Early investigation of virtual machine subsystem flexibility cen-
tered on telecommunications support and intercomputer net-
working and proceeded in two phases. The first phase focused on
an experimental program for the virtual machine control pro-
gram CP-67 that supported remote work stations and pioneered
intercomputer spool communications. The results of that effort
inspired a second effort in the same area with some significant
redirection. This second phase ultimately led to the remote spool-
ing communications subsystem component of VMJ370, the VM/370
networking package (VNET), and a large network of interactive
computer systems within IBM. These phases are discussed along
with suggestions for several continuing lines of work based on
current results.

Evolution of a virtual machine subsystem
by E. C. Hendricks and T. C. Hartmann

The term ‘‘hypervisor’ is applied to computer systems that pre-
sent a very basic user program interface—one which is so nearly
identical to a particular computer machine interface that an oper-
ating system intended to support such machines may serve as a
hypervisor user program without software modification. The user
interface presented by a hypervisor is commonly called a virtual
machine;, the term *‘subsystem’’ may be applied to the complex
of software used within a virtual machine.

The first practical hypervisor systems emerged in the mid-1960s."
CP-40 (Control Program 40) was a hypervisor system which pre-
sented virtual machines that were compatible with the 1BM Sys-
tem/360 computers.®® The first package designed specifically for
use as a CP-40 virtual machine subsystem was the Cambridge
Monitor System (CMS), a single-user interactive operating sys-
tem. When they were completed in 1966, the two systems were
combined to form a time-sharing system which established the
structural basis for the current vM/370 system.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 18 ¢ NO 1 e 1979 HENDRICKS AND HARTMANN




CP-40 and CMS were developed for an 1BM System/360 Model 40
that had been specially modified to perform dynamic address
translation.’ This cPU hardware feature is used in conjunction
with software system support to create virtual storage.”® Dy-
namic address translation was not available on other System/360
Model 40 computers, and so CP-40 ran only on one machine. Dur-
ing this same period the IBM System/360 Model 67 was being de-
veloped.”"’ This computer supported virtual storage through a
different form of dynamic address translation, and was to be of-
fered as a product by IBM. In 1967, CP-40 was modified and ex-
tended for the System/360 Model 67, and the new version of the
hypervisor was named cp-67.>""® cpP-67 achieved popularity as an

internal 1BM software development support system, was made
available by 1BM for use as a general-purpose time-sharing sys-
tem, and is still in use at several installations today. In 1972, CP-67
was extended and adapted for use with the IBM System/370 line of
computers. The result was a new main-line IBM operating system
named vM/370™ which is now in widespread use.

The original objectives of the CP-40 project were to investigate
time-sharing techniques, to develop a time-sharing system for the
IBM System/360, and to examine hardware requirements for time-
sharing computers.’ As the virtual machines of CP-40 and CP-67
demonstrated their usefulness in practice, the curiosity of those
concerned with the development of the systems centered on two
areas of interest. One of these areas dealt with performance mat-
ters in general, and focused on feedback of dynamic activity
characteristics as a means of optimizing overall system resource
scheduling. The other area addressed approaches to system reali-
zation through careful design for evolution and mobility.

This article will treat the latter theme, particularly in the realm of
computer networking. The intent of the authors is to illuminate
the process that has led to a number of concepts and functions
that are now a part of vM/370. The character of this process has
been one of discovery rather than invention, and in some cases
the results have come as a surprise to all involved. As the evolu-
tion proceeded, its direction changed markedly, and its con-
sequences and objectives became more clearly articulated. This
article will attempt to follow that process and accurately convey
its quality.

Origins of virtual machine subsystems

The designers of CP-40 intended the function of the hypervisor to
be restricted to the management of real machine resources for
active users." Software support services such as language trans-
lators, file systems, interactive monitors, and the like were to op-
erate at the virtual machine level wherever possible. The ratio-
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nale behind this separation of function lay in the belief that strict
adherence to an interface that had been carefully designed and
documented as the IBM System/360 Principles of Operation®
would have the effect of limiting the size and complexity of the
hypervisor to a manageable level. At the same time, the func-
tional generality of this interface would be adequate to support
any application software that could be used with a standard I1BM
System/360 computer. Indeed, one could use such application
software together with its normal operating system in a virtual
machine without requiring any program modifications.

For the most part, these objectives were met. The several restric-
tions imposed by the hypervisor on the standard 1BM System/360
1o interface rarely gave rise to practical difficulties in adapting
systems and applications from a real to a virtual machine environ-
ment. CP-40 placed most application functions at the virtual ma-
chine level, but technical design problems caused several varie-
ties of /O access method support to be included in the hyper-
visor. Translation functions between real and virtual devices,
and interactive terminal handling accounted for much of this
support. A third such area was the CP-40 spool system which
fulfilled the requirement for virtual machine unit-record O ac-
cess. This spool system included unit-record device simulation, a
direct access storage device (DASD) file system, and real unit-rec-
ord device support.

The presence of these functions in CP-40 was recognized as being
arguably contrary to the proscription of support functions from
the hypervisor, but an overriding objective was to produce a
practical system that could be used to evaluate the conceptual
approach. Refinement of the hypervisor to the most basic func-
tions would have delayed its availability and imposed a require-
ment for one or more virtual machine support subsystems for
even the simplest operation. Moreover, lack of familiarity with
virtual machine systems suggested a more conservative approach
that sought practical results as a guide to further design. The de-
velopment of CP-46 was accomplished quickly, and its transforma-
tion to CP-67 for the IBM System/360 Model 67 followed in about a
year.

While CP-40 functioned without requiring virtual machine sub-
systems, the facilities it offered in the absence of such subsystems
were scarcely more useful than those provided by a computer
without any programming at all. CMS was intended to furnish
most interactive user support functions. CMS emerged con-
currently with CP-40 in 1966, but was developed separately using
the same dedicated real computer. Although this real computer
was used in its early development, CMS was intended specifically
for eventual use as a virtual machine subsystem monitor. When
CcMs and CP-40 had both become operational, the adaptation of
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CMS to a virtual machine environment was smooth and natural.
Other systems such as 08360, which had been developed exclu-
sively for use as real IBM System/360 native operating systems,

were similarly adapted with little difficulty.

Operational experience with CP-67 and CMS naturally stimulated
ideas for functional extensions to the hypervisor. The original CP-
67 spool system shown in Figure 1 allowed users to create files
only from spool representations of real card decks that had been
read on real card readers, and to create spool representations of
private files only for ultimate output to real printers or card
punches. In 1968, the hypervisor was modified so that a virtual
machine could directly access a spool file that had been created
by a virtual machine as output, without involvement of any real
unit-record /0 devices, card decks, or listings (see Figure 2). This
simple extension amounted to the first rudimentary form of com-
munication between virtual machine programs, and it led
promptly to a new type of virtual machine application subsystem
monitor. The implications of these developments have heavily in-
fluenced the evolution and use of vm/370, and the unfolding con-
sequences continue to yield new ideas for virtual machine sub-
system application and design.
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Figure 2 Direct spool file exchange
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Given the ability to exchange spool files, CMS users could readily
employ previously existing CMS file utility functions to exchange
any of their private files. The same combination of functions
would allow file transfer between CMS users and special virtual
machine subsystems supplying common services to interactive
CP-67 users. 05/360 and a modified version of cMs had both been
used as batch-processing subsystem monitors running in CP-67 vir-
tual machines prior to the availability of direct spool file exchange
between virtual machines. Input to these batch subsystems was
initially limited to card decks that were read by real card readers,
and output was produced exclusively on real printers and card
punches. When the spool file exchange facility was installed in CP-
67, these batch subsystem monitors were quickly adapted to uti-
lize the new function, making their services much more attractive
and available to interactive CMS users. Figure 3 depicts the virtual
batch subsystems. These virtual machine batch subsystem mon-
itors were most significant in that they formed a conceptual basis
for the extension of CP-67/CMS user functions without requiring
modification of CP-67 or CMS.

Cp-67 exhibited performance characteristics that were comparable
to those of any general-purpose interactive system at the time.
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Figure 3 Virtual batch subsystems
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Figure 4 Virtual machine work station subsystem
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Since it also seemed to multiply the capacity of the computer by
creating a separate virtual machine for each terminal user, system
programmers usually viewed cP-67 as highly efficient. Systems
work that had previously required a large, dedicated computer,
which meant contending for serially scheduled late-night ses-
sions, could be accomplished using CP-67 at any convenient time
without precluding the use of the computer by others. These ad-
vantages, combined with the general attractiveness of interactive
computing, suggested a potential for virtual machines beyond the
original objectives of CP-40 cited above.

From the point of view of the developers, recognition of the pos-
sibility of a long evolution of virtual machine hypervisor systems
stimulated interest in development techniques that could pre-
serve and enhance their attractiveness. One perception drawn
from the early successes of CP-40 and CP-67 was that the original
intent of limiting the complexity of the hypervisor by excluding as
much application support function as reasonably possible had
succeeded. This perception inspired a bias against implementing
new function (e.g., user directory management) in the hypervisor
where the need could be addressed through software at the virtual
machine level.

Early objectives

By 1969, the increasing use of CP-67/CMS and dependence on it
began to draw new attention to the existing functional defi-
ciencies of the system. One such area of deficiency was bulk
telecommunication. Interactive user terminals were often lo-
cated at some distance from the computer installation, but CP-67
did not support spool access by remote bulk terminals or work
stations. This meant that users who needed to have card decks
read or punched, or listings printed, would have to do so using
only the real unit-record /O devices at the computer installation,
and that arrangements for transportation of the decks and listings
were required.

The CP-67 hypervisor extensions allowing virtual machines to ex-
change spool files offered the possibility of a virtual machine sub-
system for remote work station access to the spool system with-
out further hypervisor modifications (see Figure 4). As the direc-
tion was taken to place bulk telecommunication support in its
own dedicated virtual machine subsystem, the focus of attention
shifted somewhat. Functional extensions to CP-67 had never be-
fore been attempted through development of specialized virtual
machine subsystems, and so the feasibility of the technique was
uncertain. The project came to be viewed as an experimental ef-
fort to shed some light on these questions, rather than to produce
a functionally useful package for distribution. It was hoped that

IBM SYST J @ VOL 18 ¢ NO | » 1979 HENDRICKS AND HARTMANN




design
problems

performance
concerns

further work along similar lines with heavier emphasis on practi-
cal utility would follow if the approach showed promise.

The first design problem to arise addressed the choice of a virtual
machine supervisor system on which software could be built as
an interface between the CP-67 spool system and remote work sta-
tions. At the time, experience with virtual machine subsystems
was limited to CMS and systems that had been designed for use as
native real machine supervisors, mainly 08/360. A second initial
design problem concerned establishment of a means for inter-
active users to direct their spool output to particular remote work
stations. The original CP-67 spool system included no file attri-
butes such as the vM/370 spool class and distribution code which
could serve the purpose, and the desire to retain complete trans-
parency of spool data content argued against the use of imbedded
data control records resembling job control language (JCL) or
identifier (ID) cards.

CcMS had been designed to be a single-user monitor system, fea-
turing extensive support for interactive applications and a
fixed-block DASD file system. Likewise, 08/360 was intended as a
multiprogrammed batch job execution system. The several other
operating systems that were used under CP-67 had evolved on real
machines to meet their particular objectives as well. None of these
systems was designed for use as a base for a virtual machine sub-
system of the kind envisioned, and each of them included exten-
sive support for functions that would be of no use in the intended
environment.

The first assessment of difficulties likely to arise in an attempt to
develop basic system support using a virtual machine subsystem
placed primary concern on questions of performance. An earlier
experimental telecommunication system named CLMON had been
developed in late 1968 to support data exchange between an IBM
1130 system and 0S/360 running in a virtual machine.'®> CLMON had
demonstrated that telecommunication timing problems arising
from possibly delayed response of CP-67 in servicing a virtual ma-
chine could be conveniently managed without modifications to
the hypervisor. Performance concerns at that time dealt with
overall system implications and divided into three areas: potential
for excessive virtual storage demands, additive execution over-
head due to cascaded supervisors, and unproductive hypervisor
loading associated with spool device simulation.

It was observed that a simple means of directing spool output to
particular remote work stations could be afforded by driving each
of the remote work stations from a different and independent vir-
tual machine subsystem. Users could then implicitly select desti-
nation work stations by explicitly directing their spool output to
the particular virtual machine subsystem responsible for manage-
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ment of the desired work station. This approach seemed attrac-
tive because it imposed no requirement for control records in user
spool data, and no modifications to the hypervisor were required.
Furthermore, the approach seemed natural because the virtual
machines serving as work station support subsystems could each
be given standard one-to-eight-character virtual machine IDs sug-
gesting their associated geographical destination, making the
users’ specification of file routing somewhat self-descriptive.

While replication of subsystem software in multiple virtual ma-
chines allowed easy file addressing and software tailoring to indi-
vidual requirements of particular remote work stations, it also
threatened to impose an unduly heavy paging load on CP-67 result-
ing from the addition of multiple virtual storage spaces. Recogni-
tion of this possibility discouraged the use of an existing supervi-
sor as a base for the new virtual machine subsystem. Most of the
execution overhead and storage requirements associated with
these supervisors were related to support for unneeded functions.
These effects could obscure experimental results by introducing
extraneous overhead that would be difficult to isolate and mea-
sure. Consequently, an entirely new and highly specialized vir-
tual machine subsystem would be developed to serve as its own
virtual supervisor and to require as little virtual storage as pos-
sible.

The initial experimental effort was to support a locally situated
1BM 1130 system as a remote spool work station since it was read-
ily available and much of the required software support for the
work station system was already completed. The aforementioned
CLMON system for the 1130 computer presented a nonstandard
protocol interface that was compatible with Binary Synchronous
Communication (BSC)'®"® controllers and adapters, but incom-
patible with BSC terminals and other application interfaces. The
protocol was designed to quiesce line activity when message
exchange was idle; it was symmetrical in that it included no mas-
ter-slave distinction between the communicating machines, and
would normally communicate with an identical copy of itself.

The CP-67 spool system used a compressed data format to increase
effective DASD capacity. The same kind of data compression
would increase effective telecommunication line throughput.
Data blocks could be moved directly from the CP-67 spool through
the telecommunication interface to the remote work station in
compressed format, avoiding intermediate decompression and re-
compression overhead. Going in the opposite direction, however,
direct entry of packed data from a remote work station into the
CP-67 spool system could impact compatibility by establishing an
interprocessor spool format standard other than the universally
accepted unit-record image. Since CP-67 logic treated spool data
blocks as internally generated items, format errors would be in-
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terpreted as internal system errors. Therefore, any new provision
for user-level software generation of such blocks would either
compromise system integrity or require new verification and er-
ror-handling logic in the hypervisor.

After consideration of all the factors, it seemed worthwhile to
modify the CP-67 hypervisor to allow virtual machines to read, but
not to write, compressed data blocks directly from the spool sys-
tem. This interface appeared to the virtual machine as a normal
virtual card reader, except that compressed spool data blocks
rather than ordinary card images were transferred to virtual stor-
age. This approach minimized modifications to the hypervisor
and significantly reduced potential execution overhead. The use
of a symmetrical protocol implied that compressed data blocks
would be transmitted in both directions and decompressed by vir-
tual machine subsystem software on reception. The ultimate re-
sult of this design approach was that the CP-67 spool data block
format was adopted as the communication data format as well.

CPREMOTE

These design considerations led to the CP-67 virtual machine sub-
system named CPREMOTE, a single assembler language module
requiring only the 8K-byte minimum virtual storage size for CP-67
virtual machines and using a single 4K pdge after initialization.
CPREMOTE included its own rudimentary supervisor which was
partly integrated with the functional support logic. VO operations
were performed at the channel program level with virtual Start
IO (S10) instructions, and the necessary error recovery logic was
included within the body of the program. Figure 5 illustrates the
CPREMOTE structure.

CPREMOTE presented clear evidence that the common virtual ma-
chine furnished a healthy environment for the growth of special-
ized subsystems. The modification to the hypervisor might have
been avoided at some cost in the form of increased unproductive
overhead, but it pointed out the fact that development of new
types of functional support subsystems could place new require-
ments on the virtual machine interface. It was later to become
evident that some of the design compromises necessary to avoid
further modifications to CP-67 significantly impaired the practical
usefulness of CPREMOTE.

Notwithstanding these qualifications, the initial results were en-
couraging. Development and debugging were facilitated by the
isolation of the virtual machine environment, the relatively small
virtual storage dumps, the simplicity of the virtual subsystem, and
the utility of the CP-67 user console functions. The use of a sym-
metrical protocol facilitated testing by permitting concurrent op-
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Figure 5 CPREMOTE structure
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eration of two independent CPREMOTE subsystems within the
same CP-67 system connected by an external telecommunication
link. Performance of CPREMOTE was most encouraging in that its
virtual machine was given no special scheduling or dispatching
priority by CP-67. The system load imposed by CPREMOTE was
relatively modest, throughput was only slightly below line speed
limitations, and response was quick. All these factors were com-
parable to those one might have expected had the support been
integrated directly into the hypervisor.

Despite its success as an experimental prototype, the operational
utility of CPREMQTE was limited. The requirement for separate
virtual machine management of separate lines effectively pre-
vented convenient operator control. The absence of commands
and messages proved to be a more serious detriment than had
been anticipated; operators couldn’t independently determine
whether a line was working, and could do little to identify and
correct problems even when they were known to exist. While
most local users preferred to submit card decks and to retrieve
output directly from the computer room rather than to use the
work station facilities of CPREMOTE, the alternatives available to
physically distant users were less attractive. In response to
requests from these users, CPREMOTE was modified to scan card
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input data from work stations for ID cards and automatically route
files to the specified virtual machine users. The rest of the defi-
ciencies were tolerated, and CPREMOTE quickly found some lim-
ited use.

When CPREMOTE was completed in mid-1969, the use of Cp-67 was
only beginning to spread within IBM. As more CP-67 installations
appeared during 1970, some unexpected trends in the use of
CPREMOTE began to materialize. An increasing number of CP-67
users began to rely on the remote work station support, and its
use became part of regular system operations at some locations.
The availability of work station facilities naturally suggested fur-
ther possibilities. As an initial response to requests for 0S/360
compatible support, CPREMOTE was modified for use as an ordi-
nary task under 08/360. This supported some limited communica-
tion between CP-67 and 05/360, but there was no facility for job
entry from Cp-67 or for job output transmission from 0S/360.

Many of these operational shortcomings were removed through
independent development work by system programmers at the
locations where the functions were needed. CPREMOTE was in-
tegrated into a HASP system so that CP-67 could serve as a HASP
work station for 05/360 job entry and job output processing. Most
installations that used the package added commands and mes-
sages to CPREMOTE and developed a number of other functions to
improve usability. When vM/370 became available in late 1972,
CPREMOTE was adapted to the new VM/370 spool data format with-
out changing its telecommunication interface. CPREMOTE was
used as a base for the development of a number of different tele-
communication support packages for Cp-67 and vM/370, including
several for the 1BM 2780 bulk telecommunications terminal. One
of these was released with VM/370 under the name SRP2780 shortly
after the original release of the system.

The most interesting use of CPREMOTE was in the transfer of CMS
files between users of different CP-67 operating systems as shown
in Figure 6. The possibility of employing CPREMOTE for communi-
cation between two CP-67 systems had been foreseen, but its use-
fulness had seemed to center on testing of work station support
without requiring actual work stations. In order to accomplish file
transfer between CMS users of different systems, the sending user
was required to insert the standard CP-67 ID card specifying the
destination user ID into the spool representation of each file to be
sent. This process could be accomplished using the CMS context
editor, but it was awkward and could not be applied to listing
image files. In spite of these reservations, the transfer of CMs files
using CPREMOTE often proved to be faster and more convenient
than any available alternative. The importance of this result was
in pointing the way to the user file exchange facility that was to
emerge.
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Figure 6 CPREMOTE user file exchange
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In the two years following its completion, the character of
CPREMOTE had shifted almost spontaneously from experiment to
utility. This change in direction was unexpected and not entirely
welcome; the operational restrictions of CPREMOTE had been justi-
fied on the basis of its experimental nature, but they were seriously
hampering the use and growth of the function. The popularity of
CPREMOTE was attributed in part to an unforeseen demand for
intercomputer spool-based communication. Virtual machine resi-
dence and symmetrical protocol appeared to have contributed
enough flexibility and portability to offset the serious practical
flaws of ZPREMOTE. When these observations were combined
with ideas offered by users, it began to appear that a CP-67-based
spool network connecting multiple computers might be realized.
Finally, the limitations of CPREMOTE were so fundamental and
severe that it was discarded in 1971 in favor of an entirely new
subsystem serving the purpose.

SCNODE

The increasing popularity of CP-67 did not give rise to the develop-
ment of many specialized virtual machine subsystems as the de-
signers had hoped and expected. To the contrary, the demand for
functional extensions was being met by repeated modification and
enlargement of the CP-67 hypervisor and CMS, and the structural
separation of the two was becoming less distinct. In rejecting spe-
cialized virtual machine subsystems for system functional exten-
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sions, users and system programmers often cited doubts regard-
ing efficiency and performance, the functional limitations of the
supervisor base of CPREMOTE, the need for CMS file system func-
tions, and an intuitive feeling of awkwardness toward the ap-
proach. As design work began in mid-1971 on a new network sup-
port subsystem to replace CPREMOTE, the intent was to produce a
package which would effectively counter these objections, offer a
base for other kinds of virtual machine subsystems, and ulti-
mately encourage others to exploit the technique for system de-
velopment work of their own.

The main features of the design strategy adopted for the new sub-
system were to avoid requirements for special hardware or exten-
sive modifications to CP-67, and to build a structure that could be
easily adapted to changing interfaces as the needs arose. The ob-
jective was to install a prototype spool-based network that would
generate some operational experience. The resulting feedback
would help direct decisions concerning functional extension and
modification to the network support. Because of their common
availability, voice-grade telephone lines and standard BSC con-
trollers were to be used for data exchange between locations. The
name SCNET (for Scientific Center Network) was applied to this
planned network as a whole, and the first version of the new vir-
tual machine subsystem was named SCNODE.

The five years prior to the start of work on SCNET and SCNODE
had seen the emergence of some general-purpose ‘‘resource-shar-
ing”” computer networks offering integrated support for both in-
teractive terminal sessions and bulk data transmission.'** These
networks employed variations of a design technique known as
“‘message switching’’ in which any form of communication be-

tween computers would be formatted into standard data blocks
called messages for presentation to the network interface. These
messages might or might not be automatically broken into smaller
units called packets for transmission to their destinations as rela-
tively independent entities.***® Upon the assessment of the re-
sults of these efforts, it seemed that some of the thorniest prob-
lems that were encountered could be avoided by exclusion of sup-
port for interactive terminal sessions.

There was little apparent reason to expect to provide good inter-
active network terminal response without using high-speed lines
and dedicated real controllers which could maintain reliable tim-
ing characteristics, and there was no reason to believe that such
equipment would become available. Interactive terminal support
through a virtual machine subsystem interface would have meant
extensive and unprecedented modifications to the CP-67 hyper-
visor. Besides, no practical means could be foreseen for inter-
active computer users to maintain multiple accounts permitting
access to various systems administered by independent computer
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operations organizations. To increase the likelihood of success by
simplifying the problem, the objectives of SCNODE were limited to
file and message exchange, and interactive terminal session man-
agern2e7nt was left to other efforts that were under way at the
time.

The first step was to design a virtual machine subsystem supervi-
sor base to replace CPREMOTE. Managing individual lines from
separate virtual machines was abandoned because of the diffi-
culty of coordinating store-and-forward exchange among multiple
virtual machines within a single system, and to alleviate the oper-
ational awkwardness of CPREMOTE. The resulting need to con-
currently manage multiple remote interfaces using a single virtual
machine subsystem meant that the new subsystem supervisor
would have to support multiprogramming and multiple con-
current /O operations. To meet the need for natural adaptation to
dissimilar remote interfaces, all functions related to such inter-
faces were isolated as separate monitor tasks called line drivers
which would present a standard program interface to the inboard
system. To produce a basic supervisor applicable to a variety of
possible subsystems, all application-related function was excluded
from the supervisor. In particular, all functions that would depend
on special CP-67 interfaces would be placed at the task level so
that the supervisor could be used on a real IBM System/360
compatible computer.

The name MSUP was given to the resulting subsystem supervi-
sor.”® MSUP was developed as a collection of small assembly lan-
guage modules, each of which manages a particular supervisor
function. MSUP supplies basic /0 management, task creation and

deletion, main storage allocation, asynchronous exits, and two
varieties of intertask communication. Task synchronization with
events external to the task is organized through a basic WAIT and
POST function analogous to that function of 0s/vs,”*’ and dy-
namic task status is maintained by a simple dispatcher. By dis-
tilling all of these functions to their basic elements, supervisor
execution path length was minimized, and main storage residency
requirements for MSUP code were limited to less than 3000 bytes.
System support functions for the SCNODE subsystem were devel-
oped as two independent monitor tasks identical to line driver
tasks for purposes of MSUP management (see Figure 7).

SCNODE would use the CP-67 spool system to retain files from local
users, or files in transit from remote locations, prior to their fur-
ther transmission. CP-67 virtual machines could concurrently read
multiple spool files, but there was no means for file addressing to
remote locations, nor any facility for inspection and reordering of
input spool file queues. These functions were required so that
appropriate files could be selected for reading and transmission
on particular lines.
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Figure 7 SCNODE internal structure
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The CP-67 spool system had presented a kind of communication
network among the local virtual machine users of a single system.
CPREMOTE had suggested the possibility of logically extending
that network to encompass the users of multiple systems. The
addressing scheme employed by CPREMOTE had evolved into two
separate levels: the system location address which had been im-
plied by the virtual machine ID of the CPREMOTE subsystem that
managed its remote line, and the destination user ID at that sys-
tem which had been specified by an ID card imbedded in the file
data. After careful analysis, it was determined that this kind of
two-level address would suffice for the purposes of SCNODE. Each
physical system on the network would have to be assigned a
unique one-to-eight-character EBCDIC identifier. SCNODE would
need to maintain a simple directory of all defined destination loca-
tion identifiers specifying the next location on the path for each
entry. In this manner a fixed path between each ordered pair of
network locations would be defined collectively among the loca-
tions on the path, and routing control would be distributed as
shown in Figure 8.

After adoption of this network routing scheme, some mechanism
was sought for users to address their files conveniently and for
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Figure 8 SCNODE spool store-and-forward
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SCNODE to inspect the addresses and to sort its input file queue
efficiently. A number of requests for user-specifiable file attri-
butes and new spool functions had arisen in other contexts, and
the need for a number of file attributes could be readily foreseen
in addition to the need for the destination address for use by spool
support subsystems. To meet these requirements, CP-67 was ex-
tended to include a string of character data called a “‘tag’’ to be
logically attached to each spool file. The tag would be set by a
user and interpreted by a subsystem but not by the hypervisor,
permitting the tag to be used differently by different subsystems
operating concurrently within a single CP-67 system.

The need for more extensive facilities for inspection and manipu-
lation of the input spool file queue was not limited to SCNODE.
Similar functions had been requested by virtual machine terminal
users for various applications. A natural means of supplying these
functions would have been through extensions to the CP-67 user
console functions. Since console functions had for some time
been executable from virtual machine programs, this approach
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would have satisfied the requirements for SCNODE as well. After
careful consideration, significant extensions to the CP-67 com-
mand language at that time were rejected. It was feared that once
those extensions were made they would gain wide use quickly
and would be impossible to withdraw should experience prove
them to be undesirable. The preferred approach was to seek a
means to gain such experience at less risk to the healthy develop-
ment of the CP-67 user interface.

As an alternative, an imaginary spool controller device simulation
was experimentally added to the CP-67 hypervisor in 1972. The
virtual spool controller behaved as a hybrid device which had
some DASD and some unit-record device characteristics, but
which had no real machine equivalent. The controller presented a
set of /O commands to a virtual machine program for input file
queue inspection and manipulation. Using these commands, a
virtual machine program could read the tag for any of its input
spool files, search its queue for files with particular tag settings,
reorder the queue, and selectively purge files.

With this much of the design in place, a working prototype of the
new networking subsystem was developed. CPREMOTE was modi-
fied to operate as an SCNODE line driver and automatically con-
struct ID card images from the destination user IDs specified in the
tags of files to be transmitted. At this point the package was suffi-
ciently complete to meet its first objective as a replacement for
the original CPREMOTE program, and a small network of Cp-67 sys-
tems and remote work stations was established using SCNODE in
mid-1973.

Even before this combination was put into regular operation,
SCNODE was in use within IBM in a different configuration. With
the imposition of some interim restrictions to the user interface,
the spool access logic in SCNODE was altered to operate without
the spool modifications to CP-67 to improve its portability. The
System/360 stand-alone HASP work station was modified to serve
as an SCNODE line driver, and was first put into operation with
SCNODE in March 1973. This package was used at several IBM
installations to supply CP-67/CMS users with remote job entry ac-
cess to separate 0S/360 systems using the HASP MULTI-LEAVING
protocol.*!

Remote spooling communications subsystem

As these developments began to yield some useful operational
experience with the new subsystem design, most CP-67 installa-
tions were converting to vM/370. Many of the spool input queue
manipulation functions that had been missing from CP-67 were
available as VM/370 user commands, so no serious consideration
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was ever given to propagating a CP-67-style virtual controller de-
vice into the new system. VM/370 introduced a number of changes
to the spool interface presented by CP-67, including the addition of
some access and queue manipulation functions required by
SCNODE. Adaptation of SCNODE to these new spool interfaces
presented no serious obstacles.

Functional extensions to the VM/370 hypervisor to support the
subsystem became necessary once again. A major objective was
to retain transparency of spool-file attributes through network
transmission. In other words, all original VM/370 spool-file attri-
bute settings would be recreated with the file upon delivery at the
destination. The use of one of the existing VvM/370 spool-file attri-
butes that could be set by the originating user as a network destina-
tion address was rejected because of potential impact to existing
applications. Instead, the vM/370 spool system was extended to
include a general-purpose tag function similar to that of the exper-
imental CP-67 extensions.

The result was the VM/370 TAG command for user setting and in-
spection of tags associated with virtual output devices and spool
files.*” The virtual output file tag record is entered as the first
record of a spool file using a no-operation (NOP) command code.
When NOP records are encountered during the reading of a file by
an ordinary virtual card reader, they are discarded by the hyper-
visor and are not presented to the virtual machine program. Real
unit-record control units similarly discard NOP command data on
file-output processing.

Since vM/370 supported virtual machine program access to unin-
terpreted spool data blocks for the telecommunication support
package SRP2780, NOP data records could be detected and pro-
cessed through the same interface. Attempts to design a virtual
machine subsystem for spool queue management using only this
interface for file tag access yielded logic that was inefficient and
awkward. This problem was addressed through an extension to
the vM/370 Diagnose Read interface called Successor File De-
scriptor® for selective program scanning of sections of a virtual
machine’s input spool file queue without requiring each file to be
opened and read. An ‘‘all-class’’ virtual reader function was in-
troduced to vM/370 to facilitate asynchronous notification to the
virtual machine subsystem of new spool-file availability.

The prototype work on SCNODE and the addition of these hyper-
visor functions led to the development of the Remote Spooling

Communications Subsystem (RSCS) component of vm/370.'*%%%

The intent of RSCS was twofold. On the one hand, it was to re-
place the remote bulk terminal support of SRP2780 with functional
enhancements and extensions for additional types of bulk termi-
nals and HASP MULTI-LEAVING interfaces. On the other hand, it
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was to serve as a base for further functional extensions into the
intercomputer networking subsystem intended by SCNODE.

The rRScs command language was developed to resemble the
existing vM/370 operator command language as closely as possible
while supporting the requirements for remote bulk terminal man-
agement and spool networking extensions. The existing SCNODE
software was used as the starting point for RSCS program develop-
ment. New logic was developed at the subsystem control task
level for RSCS command and message management, system gener-
ation and initiation, system error handling, read access to CMS
files, common reentrant subroutines, and VM/370 spool system
compatibility. A third subsystem control task was added for
RSCS, and a CMS-based installation and maintenance system was
established using vM/370-standard techniques.

The SCNODE line driver for HASP MULTI-LEAVING was upgraded
to handle RSCS commands and messages, and extended to present
an interface as either a remote HASP main host or a HASP work
station. A CPREMOTE-based virtual subsystem for IBM 2780 re-
mote bulk terminal support, different from SrRP2780, had pre-
viously been adapted to operate within SCNODE. This line driver
was similarly upgraded to handle RSCS commands and messages,
and support for 1BM 2770, 3770, and 3780 remote bulk terminals
was added. These two line drivers, combined with the SCNODE-
derived subsystem monitor described above, constitute RSCS as it
was originally released with vM/370 in January 1975, and as it is
currently available today. Figure 9 is an illustration of RSCS func-
tions.

VNET development

The RSCS development work was done during 1974 by the authors
at their respective locations which were separated by several
hundred miles. This situation gave rise to a need for quick and
convenient exchange of programs, documentation and messages
between the two locations. Even before RSCS was ready for inter-
nal distribution within 1BM, an early version of a CPREMOTE-de-
rived line driver for intercomputer communication was developed
and put into operation with the new subsystem using a dialed tele-
phone line connection. To maintain throughput and compatibility
with CPREMOTE, the cP-67 spool data-block format was retained
for communication between VM/370 systems, rather than the
vM/370 spool data-block format which excluded data compression.

The intercomputer communication facility dramatically increased
the efficiency of the joint effort, created a convenient test envi-
ronment for the new software under development, and generated
immediate feedback regarding the usability of RSCS as it emerged.
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Figure 9 RSCS functions
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The advantages of the new communication functions were so
valuable that dependence on their availability quickly followed.
Demand increased as others learned of the existence of the link
and began to use it, and establishment of the dialed telephone
connection became a regular operational procedure. The dialed
connection was ultimately replaced by a permanent leased line to
reduce telephone costs and free the operators from having to reg-
ularly dial the connection. In retrospect, this was an early in-
stance of a pattern of interacting demand and availability which
was to reappear many times in different circumstances and which
has generated the impetus behind the rapid growth of what is now
a very large computer network.

An independent project at another IBM location was undertaken
in 1972 to develop a different spool-based network. This network
employed a symmetrical computer-to-computer variety of the
HASP MULTI-LEAVING protocol similar to that of the TUCC/IOWA
Network™ for automatic forwarding of jobs, output, and console
messages in a manner analogous to that of SCNODE. In early 1974,
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the HASP MULTI-LEAVING line driver for SCNODE was modified to
support this new HASP networking interface. The new line driver
was immediately put into operational use, and practical experi-
ence with a hybrid vM/370 and 0S/360 spool network was gained
before RSCS development was finished. The functional concepts
and interface requirements for this network of dissimilar systems
were jointly defined and formalized by the developers, and the
emerging internal IBM network was given the name ‘‘SUN”’ (for
Subsystem Unified Network).

When RSscs was completed for distribution with vM/370, attention
turned to developing network support on an RSCS base for use
within 1BM. Rudimentary modifications to RSCS implemented in-
direct store-and-forward routing for spool files, console com-
mands, and messages. The CPREMOTE-derived line driver that
supported RSCS development was upgraded for networking inter-
connection between VM/370 systems and used as a base for a simi-
lar channel-to-channel adapter line driver. A modest network
connecting several vM/370 systems located mainly in the eastern
U.S.A. was installed using the new RSCS extensions in the spring
of 1975. Connection with the HASP- and ASP-based job network
centered in the west followed shortly thereafter, yielding a na-
tionwide hybrid network of about a dozen mixed vM/370 and
0S/360 Systems.

This composite network attracted a broad range of users,*® its
installation membership grew steadily, many projects became de-
pendent on its services, and requests for added function in-
creased. In response, the SUN interface was extended and rede-
fined, the Network Job Entry (NJE) facility for MVSIES2*™*® was

developed to the new interface, and support was upgraded in all

of the participating systems. As internal IBM installations con-
verted from 0S/360, an increasing proportion of MVS systems be-
gan to populate the network through JES2/NJE connections. The
combination of VM/370 and MVS in a job networking environment
offered users and system programmers the attractive potential of
efficiently combining the two systems to develop new approaches
to their application problems.

Support of the NJE protocol posed a new technical problem to
VvM/370 that required a further modification to the hypervisor. The
NJE protocol introduced extensive new attribute information for
each 0s/vs data set imbedded within a single job’s output. This
meant that in order to avoid separating the data sets of a network
job into independent files within the vM/370 spool system, the at-
tribute control information would have to be imbedded within the
vM/370 spool file data. To address the problem, the vM/370 spool
system was modified to accept NOP commands with data from
virtual output devices for entry into spool files being created, sim-
ilar to the tag records that already existed. The ability to insert
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Figure 10 VNET functions
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NOP data records into output spool files enables the NJE compat-
ible line driver to encode control information within VM/370 spool
files in a manner transparent to users and communication inter-
faces.

From experience and the feedback from network users, new
functions and improved human factors were developed for the
VM/370 spool networking subsystem on a continuing basis. Within
a year the package of networking updates to RSCS grew very large
and unwieldy, and network users became increasingly confused
over the differences between the standard RSCS component of
vM/370 and the extended version which had largely displaced it
within IBM. In an attempt to alleviate these problems, the net-
working updates to RSCS were merged into a new source program
base, and the new package was renamed VNET.”**® The HASP and
ASP job networking packages were combined with VNET to form
NJI (for Network Job Interface*’), a set of software providing mu-
tual compatibility with one another and with NJE for JES2.*® VNET
was offered as IBM product software with NJE and NJ1 in late 1976,
and is available as such today (see Figure 10).

The IBM Corporate Job Network

The small networks within IBM that led to NJE and NJI have now
grown and connected to form the 1BM Corporate Job Network.
(The term ‘‘job’’ is not used here with precision; in fact, most of
the systems participating in this network use vM/370 which has no
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job concept in the batch-processing sense, and much of the net-
work traffic represents file and message transfer rather than batch
job entry.) Today this network interconnects more than 200 dif-
ferent computers throughout North America and Western Eu-
rope, and it extends to several installations in Australia and Ja-
pan. The participating systems include practically every model of
the 1BM System/370 computer line and use a wide variety of com-
munication links from voice-grade telephone connections to high-
speed data links, channel-to-channel adapters, and MVS/JES2 mul-
tiaccess spool devices. The intercomputer protocols used within
the network are an even mix of the extended CPREMOTE protocol,
which is used between vM/370 systems, and the NJE protocol,
which is used by 0S/v$ systems for communication with each
other and with vM/370. The number of connected work stations,
bulk telecommunication terminals, and interactive terminals is
such that computer system users at most company locations can
access the network.

The growth rate of the Corporate Job Network remained al-
most constant at roughly one computer a week through 1977, but
that rate doubled in 1978. The ubiquity of the network is most
surprising in that it has materialized quite spontaneously without
any explicit mandate or governing organization. In many cases
new system connections to the network are made through com-
munication links that had already been installed for use by other
kinds of support. Initial justification for connection of a computer
system to the network is likely to be made on the basis of experi-
mentation, particular application needs, or contingencies. When
a new connection is made, the availability of network communi-
cation tends to lead rapidly to its utilization and dependence by
diverse projects and applications that had not previously recog-
nized the usefulness of the facility.

The evolved structure of the Corporate Job Network exhibits
some hierarchical characteristics as shown in Figure 11. Local
groupings of several computers in close physical proximity are
likely to be internally linked by high-speed telecommunication
lines or channel-to-channel adapters. These links tend to be em-
ployed largely for real batch-job entry and for management of real
unit-record output. Slower-speed, long-line telecommunication
links interconnect these local groups and tend to be used primar-
ily for file and message transfer. Optimization of network con-
nectivity is usually addressed at the local grouping level, whereas
alternate path routing is sometimes used to balance long-distance
traffic between the groups. These patterns are curious in that they
have formed without explicit design provisions. As such, they
may offer useful clues for future design directions.

The administrative organization of the Corporate Job Network
bears a striking resemblance to its logical structure. Just as con-
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Figure 11 1BM Corporate Job Network hierarchical structure
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trol of routing and traffic are distributed across the participating
systems on an equal basis, coordination of network maintenance
is accomplished cooperatively among the participating organiza-
tions. Each installation chooses location IDs for its own con-
nected computer systems and work stations, and these are com-
municated to the network at large by means of a machine-read-
able network connectivity map which is distributed using the
network. Where more than one routing possibility exists between
one location and another indirectly connected location, the
choice is made by the local installation according to its own cri-
teria. Such choices can result in looping network paths, so rout-
ing decisions must be coordinated with other locations on the po-
tential loops. The network itself alows system programmers to
query the routing status of any remote location, so routing deci-
sions impose little difficulty in practice.

Network utilization now encompasses practically all areas of IBM
internal computer use to the point where the network has become
an integrated and indispensable part of normal computer opera-
tions. Unfortunately, there is no satisfying answer to the natural
question, ‘‘What do people use the network for?”’ One can rea-
sonably expect that any computer application involving a spool
system is a potential networking application. Accounting records
are kept for all files shipped and are used to prepare periodic net-
work utilization reports. These reports typically show steady in-
creases in file traffic. Communication links that are initially estab-
lished as dial telephone connections tend to be replaced by leased
lines, and leased-line bandwidth tends to expand to accommodate
increasing traffic load.
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The availability of network communication has spawned an array
of application support packages that improve the human factors
of the basic network interfaces. The cMs automatic command ex-
ecution facility (EXEC) is commonly employed to simplify file
shipping and job entry for interactive users. A growing selection
of application programs for automatic memo and mail composi-
tion, delivery, and logging via the network are available within
IBM. Another package employs a CMS-based virtual machine sub-
system to receive and execute requests from remote users for
automatic file retrieval. Several aperiodic newsletters, describing
the status of these and other application packages and reporting
computer system and language activity in general, are prepared in
machine-readable form and distributed to interactive users on the
network.

Conclusions

The rapid spontaneous growth of the 1BM Corporate Job Network
is probably attributable to the design philosophy employed by its
software support. The lack of dependence on uncommon com-
puter machinery and vM/370 hypervisor modifications, the ease of
installation requiring no system generation or unusual virtual ma-
chine specification, the familiarity of the operator command lan-
guage and procedures for subsystem loading and maintenance,
the relative operational independence afforded by the peer rela-
tionship of the interconnected systems, and the simplicity of the
user interface have encouraged computer installations to invest
some effort to give VNET a trial. The simulated unit-record device
interface affords operating systems running under vM/370 some

access to the network without any software modifications at all.
Initial experiences with an unfamiliar computer system interface
appear to generate strong lasting effects. A crucial factor in the
success or failure of new system software is its cooperativeness
with naive users.

The continuing attractiveness of accepted software over a long
term hinges on its adaptability to a changing environment. The
internal structure of VNET that separates line management func-
tions into disjoint line drivers eases conversion and naturally ac-
commodates individual local modifications. Requirements for
coordinating software changes across more than two directly con-
nected network systems would have limited network growth to
small groups of installations that could be brought under the con-
trol of a single computer operations organization. Adaptability to
HASP MULTI-LEAVING, SUN, and, finally, NJE dramatically broad-
ened the appeal of VNET and created new application possibilities
for vM/370. Aside from the internal structure of VNET, the isola-
tion of the virtual machine environment and the interactive sup-
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port facilities of CMS have streamlined development and testing
activities. This in turn facilitated quick incorporation of ideas for
improvements as they emerged.

Virtual machine subsystems supplying functional extensions to
VM/370 have become common. Such subsystems are widely used
to maintain tape libraries and user directories, to help operators
manage volume set-up requests, to provide unit-record utility
functions, to schedule jobs for virtual machine batch subsystems,
to monitor VM/370 system performance, and to adapt vM/370 to a
number of interactive networks. Designers of these subsystems
have regularly chosen either CMS or 0S/VS to serve as a base,
apparently to facilitate development. Despite the intent to offer a
widely applicable base for virtual machine subsystem program-
ming, the authors are aware of only several cases in which MSUP
is used with subsystems other than RSCS and VNET. The unfamil-
iarity of the internal structure of MSUP and the lack of specific
provisions for compatibility with CMS and 0OS/VS seem to have
discouraged its acceptance.

The cost of added system overhead imposed by moving functions
to virtual machine subsystems has proven to be far less signifi-
cant than had been intuitively feared. In general, performance
problems that have arisen with VNET have been manageable
through minor redesign of virtual machine subsystem logic. Fur-
ther performance improvements could probably be achieved
through modification of VNET and VM/370 hypervisor logic to re-
move observed bottlenecks, but the bulk of user concern seems
to center on functional extensions instead. Performance concerns
appear not to be a necessarily good reason for integrating new
function into the VM/370 hypervisor rather than implementing it at
the virtual machine level.

Constraints on logical coordination imposed by the interface be-
tween the virtual machine and the hypervisor are a different mat-
ter. The very same interface restrictions that isolate the virtual
machine environment and impede the natural increase of overall
system complexity*' give rise to limitations that can hinder func-
tional improvements. It is instructive to observe that nearly all of
the modifications to the VM/370 hypervisor that arose from the
evolution of VNET have extended and enriched the virtual ma-
chine interface; none have been necessitated by poor perform-
ance.

The future
Some major areas of unrealized development potential remain

with VNET itself. Communication logic could be extended to man-
age parallel trunks between two locations and multiple logical file
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streams on a single trunk. Developing logic to support these func-
tions would be straightforward enough, but devising techniques
for scheduling file transmission to take advantage of such capabil-
ity is not as simple. There is no question that the ongoing trans-
mission of a very long file should not block the transmission of a
very short file as it does now. Also, within the context of a single
trunk, it is clearly undesirable to multiplex concurrent transmis-
sion of identical length files. Logic that could make intelligent
scheduling decisions for multiple streams, trunks, and files of var-
ious lengths would present some intriguing design problems.

VNET permits operators to change routing manually during net-
work operations in response to failure of computer systems or
communication links. Correct decisions concerning rerouting
have proven very difficult for operators to make reliably. This
situation has stimulated many requests for some form of auto-
matic path selection function in VNET. A clear possibility would
be to adopt the Network Path Manager function currently em-
ployed by NJE for JES2,” and a number of other possibilities exist
as well. Logic that could choose among multiple paths to route
files toward their destinations presents a significant design chal-
lenge in its own right, and it would further complicate the sched-
uling questions described above.

Possibilities for continuing work in the broader realm of virtual
machine subsystems are even more intriguing. Some work has
been done to develop VM/370 spool support for real unit-record
devices using a VNET base. A comprehensive virtual machine
subsystem to support real spool devices could produce an envi-
ronment that would encourage speedy evolution of new spool
functions. Such a subsystem could even lead to the ultimate re-
moval of real spooling functions from the vM/370 hypervisor alto-
gether, thereby reducing the complexity and extending the useful
life of the entire system.

Similarly, some preliminary work has been done in supporting
VM/370 interactive user terminals through virtual machine sub-
systems. While this kind of subsystem function requires a signifi-
cant new extension to the interface between the hypervisor and
the virtual machine, there is every reason to believe that the con-
cept is feasible. Terminal support constitutes a large part of the
programming in the VM/370 hypervisor; its removal from the hy-
pervisor and development of techniques at the virtual machine
level for selection of installation-specific terminal management
would be most beneficial.

The concept of an interface that would allow a virtual machine
program to simulate an arbitrary 1/O device to another virtual ma-
chine (a generalized virtual channel-to-channel adapter) has been
discussed for some time. If such an interface were realized, a
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virtual machine subsystem could support virtual devices for other
virtual machines. As one result, the entire VM/370 spooling func-
tion might be made to reside in a virtual machine subsystem. The
practical potential of such a proposal can surely be challenged
today, but there is no way to guarantee that it would not lead to
useful developments of some kind. Given the System/370 1/0 ar-
chitecture, the technical design of the required interface between
virtual machines presents serious practical difficulties. Should
further study in the area shed more light on the exact nature of
these difficulties, the result might introduce new concepts of /O
architecture that would benefit all areas of system design.

There remains the unfulfilled potential to move software origi-
nally developed as a virtual machine subsystem entirely out of the
VvM/370 system. If one were to develop a file system for VNET, this
could be readily accomplished without difficulty. A spool system
similar to the MVS/JES2 multiaccess spool that could be shared
between VM/370 and VNET running on an independent processor
would allow VNET to function as a front-end processor, and could
greatly improve network reliability as a result. The realization of
VNET as an independent system could reopen some lines of devel-
opment that had been abandoned in the past for reasons of per-
formance and timing dependencies—to wit, integrated bulk and
interactive network support.

The prospect of eventually moving virtual machine subsystems
outboard to operate in stand-alone mode on real computers refo-
cuses attention on the special hypervisor interfaces required for
the subsystem functions. In the case of VNET, these interfaces are
mainly the virtual side of the vM/370 spool system. In the general

case, the interfaces used by a virtual machine subsystem to inter-
act through the hypervisor with vM/370 users and their virtual ma-
chine programs can effectively bind the subsystem to its virtual
machine environment. It is useful to consider the hypothetical
displacement of a subsystem to a separate real machine environ-
ment in the design of these interfaces.

Finally, the various support functions now included in CMS might
be broken into separate building blocks and reassembled to form
a family of specialized virtual machine monitor subsystems. A
common shareable file system similar to the current CMSs file sys-
tem might establish mutual data compatibility among all the mem-
bers of the subsystem family. Specialized interactive language
subsystems, graphics subsystems, data base subsystems, admin-
istrative support subsystems, and basic system support sub-
systems similar to VNET are some possibilities. An environment
in which these could be independently developed without losing
mutual cooperativeness would realize a long-standing goal of the
virtual machine concept.
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Virtual machines and the subsystems that evolved to make them
useful have already produced some fascinating developments.
Further possibilities now seem more promising than ever, and the
end is nowhere in sight.
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