
The  architecture of a  virtual  machine  system  has speciJic advan- 
tages  over  that of conventional  operating  systems  because  virtual 
machines  are well separated  from  one  another  and  from  the  con- 
trol  program.  This  structure  requires  that  a  protected,  multi-user 
resource  manager  be  placed  in  a  distinct  virtual  machine  because 
the  protection  domain  and  scheduling  unit  are  one erztity, the vir- 
tual  machine.  But  cooperation  between  distinct  virtual  machines 
necessarily  entails  scheduling  overhead  and  often  delay. 

~ This  paper  describes  an  experimental  extension to VMl370 ’ whereby  a  distinct  execution  and  data  domain  (Virtual  Control 
Storage)  is  made  available  to virtual machines  that  require  access 
to a  resource  manager,  without  requiring  a  change  in  the  sched- 
uling  unit.  Thus  scheduling  overhead  and  delays  are  avoided 
when  transition  is  made  between  user  program  and  resource 
manager. A mechanism  is  described  for  exchanging  data  be- 
tween  execution  domains  by  means of address-space  mapping. 

Virtual  Control  Storage-security  measures in VM/370 
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For  the  purposes of this  paper,  the  security of a computing sys- 
tem relates to its ability to perform according  to design objectives 
and  administrative  policies,  regardless of the use to which it is 
subjected, particularly in the  face of conscious  attempts to sub- 
vert its protection  mechanisms.  Examples of design objectives 
and  administrative policies are the ability to allow access to data 
only on  presentation of a  password by the  user or through the 
mediation of some  system  (or  user)  program, charging of each 
user  according to a function of his central  processor  and his main 
and auxiliary storage  usage,  and scheduling the usage of system 
resources  according  to  a  “fair  share” algorithm (or  perhaps  some 
other).  The  system’s  protection mechanisms are  the  components 
that  enforce  the  objectives  and policies. If those mechanisms are 
subverted,  the  objectives  and policies are  not  met,  and  the  system 
is said to be not  secure.  It is generally acknowledged that no com- 
mercially significant system  can be confidently termed  secure by 
this definition.lV6 
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Figure 1 Typical  configuration of 
virtual  machines  con- 
trolled by  one VMM. 

VM1 

VMM 1 

In this  paper, improving  the  security (or integrity) of a system 
means taking steps  to help make the  system  secure.  The  attain- 
ment of security is not  claimed.  There is no standard terminology 
in this area.” 

It is widely thought that  the  security  problems of existing systems 
arise  from  the  absence of a structure designed for  security” 4, or 
from practical limitations on  the ability to maintain that  struc- 
ture,’ and  that  hopes  for more secure  systems lie  in systems  bet- 
ter  structured  to  protect  the  resources  entrusted  to  their  con- 
tr~l.’-’~ In particular, the architecture of virtual machine systems 
has  been  perceived  to offer improved security  because of the well 
defined separation  between  system  and  user programs’ and, in 
some circumstances,  because  there  are  two levels of supervisory 
programs. 14 

This  architectural  separation,  however,  provides no particular 
support  for  the pairing of virtual machines when  cooperation be- 
tween  distinct  execution  domains is desired.  The unit of pro- 
tection  and  the unit of independent scheduling are  the same- 
namely,  the  virtual  machine.  This paper describes  the design and 
implementation of a modification to IBM’S Virtual Machine Facili- 
ty/370 (vM/370)15’ wherein  the  user’s virtual machine can  obtain 
service from an execution  domain that is part of the same  sched- 
uling unit,  but is a  distinct,  protected  domain.  This  protected 
domain, modeled on  the  concept of programmable control  stor- 
age, is called Virtual  Control  Storage ( V C S ) .  The main point of 
the  work is to  provide  protected  service  to  a virtual machine 
without entailing the  expense  and  delay of transition  between 
scheduling units. Other benefits result from greater  convenience 
of software  structure. 

Virtual  machine  systems 

A virtual machine system is generally understood  to be one in 
which the  interface  presented  to  the  user  process is the same as 
that defined for  the host hardware computing system.  The  control 
program, which creates multiple copies of the  host  hardware, is 
called the virtual machine monitor (VMM). Virtual machine sys- 
tems are particularly useful in that  they allow system  programs 
(those designed to  control  bare  hardware)  to  be  written  and  tested 
in the normal VMM multiprogramming environment,  rather  than 
requiring  stand-alone  time  for  testing.  They also allow appli- 
cations  written  for different operating  systems  to be executed  on 
the  same  hardware  system,  under  control of the VMM. Figure 1 
illustrates  a  typical configuration of n virtual  machines (VM1 
through vm), each using a  selected  (virtual)  operating  system 
(not necessarily all different) on  one  hardware  system  controlled 
by one VMM. 
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Since the VMM provides the user with an  unenhanced virtual ma- 
chine, he can  select an operating  system  appropriate  for his use. 
Typically a spare, efficient interactive  monitor  system is available 
for  normal  usage, providing for  an  impressive level of multi- 
programming for  interactive  users. VM/370 is the  basis  for the 
enhancement described in this paper. G~ldberg'~'  '* has developed 
a formal description of virtual machine systems. 

It is the  author's opinion that  the  advantages of virtual machine 
systems  arise from the simplicity and  cleanness of the  interface 
between  the VMM and  the  virtual  machines.  This  interface is de- 
fined by  aprinciples  ofoperation  document. In contrast,  systems 
such as MULTICS,' designed primarily for  security,  provide a high- 
level interface  to  the  user  and also maintain programming gener 
ality,  thereby leading to a much larger privileged supervisor (ker- 
nel in MULTICS terminology). In systems  such as HYDRA," pro- 
tection is obtained by structuring  the  objects  and  operations 
available to  the  user's programs.  (These  comparisons are meant 
to be illustrative  only, not to imply relative values among  the sys- 
tems .) 

Resource  sharing in a  virtual  machine  environment 

Virtual machine systems  are  structured  advantageously  for  secu- 
rity because of the  strict  separation of virtual machines at a basic 
level in the VMM. However,  the  separation  makes  resource  shar- 
ing  difficult or  awkward, beyond simple read-only  sharing. Ini- 
tially, VW370 provided  mechanisms modeled on real systems-for 
example,  the ability to pass virtual card images between  virtual 
machines and to establish  virtual  channel-to-channel  connections 
between virtual machines.  More  recently the Virtual Machine 
Communication Facility (vMcF),~' which has no direct analog in 
real systems, has become  available. Bagley et a1." and  Gray  and 
Watson" describe  research efforts to  extend  the capability of VM/ 
370 to  support the  sharing of data and  services among virtual ma- 
chines in a meaningful way. 

As the  use of v w 3 7 0  has  become more widespread,  the require- 
ment for  controlled  sharing of resources  has become greater.  The 
way in which additional capability has  been provided to  virtual 
machines-for example,  access to a shared data base-has been 
by establishing  an  additional virtual machine which owns  the 
shared  resource  and  mediates all access by the  several  users. 
Communication and data transfer  are performed through  one  of 
the  mechanisms  discussed  above. Bagley et aL20 present  a  thor- 
ough description of one  application  structured in this  way, as well 
as  some  proposed  techniques  for solving problems of scheduling 
and data communication within such a structure. 
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When a  service is provided  to many virtual  machines by one 
server  machine,  the resulting structure  has  several  important 
characteristics: 

0 Since  the  service is provided by cooperating,  asynchronously 
executing  entities  (the  user virtual machine and  the  server vir- 
tual  machine),  a  general  communication  protocol is required. 
This protocol can be elaborate. 

0 Since  the  server  responds  to multiple requestors, it must  have 
a  strategy  for scheduling its service  for timely response  to in- 
dependent  users.  It  must  try  to avoid inordinate  delay to  one 
user  because of lengthy  service to  another. But scheduling the 
resources of a virtual machine can be different from  sched- 
uling real resources  and  may, in fact, be counterproductive.” 

0 The VMM schedules  the  server simply as a distinct virtual ma- 
chine,  perhaps with different priority from user  machines,  but 
it has proved quite difficult to schedule  the  server  according to 
which user is being served  (the most desirable  way),  since ef- 
fective scheduling of interactive  systems is based on individ- 
ual virtual machine resource usage characteristics  related to 
system-wide  resource availability. 
Since  there is only  one scheduling unit (virtual machine) to 
serve multiple users,  any  event  that  blocks  execution of the 
server  machine,  such as a page fault,  an  inputloutput  wait, or 
a time-slice end, blocks service  for all clients of the  server. 
Transmission of data between  user  and  server  machines  is 
nontrivial, involving interaddress-space data moves by the 
VMM, as well as  storage management in the  server. 
Since  user  and  server are distinct virtual machines, communi- 
cation  between  them  involves  additional  scheduler  action 
when the  user must wait for  service. In any  case,  there will be 
a delay  between  the  time when the  request is made and  the 
time when the  server begins to satisfy the  request. 

Each of the  characteristics  described  above  adds  overhead  or re- 
sponse time when providing the  user with facilities beyond the 
virtual machine definition. The quantitative  importance of each 
item depends  on  the  service being provided, particularly the  fre- 
quency of interaction  between  each  user  and the  server,  the num- 
ber of users being served,  and  the  ratio of system  overhead  to 
server  resource utilization per  communication. 

Virtual Control Storage 

Virtual Control  Storage ( V C S J ~ ~ ,  24 is an  experimental  extension to 
vwwo which addresses  each of the  above  characteristics with a 
view toward minimizing VMM execution in support of User-to- 
server  communication  and minimizing response-time  interference 
between  users.  It  provides  the virtual machine with added  capa- 
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bility in a  secure,  architecturally  coherent way, using the  concept 
of programmable control  tora age.'^ The new capability (for ex- 
ample,  access  to  a  shared  data base through a logical interface) is 
provided in the form of a new instruction  executed by the  user’s 
virtual main storage (vMS) program. The  instruction is emulated 
by a  user-selected program in his VCS. Since the user  can  request 
access  to  the shared  resource only through  a vcs program in a 
very stylized way, the integrity of the vcs program and  the  re- 
sources it controls are  protected by the  fundamental  structure of 
the  virtual machine system. 

The analogy with programmable control  storage implies several 
features.  The VMS program never  has  addressability  to vcs, so 
the ‘VCS program is protected through the  fundamental virtual 
memory management mechanisms of CP, the virtual machine 
monitor of VW370. (CP console  functionsz6  that display or  change 
the  virtual machine state  do  not  operate  on vcs.) However, vcs 
does  have  addressability  to VMS, allowing easy  communication 
between  the two, always  under  control of the vcs program. The 
user  invokes this new capability through a  synchronous,  instruc- 
tion-like interface. A VCS program is sharable among multiple 
users  simultaneously, as is programmable control  storage,  and 
similarly need not explicitly schedule its service  to  those multiple 
users. 

Departures from the programmable control  storage analogy are 
dictated by the  fact  that  the intended purpose of vcs (that  is,  the 
nature of the  instructions  emulated) differs significantly from the 
nature of the  instructions  emulated in real programmable control 
storage.  Thus vcs has  its  own  device  space, in general disjoint 
from that of VMS, subject to the normal linking mechanisms in vMI 
370. Vcs may have  addressability  only  to  a portion of VMS, de- 
pending on  the limitations dictated by the finite size of the  address 
space in Systed370. Since vcs supports  simultaneous  access  to a 
shared  resource by multiple users,  a vcs program must be able to 
serialize possibly conflicting simultaneous requests.  This is the 
only explicit information it must have about its multiple users. In 
general, it is much less  than  the information required by one vir- 
tual machine that  serves many users. 

VCS provides  a different perspective on each of the  structural 
characteristics listed above, in terms of their  potential  capacity 
for inhibiting performance: 

0 Since  the virtual machine’s new capability is provided in the 
form of a new instruction,  the  service is provided in a syn- 
chronous  fashion.  Thus  the  communication  protocol is (com- 
puter)  instruction-like  rather  than  communication-like, with 
parameters passed in registers or  storage,  and results  returned 
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Figure 2 A standard CP virtual  ma- 
chine (A) compared with 
a CP virtual  machine  with 
VCS (B). 

U 
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to  the next  sequential  instruction in storage,  registers, or con- 
dition code.  This  protocol should be  much simpler to use by 
both  requestor  and  server. 

0 A vcs program, although sharable  among many users,  exe- 
cutes  as  part of the  user’s virtual machine in each  instance 
(see Figure 2) and need not explicitly serve multiple users so 
long as the program is re-entrant (in a weaker  sense  than  nor- 
mally-see below). With regard to  scheduling, it is irrelevant 
to CP whether  the  virtual machine is executing  the VMS or vcs 
program; its normal scheduling decisions  are unaffected. In 
fact, while switching execution  domains  between VMS and 
VCS, no scheduler  service is required, so there  is  no  sub- 
stantial CP involvement.  Since  the vcs program executes  as 
part of the  user’s virtual machine while serving a particular 
user,  any  event  that  blocks  the  execution of the vcs program 
blocks only that  user,  not all users as in the  case of a single 
virtual machine. 
Data  communication  between VMS and vcs is accomplished 
by sharing VMS storage with the vcs program as described 
below.  Large  amounts of data can be communicated, with no 
physical movement of data. 

VCS system preparation 

A program is specified to  execute in vcs much as named  systems 
are specified in C P . ~ ?  As with CP saved  systems, the program that 
is to  execute in vcs is loaded  and  executed  to  the point at which 
future  users will encounter it. Then  the privileged command 
SAVEVCS is executed,  creating in cp-owned  storage a copy of the 
contents of the vcs associated with the name given as  the argu- 
ment of- the SAVEVCS command. SAVEVCS refers  to a named- 
system  table  entry  and a directory  entry  created previously for 
the vcs system.  The  table  is similar in function to (but  distinct 
from)  that  for  currently provided CP named systems.  The  direc- 
tory  entry is new, reflecting the differences between CP saved 
systems and vcs systems. Specifically, memory size,  virtual ma- 
chine  characteristics,  and virtual devices are associated with the 
named vcs system,  rather  than with the  user virtual machine as 
is the  case  for CP saved  systems. 

Thus  systems  intended  to  execute in vcs can be defined only by a 
user with more-than-general privilege. There is no possibility for 
a  general-class  user  to redefine or otherwise  operate on the  names 
or  characteristics of svstems  that  execute in VCS. The  security of 
the VCS program and ot the  resources  under  its  control are pro- 
tected by the  fact  that no operations  are available to  the general- 
class  user  except  selection of the vcs system  and invocation of  it 
through  a  restricted,  instruction-level  interface.  The mechanisms 
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by which the vcs system  and  its  characteristics  are defined 
(SAVEVCS command and  directory  entry)  are  not available to  the 
general-class  user. 

VCS-the user’s view 

The  user  invokes a service  provided through vcs by executing  the 
CP IMPL command.26  This  command  accepts one argument, which 
is the name of the program that provides the  requested  service, 
much as  the IPL named system facility of VM/37OZ7 allows the  user 
to load his virtual memory with a previously saved main storage 
image of a  system.  Associated with the  system named in the IMPL 
command (through the CP directory) is the  size of vcs required, 
the  types of segments in the  system  (see  below),  the virtual ma- 
chine options  required by the  system,  and  the  devices owned by 
the  system. (IMPL differs from IPL in that  the virtual machine re- 
sources required are specified by and created for the  system 
named,  rather than the  user  executing  the  command.) To  enhance 
security,  the  system  loaded  into vcs is dispatched before the 
IMPL command is completed.  Thus  the  system  can perform initial- 
ization functions which may include checking the user’s  authori- 
zation to use the  system. 

If IMPL is executed by a virtual machine that already contains  a 
vcs, the existing vcs system is deleted from the virtual machine, 
and  the new system  named, if valid, is installed in a new VcS. 
However,  to  support  applications  such  as  data  base  systems, 
which may need to be informed when a user is disconnecting,  the 
vcs system, before being deleted, is given a machine-check  inter- 
ruption  (conceptually  a  power-down  interruption)  to allow it to 
perform termination processing before being deleted. If IMPL is 
executed with no argument,  or with an invalid one, in a virtual 
machine with a VCS, execution is as above  except  that no new 
vcs is created. IMPL can  also be executed by the vcs system, 
allowing a  system  to  annihilate itself if it  is invoked by an unau- 
thorized  user. If IMPL is executed from vcs, no power-down in- 
terruption is generated. 

CP currently provides for  the sharing of address  space  segments 
among virtual machines in read-only fashion, in connection with 
the  named-system  facility. If a  user  changes a shared  segment, 
that segment becomes  private  to him. All other users maintain the 
unchanged version.  This facility enables main and auxiliary stor- 
age to be used more efficiently by avoiding the  requirement  to 
keep multiple copies of the  same data. Since  user virtual ma- 
chines  execute  arbitrary  programs, CP must  protect  users  of 
shared  segments from changes by any of them. 

In VCS, segments  shared  among  users of the  same vcs system are 
writable.  This is necessary  for  the management of shared re- 
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sources among multiple users,  to support  shared  locks wnich con- 
trol  simultaneous conflicting requests,  and  for  shared buffers for 
data  base  systems.  User  programs  never  have  addressability  to 
vcs segments, so accidental or intentional  change by user  pro- 
grams is not a concern. If protection within vcs of some  read- 
only code  segments is desired  to  protect  against  errors in vcs 
code, it can be provided by the vcs program for itself using stor- 
age key facilities available in S y ~ t e n d 3 7 0 . ~ ~  

Any number of VCS segments  can be specified as private to  each 
instance of a vcs program that  serves  one  user.  Thus working 
storage  can be statically allocated in the vcs program and  de- 
clared to be in private  segments in the  directory  description of the 
program.  There is no  requirement  for explicit storage manage- 
ment in support of multiple users in the vcs program-it is pro- 
vided automatically by CP virtual  storage  management. 

Figure 3 The types of VCS seg- In real  computing  systems,  the  control  storage program can  ad- 
ments. dress all of main storage.  The implementation of vcs is con- 

strained by the limitation of Systend370's addressing  capability to 

i i X . . " i  of VMS and vcs if the  latter  were  to  be  able  to  address all of VMS. 
In designing VCS, therefore,  an  alternate  approach was taken:  The 

.XX...X directory specification of the vcs system defines some  number of 
l i X I I . X  segments as communication segments-that is,  segments in vcs 
I / / / / / /  whose  purpose is to hold segments of VMS to allow data  commu- 

vMsi X X l X X X "  .XxxxI. XXX"X." VMS 16 777 215 bytes, which implies a limitation on  the combined size 
XXX."XX 

XXXI".. 

13x.111. 
x... X"" 

11.111.1 

".".X." I X l l i i X  

X"..".. 

nication between VMS and vcs. Parameters of the  instruction to 

be mapped  into VCS. This mapping can be different for different 
Segment in VCS privatetoeachinstance users of the vcs system  and  for different invocations of the vcs 

program by the  same  user. When CP is changing the  execution 

changes  the  communication segment mapping, if necessary.  Thus 
each vcs segment is one of three  types: 

0 Shared with all users of the vcs program, in read/write mode. 
0 Private in VCS for  each  instance of the VCS program. 
0 Defined in vcS to hold segments of VMS for  communication of 

0 forcommunicatlonanddatatransfer SegmentinVCSthatholdsVMSsegments, be implemented by the vcs program identify segments of VMS to 

of the VCS system 

c] Segment in VCS, write-shared  among  all 
instances of the VCS system domain of the virtual machine from VMS to vcs, it establishes or 

data. 

Figure 3  illustrates in a  general way the use of the  types of vcs 
segments.  The  write-sharable  segments  (perhaps  the  largest num- 
ber  for a data  base  application) used for code,  data  base buffers, 
and  shared data  areas,  are indicated by the symbol X. The  private 
segments  (probably  one or a small number) are indicated by the 
symbol /. vcs segments that hold VMS segments  for  data commu- 
nication are  indicated by blank spaces. 

virtual machine VCS implements a  previously undefined instruction  for VMS, one 
operation with VCS which causes  an illegal-operation program interruption in the  ab- 
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Table 1 Assembler-language  representation of the  new  instruction  implemented  by VCS 

dc x’ffel’ operation code 

dc h’r’ number of ranges of segments specified 

dc h’k’ number of individual segments 

dc rh two  bytes for each range, the first 
byte specifying the  first segment, the 
second specifying the last segment 

dc  kx  one byte for each individual segment 

sence of vcs. An assembler-language  representation of the in- 
struction in the  current implementation is given in Table 1, which 
illustrates  the  format of the  description of the  segments of VMS to 
be mapped into VCS. The half-word that follows x’ffel’  must 
agree with the directory  description of the  communication seg- 
ments of the vcs system-that  is,  the VCS system  must  expect  the 
same number of ranges of communication  segments  and  the  same 
number of individual communication  segments  that are specified 
in the  instruction, or else a specification exception is reflected to 
VMS. (The range in the  instruction may specify fewer  segments 
than vcs is prepared to  accept, however, to allow for  the possi- 
bility that vcs has  access  to all of VMS and that different users 
may have different virtual machine sizes.) It is expected  that nor- 
mal usage would specify no range or  one,  or a small number of in- 
dividual segments. Observe  that  the  instruction is  of variable 
length. 

Upon valid execution of the  instruction by VMS, the specified seg- 
ments of VMS are mapped into  the  corresponding  slots in VCS, the 
program status word and  registers of VMS are made available to 
the vcs program at defined locations of vcs page zero,  and  the 
virtual machine configuration is made to  correspond to that of 
VCS. The virtual machine is then  dispatched in VCS. When execu- 
tion is completed in VCS, exit is effected by executing  the  same 
instruction, but no segment mapping occurs.  Execution  returns to 
the  next  sequential  instruction in VMS unless  the VCS program 
modified the VMS program status  word,  or some  enabled  inter- 
ruption  condition  for VMS became pending while execution  was in 
VCS, in which case  the  appropriate new program  status  word is 
activated  for VMS. 

To  improve  performance, the VMS program can  execute  the 
x’fffl’  operation code, which is equivalent  to  x’ffel’  except  that 
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the VMS-to-VCS mapping is not performed,  but  remains un- 
changed. In this form of the  instruction, the  two half-words that 
follow the  two-byte  operation  code  are  not  examined.  The length 
of the  instruction is six bytes.  The  purpose is to shorten  the length 
of the  path  between VMS and vcs when there is no  need to change 
the VMS-to-VCS mapping. 

Scheduling decisions  about  this virtual machine are made inde- 
pendently of the  activity just  described. Central  processor utiliza- 
tion, main storage  utilization, etc.,  are accounted  for  without  con- 
sidering whether  the  virtual machine is in VMS or VCS. The  server 
and  the  requestor  execute  synchronously,  and information is 
transmitted  between  them through memory locations,  register 
values,  and  the program status word (condition  code). 

Asynchronous events, such as interruptions from various  com- 
ponents of the virtual  system, must be identified as belonging to 
VMS or vcs and  presented  to  the  correct  address  space.  The  order 
in which interruptions are presented is defined by the following 
rules: 

0 If the  interruption belongs to  the  address  space in which the 
virtual machine is executing,  then normal interruption reflec- 
tion is performed. 

0 If the virtual machine is executing in VMS and  an  interruption 
for vcs occurs,  the  virtual machine is switched  to vcs and  the 
interruption is presented (if the vcs program is enabled  for the 
interruption). Upon exiting from VCS, the virtual machine is 
returned  to VMS execution. 

0 If the virtual machine is executing in vcs and  an  interruption 
for VMS occurs,  the interruption is kept pending for VMS until 
the vcs program exits,  at which time the  interruption is pre- 
sented if the VMS program is enabled  for  it. 

vcs is designed to  support  sharing of resources by multiple users, 
particularly when there may be conflicts between  simultaneous 
requests.  Shared writable segments  are  provided  to allow the 
lock management facilities of Systed370  to control  such  ac- 
cesses.  The question  arises as  to what is to be done  when  a VCS 
program executing  on behalf of one  user  requests  a lock held by 
that  same program executing  for  another  user. One solution is to 
establish  the  convention  that  associated with each lock is a list of 
users waiting for  the  lock. When an  instance of the vcs program 
encounters  a held lock, it can wait for  the lock by entering its 
name on  the list for  that  lock,  then  entering a wait state. When the 
holder of the lock releases  it,  an  interruption is posted  to  one of 
the waiting virtual machines by means of existing mechanisms in 
CP-the Virtual Machine Communication Facility (vMcF),~’  for 
example. (To contain errors in vcs programs, as well as  for  other 
reasons,  an n f l s t  virtual machine is required-see below.) 
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Features of VCS 

Several interesting and  some novel features of system  structure 
follow from the design of VCS. These  features  are  described 
briefly  in the following paragraphs. 

The  synchronous  interface  between VMS and vcs places a mini- 
mal burden  on  the  user  when invoking the vcs facility,  compared 
with using a distinct,  asynchronous virtual machine.  The dif- 
ference is essentially  the difference between coding a new instruc- 
tion and coding to  a  communication  protocol, which requires  es- 
tablishing the  connection, allowing for  arbitrary severing of the 
connection, and asynchronous  processing  on  every message. 

The vcs program has available the Systed370 interface, as  does 
the VMS program. In  particular,  the vcs facility can be based in 
any  operating  system that  executes in a VM370 virtual machine. 
Apart  from  protection  and  performance  features,  the simplicity of 
coding for  a  synchronous  interface  and  the  storage sharing facili- 
ties  available in VCS allow VCS to  be used as a simple way to 
establish  cooperation  between  programs  based in different oper- 
ating systems,  or to make a facility based in one operating  system 
available to users working in a different operating system." 

The vcs extension  to  the virtual machine structure  separates  two 
distinct  functions which were previously coupled in virtual ma- 
chine  systems.  The  functions  are change of execution domain 
(that  is,  protection  domain)  and change of tusk (scheduling unit). 
In VW370, substantial effort is exerted  to  monitor virtual machine 
usage of real  storage, which involves considerable  software  exe- 
cution when a change occurs in the scheduling status of a  virtual 
machine, If a virtual machine must wait for  service  from  another 
virtual machine,  the  system  structure  causes a change in sched- 
uling status  for  the  requestor, although the  nature of the  computa- 
tion does  not. vcs avoids  this  change in status by making the 
server  part of the  scheduling unit of the requestor.  Researchers 
with MULTICS have long recognized that  these  two  functions  must 
be separated, and in fact a hardware  extension has been defined 
to aid the  ~eparation.~' In  the IBM IMSIVS environment,  the  cost of 
domain crossing  has  required special steps  to improve perform- 
ance. 31 

In addition to decreasing  the length of the  path  between  requestor 
and server,  the vcs structure automatically allows CP to  account 
properly  for  server  execution  on behalf of individual requestors. 
When one  server machine is used for multiple requestors,  this  ac- 
counting  burden must be  borne by the  server  machine,  since it is 
essentially impossible for CP to  do it. 
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The vcs structure  provides  one  process  (instruction  counter,  reg- 
ister set,  etc.)  and  some  private  storage  for  each  user of a facility. 
Therefore  the vcs program need not explicitly control multiple 
users,  apart from the logical requirement  that  simultaneous  exe- 
cution  sequences in the vcs code  must be serialized if they in- 
volve simultaneous conflicting accesses  to some  shared  resource. 
It is expected  that a locking strategy would be used in VCS to 
manage conflicting accesses,  but  the  structure  does  not  preclude 
any  other  strategy by the vcs program. 

The ability to specify any segment of VCS as  shared,  private,  or 
reserved for communication  has implications for  re-entrancy  of 
code in vcs which may not be immediately obvious. Writable 
working storage  for  each  user is provided automatically by CP, so 
no explicit  storage  management  interface  is  required in the VCS 
program.  Code  segments  that usually are (always  ought to  be) 
read-only  can be placed in shared  segments.  Thus  any  existing 
single-user program can  be  shared among multiple users in 
vcs with, at  most, repackaging of modules into private and shared 
categories. By definition, single-user programs  contain no multi- 
user logic. A single-user system being adapted  to  serve multiple 
users  through vcs must  be  enhanced  to manage simultaneous 
conflicting requests, if any;  the code  and data used to  accomplish 
this are placed in a  shared  segment.  Other  portions of the  pro- 
gram are packaged into  shared and private  segments as neces- 
sary, and  the only code  changes  are  the  necessary logical en- 
hancements. 

Since vcs never is directly  addressable by the VMS program, it 
provides  the  capability of defining certain  areas of main storage 
as containing program text  that  cannot be read or  written, but 
only executed.  This  capability,  not provided by Systed370 archi- 
tecture,  can be essential, particularly when a high degree of secu- 
rity is required. 

When an application that  involves  a  shared  resource manager is 
being considered  for  insertion  into a vcs structure, it quickly be- 
comes  apparent  that  some  components of the manager relate to 
the  application as a whole,  not to only a  particular  user.  For  ex- 
ample, in a data  base management system,  there may be a re- 
quirement  for  deadlock  detection, or for  recovery in the  event of 
failure in support of a  particular  user, or  for periodic house- 
keeping functions.  Since each virtual machine  executes  the 
shared VCS program independently of all others  (except  for 
shared  locks), it  is natural  for 9 system  administrator  function to 
execute  in  an n+lst virtual maghine (if there  are n users) to carry 
out  necessary  system  functions  asynchronously with regard to 
the  execution  for  any  particular  user.  The  shared  storage  can be 
configured to provide  asynchronous  functions with access  to all 
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required  code  and data.  The n+Ist virtual machine enables  the 
system  administrator  to perform whatever  security  or reliability 
services are required by the application. 

Performance 

The  motivation  for  the  design and implementation of VCS was to 
improve  the capability of VM/370 to  control  access  to  a  shared  re- 
source in a  secure  fashion. Design features  that  contribute  to im- 
proved  security  have  been  discussed  above. It is the  author’s be- 
lief, however,  that  performance is a crucial consideration in all 
aspects of operating  systems  research, in the  sense  that  function 
is meaningful only if it can be delivered with acceptable perform- 
ance,  and  that improved  performance  often  reveals  enhanced 
functional  capability.  Thus  this  discussion  includes much consid- 
eration of performance  characteristics. 

Initially the  mechanisms available for  communication  between 
virtual machines were modeled on  input/output facilities of Sys- 
ted370. Data  could be transmitted  as virtual unit records, 
through virtual card  punches,  printers,  and  card  readers,  or 
through virtual channel-to-channel  connections  between virtual 
machines.  Subsequently the Virtual Machine Communication Fa- 
cility (VMCF)” became available.  Chandra  and Katcher3’ com- 
pared virtual machine communication via unit records with com- 
munication using an experimental  precursor of VMCF and  found  a 
substantial  decrease-more  than 50 percent in all cases-in the 
elapsed time required to communicate with a local virtual  disk 
manager. 

The  ways in which the vcs structure should provide better  per- 
formance  than  a  cooperating virtual machine structure  have  been 
listed above. Briefly they  are:  synchronous  interface,  single-user 
code in the  server,  decreasing  supervisor  cost of data  trans- 
mission,  and avoiding scheduler  overhead  on calls between  user 
and server. 

A very simple data base program was used to test the vcs imple- 
mentahon  and  provide  some  measurements of performance. With 
this program, meaningful counts could be taken of supervisor (CP) 
instructions in support of the  execution  domain switch between 
VMS and  VCS, which included the CP cost of data transmission. 
Quantitative  measures of the  other items would require  measure- 
ment of a significant application  executing  both in vcs and in a 
multiple virtual machine environment. 

The  technique used to  count  supervisor  instructions  was  to em- 
ploy the CP TRACE INST command,26  creating  a print line for  each 
instruction  executed in the virtual machine, which in this  case 
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Table 2 Performance  comparison of VCS and VMCF 

Number of Execution 
instructions  time (in 

executed microseconds) 

vcs 874 290.77 

VMCF 7320  2622.86 

was executing  the version of CP modified to provide VCS. One 
complete  communication  was  traced  between a VMS program and 
the  data base program executing in VCS. The  total number of CP 
instructions  executed from the time when the request  was made 
to  the  time when the  response was received by the vMS program 
were  counted,  and  execution  times for the instructions  executed 
were  calculated, using timing figures for  the Systed370 Model 
168. Equivalent  programs  were  written to  execute in two  distinct 
virtual machines using VMCF for  intermachine  communication, 
and the same timing runs  were  performed.  The  results  are given 
in Table 2. 

A detailed  study of the  instruction  trace of the VMCF sequence 
reveals that  the great majority of the instructions  executed  result 
from two  characteristics of the VMCF facility: The  interface be- 
tween virtual machines is asynchronous,  and in general  there 
must be CP scheduler  action  for the communication to  be com- 
pleted. 

Much of the cost of the  asynchronous  interface is due to supervi- 
sor  actions  such  as dynamically allocating working storage  for 
each message (since  a  user  can have more than  one message out- 
standing  at  a  time), dynamically searching the list of active  users 
(one  party  to  the  communication may have logged off since  the 
communication  was  begun), reflecting an interruption to  the  tar- 
get of a  communication  (asynchronous  communications  require 
asynchronous  events  to notify the  communicators),  and  various 
validity checks on the memory addresses specified by the com- 
municators. No one of these items is surprisingly large; all are 
required by the  nature of the  system  structure, and all are re- 
flected in the  total  supervisor  cost. 

Other  sources of supervisor  cost are execution of the  dispatcher 
and  scheduler,  and  a  resource usage monitor  component which is 
invoked when execution  changes  between  distinct  virtual ma- 
chines. 

The design and implementation of vcs were  carried  out within the 
context of existing VW370 scheduling strategy, which contains no 
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provision for coupling scheduling parameters of two  (or  more) 
virtual machines. Bagley et  al., and  others informally, have sug- 
gested  the possibility of changing the scheduling strategy of VM/ 
370 to be more hospitable to a  structure  that  contains  multiserver 
subsystems, in such  a way as  to allow rational CP scheduling of 
cooperating virtual machines, but no detailed design or imple- 
mentation of such  strategies is known to  the  author. 

It should be mentioned that  the scheduling advantages claimed 
for the vcs structure  accrue only if a  requestor in vcs encounters 
a held lock infrequently.  Since CP is not involved in the  setting of 
locks by the vcs program, it schedules virtual machines regard- 
less of locks held or required. If the  nature of an application is 
such that held locks are encountered  frequently,  that  application 
is not suitable  for  the vCS structure, which is designed to allow 
multiple, independent,  simultaneous  executions of the  server pro- 
gram. If an  application is such  that individual users must hold 
locks for long periods, that application does  not lend itself to a 
(mostly)  single-user  code implementation and hence is not  suit- 
able for VCS. 

While a  communication is active,  events  can  occur which 
lengthen the time required  to  complete  the  communication,  but 
are  not directly caused by it. For example, during the communi- 
cation  traced,  there  were  two real interval-timer  interruptions 
which may or may not have been caused by the  communication. 
In an operational  environment,  events of this type  often  occur 
during a communication, increasing response  time.  (See Refer- 
ence 25 for a more complete  treatment of such  events.) Although 
such  events can occur in the midst of a VMS-vcs communication, 
the probability of increasing the  path length is less  because  less 
time is taken. 

The  supervisor  instructions that support VMS-VCS communication 
result mainly from two  functions  that need to be performed. 
When changing between VMS and VCS, the  execution domain of 
the  virtual machine must be redefined. This is accomplished by 
exchanging a fairly large number of  fields  in the VMBLOK, the 
basic  control block used by CP to  describe  the virtual machine. 
Since these fields are in general not contiguous,  a fairly large 
number of instructions  (approximately 25 percent of the  total) are 
required  to accomplish the  exchange.  To minimize the implemen- 
tation time of VCS, the fields in the VMBLOK were'not rearranged 
to allow fewer  instructions to accomplish the exchange, although 
in a  production version this  could be done, with a  corresponding 
decrease in the path length. 

The  other major contributor  to  the  path length is the  analysis  per- 
formed in the  dispatcher  to  determine  whether  the  interruption 
status of the machine has  changed,  since  the  execution domain 
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will have  changed. If certain  restrictions on the capability of the 
vcs program were  accepted (in the  area of interruptions  possible 
and  extended  architectural  features  available), the  total  path 
length could be reduced by approximately 33 percent. 

Summary 

An experimental  extension  to v ~ m o  provides  the virtual machine 
with a  protected,  fast-access  execution  and  data  domain.  New 
capability in the form of a new instruction,  whose meaning is de- 
fined by an  arbitrary,  protected  program, is made’available  to  the 
virtual  machine.  Protection is provided by  basic, existing mecha- 
nisms in VW370, namely virtual  storage  and virtual device man- 
agement.  Supervisor  overhead  required to  support communica- 
tion between a user  and a server  executing in vcs is minimized 
because  the domain switch does not involve a virtual machine 
(task)  switch,  and  because  the  interface  provided is synchronous. 

The  architecture of vcs is based on the  concept of microcode 
which implements instructions  for a machine architecture. When 
this  concept is applied as a means of providing service to multiple 
users in a virtual machine environment,  there  are many inter- 
esting implications for  the  structure of the  code  that implements 
the service. The intention is to provide a system  structure in 
which service  can be provided in a way that  avoids  unnecessary 
invocation of function or duplication of function in server  code 
and in the underlying control program. 
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