame must be knocked out of line
in order for link control and data to become confused, a much
less likely circumstance than to have a character in error. The
line control commands are specified as bit patterns that have
nothing to do with any alphabet set. High Level Data Link Con-
trol is the standard being developed by the International Stan-
dards Organization, Advanced Data Communication Control Pro-
tocol is the standard of the American National Standards Insti-
tute, and Synchronous Data Link Control Protocol is the IBM
version.

The next problem to be faced is to exploit the intermittent
(‘‘bursty’’) nature of most end user traffic by sharing the capacity
of one line across many such users. If each end user were to send
bit streams at a constant rate, networks made entirely of simple
point-to-point lines of the right capacity would be appropriate
solutions. With multiple nodes per leased line comes the need to
add to the DLC certain link address fields and control characters
that are used by the DLC elements at each node to avoid conflict-
ing attempts to use the line. Multistation DLCs thus perform time
division multiplexing or interleaving of traffic from various sta-
tions on the same line. For rarely used connections, dial-up links
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offer a solution. Even more attractive economically are the new
fast circuit switched services with minimum billing times down to
a fraction of a second and fractional-second time to connect. In
circuit switching, the common carrier commits a path through his
system until the users finish and break the connection. In packet
switching , which aims at dynamically sharing intermittently used
transmission resources, the user sends properly addressed frames
or packets to the common carrier who delivers them individually.

The action taken in response to the addressing information is of
course the routing operation. We have just encountered this ad-
dressing/routing requirement on a single link connecting several
stations. When the nodes at which the end users are located are
separated by not just one line but by one or more intervening
nodes and links, addressing and routing become quite elaborate,
particularly if there is a multiplicity of possible routes between
the two end user nodes.'”"" In such a topologically complex net-

work, upon failure of a node or link, alternate path routing pro-
vides a powerful tool for recovery.

Before leaving the subject of addressing and routing, it should be
noted that a line connected to a node often carries traffic to or
from more than one location within the node. To resolve the am-
biguity, an intranode addressing and routing function is required
in such cases.

The next function that must be provided is the buffering of in-
coming messages until they can be serviced, and the buffering of
outgoing messages until they can be carried away by the trans-
mission line. Limitations on available buffer size and the desire
for fast response time, together with the aforementioned need to
do error checking on a frame-by-frame basis (while avoiding the
need to retransmit long messages), lead to the need to segment
(packetize) outgoing bit streams into elements of reasonable size
and similarly to reassemble (depacketize) incoming bit streams.

Next, the rate of flow of outgoing packets has to be regulated so
as neither to overflow the buffers at the receiving station nor to
leave the receiving end user waiting for more traffic. This can be
accomplished by feeding back along part or all of the access path
from receiving node to transmitting node special pacing or flow
control signals. There are many options here, For example, the
flow control signals sent from receiver to sender may simply turn
off and on the emission of packets, they may tell the latter how
many more packets can for the moment be safely sent, or there
may be other strategies. "’

The next function needed is a way for the end user to use all the

functions just listed to set up a dialogue with the end user at the
other end of the access path. The access path must be managed
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so that the dialogue between end users has the pattern of inter-
mittency that the end users require. For example, the pair of users
might be such that a single packet should flow in just one direc-
tion. This simplest case has been termed the datagram type of
dialogue (actually a monologue). Or there might be a tightly struc-
tured rransaction form of dialogue in which, for example, a single
packet in one direction elicits a fixed number of reply packets in
the other direction. A third possibility is a session between end
users in which the flow of packets back and forth is part of a re-
lated series of transactions. In analogy with a telephone conver-
sation, it would be as though an access path were set up for each
word, each sentence and its response, or for an entire telephone
call, respectively. In managing the dialogue, there is the need not
only to set up and take down the dialogue, but while it is in
progress to associate related packets with one another, and to
decide when an end user should listen and when it should talk.

Once all the elements just listed are provided, the access path can
be considered complete. This is shown in Figure 2, where the ac-
tions just discussed are listed in order. Two interesting things
are immediately obvious: The elements occur in pairs and the
two members of each pair talk essentially only to each other.
For example, one modem talks to the other, ignoring both details
of the transmission link and the meaning of bits it is handling. As
another example, a DLC element ignores what its modem is doing
about modulation and demodulation and also what the informa-
tion field within a frame contains. A DLC interacts only with the
DLC at the other end to convey the frame successfully from the
sending node to the receiving node on the same line, and so forth.

This pairwise interaction, or peer interaction, of the functions we
have enumerated is summarized in Figure 3, which is derived di-
rectly from Figure 2. Another way of thinking of Figure 3 is that it
is in a sense the inverse of one end user’s view of a network.
Thus, instead of showing one end user at the center of his net-
work, we show the transmission facilities at the center and the
two end users at the periphery. The access path across the net-
work is depicted at the bottom for illustrative cases of zero and
two intermediate nodes. Note that when the access path goes
through intermediate nodes, in each intermediate node it goes no
higher in the layered structure than the routing operation.

Several caveats are in order about this seemingly tidy picture.
For example, some generic functions can occur in more than one
layer. Consider, for example, multiplexing, the interleaving of
several traffic streams as they flow through the same path. We
have already met this function in data link control. It also occurs
within the common carrier transmission system. Moreover, sev-
eral end users can be multiplexed on one transmission path, and,
as one proceeds from a set of end users at a sending node inward
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Figure 2 Access path elements
with dashed lines show-
ing two examples of peer
interaction
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Figure 3 Peer pairs of access path elements (The modem may be absent in local in-plant
connections.)
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in the concentric circles of Figure 3, there is a choice of options as
to the layer at which this merging might take place.

Also, there is some interlayer communication of control informa-
tion within the same node. This weakens the prior statements to
the effect that the two peer-related members of a given layer at
the two ends of the access path ignore the contents of the bit
stream handed down by the next higher layer and are also not
involved in the service provided to them by the next lower layer.
For example, in an intermediate node, the routing function must
supply to the DLC function an address it can use in forwarding a
message to the proper choice of several stations on the same link.

Not shown in Figures 2 and 3 is network control ,'® the set of func-
tions that do the activation and deactivation of the various por-
tions of the access path shown, provide some of the control pa-
rameters required in their operation, and manage recovery. Net-
work control can to various degrees be centralized (in one node)
or decentralized (no single node dominant). The many network
control functions that are required in forming the access path can
be classified into several phases. One such rough classification is
the following:
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Establishing the electrical transmission path between nodes.
This may involve dial-up, which requires that appropriate
telephone numbers be supplied to a participating node.
Assigning data link addresses of stations, designating who is
primary or secondary, and activating the DLC-level function.
Establishing and updating routing tables that tell each node
where to forward a message. If the message must proceed on
to another node, the table must say which outgoing link to
use.

Establishing and updating directories of all end users in the
network, and providing name-to-address conversion.
Establishing and later disestablishing the datagram, transac-
tion, or session connection out to the end users. Parameters
must be supplied at each end to set up the specific dialogue
convention required by the end user at that end. Queues of
requests and responses within a session must be managed.
Providing an interface to the human network manager. This
includes problem determination functions, such as error re-
porting, testing, sending traces, and making measurements.

In this section we have introduced the notion of layers of function
as they occur in peer-related pairs to form an access path through
the network. We have also mentioned the control of these func-
tions. Before discussing how these ideas are manifested in spe-
cific network protocols of the computer manufacturers and the
public common carriers, let us return to a topological view of
things and examine in a little more detail what computer networks
look like from that standpoint.

Networks of commercially provided access paths

In order to discuss the rationale of access path implementations
that have been of most interest, it is instructive to sketch the his-
torical evolution of private networks since the 1960s. Let us look
first at what has happened with large computers, then mini-
computers, then common carrier computer network services.

The earliest systems were single-processor batch systems that
later evolved to support a few local terminals. True teleprocessing
(remote access of a terminal end user to an application program in
a processor) came with systems such as that shown in Figure 4,
of which a typical example was the 1BM System/370 running the
Basic Telecommunications Access Method (BTAM). Essentially
all the processing was concentrated in the central host processor,
as befitted the technology available at that time. Of the various
access path functions we have enumerated in Table 1, only ele-
mentary DLC-level functions were performed outboard of the
host, specifically in a transmission control unit, which was often
hard-wired and not programmable. The other functions were
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Figure 4 Typical teleprocessing
system of the 1960s, such
as System/360; dotted
and dashed lines are ac-
cess paths
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Figure 5 Distribution of terminal-specific code in an early teleprocessing system
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never cleanly layered, as in Figure 3, but were so spread out
among the different software systems (as shown in Figure 5) that
a change in the configuration of a line or its attached terminal
required reprogramming in all these software systems. Terminal
cluster controllers performed the device control functions, but
essentially none of the communication access path functions.
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What proved to be a particularly inconvenient restriction was the
lack of line sharing or terminal sharing. By this is meant that,
since a given line and all the terminals on it were part of the access
path to only one and the same application program, if a user
wanted to access two different applications (e.g., savings ac-
counts and credit checking) he required two terminals and two
lines.

The next step came around 1974, with systems such as that of  Systems
Figure 6, of which a typical example was the System/370 with Network
software and hardware releases referred to as Systems Network Architecture
Architecture (SNA) generations 1 and 2."*"" The transmission con-

trol unit gave way to a programmable communication controller

that handled all data link control and a great deal more. In the
communication controller code, the host communication access

method code, and the cluster controller code, a significant at-

tempt was made to delineate function into layers, as in Figure 3.

Thanks to the availability of microcomputers and lowered cost of

main and secondary storage, it began to be possible to execute

limited application code, including that involving significant data

bases, in the cluster controllers, and (for some non-IBM realiza-

tions) in the communication controller. Most significantly, this

design allowed terminals to share a line to separate applications

located in the same host and to do the same thing with applica-

tions in the cluster controller. Moreover, it allowed access paths

between host application programs and cluster controller appli-

cation programs.

It was soon clear that this did not go far enough. Many users had  computer
multiple processors individually serving tree networks such as that  networking

of Figure 6. These networks could not intercommunicate. A given

terminal user frequently wanted an access path to an application Figure 6 Typical teleprocessing

in a different host from the one that normally served him, and it system of the 1970s, such
A . . . as System/370 with SNA

was either uneconomical or infeasible to run a second copy of that

application in his own host just to provide this service. Moreover, STORAGE

it became desirable for one application to talk to a remote other oCEsS, ’—8

application. These capabilities were needed for sharing processor T

resources among locations and for improving system avail- orciON

ability through remote backup. These requirements led to the ‘Coﬁm{

computer networking solution shown in Figure 7C, realized in CATION f processor

Systems Network Architecture with Advanced Communication METHOD

Function (SNA/ACF), which is also known as SNA-3."* In this ar- a COMMUNICATION

rangement, any terminal can gain an access path to any of the ' CONTROLLER

applications in any of the hosts. Application-to-application access Ji

paths are also supported. Figure 7C shows several of the tree ;

structures of Figure 6 (schematized in Figure 7B, just as Figure { cLusten APPLICA-

7A abbreviates Figure 4) connected together into a mesh of trees g:°°“TR°LLER -rOGRAM

(as in Figure 1F) by physical paths between communication con-

trollers. Thus, an SNA tree network can be characterized as a

hierarchical network with network control centralized in the
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Figure 7 Schematization of access paths: (A) Abbreviates Figure 4; (B) Abbreviates Figure
6; (C) Top-down network of trees; (D) Bottom-up approach of DECNET
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processor (actually in a module called the System Services Con-
trol Point (SSCP) located in the communications access method).
SNA/ACF is a hybrid peer-hierarchical structure, that is, hierar-
chical within each tree or domain (with its own SSCP), but with
peer interconnection between trees at the level of the host-at-
tached communication controllers. Not shown in the diagram is
the multitail capability of communication controllers, in which
one such controller can support more than one processor.
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In the world of minicomputers, networks have evolved somewhat
differently. Originally, minicomputers were used individually for
stand-alone, real-time or batch processing or for supporting a few
simple terminals. When the need developed for connecting these
together, it was found desirable to do this in a strictly peer style of
interconnection rather than the peer-plus-hierarchical pattern just
discussed. Peer connection had been used in the ARPA network,*
and the flexibility of this mode of operation undoubtedly had a
strong influence on minicomputer networking. In the peer mode
of interconnection, no one computer does network control for the
other; there is no master/slave distinction and no identifiable cen-
tral control point. Network control steps are managed in each
node more or less symmetrically. In principle this allows a wide
range of topologies to be implemented, but requires special pro-
cedures for managing routing tables, flow control, directory func-
tions, and recovery operations, especially when the network con-
sists of a large number of nodes. Presumably these problems will
be thoroughly understood as peer networks with decentralized
network control evolve.

One of the better known of the peer computer network designs is
the DECNET offering of the Digital Equipment Corporation.” The
DECNET design has been implemented not only for the mini-
computers of the DEC product line (e.g., PDP-8 and PDP-11) but also
for the high end (e.g., DECSYSTEM-10). The ultimate objective is to
connect the machines together in a mesh (as in Figure 1E) orin a
hierarchy (as in Figure 7D), or other arrangements. In fact, a
natural user evolution for minicomputer users has been for inde-
pendent users to start with stand-alone minicomputers of roughly
equal power, later to connect them together, and still later to
connect this set to a single large host. This bottom-up evolu-
tionary pattern may be contrasted with the top-down pattern of
network growth experienced by many users of large machines, as
just described.

Networks of access paths provided by carriers

In commercially provided networks, such as the IBM and DEC of-
ferings just described, the physical transmission-level function
between nodes in the network is, of course, provided by the com-
mon carriers. The carriers have been investigating whether there
is any technical reason why other functions of Figure 3 at a higher
level than the transmission level might not also be provided by
them—for example, the next level up, the management of error-
free frame transmission using standard data link controls. The
accompanying paper by Halsey, Hardy, and Powning®' details the
status of common carrier offerings and data network interfaces.

The common carriers are in fact taking steps not only to improve
service at the transmission level, but to provide higher-level serv-
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ices. At the transmission level, an urgent need of the data process-
ing community has been to have dial-up service with much faster
connect times and much shorter minimum billing increments than
ordinary voice grade dial-up service provides. There has also
been the need to improve the space-division modem-to-machine
interface, such as V.24, by providing a combined space- and time-
division interface of wider generality. These needs have been met
by the X.21 Recommendation™ of the international standards
body, the International Consultative Committee for Telephony
and Telegraphy (CCITT). The twenty-one (or fewer) wires of V.24,
each performing one and only one function, are replaced in X.21
by up to eight wires of which one is used in each direction to send
bit patterns for specific control functions. By this means, the
repertoire of control functions is flexible and expandable. In
particular, it is meant to be used for dialing and disconnecting
at data processing bit stream speeds, thus serving as the basis of
fast circuit switching common carrier networks.

Packet switching®™ seems to have been inspired by the idea of
sharing communication channel capacity across a number of
users by implementing the same time-slicing philosophy that had
earlier proved so successful in sharing the execution power of a
single processor across many user processes. Every user node
that interfaces a packet-switched common carrier makes a con-
tract with the carrier to hand him bit streams already segmented
(packetized) as we have described in the beginning of this paper,
with each packet supplemented with a header saying, among
other things, to which other user node he wishes the packet de-
livered. Widespread interest in packet switching on the part of the
carriers has led them to standardize this contract in the form of

the cCITT Recommendation X.25,%* which is discussed in the next
section.

The contract includes an agreement on the electrical interface,
the data link control, how the remote user is to be addressed,
packet size, and how the flow of packets toward and out of the
carrier’s network is to be regulated. The contract also includes
some network control functions such as protocols for establishing
and disestablishing the access path. Thus two user nodes (say A
and B) each agree to exchange packets with the carrier network
using the X.25 standard and the carrier agrees to deliver to B
properly addressed packets from A and vice versa. The combined
actions of (1) the X.25 interface of A to the network, (2) the X.25
interface of B to the network, and (3) the network, provide a full
duplex path, termed a virtual circuit, between the higher-level
function at the two nodes.

There is currently some debate over whether a special form of
virtual circuit, called the datagram mode of operation and re-
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ferred to earlier in this paper, ought to be supported under X.25.
There, the duration of the contract is essentially only one packet
long.

Fast circuit switching and packet switching both offer the user the
economies of paying for the transmission service only to the ex-
tent that it is used. Fast circuit switching has the particular advan-
tage over packet switching that once the transmission path has
been set up, it is totally transparent. That is, except for uncontrol-
lable random errors, the bit stream out is the same as the bit
stream in for a period of time whose duration is up to the user.
Packet switching, although highly nontransparent (since the user
is required to adhere to what the contract says about packet
length, rate of flow, header structure, etc.) does allow the carrier
to offer the user more of the access path function discussed ear-
lier in this paper than does fast circuit switching.

Network architectures and protocols

The precise definition of the functions that a computer network
and its components should perform is its architecture . Exactly by
what software code or hardware these functions are actually per-
formed is the implementation, which is supposed to adhere to the
architecture. Both the data processing and carrier communities
have expressed their network ideas in layered, peer architectures
that in one way or another resemble Figure 3. Communication
architecture is different from processor architecture or storage
subsystem architecture in that it always involves a pairwise inter-
action of rwo parties. For example, as we have said earlier in this
paper, a DLC element in one node interacts with a DLC element in
another; the routing functions in two nodes interact specifically
with each other, and so forth. The set of agreements for each of
these pairwise interactions may be termed a protocol, and thus
we find network architecture specified in terms of protocols for
communication between pairs of peer-level layers. A network
protocol consists of the following three elements: (1) syntax—
the structure of commands and responses in either field-formatted
(header bits) or character-string form; (2) semantics —the set of
requests to be issued, actions to be performed, and responses
returned by either party; and (3) timing —specification of ordering
of events.

We shall now briefly discuss SNA, DECNET, and X.25 from this
point of view, saying something about semantics and syntax and
nothing about timing. All three of these structures make strict def-
initions of protocols between the two members of a pair of func-
tions at the same level (although in different nodes), but leave details
of interaction of adjacent layers in the same node to be decided by
the implementer. They are all slightly different in the way they
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Figure 8 SNA architectural layers; compare with Figure 3; Request-Response Unit (RU) is
usually converted user information
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assign functions to the different layers, in spite of the fact that
these assignments may at first glance appear to be equivalent.
The SNA and DECNET architectures are different in kind from X.25.
The former two manage the access path from end to end. On the
other hand, X.25 is not an end-to-end protocol, but a node-to-
packet network protocol; it manages the access path from a user
node to the immediately adjacent node internal to the packet net-
work. End user to end user functions are transitory, occurring
only during call establishment and disestablishment.

Figure 8 shows the layers in two SNA nodes. No intermediate
nodes are shown, but in practice one or more of these could exist
along the access path. Furthermore, the layers at one end could
be in more than one physical box. For example, at the host end,
all function could be in the host (as in the System/370, Models 115
and 125), or function roughly corresponding to Link Control and
Path Control could be in the software of a separate communica-
tion controller and the rest in the host. Or it might be possible to
move almost all the access path functions out to a front-end com-
munications processor, leaving the host processor freer to concen-
trate its resources on application processing. At the terminal end,
all the functions shown might be in the same box in the case of an
““‘intelligent terminal,”” or almost all except the upper layer might
be in the cluster controller that supports a number of ‘‘dumb”’
terminals.

The functions of the SNA protocol layers are as follows:
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Data Link Control (DLC) transfers packets intact across the
noisy transmission facility. For every line attached, there is
one instance of DLC or DLC Element (DLCE).

Path Control (PC) routes incoming packets to the appropriate
outgoing DLCE or to the correct point within its own node. It
also does packetizing of outgoing and depacketizing of in-
coming messages. There is one instance of PC per node.
Transmission Control (TC) manages pacing, helps manage ses-
sion establishment/disestablishment, and performs a number
of other functions on behalf of one of the end users. There is
one instance of TC, namely, Transmission Control Element
(TCE), per session per end user. Each TCE can be thought of as
one end user session’s ‘‘front office’” to the communication
network.

Data Flow Control (DFC) has the function of accommodating
the idiosyncrasies of message direction and intermittency de-
manded by the end user. Such idiosyncrasies include, for ex-
ample, whether a user wants to communicate duplex or half-
duplex or whether the separate messages are parts of larger
units of work as seen by the end user. For example, different
packets might represent different lines of text that make up a
single display screen of text. There is one instance of DFC per
end user session.

Presentation Services (PS) define the end user’s port into the
network in terms of code, format, and other attributes. The
pair of PS realizations in the pair of nodes have the job of ac-
commodating, for example, the totally different interfaces
seen by a terminal end user (and his supporting device control
hardware or code) and the application that is being accessed.
The Ps layer (and other layers as well) are designed for flexi-
bility as to the fraction of the complexity that lives at each
member of the peer pair. It is thus possible to have a small or
even null Ps function in a simple terminal while doing most of
it in the processor. As has been mentioned, it is possible op-
tionally to have not just one but a number of concurrently
operating ‘‘sub-end users’’ for each end user (as we have em-
ployed the term end user), so that a form of multiplexing takes
place at the Ps level that is roughly analogous to that at the DLC
level.

There are a number of other SNA functions that have to do with
network control,” but which are too detailed for a thorough dis-
cussion here. These network control functions involve a separate
family of access paths that emanate from the System Services
Control Point, which might be in some other node not shown, and
terminate in modules (also not shown) that control the various
functions shown in Figure 8.

The function of the various headers is shown in Figure 8. The
zigzag strip shows the bit stream that would be observed on the
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Figure 9 DNA architectural layers; compare with Figure 3
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line. On an outbound message, TC adds to the RU a Request/Re-
sponse Header (RH) on behalf of itself and DFC, PC adds a Trans-
mission Header (TH), and DLC adds a Link Header (LH) and Link
Trailer (LT). Inbound, each layer strips off its appropriate header
(and trailer) and forwards what is left. If there is multiplexing
within PS there is still another header, namely, the Function Man-
agement (FM) header, not shown. All of this illustrates the fol-
lowing important property of peer protocols: It is by means of
the header that belongs to a given layer of the protocol that the
interaction of the peer pair constituting that layer takes place.

The architecture on which the DECNET implementations are
based is DNA (DEC Network Architecture.)®® In the DNA set of
protocols, illustrated in Figure 9, there are three basic layers, of
which the bottom two are architected (i.e., the protocols are de-
fined) and the top one is a user implementation, or (in the case of
file management) vendor-supplied. The bottom two layers of DNA
correspond roughly to the bottom three layers of SNA, as shown
in Figure 8. The Physical Link Level is exactly the DLC level of
Figures 3 and 8, the preferred realization being the DEC line con-
trol, Digital Data Communications Message Protocol (DDCMP).
DDCMP is character-oriented (like BISYNC), but has many of the
characteristics of bit-oriented DLCs. As in SDLC, for example,
control and data characters are distinguished positionally.

The Logical Link Level layer, as defined by the Network Serv-
ices Protocol, is roughly analogous to Path Control plus Trans-
mission Control in SNA. Internal and external routing take place
here, as does packetizing/depacketizing, network flow control,
and the establishment and disestablishment of much of the access
path. Provision is allowed for non-FIFO (first-in-first-out) arrival
of packets.
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Figure 10 Layers in X.25
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The X.25 protocol is illustrated in Figure 10. The X.21 protocol,
mentioned earlier in this paper, is specified for providing the elec-
trical interface between the user node and the nearest Data
Switching Equipment (DSE) node owned by the carrier. The X.25
specification allows for use of X.21 bis (in which the interface
appears to each user as a V.24 interface) as an interim solution.
As Figure 10 shows, this nearest node can be on the customer’s
premises (in which case the customer’s access link is the multi-
wire X.21 set) or off-premises (in which case the access link is a
telephone company provided line). In Figure 10, stations 1 and 2
are the Data Terminal Equipments (DTEs) or business machines.
Packets P1 and P3 are intended for station (DTE) 2 and packet P2
is intended for some other station. The Frame Level protocol,
which manages error-free transfers of strings of packets to and
from the packet network, is equivalent to the DLC layer of SNA
and the Physical Link layer of DNA. The Frame Level protocol
uses one of two variants of HDLC. The preferred one at the mo-
ment appears to be ‘‘Link Access Protocol B,”” specified as the
full-duplex Asynchronous Balanced mode of HDLC. Here each of
the two DLC stations is neither solely a primary station nor a sec-
ondary station, but a ‘‘combined’’ station that is able to take re-
sponsibility unilaterally for transmission and recovery.
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The Packet Level protocol produces the Virtual Circuits (VCs)
referred to earlier. There may be one or many (as in Figure 10)
vCs multiplexed onto one access line. These may be fixed (as-
-signed upon initial subscription to the service and always in
place) or switched (invoked ab initio as needed). These virtual
circuits have end-to-end aspects during setup or takedown of the
vC and end-to-network aspects otherwise. For example, flow
control operates only to regulate traffic between the user node
and the network. After a vC is initially set up, the addressing is
between each end node and the network, not between end users.
These are clearly end-to-network functions. But in initially estab-
lishing the vC, the end-user node must know how to address the
other end-user node. This is clearly an end-to-end function.

As Figure 10 shows, there are two X.25 interfaces between each
of the two customer-owned end nodes and the network. The
packet carrier appears in this diagram in roughly the position
where a single intermediate node would appear in Figures 8 and
9. If an SNA or DECNET system operates across an X.25 packet
carrier facility, there are some divided responsibilities. For ex-
ample, the SNA and DECNET implementations have specific
rules about packet size, addressing/routing, flow control, internal
multiplexing of flows, and recovery from error and lost- or dupli-
cated-message conditions. When X.25 services are used, these
responsibilities may overlap with those that the carrier is willing
to undertake. The accompanying paper by Corr and Neal®® dis-
cusses how these overlaps may be resolved.

Before ending this brief review of network protocols, archi-
tectures, and implementations, it should be mentioned that there
is considerable interest and activity®® in the standards bodies that
have defined HDLC, X.21, X.25, etc. in standardizing even higher-
level functions than those represented by the Packet Level of
X.25. This is being attempted by adding four more layers above
the X.25 Packet Level, making seven in all. (The bottom four
layers provide end-to-end access path function roughly equivalent
to the bottom two levels of DNA shown in Figure 9 and the bot-
tom three levels of SNA shown in Figure 8.) This rapidly becomes
as much of a data processing end-user issue as a communications
issue, and because of the bewildering variety of special end-user
needs to be accommodated, one may expect this difficult task to
succeed only very slowly.

Concluding remarks

Even though networks have been growing more complicated,
they should be getting easier to dissect and understand as sys-
tematic formalization and layering become more pervasive in the
implementations. One reason for persistence of complexity is
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that, until now, the architects have carried a heavier burden than
is commonly realized of maintaining compatibility with individual
software and hardware product offerings that antedated the evo-
lution of systematic, clearly layered sets of network protocols.
These earlier offerings are gradually disappearing or in later re-
leases are adhering more and more to the strict terms of the archi-
tecture. The modularization means that new ideas ought to be
more easily incorporated without producing system-wide dis-
ruptions. Continuing research will provide such new ideas.
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