
The growing use of the virtual machine concept has resulted in
the necessity for communication between the virtual machines.
The design and operation of the Virtual Machine Communication
Facility is discussed as an approach to oflering such communica-
tion. The facility is an interface allowing a logical connection be-
tween two or more virtual machines. Potential applications for
this facility conclude the discussion.

A formal approach for communication between logically
isolated virtual machines

by R. M. Jensen

A virtual machine (VM) is a well-defined hardware architecture
that is presented to a terminal user in a somewhat illusive man-
ner. For those users who understand the concept, it is like having
an entire real computing system at their disposal. To most CMS
(Conversational Monitor System) users, the system is a time-
sharing and program development tool, and they give little
thought to the actual machine capabilities that exist. The virtual
machine is an assimilation of its counterpart, the real machine,
yet its users and requirements may vary widely.

The requirements for communication between virtual machines
may be the same as for real machines, or may be closely related
to the requirements of inter-CPu task communication. This paper
discusses the Virtual Machine Communication Facility (VMCF)’”
as designed and implemented for Virtual Machine Facility/370
(VM/370) Release 3 , Program Level Change (PLC) 8 and sub-
sequent releases. VMCF is a software interface that provides a
logical connection between two or more otherwise isolated vir-
tual machines. The interface is not an application but is rather a
facility upon which applications may be built. Presently, the im-
plementation does not include a high-level language or macros;
instead, the execution of functions is achieved directly through
use of the VM1370 diagnose interface (conceptually similar to SVc-
level programming in other operating systems). The first part of

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J VOL IS NO 1 1979 JENSEN 71

this paper provides a rationale for developing VMCF and discusses
advantages and disadvantages of prior methods for intermachine
communication. The other methods are discussed purely from a
virtual machine point of view; any applicable benefits for native
operation are not included.

The next part of this paper presents an overview of the design and
functions provided by VMCF. The discussion here may appear to
be at a more detailed level than is necessary for this paper; how-
ever, the components discussed are the externals associated with
the interface. This is true partly because of the nature of a virtual
machine itself. A user, if need be, is not bound by operating sys-
tem software but, in fact,' has tbe almost limitless flexibility of
machine languages and hardware. VMCF is an interface at that
level.

Next, the paper discusses the types of potential application
power that exist using VMCF and/or intervirtual machine commu-
nication in general. Some of the examples cited are hypothetical,
whereas others are actual implementation. The purpose of this
section is not to discuss specific applications themselves but
rather the types of applications that could be developed.

Last but not least, a synopsis of VMCF is provided with con-
cluding remarks to support the paper itself.

Background

The idea of communication between logically isolated virtual ma-
chines is not new. Many methods have been employed by both
IBM and users and can be traced back to the early days of CP-67,
the predecessor of VMi370. The inherent design of the control pro-
gram (CP) provides a capability to transfer spool files from one
virtual machine to another. A virtual (simulated) channel-to-
channel adapter interface (CTCA) was developed to support the
testing of a loosely coupled multiprocessing environment in a vir-
tual machine (OS/ASP-Operating SystedAttached Support
Proce~sor) .~ In a few cases, hardware communication lines were
used to link together one or more virtual machines (primarily for
testing purposes). In spite of existing facilities supported by the
control program, several other methods were employed (requir-
ing CP modifications) to provide a more efficient and general-pur-
pose interface. These included VMCF-like functions and/or MP/AP
(multiprocessor/attached processor) simulation using the SIGP
(signal processor) hardware instruction. VMCF, itself, is an evolu-
tion of prior modifications to the control program.

The use of spool files for communication is desirable for certain
classes of data but is not efficient as a transaction and/or message

72 JENSEN IBM SYST 1 VOL 18 NO 1 1979

process involving storage-to-storage data transfer. The spool file
data itself must first be placed on a real spooling device (DASD-
direct access storage device) before it can be transmitted to an-
other virtual machine. The data then must be read from the spool-
ing device and is generally implemented as a simulated 1/0 inter-
face (virtual unit record I/o). The advantage of this interface is
that it approximates a store-and-forward technique, and the data
is checkpointed and preserved across system failures. This type
of communication is desirable, particularly for critical data files
and network-like teleprocessing environments.

A possible virtual, simulated MP/AP environment implies the use
of shared read/write storage and is designed primarily for control
program access rather than for the application level. The use of
such a facility for intermachine communication is beyond the
scope of any known application, other than software develop-
ment of a MP/AP hypervisor. The use of shared readwrite storage
could have its advantages (fast data move) but could be difficult to
manage when a large number of virtual machines are involved.

The virtual channel-to-channel adapter appeared to be the most
prevalent for certain applications involving intervirtual machine
communication. The support was a standard part of the VM370
system control program, and did not require user modifications.
The interface provided by the CTCA is part of the architecture
within the hardware and as such could be used without modifica-
tion to other existing software (particularly the operating sys-
tems). Use of the virtual CTCA did not preclude potential support
for native CPU communication. The simulation of the CTCA by the
control program is consistent with its native operation and char-
acterist ic~.~ The simulated method for transferring data is from
virtual storage to virtual storage and does not require internal
buffering by the control program or excessive free storage de-
mands on the control program. The virtual CTCA was not con-
strained by the availability of physical hardware and is totally
software-simulated. Data is transferred using the MVCL and MVC
instructions (read and read backward, respectively) and all hard-
ware functions (e.g., storage protection and channel commands)
are applied to the simulation. The method of communicating
from storage to storage was clearly more efficient than other ex-
isting facilities.

The virtual CTCA serves several purposes well, particularly for
ASP-like environments that require direct CPU-to-CPU communi-
cation and involve a small number of virtual machines. But the
progression of virtual machine subsystems, central server appli-
cations, and network-like communication among a large number
of virtual machines precludes use of the CTCA.

The CTCA was designed to communicate from one CPU to another
and not from one CPU to many others. The general use implies

IBM SYST J VOL 18 NO 1 1979 JENSEN

that two physical (or virtual) channels are connected together.
The channels may belong to the same or separate virtual ma-
chines. The control program provides a couple command to con-
nect the two virtual channels. The user of the couple command
must understand the hardware (virtual) configuration of the target
virtual machine, i.e., the virtual address of the cTcA. If the cou-
pling (or connection) of virtual machines is to be dynamic, then
there must be a mechanism to communicate the available CTCA
addresses (assuming a multiaccess environment). The virtual
CTCA is also a simulated hardware function and is constrained by
normal hardware limitations, i.e., the number of channels and de-
vices. The CTCA itself occupies an entire control unit position.

The CTCA I/O is an asynchronous process but does not use the
block multiplexing capabilities of a Systed370 channel; hence, it
is difficult to provide for concurrent data transmissions on a single
channel. The I/O interface is also not generally well understood at
the application level. The implementation of virtual CTCA support
by CP involves full ccw (channel command word) translation for
both sender (source) and receiver (sink) channel programs. This
implies that the data pages (4K blocks) requiied to complete the
operation must be fixed (locked) in real storage, and, depending
on the amount of data, could potentially impact the operation and
performance of the system.

VMCF The desigri and implementation of VMCF, then, is a solution to a
characteristics problem. The functibns provided fit well for applications that re-

quire virtual machine communication and do not have depend-
encies on native CPU communication. The method employed is
fast and efficient and overcomes many difficulties observed with
prior methods of intermachine communication. VMCF provides
simple and symmetrical protocols that can be understood at the
application level. The connection of one virtual machine to an-
other is a logical process for the duration of a single transaction.
There is no master-slave relationship, and any authorized virtual
machine can communicate with any other authorized virtual ma-
chine in a logically symmetrical fashion. The movement (transfer)
of data is from virtual storage to virtual storage, and only one 4K
page is ever fixed (locked) at a time during a single transaction
(regardless of data size). The process is totally asynchronous (as
with CTCA) but is not constrained by hardware limitations.

The inherent design of VMCF provides a queuing mechanism that
allows multiple concurrent transactions to be processed by a
single virtual machine(s). The transactions may originate from
one other machine or many other machines (function of the appli-
cation). Control of the access to a particular virtual machine is
determined by its authorization state. A basic nonspecific state
will enable a user (virtual machine) to accept requests from all
other authorized users. A specific state implies that a user may

74 JENSEN IBM SYST J VOL 18 NO 1 1979

receive requests from one other user only. In either case the
VMCF queuing structure allows multiple transactions to be
stacked and processed by a given virtual machine within the con-
straints of its authorized state. Figure 1 shows three basic VMCF
logical configurations based on the specific/nonspecific authoriza-
tion mechanism:

1. The end-user to end-user configuration indicates that both vir-
tual machines have authorized specific states for each other
and will not accept VMCF requests from any other users. The
application of this configuration would be most appropriate in
a test environment. One virtual machine may be the target
while the other is an externally controlled simulator (e.g., de-
vice simulator, error injector, terminal script).

2. The central server configuration implies that all users of the
application have an authorized specific state with the server
machine and will accept requests (transactions) from the
server only. The server, on the other hand, is authorized as
nonspecific and will accept requests from any user wishing to
use the application. The application may involve a subsystem
that provides system-wide services and/or a mechanism for
sharing computing resources (e.g., data base, query, hardware
devices, software).

3. The last configuration is the basic nonspecific state whereby
all authorized users may be logically connected to each other.
This configuration is appropriate for applications that involve
multiple subsystems or central servers or where specific au-
thorization is too restrictive. It should be noted that the VMCF
authorized state is controlled by the user and may be dynami-
cally changed at any time.

A disadvantage of VMCF is that it is not supported by other major
system control programs (e.g., DOSIVS, VSI, vS2) and to do so
would require modifications to the subject system control pro-
gram. In viewing the design and architecture of VMCF, we can
make an analogy with a channel-to-channel adapter, since many
of the principles are similar.

Design and architecture

From a user point of view VMCF consists of the following basic
components:

A diagnose function (instruction) to initiate a VMCF request or
subfunction. The hardware diagnose instruction is not sup-
ported in a virtual machine in the same manner as on a native
CPU. Rather, the instruction is used to provide a special inter-
face to the control program from a virtual machine. The VMCF

Figure 1 VMCF logical configura-
tions

S =SPECIFIC
N=NONSPECIFIC

-
~~~~ ~~ 

gram.  The use of this  function is similar to  a SI0 (Start Yo) 
instruction  executed to a  channel-to-channel  adapter,  i.e., it 
initiates  a  control or  data transfer  sequence.  The diagnose 
function  provides  return  codes indicating successful initiation 
of the  request or  error conditions  associated with the  request 
(e.g., SIO condition codes). 

0 A user  parameter list that describes  the  request.  The use of 
the  parameter list is similar to a CTCA I/O channel  program, 
i.e., it indicates the  type of request  (read-write-control)  and 
provides  data  addresses  and lengths associated with a data 
transfer  operation.  The  parameter list additionally directs  the 
request  to a specific virtual machine (known by a  user identi- 
fier, or USERID) and  provides  a message identifier to distin- 
guish the  request.  The  uniqueness of a VMCF request is distin- 
guished by both  the  target  user identifier and message identi- 
fier. A user,  for  example, may selectively  choose  a message 
(data)  sent  to his virtual machine based  on  the  source  user  and 
message identifiers. 
Simulated hardware  external  interrupts  to  synchronize  a 
request.  The  purpose of the  external  interrupts  is twofold. A 
send  external  interrupt is used to notify the  receiver (sink) of a 
sender  (source)  request.  This  interrupt is equivalent to an  at- 
tention  interrupt  presented by a channel-to-channel  adapter. 
As a  response  an  external  interrupt is generated  for the  sender 
to signal completion of a  request.  This  interrupt is equivalent 
to an ending status vo interrupt  for  a CTCA UO operation.  The 
rules  for  transferring  data with VMCF are identical  to  those in 
the I/O system.  The buffers used to contain  data  cannot  be 
reused until the  operation  has been completed  (the VMCF re- 
sponse  external  interrupt). Similarly, the same  storage  pro- 
tection  (store-fetch)  and  addressing  considerations apply 
equally to  the VMCF request. 
A message header  describing  the  external  interrupt.  The  ar- 
chitecturally specified hardware data provided with an ex- 
ternal  interrupt is not  enough  to  describe a source  request  or 
completion of a request. VMCF, then, reflects additional data 
with all external  interrupts,  i.e.,  the message header.  The 
message header  data is stored in a predefined virtual  storage 
location that  is specified by a  virtual machine when it author- 
izes  (separate diagnose subfunction) a VMCF communication. 
The message header  describes  the  source  request to  the re- 
ceiver virtual machine and is in  essence a copy of the  source 
parameter  list.  The USERID, however, is changed to  indicate 
the  source  user  or originating virtual machine.  To  the  sender 
virtual machine the message header  describes  the  completion 
status  for  the original request.  The  completion  status  serves 
the same  function as ending  channel  status word status  and/or 
sense  data  for  an I/O operation. Also, the completion  status 
provides residual data  counts indicating how much data  was 



status  word residual counts). In all cases  the message header 
contains  status flags indicating the  type of external  interrupt 
(send or response). 

0 Data 

Figure 2 depicts  an analogy between a typical VMCF request  and a 
CTCA I/O operation.  Several commonalities and  distinctions  are 
described below. 

Both processes are  asynchronous.  The CTCA is attention-driven, 
and VMCF is external  interrupt-driven. 

Both processes are symmetrical.  Either  side may be source  or 
sink without  distinction,  and  the  protocols are functionally bal- 
anced. 

Both processes involve storage-to-storage  data  transfer  and are 
architecturally  consistent (by definition). 

The CTCA I/O operation  shown is not  exactly  typical.  The  atten- 
tion interrupt  presented  to  the sink machine is normally not 
enough to indicate the  type of request (although possible with 
unidirectional  protocol).  In reality an  additional I/O operation 
would be required  to  read  the command byte of the  source 
request,  i.e.,  indicates  type of request-read,  write,  control. 

The CTCA I/o operation  requires  an ending status interrupt  for  the 
sink machine which is  not  necessary with the VMCF request  (end- 
ing status-return  codes  occur when the diagnose  instruction  com- 
pletes). 

There  are  other  architectural  details  that would tend to distin- 
guish VMCF from the 110 system  (e.g., VMCF data  areas must be 
contiguous within a given transaction,  whereas  the cTCA will al- 
low command-chainingldata-chaining into  noncontiguous areas, 
and  the CTCA protocol will allow data  to be solicited with a  read 
(truly symmetrical),  whereas VMCF requests must be initiated 
with a write-type  request,  etc.). 

A single protocol is all that is needed to communicate  and  transfer 
data  between virtual machines. VMCF provides  several  protocols 
to  assist in performance  and usability and to enforce a formal- 
ization of the  interface.  The flow  of data  between  virtual ma- 
chines may be either unidirectional (source to sink) or bidirec- 
tional (source  to sink to source).  The  enforcement of protocols is 
at  the  transaction  level,  that  is, only during the transmission  and/ 
or exchange of data  for  a single request. VMCF communication 
may consist of a single protocol or combinations of all available 
protocols  for multiple transactions.  The  connection of two  virtual 
machines is a logical software  process (by USERID) and is bound 

IBM SYST J VOL 18 NO 1 1979 JENSEN 



Figure 3 VMCF protocols 

VMCF 
SOURCE(VS) I SINK(VS) 

SEND P~OTOCOL 

INTERRUPT 

DATAT(ANSFER I ~ I 1 INTERRUPT 

SENWRECEIVE PROTOCOL 
I 

INTERRUPT 

DATA TRANSFER 

]-REPLY 

DATATRANSFER 

EXTERNAL d 

only by those  elements involved in a data  transfer  operation. Fig- 
ure 3 portrays  a  relationship  between  the  various VMCF protocols, 
which we now define. 

The send  protocol implies a  one-way  (unidirectional)  transmis- 
sion of data from  the  source machine’s virtual  storage to  the sink 
machine’s virtual storage.  The send diagnose  function is used by 
the  source  to initiate the  transaction,  and  the  receive diagnose 
function is used by the  sink to accept  (and  transfer)  the  actual 
data. 

The sendlreceive  protocol implies a two-way (bidirectional) trans- 
mission of data from source  to sink to  source within a single 
transaction.  The  sendheceive diagnose function  initiates  the 
source  request (as with send),  and  the  receive  protocol is used by 
the sink to  transfer  the  actual  data.  The  transaction, in this case, 
is not  terminated until the sink  responds with a reply diagnose 
function.  The reply causes  data  to be transferred  from  the sink 
machine’s virtual storage to  the source machine’s virtual storage. 
The benefit of this protocol is that  data may be  exchanged within 
one  transaction  and  result in less CPU execution time than  two 
send  protocol  transactions. 

The sen& protocol is provided to  improve  performance for one- 
way data transmission.  This  protocol  eliminates  the  need  for the 
sink machine to  execute a  receive  function.  The  actual  data is 
transferred  into  a special buffer at  the  same  time  the sink receives 
the  external  interrupt. A disadvantage of this  protocol is that 
the sink virtual machine cannot  be  judicial with the message 
(data) it receives;  Le., the  data is automatically  “received” 
when the  external  interrupt is accepted. 

The  details of the various VMCF protocols are available in the ZBM 
Virtual Machine Facility1370 System Programmer’s Guide.’ 
However,  certain  characteristics  that should be noted are now 
described. 

The  asynchronous  processing of a request is accomplished by the 
external  interrupts.  The  source  request  causes an  external  inter- 
rupt to be queued  for  the sink (notification), and  the  completion of 
a transaction by the sink causes  an  external  interrupt  to be 
queued  for  the  source (final response). 

Because the  entire  process is asynchronous,  the  elapsed time be- 
tween the send  type  and  receive  type  functions could be signifi- 
cant  (even indefinite). The  source  data  and buffer, therefore,  must 
be left  intact until the  entire  operation  has  completed (is not buf- 
fered by the  control program). The  user  parameter  list,  however, 
is copied  into CP real  storage  and may be reused immediately fol- 
lowing the diagnose  instruction. 

JENSEN IBM SYST J VOL 18 NO 1 1979 



The  processing within the  source virtual machine may overlap  the 
VMCF request.  That  is,  the virtual machine is runnable (dis- 
patchable)  after  the  request is initiated. The  source may send  oth- 
er messages to the  same  sink  (requires unique message identifier) 
or send messages (data)  to  other virtual machines. Similarly, the 
sink virtual machine could be  the  source of other  transactions in 
the  system. 

The  amount of data  transferred by a single request is restricted 
only by the size of the virtual machine (virtual  storage size). 

There may be multiple VMCF external  interrupts  queued  for  a 
single virtual machine (send  and  response).  The priority of mes- 
sages in the  system is essentially  determined by the  order in 
which the  external  interrupts  are received (may be FIFO (first in, 
first out)  or by priority). Beyond that  the sink virtual machine 
may select specific messages based on its own priority order (by 
user  and message identifiers). That  is,  the  sink may receive mul- 
tiple external  interrupts  (requests) before ever responding to  a 
single-specific request.  The machine then  can be selective in the 
messages it chooses  and  the  order in which they  are  chosen. 

VMCF is typically viewed as a mechanism for communicating and 
transferring datzi between  distinct  virtual  machines.  The  interface 
does,  however,  support a logical wrap-around  connection  that al- 
lows a single virtual machine to  send  messages  and data  to itself 
(same as CTCA being connected  to  two  channels  on  the  same 
CPU). Since  the  wrap  connection is supported,  the  interface  does 
not preclude  the possibility of connecting  isolated  components of 
a single virtual machine (e.g., operating  system  tasks). 

VMCF data  transfer  functions may be executed with a zero  data 
length.  The  interface may be used simply as a shoulder-tap or 
posting mechanism without  regard  for data,  other  than  that  pro- 
vided by the message header. 

VMCF includes  several  control  functions  (diagnose  subfunctions) 
to assist in managing the interface  and/or  a specific application. 
Authorize  and  unauthorize  functions  are available to  control  ac- 
cess  to  or relinquish use of the  interface,  respectively.  Quiesce 
and  resume  functions are provided to  control message traffic at 
any given instant.  Transactions may  be prematurely  terminated 
with a cancel  function or rejected with the  reject  function.  A  fast 
path  transmission of limited control data is possible with the  iden- 
tify function. 

VMCF provides a special field within the  user  parameter list (dou- 
bleword) that may contain  any  desired  user  data.  The  doubleword 
is transmitted within the  external  interrupt message header.  The 
significance of the  doubleword is that it  may be  exchanged within 

IBM SYST J VOL 18 NO 1 1979 IENSEN 



a single transaction,  even with unidirectional protocol. For  ex- 
ample,  a  source  send  request  transmits  the  doubleword  to the 
sink in the  send  external  interrupt message header-a sink  re- 
ceive  request will transmit a doubleword  to  the  source in the  re- 
sponse  external  interrupt  message  header. 

The uses of such a feature  can be diverse.  The  doubleword could 
be used to  contain  additional information for  any  request (e.g., a 
reason  for reject). A user may define his own higher-level pro- 
tocols,  and  the  doubleword  could  be  used  for  sequencing,  pacing, 
and/or application control data. A most obvious use is that  as a 
password or security  code. The basic design of VMCF will allow 
any  authorized  user to  access  or send data  to any  other  author- 
ized user.  The  control of unwarranted  access to a particular vir- 
tual machine is a function of the application itself. The specific 
authorization mechanism will allow a  particular  user  to  accept 
messages from one other  user only (does  not  support multiple 
users).  This  protects a single user  who is communicating with a 
specific machine but does  not  protect  a machine that is communi- 
cating with many users (e.g., a central  server).  The  use of the 
doubleword  for  this  class of machine (as a password) could pro- 
vide the necessary  protection. A user  could  provide a password 
within his own data;  however,  this would require  the  data  to  be 
received  before a validation could take  place. An authorize  spe- 
cific function  that allowed multiple user specifications (USERIDS) 
may satisfy some  requirements  but is somewhat limited in  flexi- 
bility (all USERIDS of a particular application must  be  known). 

data The integrity of a  virtual machine is assisted by both the  control 
integrity program and the  virtual machine software.' The integrity pro- 

vided by the  control  program (in this case VMCF) is primarily a 
function of the design,  structure,  quality,  and implementation of 
the  code itself. The integrity of user data is largely controlled  by 
the functions available to  preserve and secure  the  data. A major 
consideration in the  development of VMCF was to provide  enough 
indicators  to  ensure  that  a  user's  data is protected from possible 
errors.  The  fact  that  the  entire  process  is  asynchronous,  and  can 
result in long delays  between  the time that a request is initiated 
and actually completed,  opens a window to potential  errors. For 
example, a user could initiate a request to  another user  and  then 
be forced off the  system  (inadvertently or otherwise). Similarly, a 
paging I/O error could occur  attempting to  fetch a user  page, or 
the  user himself could violate the rules of the  interface  (e.g.,  stor- 
age protection,  addressing,  protocol). The important thing is that 
either  the  source  or  the  sink is notified of the condition and in 
sufficient detail  to allow for a recovery mechanism. VMCF pro- 
vides a variety of return  codes  or  error  codes  that detail possible 
conditions  that  can  occur within the  interface.  The  return  codes 
are  presented  as a result of initiating a request via the diagnose 
instruction or  as  data  transfer codes in the  response  external in- 



terrupt message hqader. In the latter  case, the  code  indicates that 
an error occurred  after the successful initiation of a  request via 
the  diagnose  instruction  (e.g., sink user logged ofF or unauthor- 
ized without  accepting or completing the  request)  and  before the 
actual  request had completed. 

The VMCF interface  is,  for  the most part,  a  software  function. It external 
does,  however, involve the simulation or reflection of hardware interrupts 
external  interrupts.  Because  this is true, the  interrupts  were made 
a  part of the  architecture in the  same  manner as  other  types of 
external  interrupts: 

0 The  interrupts  are  enabled through a  combination of program 
status  word Bit 7 (summary mask) and  Control Register 0 Bit 
31. Bit 31 is a special assignment for VMCF only;  the  other 
types of external  interrupts  are masked by their own bits in 
Control Register 0. 

0 The  interrupts  (and VMCF requests) will  be purged or  sent 
back to  the  source following any virtual system  reset  condi- 
tion (e.g.,  a virtual initial program load). 

0 The  interrupts  are given a  priority. In this case, VMCF inter- 
rupts  are given the lowest possible priority as compared  to 
other external  interrupts in the  architecture  (e.g.,  interval 
timer, clock comparator, CPU timer,  and  external  key). 

0 The  interrupts  were assigned an  arbitrary  code of X'4001'. 

Performance 

The  performance  characteristics of VMCF are a  function of the 
internal  path  lengths,  the virtual machine scheduler,  and  the ap- 
plication itself.  In viewing the  basic  path  lengths it became obvi- 
ous  that most of the  code involved was not in VMCF, but  rather in 
the linkage to get to VMCF-the reflection of external  interrupts- 
and the scheduling and  dispatching  (task-switching)  required to 
synchronize  the  execution of virtual machines.  The path lengths 
could be reduced by changing some of the  basic design criteria 
within the  control  program.  The  path  required to get to the vMCF 
support module (DMKVMC)7 requires (1) handling and  interpreting 
a program  check  interrupt (privileged operation  exception)  occur- 
ring as  the result of execution of the  diagnose  instruction, (2) 
passing control  to  a privileged instruction  interpreter and simula- 
tor, (3) passing control to a diagnose  instruction  interpreter  and 
preanalyzer, and (4) passing control to  the VMCF module to  exe- 
cute  the diagnose function.  This  path  length,  for  example, could 
be significantly reduced by imposing few restrictions (e.g., not 
allowing a diagnose to  be  executed with the  execute  instruction) 
and giving control  directly to  the VMCF module from the program 
interrupt  handler. Similarly, the virtual machine dispatcher is a 
control point within the  control program where all functions 

IBM SYST 1 VOL 18 NO I 1979 JENSEN 81 



Table 1 VMCF performance characteristics (System/370, Model 158-3) 

VMCF Transaction  Data  Bytes  Source  CPU  Elapsed  CPU 

(seconds) (milliseconds) (milliseconds) 
Protocol  Rate  Transferred  Time  Time 

VMCF  Diagnose  Total  Virtual 
Subfunctions CPU Time 

(milliseconds) 

134.6 
Send 132.1 

136.1 

Maximum 136.6 

0 
16,384 
32,768 

4  $096 

7.426 
7.565 
7.343 

2.646  7.319 

112.5 
Send/Receive 114.4 

112.8 

Maximum 114.5 

0 
16,384 
32,768 

20,480 

8.884 
8.736 
8.863 

2.634 8.731 

155.0 0 
Sendx 154.6 16,384 

155.1 32,768 

6.449 
6.465 
6.444 

~ 

Send 
SendReceive 
Sendx 
Identify 
Receive (128 bytes) 
Reply (128 bytes) 

Authorize 
Unauthorize 
Cancel 
Reject 
Quiesce 
Resume 

0.995 
1.015 
0.999 
1.138 
1.277 
1.354 

0.824 
0.897 
1.002 
0.947 
0.819 
0.826 

Maximum 155.9 20,480  2.636  6.413 

eventually  end.  The  dispatcher, among other things,  provides the 
serialization and synchronization of internal  processing  and vir- 
tual machine execution (including the simulation of certain  hard- 
ware  interrupts).  The  path lengths involved to get to  or from the 
dispatcher and required  functions within the dispatcher could be 
eliminated by executing  those  functions  directly in the VMCF 
module,  i.e.,  interrupt  reflection,  task-switching, and redispatch. 
To do so, however, would violate important design elements of 
CP. 

A virtual machine using VMCF may be, in essence, a logical exten- 
sion of another  virtual  machine.  The CP scheduler  and  dispatcher 
are  unaware of VMCF and  treat  both  machines  as  separate  and 
distinct  entities. The effects of scheduling functions  on VMCF per- 
formance is determined largely by the  overall  system  load (CPU 
and  storage  contention).  The  ostensible, higher-priority inter- 
active  user (who is simulating a terminal through  the VMCF inter- 
face) may be  treated as noninteractive (lower priority) since  there 
is no  real terminal activity  associated with the virtual machine. 
Similarly, the  control  program is unaware of a VMCF simulated 110 
operation,  and a user may be  dropped from queue  even though 
there is logical active YO. The  adverse effect of this would be  most 
apparent when the  system is overloaded  and a large number of 
users  are  contending  for  common  resources. 

performance VMCF performance as related to the  application itself is controlled 
characteristics by the size of the  virtual machine and data (if paging), the pro- 

tocols  used, the frequency of VMCF requests,  the  structure of 

82 JENSEN IBM SKST J VOL 18 NO 1 1919 



code,  and  the implementation of the  application.  Table 1 provides 
the aggregate transaction  (data)  rates  for  each  protocol  and  the 
CPU execution time for  each diagnose function. The numbers 
were  produced  on  a  four-megabyte Systed370, Model 158-3 run- 
ning Release 5 of v W 3 7 0  with the VM System  Extension Program 
Product (SEPP).’<The VMl370 system included some local modifi- 
cations  but none that  were  related  to VMCF or had a significant 
impact on VMCF path  lengths.  There  were  approximately 25 users 
logged-on in the v W 3 7 0  system,  and  there  was  no paging activity. 
The  numbers supplied are  the maximum achieved during 51 sepa- 
rate  benchmarks. Each benchmark involved executing  the  re- 
quests 128 times and averaging the  results.  The  test  environment 
included two VMCF virtual machines (sourcehink).  The  items 
included in Table 1 are defined as follows: 

Protocol-the  actual  protocol used for  the  measurement. 

Transaction  Rate-the  number of transactions  per  second.  This 
number  was  computed by dividing one  second (in microseconds) 
by the  average  elapsed CPU time  for  each  transaction. 

Data Bytes-the number of bytes  transferred with each individual 
transaction. In the  case of the  sendheceive  protocol  the  number 
is actually  one half  of the  total  bytes  transferred.  The sendre- 
ceive protocol  includes a reply that is equal  to the send data 
length. 

Source CPU Time-the average  total  virtual CPU time (problem 
and  supervisor)  charged  to  the  source  for  each  request. This num- 
ber includes  the  time to  execute  the  function,  enter a wait-state 
(LPSW), and  receive the final response  external  interrupt. The 
number was produced with a CP diagnose function. 

Elapsed CPU Time-the average  elapsed CPU execution time for 
each  request (initiation to final response  interrupt).  This  number 
was produced using the  real time-of-day clock and  represents  the 
real (wall clock)  execution time for  both  source  and sink virtual 
machines (including all CP task-switching overhead). 

Subfunctions -the individual VMCF diagnose  functions (data 
transfer  and  control). 

Total Virtual CPU Time-the total  elapsed CPU time to  execute  the 
diagnose  instruction  only.  This  number  was  produced using the 
real time-of-day clock. 

In viewing the VMCF performance  table,  note the following items: 

0 The  amount of data  bytes  transferred  appears  to  have  a negli- 
gible impact on  the  execution time and  transaction  rates when 

IBM SYST J VOL 18 NO 1 1979 JENSEN 



there is no paging. This is true primarily because the VMCF 
data transfer  path is small as  compared  to  the  other  elements 
involved (e.g. , task-switching,  interrupt reflection). 

0 The path lengths (instructions  executed) may be approxi- 
mated  or  deduced by dividing the  total  execution  time  by  the 
average  instruction  execution time for  the machine. 

0 The  numbers  provided  are  conservative  and are in reality 
biased against VMCF. Since  the  process is asynchronous  and 
the execution of a  virtual machine may overlap a request,  the 
path  lengths  required  for  task-switching may not be a  function 
of VMCF itself. For example, when a request is initiated,  the 
call to  the  dispatcher to post or reflect the  external  interrupt 
for  the sink is necessary only when the sink is enabled  for  the 
interrupt.  Otherwise, the process is a normal function of the 
sink machine being interrupted (for whatever  reason).  These 
numbers  were  produced by having the sink machine always 
wait  for  a  request  and  the  source machine wait for  a  response 
following a request. A virtual machine that  is waiting for  ex- 
ternal  interrupts only is also dropped  from  the  dispatcher 
queue (additional code) which may not be necessary in a live 
situation (for example,  the machine may have  active I/O opera- 
tions  that will keep it in queue).  The  source machine also 
could  continue to run following a request,  and  the  overhead of 
entering  a wait state would not be included in the VMCF path 
lengths.  The vMCF queuing facilities were  not utilized in this 
test  environment. A reduction in queue  drop and task-switch- 
ing overhead could be realized when multiple transactions  are 
stacked  and  processed  at  the  same  time. 

0 The  transaction  rate  for  the  sendx  protocol would appear  to 
be about a 15 percent  improvement  over the send  protocol. 
The difference in the  two  protocols is the  receive  operation 
which is not required for  sendx.  The  total virtual CPU time for 
send  and  receive is reasonably  close. It could be assumed, 
then,  that send  and  receive combined account  for  approxi- 
mately 30 to 40 percent of the  total  execution  time,  and  the 
other elements,  such as entering  wait, reflecting interrupts, 
and  task  switch,  account  for 60 to 70 percent. 
It would appear  that  the  sendheceive protocol  provides a 60 to 
70 percent  improvement  over send for bidirectional data 
transfer  (two  send  operations would be required to exchange 
data).  The  actual  transaction  rate may be doubled  for the 
sendheceive  protocol if the  comparison is made to equivalent 
send  operations (a reply is included in this  transaction). 

Performance There  are potentially a large number of factors  that may contrib- 
synopsis ute to VMCF performance.  The  numbers supplied here should be 

viewed as an  approximation and will differ from  system  to sys- 
tem. It is clear that a reduction in VMCF path  lengths would im- 
prove  performance  but  not as significantly as improving the 
other  elements involved (e.g., task-switching,  interrupt reflec- 

84 JENSEN IBM SYST J VOL 18 NO 1 1919 



tion). A more practical  approach would be to eliminate the  other 
elements  altogether.  This could be achieved by enhanced  sched- 
uling algorithms (VMCF awareness)  and/or  the inclusion of a syn- 
chronous  protocol or no-response  protocol  for  short messages. A 
synchronous  protocol would imply that  a virtual machine would 
not  receive  control  back  from  the  diagnose  instruction,  such as 
send, until the  entire  operation was complete.  This would elimi- 
nate the paths  for  entering  a  wait  and receiving the  response  inter- 
rupt. A no-response  protocol would imply that  the  control  pro- 
gram would buffer the  message,  thus eliminating the  requirement 
for a response  interrupt. In this  case,  the  source virtual machine 
could run immediately following the diagnose instruction  and  be- 
fore the sink actually received  the  data.  The use of such  protocols 
would clearly have  performance  advantages  yet could be much 
more difficult to manage and  control  (e.g., the synchronous  pro- 
cess may require that  the  source user wait for long periods of 
time;  the  no-response  process would not provide  indicators for 
errors  occurring  after  the  request was initiated). 

VMCF applications 

The  potential application(s) for VMCF are many if viewed by the 
specific implementation.  The  purpose of this discussion is to give 
an  overview of potential  system  uses of VMCF with little dis- 
cussion of the  actual  implementation. In a  broadened  sense,  these 
uses may be categorized  as follows: (1) virtual  subsystems  and/or 
extensions  to VM/370, (2) resource  sharing, (3) multitaskinglmulti- 
programming, (4) testing,  and ( 5 )  intravirtual machine communi- 
cation. 

There  have been specific implementations within each of these 
categories, some that  were  developed  before the advent of VMCF 
and that use functions similar to  those provided by VMCF. The 
potential uses are not  described in a priority order, although the 
first appears  to be the  most widely used. 

A virtual machine subsystem may  be thought of as any  com- 
ponent running in a  virtual machine that  provides  system-wide 
services to  other virtual  machines or users. A subsystem may be 
an  extension of other  components within the system  (e.g., the 
control program) by providing functions that could be a part of 
the other components  themselves.  Examples of well-known vir- 
tual machine subsystems  are RSCS (remote spooling communica- 
tions  subsystem), VNET, and CMSBATCH.*” RSCS and VNET pro- 
vide RJE (remote job entry)  and/or  network-type  services, 
whereas cMSBATCH provides  services relating to  the background 
execution of jobs  (e.g.,  compilations).  The  important  element, as 
related  to VMCF, is that  subsystems in general  require  some  type 
of intermachine  communication media to provide  their  basic  ser- 

IBM SYST J VOL 18 NO 1 1979 JENSEN 



vices. The  above specific subsystems use the  spool file system as 
the media. This is appropriate, in these  cases,  because  the  data 
files may be classified as  critical  and  require a store-and-forward 
technique.  The  noncritical  data  (e.g.,  query  status of a particular 
link or job) could be implemented  through  a VMCF-like facility 
even  for  these  particular  subsystems. 

Subsystems  have  advantages in that  they are logically isolated 
from other  virtual  machines  yet easily accessible, simpler to 
maintain, and have little impact on the  control program itself,  i.e., 
CP. The disadvantage of subsystems may be  performance.  In 
some  cases  the  performance  impact  can be minimized by features 
such as microcode assist which provides  a significant reduction in 
the  control program overhead  required  to  support  a virtual ma- 
chine. 

A hypothetical  example of a subsystem  could be an  entire  oper- 
ating system,  such  as v s i ,  that runs in a  virtual  machine. CMS, the 
interactive  component of VM/WO, simulates some  operating  sys- 
tem functions  (e.g., OS macros and associated S v c s ,  VSAM, DOS/ 
VS) but  does  not simulate many other  functions  (e.g.,  data  base 
and  languages, write access  to  data sets).' It is  obvious that  an 
attempt  to simulate all the available functions of an  entire  oper- 
ating system would in fact be a duplication of the  system itself. 
The original intent of CMS was to simulate operating  system  func- 
tions  to  a level of supporting os compilers such as Assembler, 
PWI, and COBOL. The functions provided by VMCF do not preclude 
a bridge between a CMS user  and  a virtual operating  system  such 
that  the  functions  provided by the operating  system could be 
made available to  the CMS user  as though they  were  simulated by 
the CMS machine. Similarly, operating  system  subsystems (e.g., 
VTAM) could  be  exploited in a like manner.  However,  the  oper- 
ating systems  do  not  support VMCF in a virtual machine and 
would require  the following modifications to  do so: 

0 The  external  interrupt  handler would have to be  modified to 
recognize the VMCF external  interrupt  (Code X'4001') and 
post  a VMCF control  task  (user program which has supervisor 
privileges). 

0 Modifications may be required  to  preserve  the VMCF external 
interrupt mask (Bit 31 of Control  Register 0). The  operating 
system would be  unaware of this bit since it is not  part of the 
architecture of the  hardware. 

The application of a virtual machine subsystem could range from 
a simple command  processor  (e.g.,  virtual  extensions to  the CP 
command language) to  a large shared  data  base  system  (e.g., IMS, 
CICS, and DL/I'',"). Figure 4 is an example of a  recent  prototype 
developed at the IBM San  Jose  Research  Laboratory Computing 
Center. This prototype is used as  an example  because  its use of 

86 JENSEN IBM SYST J VOL 18 NO 1 1979 





resource 
sharing 

Figure 5 Hypothetical ENQ/DEQ 
subsystem 

A-ENQ <SEND/RECEIVE> 
A-"GOT IT" I?: qyl ENQIDEQ 
C-ENQ <SEND/RECEIVE> 
A-DEQ <SENDX> SYSTEM 
C-"GOT IT" REPLY ... 

not privileged, yet to produce  the data  from  any  virtual ma- 
chine would require  a  class  that is not available to  the  general 
user.  The VMCF interface  enabled  the  general  user  to display 
data  that  otherwise would have  required  a privileged virtual 
machine. 

6 The monitor  virtual machine need  not  be  bound by a physical 
terminal,  and simple logic was reqclired to provide  a multi- 
access  environment with a varied number of terminal types 
(those  supported by CP). This  same logic could  be applied to 
any program(s) that  runs in a virtual machine. 
The performance benefits of running a single copy of the  pro- 
gram  (the  monitor)  were significant as compared  to running 
several  copies  of  the program in separate virtual machines. 
The multiaccess capability provided the benefit by allowing 
the monitor  to be run in a background virtual machine without 
disruption of the normal CMS. The value of the  monitor  was 
also significantly enhanced by making it available to a broader 
range of users. 
The ability to  access  the monitor through  a CMS command 
(VMCF interface module) was a natural  for  automating  and  ex- 
ecuting  commands within a CMS EXEC procedure  (automatic 
command  execution facility). In this case, each  user could 
create his own  automatic  monitor if desired  (the  monitor pro- 
duces  a  variety of diffferent displays). 
Most of the CPU time  required to  access  the monitor  was 
charged  to  the  user  executing  the requestkommand, and  the 
monitor itself was not  disrupted by real terminal I/O opera- 
tions. 

A resource,  as viewed by a  user, may range  anywhere from a 
single data byte  to  a  string of hardware  devices.  The  control  pro- 
gram does not provide a  concise mechanism whereby  users may 
serialize  their own resources  or  data. The  codtrol program does 
have an internal locking mechanism that is used to serialize events 
within itself,  but it is not available to  the general  user.  Release 4 
of VM1370 provided  a capability to serialize access  to a minidisk 
through  a virtual (simulated)  reservehelease  feature.  This  feature 
is implemented through the virtual I/O interface  (as on a real ma- 
chine) and requires that an  entire volume (or minidisk) be serial- 
ized rather  than specific data  (or  data  sets) within. 

VMCF could conceivably be used  to  provide a logical enqueue/ 
dequeue (ENQ/DEQ) facility such as that  provided by os-like  oper- 
ating systems.  This may involve a distinct virtual machine (or 
subsystem)  that manages the interface.  The VMCF functions pro- 
vide the communication media to control  the  process. A hypo- 
thetical  example  shown in Figure 5 could be  as follows: 

1. User A may execute  a  sendheceive  request  to  User B, the 

88 



the  type of request (e.g., ENQ-WAIT or ENQ-TEST). The  actual 
data  sent with the  request would be the qualified name of the 
resource. 

2. User B would then  receive the  data  and  determine if the  re- 
source  was available (function of its own queues). If the  re- 
source  were  available,  the  controller  could  then reply to  the 
enqueue  request indicating that  user A now has  the  resource. 

3. User C could  then  execute a sendkeceive  enqueue  request  for 
the same  resource in use by User A. User B, or  the controller 
in this  case, would not  execute a reply at  this time since  the 
resource is not  available.  User C could continue  to  run  and 
overlap  the  request or  enter a wait state  for  the  response  inter- 
rupt  and  reply. 

4. User A could then  execute  a  sendx  request to the  controller 
User B indicating a  dequeue of the  subject  resource.  User B 
may then  respond  to  the  User C request with a reply indicating 
that  the resource is now available. 

Further  actions would continue in a similar manner. 

The  integrity of this  type of facility is clearly the responsibility of 
its users.  The  serialization of resources  involves  an  agreement 
among all concerned (which is true with any  enqueue/dequeue 
facility). In this case,  the actual  controls are implemented by the 
user including such things as deadlock  detection.  The  removal'of 
such  a  procedure  from the  control program is advantageous  since 
it does  not involve real  free  storage  demands  controlled by an 
arbitrary limitation. 

The serialization of a  resource may simply be a built-in function 
of the subsystem controlling the  resource.  The  monitor imple- 
mentation  discussed  earlier serializes access  to  the  program 
through  the normal VMCF queues,  i.e., it does  not  enable  for  ex- 
ternal  interrupts during processing of any given request. This is 
possible because  there are not long delays  between  the time that a 
request is executed  and a response is produced. 

A virtual machine is, in fact, a schedulable  and  dispatchable unit multitasking/ 
of work  such  as an operating  system  task. The execution  charac- multiprogramming 
teristics of the machine may be controlled by a priority and  guar- 
anteed a certain  amount of CPU time (when available). The ele- 
ments involved in a multiprogramming system may include a seri- 
alization technique (ENQ/DEQ), a synchronization  process (WAIT/ 
POST), common storage,  and  a mechanism for dynamically attach- 
ing and  detaching  tasks.  The ingredients for  creating  such  a  pro- 
cess  between  virtual  machines is possible with VMCF. The  control 
program provides an autolog command that may approximate the 
attach command. The  autolog command will allow a  virtual ma- 
chine to  be created (logged on) without a terminal  and to  the spec- 
ifications of a predefined profile. Parameters may  be supplied to 

IBM SYST I VOL 16 NO 1 1979 JENSEN 89 



the  virtual machine to  control  the program or programs that  are 
executed.  The  force  or logoff commands may be used to approxi- 
mate the detach  command,  i.e., it terminates  the virtual machine 
(see Figure 6) .  The VMCF functions may provide the connection 
of common  storage  and the synchronization  and serialization pro- 
cesses. The  control  program  provides  the facilities to weight the 
execution of tasks,  i.e.,  priorities,  biases,  and  guarantees. 

A simplified example of this  process may be  the CMS batch mon- 
itor. 

testing In many cases  the  testing  (particularly  performance) of a  com- 
ponent  requires  external  controls  that  have little impact on the 
component itself. The small amount of code  required  to imple- 
ment VMCF (and  associated  overhead)  provides  a nice “hook” 
into a system  that  can  be  controlled by an  external  interface  or 
virtual machine. The  shoulder-tap  capability may be used for 
simple “wake-up” of a virtual machine. The  process could also in- 
volve a comprehensive  external  simulator. For example, a SIO in- 
struction could be replaced by a VMCF request,  and a mechanism 
could be employed that  simulates  an  entire UO operation  without 
actually requiring the  hardware  device.  The  fact  that  the  process 
is external  to  the  target allows the simulation process  to be ma- 
nipulated,  controlled,  and maintained in an isolated virtual ma- 
chine . 

intravirtuat This  process  involves  connecting isolated components of a single 
machine virtual  machine. As described  earlier in this  paper, VMCF sup- 

communication ports a logical wrap-around  connection that allows a virtual ma- 
chine to communicate with itself (e.g.,  a CTCA connected  to  twp 
channels on the  same CPU). The  uses of this facility may be simi- 
lar  to  the cTCA environment. It is conceivable  that a primitive 
multitasking system running in a virtual  machine  could  use  this 
facility to  connect separated  tasks (if such a feature is not avail- 
able).  The  process may also  have its advantages  for  testing  such 
as  that done  between  virtual  machines. 

Figure 6 Virtual  machine subtask Synopsis and COnClUSiOnS 

VMCF, then, is an interface that provides a mechanism to  transfer 
data  and  communicate  between virtual machines.  The  interface is 
a software  process  that  is  not bound by the  external  elements of a 
data  processing  system. VMCF is localized to a single real CPU 
running any number of virtual machines and is viewed by the  user 
(programmer) as consisting of certain  interface  components: 

F ~ ~ K ~ i E ~ N D  

A diagnose  instruction  to invoke a specific function. 
I 0 A user  parameter  list to describe  the  function. 



0 A message header to describe  external  interrupts  and  data 

0 User  data. 

The  characteristics of data  transfer between virtual machines is a 
function of the  protocol  used  for any given transaction. VMCF 
provides  several  protocols  that allow for  one-way or two-way 
data  transmission.  Control  functions are available to  assist a user 
in managing the  interface.  The mechanics of VMCF are  efficient as 
an  asynchronous  process  for communicating between  virtual ma- 
chines.  The good points of its  predecessor  (virtual CTCA) were 
retained  and  improvements or extensions  were  made.  Several 
features  are provided to  ensure a high degree of user data integ- 
rity and  security. 

The  potential  applications  for VMCF were  described  at  the  system 
level and  categorized as follows: 

0 Virtual machine subsystems (logical extensions to VW370). 
0 Resource sharing (serialization). 
0 Multiprogramming (virtual machine subtasks). 
0 Testing (externally controlled simulation). 
0 Intravirtual machine communication  (task to  task). 

VMCF is a  base  for  future  virtual machine applications, many that 
have yet to be conceived. 

transmission  characteristics. 

ACKNOWLEDGMENTS 
The original prototype  for VMCF was developed by A. N. Chan- 
dra  at  the IBM Thomas J .  Watson  Research  Center in Yorktown 
Heights, New York.  The  Chandra  prototype was later  developed 
by the VMl370 Development Group. 

I am indebted to H. M. Gladney and C. G.  Colas, IBM Research, 
San Jose, for prompting me to write this  paper,  to  G.  Strickland, 
IBM Data  Processing Division, Palo Alto, for giving me the  op- 
portunity  to write the  paper,  and  to  the  referees for their useful 
and constructive  comments regarding this  paper. 

CITED REFERENCES AND NOTE 
I .  L. H. Seawright  and R. A. MacKinnon, “VMl370-a study of multiplicity 

and usefulness,” IBM Systems Journal 18, No. 1 ,  4-17 (1979, this issue). 
2. IBM  Virtual  Machine  Facility/370  Introduction, GC20-1800, IBM  Corpora- 

tion, Data Processing Division, White Plains, NY 10604. 
3. IBM Virtual  Machine  Facilityl370:  Operating  Systems in a Virtual  Machine, 

GC20-1821, IBM Corporation, Data Processing Division, White Plains, NY 
10604. 

4. IBM  System1370  Principles of Operation, GA22-7000, IBM Corporation, Data 
Processing Division, White Plains, NY 10604. 

5 .  IBM  Virtual  Machine  FacilityN70:  System  Programmer’s  Guide, GC20-1807, 
IBM  Corporation,  Data Processing Division, White Plains, NY 10604, 

IBM SYST J VOL 18 NO 1 1979 JENSEN 



6. C. R. Attanasio, P. W. Markstein,  and R. J. Phillips, “Penetrating an oper- 
ating system: a  study of VM/370 integrity,” IBM Systems Journal 15, No.  1, 

7. Source listing for module DMKVMC. This is the primary VMCF  support 
module; it contains  a  SCRIPT prologue which details  its  functions. 

8. E. C.  Hendricks  and T. C.  Hartmann,  “Evolution of a virtual machine sub- 
system,” ZBM Systems  Journal 18, No. 1, 111-142 (1979, this issue). 

9. ZBM Virtual  Machine  FacilityN70:  CMS  Users  Guide, GC20-1819, IBM 
Corporation, Data Processing Division, White Plains,  NY 10604. 

10.  W. C. McGee, “The information management system  IMS/VS,” ZBM Sys- 
tems Journal 16, No. 2, 84-168  (1977). 

11. D.  J.  Eade, P. Homan,  and J.  H. Jones,  “CICS/VS and its role in Systems 
Network  Architecture,” IBM Systems Journal 16, No. 3, 258-286 (1977). 

102-116  (1976). 

GENERAL  REFERENCES 
IBM Virtual  Machine  Facilityl370:  System  Logic  and  Problem  Determination 
Guide, SY20-0886, IBM  Corporation,  Data Processing Division, White Plains, 
NY 10604. 
M. McGrath,  “Virtual machine computing in an engineering environment,” IBM 
Systems Journal 11, No. 2, 131-149  (1972). 
R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J .  Hatfield, “Virtual  storage I 
and virtual machine concepts,” IBM  Systems  Journal 11, No. 2, 99-130  (1972). 

Reprint Order No. G321-5087. 

92 JENSEN 


