The architecture of a virtual machine system has specific advan-
tages over that of conventional operating systems because virtual
machines are well separated from one another and from the con-
trol program. This structure requires that a protected, multi-user
resource manager be placed in a distinct virtual machine because
the protection domain and scheduling unit are one ertity, the vir-
tual machine. But cooperation between distinct virtual machines
necessarily entails scheduling overhead and often delay.

This paper describes an experimental extension to VMI/370
whereby a distinct execution and data domain (Virtual Control
Storage) is made available to virtual machines that require access
to a resource manager, without requiring a change in the sched-
uling unit. Thus scheduling overhead and delays are avoided
when transition is made between user program and resource
manager. A mechanism is described for exchanging data be-
tween execution domains by means of address-space mapping.

Virtual Control Storage—security measures in VM/370
by C. R. Attanasio

For the purposes of this paper, the security of a computing sys-
tem relates to its ability to perform according to design objectives
and administrative policies, regardless of the use to which it is
subjected, particularly in the face of conscious attempts to sub-
vert its protection mechanisms. Examples of design objectives
and administrative policies are the ability to allow access to data
only on presentation of a password by the user or through the
mediation of some system (or user) program, charging of each
user according to a function of his central processor and his main
and auxiliary storage usage, and scheduling the usage of system
resources according to a ‘‘fair share’’ algorithm (or perhaps some
other). The system’s protection mechanisms are the components
that enforce the objectives and policies. If those mechanisms are
subverted, the objectives and policies are not met, and the system
is said to be not secure. It is generally acknowledged that no com-
mercially significant system can be confidently termed secure by
this definition.'™
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Figure 1

Typical configuration of
vitual machines con-
trolled by one VMM.

VMn

In this paper, improving the security (or integrity) of a system
means taking steps to help make the system secure. The attain-
ment of security is not claimed. There is no standard terminology
in this area.””

It is widely thought that the security problems of existing systems
arise from the absence of a structure designed for security" *® or
from practical limitations on the ability to maintain that struc-
ture,® and that hopes for more secure systems lie in systems bet-
ter structured to protect the resources entrusted to their con-

trol.”™ In particular, the architecture of virtual machine systems

has been perceived to offer improved security because of the well
defined separation between system and user programs’ and, in
some circumstances, because there are two levels of supervisory
programs.**

This architectural separation, however, provides no particular
support for the pairing of virtual machines when cooperation be-
tween distinct execution domains is desired. The unit of pro-
tection and the unit of independent scheduling are the same—
namely, the virtual machine. This paper describes the design and
implementation of a modification to iBM’s Virtual Machine Facili-
ty/370 (vM/370)"> '® wherein the user’s virtual machine can obtain
service from an execution domain that is part of the same sched-
uling unit, but is a distinct, protected domain. This protected
domain, modeled on the concept of programmable control stor-
age, is called Virtual Control Storage (vcs). The main point of
the work is to provide protected service to a virtual machine
without entailing the expense and delay of transition between
scheduling units. Other benefits result from greater convenience
of software structure.

Virtual machine systems

A virtual machine system is generally understood to be one in
which the interface presented to the user process is the same as
that defined for the host hardware computing system. The control
program, which creates multiple copies of the host hardware, is
called the virtual machine monitor (vMM). Virtual machine sys-
tems are particularly useful in that they allow system programs
(those designed to control bare hardware) to be written and tested
in the normal vMM multiprogramming environment, rather than
requiring stand-alone time for testing. They also allow appli-
cations written for different operating systems to be executed on
the same hardware system, under control of the vMM. Figure 1
illustrates a typical configuration of n virtual machines (vl
through vMn), each using a selected (virtual) operating system
(not necessarily all different) on one hardware system controlled
by one VMM.
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Since the VMM provides the user with an unenhanced virtual ma-
chine, he can select an operating system appropriate for his use.
Typically a spare, efficient interactive monitor system is available
for normal usage, providing for an impressive level of multi-
programming for interactive users. VM/370 is the basis for the
enhancement described in this paper. Goldberg'” *® has developed
a formal description of virtual machine systems.

It is the author’s opinion that the advantages of virtual machine
systems arise from the simplicity and cleanness of the interface
between the VMM and the virtual machines. This interface is de-
fined by a principles of operation document. In contrast, systems
such as MULTICS,® designed primarily for security, provide a high-
level interface to the user and also maintain programming gener
ality, thereby leading to a much larger privileged supervisor (ker-
nel in MULTICS terminology). In systems such as HYDRA," pro-
tection is obtained by structuring the objects and operations
available to the user’s programs. (These comparisons are meant
to be illustrative only, not to imply relative values among the sys-
tems.)

Resource sharing in a virtual machine environment

Virtual machine systems are structured advantageously for secu-
rity because of the strict separation of virtual machines at a basic
level in the vMM. However, the separation makes resource shar-
ing difficult or awkward, beyond simple read-only sharing. Ini-
tially, vM/370 provided mechanisms modeled on real systems—for
example, the ability to pass virtual card images between virtual
machines and to establish virtual channel-to-channel connections
between virtual machines. More recently the Virtual Machine
Communication Facility (vMCF)," which has no direct analog in
real systems, has become available. Bagley et al.”® and Gray and
Watson®' describe research efforts to extend the capability of VM
370 to support the sharing of data and services among virtual ma-
chines in a meaningful way.

As the use of vM/370 has become more widespread, the require-
ment for controlled sharing of resources has become greater. The
way in which additional capability has been provided to virtual
machines—for example, access to a shared data base—has been
by establishing an additional virtual machine which owns the
shared resource and mediates all access by the several users.
Communication and data transfer are performed through one of
the mechanisms discussed above. Bagley et al.”” present a thor-
ough description of one application structured in this way, as well
as some proposed techniques for solving problems of scheduling
and data communication within such a structure.
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When a service is provided to many virtual machines by one
server machine, the resulting structure has several important
characteristics:

Since the service is provided by cooperating, asynchronously
executing entities (the user virtual machine and the server vir-
tual machine), a general communication protocol is required.
This protocol can be elaborate.

Since the server responds to multiple requestors, it must have
a strategy for scheduling its service for timely response to in-
dependent users. It must try to avoid inordinate delay to one
user because of lengthy service to another. But scheduling the
resources of a virtual machine can be different from sched-
uling real resources and may, in fact, be counterproductive.”
The vMM schedules the server simply as a distinct virtual ma-
chine, perhaps with different priority from user machines, but
it has proved quite difficult to schedule the server according to
which user is being served (the most desirable way), since ef-
fective scheduling of interactive systems is based on individ-
ual virtual machine resource usage characteristics related to
system-wide resource availability.

Since there is only one scheduling unit (virtual machine) to
serve multiple users, any event that blocks execution of the
server machine, such as a page fault, an input/output wait, or
a time-slice end, blocks service for all clients of the server.
Transmission of data between user and server machines is
nontrivial, involving interaddress-space data moves by the
VMM, as well as storage management in the server.

Since user and server are distinct virtual machines, communi-
cation between them involves additional scheduler action
when the user must wait for service. In any case, there will be
a delay between the time when the request is made and the
time when the server begins to satisfy the request.

Each of the characteristics described above adds overhead or re-
sponse time when providing the user with facilities beyond the
virtual machine definition. The quantitative importance of each
item depends on the service being provided, particularly the fre-
quency of interaction between each user and the server, the num-
ber of users being served, and the ratio of system overhead to
server resource utilization per communication.

Virtual Control Storage

Virtual Control Storage (vcs)™ * is an experimental extension to

vM/370 which addresses each of the above characteristics with a
view toward minimizing VMM execution in support of user-to-
server communication and minimizing response-time interference
between users. It provides the virtual machine with added capa-
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bility in a secure, architecturally coherent way, using the concept
of programmable control storage.”> The new capability (for ex-
ample, access to a shared data base through a logical interface) is
provided in the form of a new instruction executed by the user’s
virtual main storage (VMS) program. The instruction is emulated
by a user-selected program in his vCS. Since the user can request
access to the shared resource only through a vCS program in a
very stylized way, the integrity of the vCS program and the re-
sources it controls are protected by the fundamental structure of
the virtual machine system.

The analogy with programmable control storage implies several
features. The VMS program never has addressability to vcs, so
the vCS program is protected through the fundamental virtual
memory management mechanisms of CP, the virtual machine
monitor of VM/370. (CP console functions® that display or change
the virtual machine state do not operate on vcs.) However, vCS
does have addressability to vMs, allowing easy communication
between the two, always under control of the vCS program. The
user invokes this new capability through a synchronous, instruc-
tion-like interface. A VCS program is sharable among multiple
users simultaneously, as is programmable control storage, and
similarly need not explicitly schedule its service to those multiple
users.

Departures from the programmable control storage analogy are
dictated by the fact that the intended purpose of vCS (that is, the
nature of the instructions emulated) differs significantly from the
nature of the instructions emulated in real programmable control
storage. Thus vCS has its own device space, in general disjoint

from that of vMS, subject to the normal linking mechanisms in vM/
370. VCS may have addressability only to a portion of VMs, de-
pending on the limitations dictated by the finite size of the address
space in System/370. Since VCS supports simultaneous access to a
shared resource by multiple users, a VCS program must be able to
serialize possibly conflicting simultaneous requests. This is the
only explicit information it must have about its multiple users. In
general, it is much less than the information required by one vir-
tual machine that serves many users.

vCS provides a different perspective on each of the structural
characteristics listed above, in terms of their potential capacity
for inhibiting performance:

Since the virtual machine’s new capability is provided in the
form of a new instruction, the service is provided in a syn-
chronous fashion. Thus the communication protocol is (com-
puter) instruction-like rather than communication-like, with
parameters passed in registers or storage, and results returned
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Figure 2 A standard CP virtual ma-
chine (A) compared with
a CP virtual machine with
VCS (B).

to the next sequential instruction in storage, registers, or con-
dition code. This protocol should be much simpler to use by
both requestor and server.

® A VCS program, although sharable among many users, exe-
cutes as part of the user’s virtual machine in each instance
(see Figure 2) and need not explicitly serve multiple users so
long as the program is re-entrant (in a weaker sense than nor-
mally—see below). With regard to scheduling, it is irrelevant
to CP whether the virtual machine is executing the VMS or VCS
program; its normal scheduling decisions are unaffected. In
fact, while switching execution domains between vMS and
vCS, no scheduler service is required, so there is no sub-
stantial CP involvement. Since the VCS program executes as
part of the user’s virtual machine while serving a particular
user, any event that blocks the execution of the vCS program
blocks only that user, not all users as in the case of a single
virtual machine.
Data communication between VMS and vCS is accomplished
by sharing vMS storage with the VCS program as described
below. Large amounts of data can be communicated, with no
physical movement of data.

VCS system preparation

A program is specified to execute in VCS much as named systems
are specified in CP.”" As with CP saved systems, the program that
is to execute in VCS is loaded and executed to the point at which
future users will encounter it. Then the privileged command
SAVEVCS is executed, creating in cP-owned storage a copy of the
contents of the vCs associated with the name given as the argu-
ment of the SAVEVCS command. SAVEVCS refers to a named-
system table entry and a directory entry created previously for
the vcs system. The table is similar in function to (but distinct
from) that for currently provided CP named systems. The direc-
tory entry is new, reflecting the differences between CP saved
systems and vcs systems. Specifically, memory size, virtual ma-
chine characteristics, and virtual devices are associated with the
named VCS system, rather than with the user virtual machine as
is the case for CP saved systems.

Thus systems intended to execute in vCS can be defined only by a
user with more-than-general privilege. There is no possibility for
a general-class user to redefine or otherwise operate on the names
or characteristics of svstems that execute in vcS. The security of
the vCS program and ot the resources under its control are pro-
tected by the fact that no operations are available to the general-
class user except selection of the vCs system and invocation of it
through a restricted, instruction-level interface. The mechanisms
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by which the vCS system and its characteristics are defined
(SAVEVCS command and directory entry) are not available to the
general-class user.

VCS—the user’s view

The user invokes a service provided through vCs by executing the
cp IMPL command.”® This command accepts one argument, which
is the name of the program that provides the requested service,
much as the IPL named system facility of vM/370*" allows the user
to load his virtual memory with a previously saved main storage
image of a system. Associated with the system named in the IMPL
command (through the CP directory) is the size of vCS required,
the types of segments in the system (see below), the virtual ma-
chine options required by the system, and the devices owned by
the system. (IMpL differs from IPL in that the virtual machine re-
sources required are specified by and created for the system
named, rather than the user executing the command.) To enhance
security, the system loaded into vCs is dispatched before the
IMPL command is completed. Thus the system can perform initial-
ization functions which may include checking the user’s authori-
zation to use the system.

If IMPL is executed by a virtual machine that already contains a
VCS, the existing vCS system is deleted from the virtual machine,
and the new system named, if valid, is installed in a new vCS.
However, to support applications such as data base systems,
which may need to be informed when a user is disconnecting, the
VCS system, before being deleted, is given a machine-check inter-
ruption (conceptually a power-down interruption) to allow it to

perform termination processing before being deleted. If IMPL is
executed with no argument, or with an invalid one, in a virtual
machine with a vCS, execution is as above except that no new
VCS is created. IMPL can also be executed by the vCS system,
allowing a system to annihilate itself if it is invoked by an unau-
thorized user. If iMPL is executed from vCS, no power-down in-
terruption is generated.

CP currently provides for the sharing of address space segments
among virtual machines in read-only fashion, in connection with
the named-system facility. If a user changes a shared segment,
that segment becomes private to him. All other users maintain the
unchanged version. This facility enables main and auxiliary stor-
age to be used more efficiently by avoiding the requirement to
keep multiple copies of the same data. Since user virtual ma-
chines execute arbitrary programs, CP must protect users of
shared segments from changes by any of them.

In vCs, segments shared among users of the same VCS system are
writable. This is necessary for the management of shared re-
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Figure 3 The types of VCS seg-
ments.
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sources among multiple users, to support shared locks which con-
trol simultaneous conflicting requests, and for shared buffers for
data base systems. User programs never have addressability to
VCS segments, so accidental or intentional change by user pro-
grams is not a concern. If protection within vcs of some read-
only code segments is desired to protect against errors in VCS
code, it can be provided by the vcs program for itself using stor-
age key facilities available in System/370.%

Any number of VCS segments can be specified as private to each
instance of a VCS program that serves one user. Thus working
storage can be statically allocated in the vCS program and de-
clared to be in private segments in the directory description of the
program. There is no requirement for explicit storage manage-
ment in support of multiple users in the vCS program—it is pro-
vided automatically by CP virtual storage management.

In real computing systems, the control storage program can ad-
dress all of main storage. The implementation of VCS is con-
strained by the limitation of System/370’s addressing capability to
16 777 215 bytes, which implies a limitation on the combined size
of vMS and VcSs if the latter were to be able to address all of VMS.
In designing vCs, therefore, an alternate approach was taken: The
directory specification of the vCs system defines some number of
segments as communication segments—that is, segments in vCS
whose purpose is to hold segments of VMS to allow data commu-
nication between VvMS and vCS. Parameters of the instruction to
be implemented by the VCS program identify segments of VMS to
be mapped into vcs. This mapping can be different for different
users of the vCs system and for different invocations of the vcs
program by the same user. When CP is changing the execution
domain of the virtual machine from VMS to VS, it establishes or
changes the communication segment mapping, if necessary. Thus
each vCS segment is one of three types:

e Shared with all users of the vCS program, in read/write mode.

e Private in vCSs for each instance of the vCs program.

e Defined in vCS to hold segments of VMS for communication of
data.

Figure 3 illustrates in a general way the use of the types of vCS
segments. The write-sharable segments (perhaps the largest num-
ber for a data base application) used for code, data base buffers,
and shared data areas, are indicated by the symbol X. The private
segments (probably one or a small number) are indicated by the
symbol /. VCS segments that hold vMS segments for data commu-
nication are indicated by blank spaces.

VCS implements a previously undefined instruction for vMs, one
which causes an illegal-operation program interruption in the ab-
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Table 1 Assembler-language representation of the new instruction implemented by VCS

dc  x'ffel’ operation code
dc h'r number of ranges of segments specified
dc h'k’ number of individual segments

dc rh two bytes for each range, the first
byte specifying the first segment, the
second specifying the last segment

one byte for each individual segment

sence of vCS. An assembler-language representation of the in-
struction in the current implementation is given in Table 1, which
illustrates the format of the description of the segments of VMS to
be mapped into vCS. The half-word that follows x’ffel’ must
agree with the directory description of the communication seg-
ments of the vCS system—that is, the VCS system must expect the
same number of ranges of communication segments and the same
number of individual communication segments that are specified
in the instruction, or else a specification exception is reflected to
VMS. (The range in the instruction may specify fewer segments
than vcs is prepared to accept, however, to allow for the possi-
bility that vCs has access to all of vMS and that different users
may have different virtual machine sizes.) It is expected that nor-

mal usage would specify no range or one, or a small number of in-
dividual segments. Observe that the instruction is of variable
length.

Upon valid execution of the instruction by vMs, the specified seg-
ments of VMS are mapped into the corresponding siots in VCS, the
program status word and registers of vMs are made available to
the vCS program at defined locations of vVCS page zero, and the
virtual machine configuration is made to correspond to that of
vCS. The virtual machine is then dispatched in vCS. When execu-
tion is completed in vCs, exit is effected by executing the same
instruction, but no segment mapping occurs. Execution returns to
the next sequential instruction in VMS unless the VCS program
modified the vMS program status word, or some enabled inter-
ruption condition for VMS became pending while execution was in
VS, in which case the appropriate new program status word is
activated for vM™s.

To improve performance, the VMS program can execute the
x'fff1” operation code, which is equivalent to x’ffel’ except that
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the VMS-to-vCS mapping is not performed, but remains un-
changed. In this form of the instruction, the two half-words that
follow the two-byte operation code are not examined. The length
of the instruction is six bytes. The purpose is to shorten the length
of the path between vMS and vCS when there is no need to change
the VMS-to-VCS mapping.

Scheduling decisions about this virtual machine are made inde-
pendently of the activity just described. Central processor utiliza-
tion, main storage utilization, etc., are accounted for without con-
sidering whether the virtual machine is in vMS or vCS. The server
and the requestor execute synchronously, and information is
transmitted between them through memory locations, register
values, and the program status word (condition code).

Asynchronous events, such as interruptions from various com-
ponents of the virtual system, must be identified as belonging to
VMS or VCS and presented to the correct address space. The order
in which interruptions are presented is defined by the following
rules:

If the interruption belongs to the address space in which the
virtual machine is executing, then normal interruption reflec-
tion is performed.

If the virtual machine is executing in vMS and an interruption
for vCS occurs, the virtual machine is switched to vCS and the
interruption is presented (if the vCS program is enabled for the
interruption). Upon exiting from vcs, the virtual machine is
returned to VMS execution.

If the virtual machine is executing in VCS and an interruption
for vMS occurs, the interruption is kept pending for vMS until
the vCS program exits, at which time the interruption is pre-
sented if the VMS program is enabled for it.

vCs is designed to support sharing of resources by multiple users,
particularly when there may be conflicts between simultaneous
requests. Shared writable segments are provided to allow the
lock management facilities of System/370 to control such ac-
cesses. The question arises as to what is to be done when a vCS
program executing on behalf of one user requests a lock held by
that same program executing for another user. One solution is to
establish the convention that associated with each lock is a list of
users waiting for the lock. When an instance of the vCS program
encounters a held lock, it can wait for the lock by entering its
name on the list for that lock, then entering a wait state. When the
holder of the lock releases it, an interruption is posted to one of
the waiting virtual machines by means of existing mechanisms in
cp—the Virtual Machine Communication Facility (vMcF)," for
example. (To contain errors in VCS programs, as well as for other
reasons, an n+Ist virtual machine is required—see below.)
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Features of VCS

Several interesting and some novel features of system structure
follow from the design of vCs. These features are described
briefly in the following paragraphs.

The synchronous interface between vMS and VCS places a mini-
mal burden on the user when invoking the vcs facility, compared
with using a distinct, asynchronous virtual machine. The dif-
ference is essentially the difference between coding a new instruc-
tion and coding to a communication protocol, which requires es-
tablishing the connection, allowing for arbitrary severing of the
connection, and asynchronous processing on every message.

The vcs program has available the System/370 interface, as does
the vMS program. In particular, the vcs facility can be based in
any operating system that executes in a VM/370 virtual machine.
Apart from protection and performance features, the simplicity of
coding for a synchronous interface and the storage sharing facili-
ties available in vCS allow vCS to be used as a simple way to
establish cooperation between programs based in different oper-
ating systems, or to make a facility based in one operating system
available to users working in a different operating system.”

The vCS extension to the virtual machine structure separates two
distinct functions which were previously coupled in virtual ma-
chine systems. The functions are change of execution domain
(that is, protection domain) and change of task (scheduling unit).
In VM/370, substantial effort is exerted to monitor virtual machine
usage of real storage, which involves considerable software exe-
cution when a change occurs in the scheduling status of a virtual
machine. If a virtual machine must wait for service from another
virtual machine, the system structure causes a change in sched-
uling status for the requestor, although the nature of the computa-
tion does not. vCS avoids this change in status by making the
server part of the scheduling unit of the requestor. Researchers
with MULTICS have long recognized that these two functions must
be separated, and in fact a hardware extension has been defined
to aid the separation.®’ In the IBM IMS/VS environment, the cost of
domagl crossing has required special steps to improve perform-
ance.

In addition to decreasing the length of the path between requestor
and server, the VCS structure automatically allows CP to account
properly for server execution on behalf of individual requestors.
When one server machine is used for multiple requestors, this ac-
counting burden must be borne by the server machine, since it is
essentially impossible for CP to do it.

IBM SYST J e VOL 18 @« NO 1 e 1979 ATTANASIO

synchronous
interface

cooperation
between programs

protection and
scheduling

CP accounting




single-user
programs

re-entrant
code

execute-only
code

n+1st virtual
machine

The vCs structure provides one process (instruction counter, reg-
ister set, etc.) and some private storage for each user of a facility.
Therefore the vcs program need not explicitly control multiple
users, apart from the logical requirement that simultaneous exe-
cution sequences in the VCS code must be serialized if they in-
volve simultaneous conflicting accesses to some shared resource.
It is expected that a locking strategy would be used in VCS to
manage conflicting accesses, but the structure does not preclude
any other strategy by the vCS program.

The ability to specify any segment of vCS as shared, private, or
reserved for communication has implications for re-entrancy of
code in vCS which may not be immediately obvious. Writable
working storage for each user is provided automatically by CP, so
no explicit storage management interface is required in the vcs
program. Code segments that usually are (always ought to be)
read-only can be placed in shared segments. Thus any existing
single-user program can be shared among multiple users in
vcs with, at most, repackaging of modules into private and shared
categories. By definition, single-user programs contain no multi-
user logic. A single-user system being adapted to serve multiple
users through vcS must be enhanced to manage simultaneous
conﬂictiﬁg requests, if any; the code and data used to accomplish
this are placed in a shared segment. Other portions of the pro-
gram are packaged into shared and private segments as neces-
sary, and the only code changes are the necessary logical en-
hancements. )

Since vCS never is directly addressable by the vMS program, it
provides the capability of defining certain areas of main storage
as containing program text that cannot be read or written, but
only executed. This capability, not provided by System/370 archi-
tecture, can be essential, particularly when a high degree of secu-
rity is required.

When an application that involves a shared resource manager is
being considered for insertion intp a VCS structure, it quickly be-
comes apparent that some components of the manager relate to
the application as a whole, not to only a particular user. For ex-
ample, in a data base management system, there may be a re-
quirement for deadlock detection, or for recovery in the event of
failure in support of a particular user, or for periodic house-
keeping functions. Since each virtual machine executes the
shared vcS program independently of all others (except for
shared locks), it is natural for g system administrator function to
execute in an n+1st virtual maghine (if there are » users) to carry
out necessary system functions asynchronously with regard to
the execution for any particula'lr user. The shared storage can be
configured to provide asynchronous functions with access to all
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required code and data. The n+1st virtual machine enables the
system administrator to perform whatever security or reliability
services are required by the application.

Performance

The motivation for the design and implementation of vCS was to
improve the capability of vM/370 to control access to a shared re-
source in a secure fashion. Design features that contribute to im-
proved security have been discussed above. It is the author’s be-
lief, however, that performance is a crucial consideration in all
aspects of operating systems research, in the sense that function
is meaningful only if it can be delivered with acceptable perform-
ance, and that improved performance often reveals enhanced
functional capability. Thus this discussion includes much consid-
eration of performance characteristics.

Initially the mechanisms available for communication between
virtual machines were modeled on input/output facilities of Sys-
tem/370. Data could be transmitted as virtual unit records,
through virtial card punches, printers, and card readers, or
through virtual channel-to-channel connections between virtual
machines. Subsequently the Virtual Machine Communication Fa-
cility (VMCF)" became available. Chandra and Katcher® com-
pared virtual machine communication via unit records with com-
munication using an experimental precursor of VMCF and found a
substantial decrease —more than 50 percent in all cases—in the
elapsed time required to communicate with a local virtual disk
manager.

The ways in which the vCs structure should provide better per-
formance than a cooperating virtual machine structure have been
listed above. Briefly they are: synchronous interface, single-user
code in the server, decreasing supervisor cost of data trans-
mission, and avoiding scheduler overhead on calls between user
and server.

A very simple data base program was used to test the vCS imple-
mentaﬁon and provide some measurements of performance. With
this program, meaningful counts could be taken of supervisor (CP)
instructions in support of the execution domain switch between
vMS and vcs, which included the CP cost of data transmission.
Quantitative measures of the other items would require measure-
ment of a significant application executing both in vCS and in a
multiple virtual machine environment.

The technique used to count supervisor instructions was to em-

ploy the CP TRACE INST ccu)mmand,26 creating a print line for each
instruction executed in the virtual machine, which in this case
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Table 2 Performance comparison of VCS and VMCF

Number of Execution
instructions time (in
executed microseconds)

874 290.77

7320 2622.86

was executing the version of cP modified to provide vcS. One
complete communication was traced between a VMS program and
the data base program executing in vCS. The total number of CP
instructions executed from the time when the request was made
to the time when the response was received by the VMS program
were counted, and execution times for the instructions executed
were calculated, using timing figures for the System/370 Model
168. Equivalent programs were written to execute in two distinct
virtual machines using VMCF for intermachine communication,
and the same timing runs were performed. The results are given
in Table 2.

A detailed study of the instruction trace of the VMCF sequence
reveals that the great majority of the instructions executed result
from two characteristics of the VMCF facility: The interface be-
tween virtual machines is asynchronous, and in general there
must be CP scheduler action for the communication to be com-
pleted.

Much of the cost of the asynchronous interface is due to supervi-
sor actions such as dynamically allocating working storage for
each message (since a user can have more than one message out-
standing at a time), dynamically searching the list of active users
(one party to the communication may have logged off since the
communication was begun), reflecting an interruption to the tar-
get of a communication (asynchronous communications require
asynchronous events to notify the communicators), and various
validity checks on the memory addresses specified by the com-
municators. No one of these items is surprisingly large; all are
required by the nature of the system structure, and all are re-
flected in the total supervisor cost.

Other sources of supervisor cost are execution of the dispatcher
and scheduler, and a resource usage monitor component which is
invoked when execution changes between distinct virtual ma-
chines.

The design and implementation of VCS were carried out within the
context of existing vM/370 scheduling strategy, which contains no
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provision for coupling scheduling parameters of two (or more)
virtual machines. Bagley et al.,*® and others informally, have sug-
gested the possibility of changing the scheduling strategy of vm/
370 to be more hospitable to a structure that contains multiserver
subsystems, in such a way as to allow rational CP scheduling of
cooperating virtual machines, but no detailed design or imple-
mentation of such strategies is known to the author.

It should be mentioned that the scheduling advantages claimed
for the vCs structure accrue only if a requestor in VCS encounters
a held lock infrequently. Since CP is not involved in the setting of
locks by the vCS program, it schedules virtual machines regard-
less of locks held or required. If the nature of an application is
such that held locks are encountered frequently, that application
is not suitable for the vCS structure, which is designed to allow
multiple, independent, simultaneous executions of the server pro-
gram. If an application is such that individual users must hold
locks for long periods, that application does not lend itself to a
(mostly) single-user code implementation and hence is not suit-
able for vcs.

While a communication is active, events can occur which
lengthen the time required to complete the communication, but
are not directly caused by it. For example, during the communi-
cation traced, there were two real interval-timer interruptions
which may or may not have been caused by the communication.
In an operational environment, events of this type often occur
during a communication, increasing response time. (See Refer-
ence 25 for a more complete treatment of such events.) Although
such events can occur in the midst of a VMS-vVCS communication,
the probability of increasing the path length is less because less
time is taken.

The supervisor instructions that support VMS-vCS communication
result mainly from two functions that need to be performed.
When changing between VMS and vcs, the execution domain of
the virtual machine must be redefined. This is accomplished by
exchanging a fairly large number of fields in the VMBLOK, the
basic control block used by CP to describe the virtual machine.
Since these fields are in general not contiguous, a fairly large
number of instructions (approximately 25 percent of the total) are
required to accomplish the exchange. To minimize the implemen-
tation time of vCS, the fields in the VMBLOK were 'not rearranged
to allow fewer instructions to accomplish the exchange, although
in a production version this could be done, with a corresponding
decrease in the path length.

The other major contributor to the path length is the analysis per-
formed in the dispatcher to determine whether the interruption
status of the machine has changed, since the execution domain
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will have changed. If certain restrictions on the capability of the
vCS program were accepted (in the area of interruptions possible
and extended architectural features available), the total path
length could be reduced by approximately 33 percent.

Summary

An experimental extension to VM/370 provides the virtual machine
with a protected, fast-access execution and data domain. New
capability in the form of a new instruction, whose meaning is de-
fined by an arbitrary, protected program, is made available to the
virtual machine. Protection is provided by basic, existing mecha-
nisms in vM/370, namely virtual storage and virtual device man-
agement. Supervisor overhead required to support communica-
tion between a user and a server executing in VCS is minimized
because the domain switch does not involve a virtual machine
(task) switch, and because the interface provided is synchronous.

The architecture of vCs is based on the concept of microcode
which implements instructions for a machine architecture. When
this concept is applied as a means of providing service to multiple
users in a virtual machine environment, there are many inter-
esting implications for the structure of the code that implements
the service. The intention is to provide a system structure in
which service can be provided in a way that avoids unnecessary
invocation of function or duplication of function in server code
and in the underlying control program.
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