The growing use of the virtual machine concept has resulted in
the necessity for communication between the virtual machines.
The design and operation of the Virtual Machine Communication
Facility is discussed as an approach to offering such communica-
tion. The facility is an interface allowing a logical connection be-
tween two or more virtual machines. Potential applications for
this facility conclude the discussion.

A formal approach for communication between logically
isolated virtual machines

by R. M. Jensen

A virtual machine (VM) is a well-defined hardware architecture
that is presented to a terminal user in a somewhat illusive man-
ner. For those users who understand the concept, it is like having
an entire real computing system at their disposal. To most CMS
(Conversational Monitor System) users, the system is a time-
sharing and program development tool, and they give little
thought to the actual machine capabilities that exist. The virtual
machine is an assimilation of its counterpart, the real machine,
yet its users and requirements may vary widely.

The requirements for communication between virtual machines
may be the same as for real machines, or may be closely related
to the requirements of inter-CPU task communication. This paper
discusses the Virtual Machine Communication Facility (vMCF)"*
as designed and implemented for Virtual Machine Facility/370
(vM/370) Release 3, Program Level Change (PLC) 8 and sub-
sequent releases. VMCF is a software interface that provides a
logical connection between two or more otherwise isolated vir-
tual machines. The interface is not an application but is rather a
facility upon which applications may be built. Presently, the im-
plementation does not include a high-level language or macros;
instead, the execution of functions is achieved directly through
use of the vM/370 diagnose interface (conceptually similar to SVC-
level programming in other operating systems). The first part of

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J e VOL 18 @ NO 1 e 1979 JENSEN

this paper provides a rationale for developing VMCF and discusses
advantages and disadvantages of prior methods for intermachine
communication. The other methods are discussed purely from a
virtual machine point of view; any applicable benefits for native
operation are not included.

The next part of this paper presents an overview of the design and
functions provided by vMCF. The discussion here may appear to
be at a more detailed level than is necessary for this paper; how-
ever, the components discussed are the externals associated with
the interface. This is true partly because of the nature of a virtual
machine itself. A user, if need be, is not bound by operating sys-
tem software but, in fact, has the almost limitless flexibility of
machine languages and hardware. VMCF is an interface at that
level.

Next, the paper discusses the types of potential application
power that exist using VMCF and/or intervirtual machine commu-
nication in general. Some of the examples cited are hypothetical,
whereas others are actual implementation. The purpose of this
section is not to discuss specific applications themselves but
rather the types of applications that could be developed.

Last but not least, a synopsis of VMCF is provided with con-
cluding remarks to support the paper itself.

Background

The idea of communication between logically isolated virtual ma-
chines is not new. Many methods have been employed by both
IBM and users and can be traced back to the early days of Cp-67,
the predecessor of VM/370. The inherent design of the control pro-
gram (CP) provides a capability to transfer spool files from one
virtual machine to another. A virtual (simulated) channel-to-
channel adapter interface (CTCA) was developed to support the
testing of a loosely coupled multiprocessing environment in a vir-
tual machine (OS/ASP—Operating System/Attached Support
Processor).’ In a few cases, hardware communication lines were
used to link together one or more virtual machines (primarily for
testing purposes). In spite of existing facilities supported by the
control program, several other methods were employed (requir-
ing CP modifications) to provide a more efficient and general-pur-
pose interface. These included VMCF-like functions and/or MP/AP
(multiprocessor/attached processor) simulation using the SIGP
(signal processor) hardware instruction. VMCF, itself, is an evolu-
tion of prior modifications to the control program.

The use of spool files for communication is desirable for certain
classes of data but is not efficient as a transaction and/or message

JENSEN IBM SYST J e VOL 18 ¢ NO 1 ® 1979

process involving storage-to-storage data transfer. The spool file
data itself must first be placed on a real spooling device (DASD—
direct access storage device) before it can be transmitted to an-
other virtual machine. The data then must be read from the spool-
ing device and is generally implemented as a simulated VO inter-
face (virtual unit record I/0). The advantage of this interface is
that it approximates a store-and-forward technique, and the data
is checkpointed and preserved across system failures. This type
of communication is desirable, particularly for critical data files
and network-like teleprocessing environments.

A possible virtual, simulated MP/AP environment implies the use
of shared read/write storage and is designed primarily for control
program access rather than for the application level. The use of
such a facility for intermachine communication is beyond the
scope of any known application, other than software develop-
ment of a MP/AP hypervisor. The use of shared read/write storage
could have its advantages (fast data move) but could be difficult to
manage when a large number of virtual machines are involved.

The virtual channel-to-channel adapter appeared to be the most
prevalent for certain applications involving intervirtual machine
communication. The support was a standard part of the vMm/370
system control program, and did not require user modifications.
The interface provided by the CTCA is part of the architecture
within the hardware and as such could be used without modifica-
tion to other existing software (particularly the operating sys-
tems). Use of the virtual cTCA did not preclude potential support
for native CPU communication. The simulation of the CTCA by the
control program is consistent with its native operation and char-
acteristics.” The simulated method for transferring data is from
virtual storage to virtual storage and does not require internal
buffering by the control program or excessive free storage de-
mands on the control program. The virtual CTCA was not con-
strained by the availability of physical hardware and is totally
software-simulated. Data is transferred using the MvVCL and MVvC
instructions (read and read backward, respectively) and all hard-
ware functions (e.g., storage protection and channel commands)
are applied to the simulation. The method of communicating
from storage to storage was clearly more efficient than other ex-
isting facilities.

The virtual CTCA serves several purposes well, particularly for
ASP-like environmients that require direct CPU-to-CPU communi-
cation and involve a small number of virtual machines. But the
progression of virtual machine subsystems, central server appli-
cations, and network-like communication among a large number
of virtual machines precludes use of the CTCA.

The cTCA was designed to communicate from one CPU to another
and not from one CPU to many others. The general use implies

IBM SYST J ® VOL 18 ¢ NO 1 @ 1979 JENSEN

virtual
CTCA

VMCF
characteristics

that two physical (or virtual) channels are connected together.
The channels may belong to the same or separate virtual ma-
chines. The control program provides a couple command to con-
nect the two virtual channels. The user of the couple command
must understand the hardware (virtual) configuration of the target
virtual machine, i.e., the virtual address of the cTCA. If the cou-
pling (or connection) of virtual machines is to be dynamic, then
there must be a mechanism to communicate the available CTCA
addresses (assuming a multiaccess environment). The virtual
CTCA is also a simulated hardware function and is constrained by
normal hardware limitations, i.e., the number of channels and de-
vices. The CTCA itself occupies an entire control unit position.

The cTCA 10 is an asynchronous process but does not use the
block multiplexing capabilities of a System/370 channel; hence, it
is difficult to provide for concurrent data transmissions on a single
channel. The V0 interface is also not generally well understood at
the application level. The implementation of virtual CTCA support
by CP involves full ccw (channel command word) translation for
both sender (source) dand receiver (sink) channel programs. This
implies that the data pages (4K blocks) requi‘red to complete the
operation must be fixed (locked) in real storage, and, depending
on the amount of data, could potentially impact the operation and
performance of the system.

The desigr and implementation of VMCF, then, is a solution to a
problem. The functions provided fit well for applications that re-
quire virtual machitie communication and do not have depend-
encies on native CPU communication. The method employed is
fast and efficient afid overcomes many difficulties observed with
prior methods of intermachine communication. VMCF provides
simple and symmeétrical protocols that can be understood at the
application level. The connection of one virtual machine to an-
other is a logical process for the duration of a single transaction.
There is no master-slave relationship, and any authorized virtual
machine can communicate with any other authorized virtual ma-
chine in a logically symmetrical fashion. The movement (transfer)
of data is from virtual storage to virtual storage, and only one 4K
page is ever fixed (locked) at a time during a single transaction
(regardless of data size). The process is totally asynchronous (as
with CTCA) but is not constrained by hardware limitations.

The inherent design of VMCF provides a queuing mechanism that
allows multiple concurrent transactions to be processed by a
single virtual machine(s). The transactions may originate from
one other machine or many other machines (function of the appli-
cation). Control of the access to a particular virtual machine is
determined by its authorization state. A basic nonspecific state
will enable a user (virtual machine) to accept requests from all
other authorized users. A specific state implies that a user may

JENSEN IBM SYST J @ VOL 18 & NO | & 1979

receive requests from one other user only. In either case the
VMCF queuing structure allows multiple transactions to be
stacked and processed by a given virtual machine within the con-
straints of its authorized state. Figure 1 shows three basic VMCF
logical configurations based on the specific/nonspecific authoriza-
tion mechanism:

. The end-user to end-user configuration indicates that both vir-
tual machines have authorized specific states for each other
and will not accept VMCF requests from any other users. The
application of this configuration would be most appropriate in
a test environment. One virtual machine may be the target
while the other is an externally controlled simulator (e.g., de-
vice simulator, error injector, terminal script).

. The central server configuration implies that all users of the
application have an authorized specific state with the server
machine and will accept requests (transactions) from the
server only. The server, on the other hand, is authorized as
nonspecific and will accept requests from any user wishing to
use the application. The application may involve a subsystem
that provides system-wide services and/or a mechanism for
sharing computing resources (e.g., data base, query, hardware
devices, software).

. The last configuration is the basic nonspecific state whereby
all authorized users may be logically connected to each other.
This configuration is appropriate for applications that involve
multiple subsystems or central servers or where specific au-
thorization is too restrictive. It should be noted that the VMCF
authorized state is controlled by the user and may be dynami-
cally changed at any time.

A disadvantage of VMCF is that it is not supported by other major
system control programs (e.g., DOS/VS, VS1, VS2) and to do so
would require modifications to the subject system control pro-
gram. In viewing the design and architecture of VMCF, we can
make an analogy with a channel-to-channel adapter, since many
of the principles are similar.

Design and architecture

From a user point of view VMCF consists of the following basic
components:

® A diagnose function (instruction) to initiate a VMCF request or
subfunction. The hardware diagnose instruction is not sup-
ported in a virtual machine in the same manner as on a native
CPU. Rather, the instruction is used to provide a special inter-
face to the control program from a virtual machine. The VMCF
diagnose function is one of many provided by the control pro-

IBM SYST J » VOL 18 « NO 1 ® 1979 JENSEN

Figure 1 VMCF logical configura-
tions

END USER

END USER ° °

CENTRAL SERVER

LOGICAL SYMMETRY

$=SPECIFIC
N=NONSPECIFIC

gram. The use of this function is similar to a SIO (Start VO)
instruction executed to a channel-to-channel adapter, i.e., it
initiates a control or data transfer sequence. The diagnose
function provides return codes indicating successful initiation
of the request or error conditions associated with the request
(e.g., SIO condition codes).

A user parameter list that describes the request. The use of
the parameter list is similar to a CTCA /0 channel program,
i.e., it indicates the type of request (read-write-control) and
provides data addresses and lengths associated with a data
transfer operation. The parameter list additionally directs the
request to a specific virtual machine (known by a user identi-
fier, or USERID) and provides a message identifier to distin-
guish the request. The uniqueness of a VMCF request is distin-
guished by both the target user identifier and message identi-
fier. A user, for example, may selectively choose a message
(data) sent to his virtual machine based on the source user and
message identifiers.

Simulated hardware external interrupts to synchronize a
request. The purpose of the external interrupts is twofold. A
send external interrupt is used to notify the receiver (sink) of a
sender (source) request. This interrupt is equivalent to an at-
tention interrupt presented by a channel-to-channel adapter.
As aresponse an external interrupt is generated for the sender
to signal completion of a request. This interrupt is equivalent
to an ending status /O interrupt for a CTCA /O operation. The
rules for transferring data with VMCF are identical to those in
the VO system. The buffers used to contain data cannot be
reused until the operation has been completed (the VMCF re-
sponse external interrupt). Similarly, the same storage pro-
tection (store-fetch) and addressing considerations apply
equally to the VMCF request.

A message header describing the external interrupt. The ar-
chitecturally specified hardware data provided with an ex-
ternal interrupt is not enough to describe a source request or
completion of a request. VMCF, then, reflects additional data
with all external interrupts, i.e., the message header. The
message header data is stored in a predefined virtual storage
location that is specified by a virtual machine when it author-
izes (separate diagnose subfunction) a VMCF communication.
The message header describes the source request to the re-
ceiver virtual machine and is in essence a copy of the source
parameter list. The USERID, however, is changed to indicate
the source user or originating virtual machine. To the sender
virtual machine the message header describes the completion
status for the original request. The completion status serves
the same function as ending channel status word status and/or
sense data for an 1/0 operation. Also, the completion status
provides residual data counts indicating how much data was
transferred during the operation (equivalent to /0 channel

76 JENSEN IBM SYST J ¢ VOL 18 ¢ NO 1 o 1979

status word residual counts). In all cases the message header
contains status flags indicating the type of external interrupt
(send or response).

e Data

Figure 2 depicts an analogy between a typical VMCF request and a
CTCA 1/0 operation. Several commonalities and distinctions are
described below.

Both processes are asynchronous. The CTCA is attention-driven,
and VMCF is external interrupt-driven.

Both processes are symmetrical. Either side may be source or
sink without distinction, and the protocols are functionally bal-
anced.

Both processes involve storage-to-storage data transfer and are
architecturally consistent (by definition).

The CTCA 1O operation shown is not exactly typical. The atten-
tion interrupt presented to the sink machine is normally not
enough to indicate the type of request (although possible with
unidirectional protocol). In reality an additional /O operation
would be required to read the command byte of the source
request, i.e., indicates type of request—read, write, control.

The CTCA 1/0 operation requires an ending status interrupt for the
sink machine which is not necessary with the VMCF request (end-
ing status-return codes occur when the diagnose instruction com-
pletes).

There are other architectural details that would tend to distin-
guish VMCF from the 10 system (e.g., VMCF data areas must be
contiguous within a given transaction, whereas the CTCA will al-
low command-chaining/data-chaining into noncontiguous areas,
and the CTCA protocol will allow data to be solicited with a read
(truly symmetrical), whereas VMCF requests must be initiated
with a write-type request, etc.).

A single protocol is all that is needed to communicate and transfer
data between virtual machines. VMCF provides several protocols
to assist in performance and usability and to enforce a formal-
ization of the interface. The flow of data between virtual ma-
chines may be either unidirectional (source to sink) or bidirec-
tional (source to sink to source). The enforcement of protocols is
at the transaction level, that is, only during the transmission and/
or exchange of data for a single request. VMCF communication
may consist of a single protocol or combinations of all available
protocols for multiple transactions. The connection of two virtual
machines is a logical software process (by USERID) and is bound

IBM SYST J @ VOL 18 ¢ NO 1 & 1979 JENSEN

Figure 2 CTCA/VMCF
analogy

SOURCE (VS) SINK (VS)

DIAGNOSE
<SEND>

protocol

b»EexTERNAL
| INTERRUPT
(NOTIFICATION)

DIAGNOSE
< RECEWE>

DATA TRANSFER
—_—

EXTERNAL —
INTERRUPT |
(FINAL

RESPONSE) |

CTCA | VMCF
|
SI0<WRITE> ——>]

L»ATTENTION
l INTERRUPT
(NOTIFICATION)

b s10<READ>

!
DATA TRANSFER
|

1/0 INTERRUPT <—T—>I/O INTERRUPT
(FINAL RESPONSE) < ENDING STATUS>

protocols

Figure 3 VMCF protocols

VMCF

SOURCE (VS) | SINK (VS)

SEND PROTOCOL

[

EXTERNAL
INTERRUPT

~+———RECEIVE

DATA TRANSFER

EXTERNAL ————
INTERRUPT |

+
|

|
SEND/RECEIVE PROTOCOL

i
SEND/RECEWE——w] _ _oroon

I INTERRUPT
~¢————— RECEIVE
DATA TRANSFER

|Je——rePLY
DATA TRANSFER

EXTERNAL 4———1

INTERRUPT l

|
SENDX PROTOCOL

DATA TRANSFER

—2ATATRARSIER, ExTERNAL
| INTERRUPT
EXTERNAL +——r|

INTERRUPT l

L

only by those elements involved in a data transfer operation. Fig-
ure 3 portrays a relationship between the various VMCF protocols,
which we now define.

The send protocol implies a one-way (unidirectional) transmis-
sion of data from the source machine’s virtual storage to the sink
machine’s virtual storage. The send diagnose function is used by
the source to initiate the transaction, and the receive diagnose
function is used by the sink to accept (and transfer) the actual
data.

The send/receive protocol implies a two-way (bidirectional) trans-
mission of data from source to sink to source within a single
transaction. The send/receive diagnose function initiates the
source request (as with send), and the receive protocol is used by
the sink to transfer the actual data. The transaction, in this case,
is not terminated until the sink responds with a reply diagnose
function. The reply causes data to be transferred from the sink
machine’s virtual storage to the source machine’s virtual storage.
The benefit of this protocol is that data may be exchanged within
one transaction and result in less CPU execution time than two
send protocol transactions.

The sendx protocol is provided to improve performance for one-
way data transmission. This protocol eliminates the need for the
sink machine to execute a receive function. The actual data is
transferred into a special buffer at the same time the sink receives
the external interrupt. A disadvantage of this protocol is that
the sink virtual machine cannot be judicial with the message
(data) it receives; i.e., the data is automatically ‘‘received’’
when the external interrupt is accepted.

The details of the various VMCF protocols are available in the 1BM
Virtual Machine Facility/370 System Programmer’s Guide.’
However, certain characteristics that should be noted are now
described.

The asynchronous processing of a request is accomplished by the
external interrupts. The source request causes an external inter-
rupt to be queued for the sink (notification), and the completion of
a transaction by the sink causes an external interrupt to be
queued for the source (final response).

Because the entire process is asynchronous, the elapsed time be-
tween the send type and receive type functions could be signifi-
cant (even indefinite). The source data and buffer, therefore, must
be left intact until the entire operation has completed (is not buf-
fered by the control program). The user parameter list, however,
is copied into CP real storage and may be reused immediately fol-
lowing the diagnose instruction.

JENSEN IBM SYST J @ VOL 18 ¢ NO | e 1979

The processing within the source virtual machine may overlap the
VMCF request. That is, the virtual machine is runnable (dis-
patchable) after the request is initiated. The source may send oth-
er messages to the same sink (requires unique message identifier)
or send messages (data) to other virtual machines. Similarly, the
sink virtual machine could be the source of other transactions in
the system.

The amount of data transferred by a single request is restricted
only by the size of the virtual machine (virtual storage size).

There may be multiple VMCF external interrupts queued for a
single virtual machine (send and response). The priority of mes-
sages in the system is essentially determined by the order in
which the external interrupts are received (may be FIFO (first in,
first out) or by priority). Beyond that the sink virtual machine
may select specific messages based on its own priority order (by
user and message identifiers). That is, the sink may receive mul-
tiple external interrupts (requests) before ever responding to a
single-specific request. The machine then can be selective in the
messages it chooses and the order in which they are chosen.

VMCF is typically viewed as a mechanism for communicating and
transferring data between distinct virtual machines. The interface
does, however, support a logical wrap-around connection that al-
lows a single virtual machine to send messages and data to itself
(same as CTCA being connected to two channels on the same
CPU). Since the wrap connection is supported, the interface does
not preclude the possibility of connecting isolated components of
a single virtual machine (e.g., operating system tasks).

VMCF data transfer functions may be executed with a zero data
length. The interface may be used simply as a shoulder-tap or
posting mechanism without regard for data, other than that pro-
vided by the message header.

VMCF includes several control functions (diagnose subfunctions)
to assist in managing the interface and/or a specific application.
Authorize and unauthorize functions are available to control ac-
cess to or relinquish use of the interface, respectively. Quiesce
and resume functions are provided to control message traffic at
any given instant. Transactions may be prematurely terminated
with a cancel function or rejected with the reject function. A fast
path transmission of limited control data is possible with the iden-
tify function.

VMCF provides a special field within the user parameter list (dou-
bleword) that may contain any desired user data. The doubleword
is transmitted within the external interrupt message header. The
significance of the doubleword is that it may be exchanged within

IBM SYST J @ VOL 18 # NO 1 e 1979 JENSEN

control
functions

user
doubleword
and security

data
integrity

a single transaction, even with unidirectional protocol. For ex-
ample, a source send request transmits the doubleword to the
sink in the send external interrupt message header—a sink re-
ceive request will transmit a doubleword to the source in the re-
sponse external interrupt message header.

The uses of such a feature can be diverse. The doubleword could
be used to contain additional information for any request (e.g., a
reason for reject). A user may define his own higher-level pro-
tocols, and the doubleword could be used for sequencing, pacing,
and/or application control data. A most obvious use is that as a
password or security code. The basic design of VMCF will allow
any authorized user to access or send data to any other author-
ized user. The control of unwarranted access to a particular vir-
tual machine is a function of the application itself. The specific
authorization mechanism will allow a particular user to accept
messages from one other user only (does not support multiple
users). This protects a single user who is communicating with a
specific machine but does not protect a machine that is communi-
cating with many users (e.g., a central server). The use of the
doubleword for this class of machine (as a password) could pro-
vide the necessary protection. A user could provide a password
within his own data; however, this would require the data to be
received before a validation could take place. An authorize spe-
cific function that allowed multiple user specifications (USERIDs)
may satisfy some requirements but is somewhat limited in flexi-
bility (all USERIDs of a particular application must be known).

The integrity of a virtual machine is assisted by both the control
program and the virtual machine software.® The integrity pro-
vided by the control program (in this case VMCF) is primarily a
function of the design, structure, quality, and implementation of
the code itself. The integrity of user data is largely controlled by
the functions available to preserve and secure the data. A major
consideration in the development of VMCF was to provide enough
indicators to ensure that a user’s data is protected from possible
errors. The fact that the entire process is asynchronous, and can
result in long delays between the time that a request is initiated
and actually completed, opens a window to potential errors. For
example, a user could initiate a request to another user and then
be forced off the system (inadvertently or otherwise). Similarly, a
paging 1/O error could occur attempting to fetch a user page, or
the user himself could violate the rules of the interface (e.g., stor-
age protection, addressing, protocol). The important thing is that
either the source or the sink is notified of the condition and in
sufficient detail to allow for a recovery mechanism. VMCF pro-
vides a variety of return codes or error codes that detail possible
conditions that can occur within the interface. The return codes
are presented as a result of initiating a request via the diagnose
instruction or as data transfer codes in the response external in-

JENSEN IBM SYST J ¢ VOL 18 @ NO | ¢ 1979

terrupt message header. In the latter case, the code indicates that
an error occurred after the successful initiation of a request via
the diagnose instruction (e.g., sink user logged off or unauthor-
ized without accepting or completing the request) and before the
actual request had completed.

The VMCF interface is, for the most part, a software function. It
does, however, involve the simulation or reflection of hardware
external interrupts. Because this is true, the interrupts were made
a part of the architecture in the same manner as other types of
external interrupts:

e The interrupts are enabled through a combination of program
status word Bit 7 (summary mask) and Control Register 0 Bit
31. Bit 31 is a special assignment for VMCF only; the other
types of external interrupts are masked by their own bits in
Control Register 0.

The interrupts (and VMCF requests) will be purged or sent
back to the source following any virtual system reset condi-
tion (e.g., a virtual initial program load).

The interrupts are given a priority. In this case, VMCF inter-
rupts are given the lowest possible priority as compared to
other external interrupts in the architecture (e.g., interval
timer, clock comparator, CPU timer, and external key).

The interrupts were assigned an arbitrary code of X‘4001°.

Performance

The performance characteristics of VMCF are a function of the
internal path lengths, the virtual machine scheduler, and the ap-
plication itself. In viewing the basic path lengths it became obvi-
ous that most of the code involved was not in VMCF, but rather in
the linkage to get to VMCF—the reflection of external interrupts —
and the scheduling and dispatching (task-switching) required to
synchronize the execution of virtual machines. The path lengths
could be reduced by changing some of the basic design criteria
within the control program. The path required to get to the VMCF
support module (DMKVMC)’ requires (1) handling and interpreting
a program check interrupt (privileged operation exception) occur-
ring as the result of execution of the diagnose instruction, (2)
passing control to a privileged instruction interpreter and simula-
tor, (3) passing control to a diagnose instruction interpreter and
preanalyzer, and (4) passing control to the VMCF module to exe-
cute the diagnose function. This path length, for example, could
be significantly reduced by imposing few restrictions (e.g., not
allowing a diagnose to be executed with the execute instruction)
and giving control directly to the VMCF module from the program
interrupt handler. Similarly, the virtual machine dispatcher is a
control point within the control program where all functions

IBM SYST J & VOL 18 @ NO 1 » 1979 JENSEN

external
interrupts

Table 1 VMCF performance characteristics (System/370, Model 158-3)

VMCF Transaction Data Bytes Source CPU Elapsed CPU VMCF Diagnose Total Virtual
Protocol Rate Transferred Time Time Subfunctions CPU Time
(seconds) (milliseconds) (milliseconds) (milliseconds)

134.6 0 7.426 Send 0.995
Send 132.1 16,384 7.565 Send/Receive 1.015
136.1 32,768 7.343 Sendx 0.999
] Identify 1.138
Maximum 136.6 4,096 7.319 Receive (128 bytes) 1.277
Reply (128 bytes) 1.354

112.5 0 8.884 Authorize 0.824
Send/Receive 114.4 16,384 8.736 Unauthorize 0.897
112.8 32,768 8.863 Cancel 1.002
Reject 0.947
Maximum 114.5 20,480 8.731 Quiesce 0.819
Resume 0.826

155.0 6.449
Sendx 154.6 6.465
155.1 6.444

Maximum 155.9 6.413

eventually end. The dispatcher, among other things, provides the
serialization and synchronization of internal processing and vir-
tual machine execution (including the simulation of certain hard-
ware interrupts). The path lengths involved to get to or from the
dispatcher and required functions within the dispatcher could be
eliminated by executing those functions directly in the VMCF
module, i.e., interrupt reflection, task-switching, and redispatch.
To do so, however, would violate important design elements of
CP.

A virtual machine using VMCF may be, in essence, a logical exten-
sion of another virtual machine. The Cp scheduler and dispatcher
are unaware of VMCF and treat both machines as separate and
distirict entities. The effects of scheduling functions on VMCF per-
formance is determined largely by the overall system load (CPU
and storage contention). The ostensible, higher-priority inter-
active user (who is simulating a terminal through the VMCF inter-
face) may be treated as noninteractive (lower priority) since there
is no real terminal activity associated with the virtual machine.
Similarly, the control program is unaware of a VMCF simulated /O
operation, and a user may be dropped from queue even though
there is logical active /0. The adverse effect of this would be most
apparent when the system is overloaded and a large number of
users are contending for common resources.

performance VMCF performance as related to the application itself is controlled
characteristics by the size of the virtual machine and data (if paging), the pro-
tocols used, the frequency of VMCF requests, the structure of

JENSEN IBM SYST J ® VOL 18 @ NO 1 & 1979

code, and the implementation of the application. Table 1 provides
the aggregate transaction (data) rates for each protocol and the
CPU execution time for each diagnose function. The numbers
were produced on a four-megabyte System/370, Model 158-3 run-
ning Release 5 of vyM/370 with the vM System Extension Program
Product (SEPP).S'The VvM/370 system included some local modifi-
cations but none that were related to VMCF or had a significant
impact on VMCF path lengths. There were approximately 25 users
logged-on in the VM/370 system, and there was no paging activity.
The numbers supplied are the maximum achieved during 51 sepa-
rate benchmarks. Each benchmark involved executing the re-
quests 128 times and averaging the results. The test environment
included two VMCF virtual machines (source/sink). The items
included in Table 1 are defined as follows:

Protocol—the actual protocol used for the measurement.

Transaction Rate —the number of transactions per second. This
number was computed by dividing one second (in microseconds)
by the average elapsed CPU time for each transaction.

Data Bytes—the number of bytes transferred with each individual
transaction. In the case of the send/receive protocol the number
is actually one half of the total bytes transferred. The send/re-
ceive protocol includes a reply that is equal to the send data
length.

Source cPU Time—the average total virtual CPU time (problem
and supervisor) charged to the source for each request. This num-
ber includes the time to execute the function, enter a wait-state
(LPSW), and receive the final response external interrupt. The
number was produced with a cP diagnose function.

Elapsed cpU Time —the average elapsed CPU execution time for
each request (initiation to final response interrupt). This number
was produced using the real time-of-day clock and represents the
real (wall clock) execution time for both source and sink virtual
machines (including all CP task-switching overhead).

Subfunctions —the individual VMCF diagnose functions (data
transfer and control).

Total Virtual cPU Time —the total elapsed CPU time to execute the
diagnose instruction only. This number was produced using the
real time-of-day clock.

In viewing the VMCF performance table, note the following items:

o The amount of data bytes transferred appears to have a negli-
gible impact on the execution time and transaction rates when

IBM SYST J & VOL 8 ® NO [® 1979 JENSEN

there is no paging. This is true primarily because the VMCF
data transfer path is small as compared to the other elements
involved (e.g., task-switching, interrupt reflection).

The path lengths (instructions executed) may be appioxi-
mated or deduced by dividing the total execution time by the
average instruction execution time for the machine.

The numbers provided are conservative and are in reality
biased against VMCF. Since the process is asynchronous and
the execution of a virtual machine may overlap a request, the
path lengths required for task-switching may not be a function
of VMCF itself. For example, when a request is initiated, the
call to the dispatcher to post or reflect the external interrupt
for the sink is necessary only when the sink is enabled for the
interrupt. Otherwise, the process is a normal function of the
sink machine being interrupted (for whatever reason). These
numbers were produced by having the sink machine always
wait for a request and the source machine wait for a response
following a request. A virtual machine that is waiting for ex-
ternal interrupts only is also dropped from the dispatcher
queue (additional code) which may not be necessary in a live
situation (for example, the machine may have active I/O opera-
tions that will keep it in queue). The source machine also
could continue to run following a request, and the overhead of
entering a wait state would not be included in the VMCF path
lengths. The VMCF queuing facilities were not utilized in this
test environment. A reduction in queue drop and task-switch-
ing overhead could be realized when multiple transactions are
stacked and processed at the same time.

The transaction rate for the sendx protocol would appear to
be about a 15 percent improvement over the send protocol.
The difference in the two protocols is the receive operation
which is not required for sendx. The total virtual CPU time for
send and receive is reasonably close. It could be assumed,
then, that send and receive combined account for approxi-
mately 30 to 40 percent of the total execution time, and the
other elements, such as entering wait, reflecting interrupts,
and task switch, account for 60 to 70 percent.

It would appear that the send/receive protocol provides a 60 to
70 percent improvement over send for bidirectional data
transfer (two send operations would be required to exchange
data). The actual transaction rate may be doubled for the
send/receive protocol if the comparison is made to equivalent
send operations (a reply is included in this transaction).

performance There are potentially a large number of factors that may contrib-
synopsis ute to VMCF performance. The numbers supplied here should be
viewed as an approximation and will differ from system to sys-

tem. It is clear that a reduction in VMCF path lengths would im-

prove performance but not as significantly as improving the

other elements involved (e.g., task-switching, interrupt reflec-

JENSEN IBM SYST J ¢ VOL 18 ® NO 1 e 1979

tion). A more practical approach would be to eliminate the other
elements altogether. This could be achieved by enhanced sched-
uling algorithms (VMCF awareness) and/or the inclusion of a syn-
chronous protocol or no-response protocol for short messages. A
synchronous protocol would imply that a virtual machine would
not receive control back from the diagnose instruction, such as
send, until the entire operation was complete. This would elimi-
nate the paths for entering a wait and receiving the response inter-
rupt. A no-response protocol would imply that the control pro-
gram would buffer the message, thus eliminating the requirement
for a response interrupt. In this case, the source virtual machine
could run immediately following the diagnose instruction and be-
fore the sink actually received the data. The use of such protocols
would clearly have performance advantages yet could be much
more difficult to manage and control (e.g., the synchronous pro-
cess may require that the source user wait for long periods of
time; the no-response process would not provide indicators for
errors occurring after the request was initiated).

VMCF applications

The potential application(s) for VMCF are many if viewed by the
specific implementation. The purpose of this discussion is to give
an overview of potential system uses of VMCF with little dis-
cussion of the actual implementation. In a broadened sense, these
uses may be categorized as follows: (1) virtual subsystems and/or
extensions to VM/370, (2) resource sharing, (3) multitasking/multi-
programming, (4) testing, and (5) intravirtual machine communi-
cation.

There have been specific implementations within each of these
categories, some that were developed before the advent of VMCF
and that use functions similar to those provided by VMCF. The
potential uses are not described in a priority order, aithough the
first appears to be the most widely used.

A virtual machine subsystem may be thought of as any com-
ponent running in a virtual machine that provides system-wide
services to other virtual machines or users. A subsystem may be
an extension of other components within the system (e.g., the
control program) by providing functions that could be a part of
the other components themselves. Examples of well-known vir-
tual machine subsystems are RSCS (remote spooling communica-
tions subsystem), VNET, and CMSBATCH.>® RSCS and VNET pro-
vide RJIE (remote job entry) and/or network-type services,
whereas CMSBATCH provides services relating to the background
execution of jobs (e.g., compilations). The important element, as
related to VMCF, is that subsystems in general require some type
of intermachine communication media to provide their basic ser-

IBM SYST J e VOL 18 e NO 1 @ 1979 JENSEN

virtual subsystems
and/or extensions
to VM/370

vices. The above specific subsystems use the spool file system as
the media. This is appropriate, in these cases, because the data
files may be classified as critical and require a store-and-forward
technique. The noncritical data (e.g., query status of a particular
link or job) could be implemented through a VMCF-like facility
even for these particular subsystems.

Subsystems have advantages in that they are logically isolated
from other virtual machines yet easily accessible, simpler to
maintain, and have little impact on the control program itself, i.e.,
Ccp. The disadvantage of subsystems may be performance. In
some cases the performance impact can be minimized by features
such as microcode assist which provides a significant reduction in
the control program overhead required to support a virtual ma-
chine.

A hypothetical example of a subsystem could be an entire oper-
ating system, such as vSi, that runs in a virtual machine. CMS, the
interactive component of VM/370, simulates some operating sys-
tem functions (e.g., OS macros and associated SVCs, VSAM, DOS/
VvS) but does not simulate many other functions (e.g., data base
and languages, write access to data sets).” It is obvious that an
attempt to simulate all the available functions of an entire oper-
ating system would in fact be a duplication of the system itself.
The original intent of CMS was to simulate operating system func-
tions to a level of supporting 0S compilers such as Assembler,
PL/1, and COBOL. The functions provided by vMCF do not preclude
a bridge between a CMS user and a virtual operating system such
that the functions provided by the operating system could be
made available to the CMS user as though they were simulated by
the CMS machine. Similarly, operating system subsystems (e.g.,
VTAM) could be exploited in a like manner. However, the oper-
ating systems do not support VMCF in a virtual machine and
would require the following modifications to do so:

e The external interrupt handler would have to be modified to

recognize the VMCF external interrupt (Code X'4001°’) and
post a VMCF control task (user program which has supervisor
privileges).
Modifications may be required to preserve the VMCF external
interrupt mask (Bit 31 of Control Register 0). The operating
system would be unaware of this bit since it is not part of the
architecture of the hardware.

The application of a virtual machine subsystem could range from
a simple command processor (e.g., virtual extensions to the CP
command language) to a large shared data base system (e.g., IMS,

cIcs, and pLA'"™). Figure 4 is an example of a recent prototype

developed at the IBM San Jose Research Laboratory Computing
Center. This prototype is used as an example because its use of

JENSEN IBM SYST J & VOL 18 &« NO 1 @ 1979

Figure 4 Muitiaccess real-time monitor

TUNING

SYSTEM
ANALYST

CONTROL

SYSTEM
OPERATOR

LOGICAL | VMCF LINKS

MONITOR ANALYZE

SYSTEM
PROGRAM-
MER

DEBUGGING

MANAGER

PLANNING

VMCEF is simple and the implementation did not require modifica-
tions to existing system control program software (CP or CMS).
The prototype shown is a redl-time performance monitor, de-
bugging tool, and operations support tool. The application in-
volves a large number of users. VMCF provides a multiaccess ca-
pability that allows many users to share a single program and data
base. A simple cMs module was written to provide the terminal
command interface and send commands to the monitor by means
of VMCF. The monitor (which also accepts commands from a real
terminal) required simple logic to handle and remember VMCF
requests and respond through VMCF rather than display data on
the real terminal. The CMS/VMCF interface module would do the
actual displaying of data on the terminal associated with the user
executing the request. This application reveals several qualities
that could be applied to other types of subsystems:

e The monitor itself requires a special privileged class to extract
internal data from the control program. The extracted data is

IBM SYST J @ VOL 18 « NO 1 ¢ 1979 JENSEN

resource
sharing

Figure 5 Hypotheticai ENQ/DEQ

subsystem

A—ENQ <SEND/RECEIVE >—]
A—“GOT IT" ~#—— REPLY ~&———
C—ENQ <SEND/RECEIVE >~
A—DEQ <CSENDX > —————

C—~"GOTIT"REPLY 4—————1

ENQ/DEQ

SUB-
SYSTEM

B

not privileged, yet to produce the data from any virtual ma-
chine would require a class that is not available to the general
user. The VMCF interface enabled the general user to display
data that otherwise would have required a privileged virtual
machine.

The monitor virtual machine need not be bound by a physical
terminal, and simple logic was required to provide a multi-
access environment with a varied number of terminal types
(those supported by cp). This same logic could be applied to
any program(s) that runs in a virtual machine.

The performance benefits of running a single copy of the pro-
gram (the monitor) were significant as compared to running
several copies of the program in separate virtual machines.
The multiaccess capability provided the benefit by allowing
the monitor to be run in a background virtual machine without
disruption of the normal cMs. The value of the monitor was
also significantly enhanced by making it available to a broader
range of users. ‘

The ability to access the monitor through a cMS command
(VMCF interface module) was a natural for automating and ex-
ecuting commands within a CMS EXEC procedure (automatic
command execution facility). In this case, each user could
create his own automatic monitor if desired (the monitor pro-
duces a variety of diffferent displays).

Most of the CPU time required to access the monitor was
charged to the user executing the request/command, and the
monitor itself was not disrupted by real ferminal /O opera-
tions.

A resource, as viewed by a user, may range anywhere from a
single data byte to a string of hardware devices. The control pro-
gram does not provide a concise mechanism whereby users may
serialize their own resources or data. The cortrol program does
have an internal locking mechanism that is used to serialize events
within itself, but it is not available to the general user. Release 4
of vM/370 provided a capability to serialize access to a minidisk
through a virtual (simulated) reserve/release feature. This feature
is implemented through the virtual 1/0 interface (as on a real ma-
chine) and requires that an entire volume (or minidisk) be serial-
ized rather than specific data (or data sets) within.

VMCF could conceivably be used to provide a logical enqueue/
dequeue {(ENQ/DEQ) facility such as that provided by 0s-like oper-
ating systems. This may involve a distinct virtual machine (or
subsystem) that manages the interface. The VMCF functions pro-
vide the communication media to control the process. A hypo-
thetical example shown in Figure 5 could be as follows:

1. User A may execute a send/receive request to User B, the
controller, with a bit defined in the user doubleword indicating

JENSEN IBM SYST J ® VOL 18 ® NO 1 & 1979

the type of request (e.g., ENQ-WAIT or ENQ-TEST). The actual
data sent with the request would be the qualified name of the
resource.

. User B would then receive the data and determine if the re-
source was available (function of its own queues). If the re-
source were available, the controller could then reply to the
enqueue request indicating that user A now has the resource.

. User C could then execute a send/receive enqueue request for
the same resource in use by User A. User B, or the controller
in this case, would not execute a reply at this time since the
resource is not available. User C could continue to run and
overlap the request or enter a wait state for the response inter-
rupt and reply.

. User A could then execute a sendx request to the controller
User B indicating a dequeue of the subject resource. User B
may then respond to the User C request with a reply indicating
that the resource is now available.

Further actions would continue in a similar manner.

The integrity of this type of facility is clearly the responsibility of
its users. The serialization of resources involves an agreement
among all concerned (which is true with any enqueue/dequeue
facility). In this case, the actual controls are implemented by the
user including such things as deadlock detection. The removal of
such a procedure from the control program is advantageous since
it does not involve real free storage demands controlled by an
arbitrary limitation.

The serialization of a resource may simply be a built-in function
of the subsystem controlling the resource. The monitor imple-
mentation discussed earlier serializes access to the program
through the normal VMCF queues, i.e., it does not enable for ex-
ternal interrupts during processing of any given request. This is
possible because there are not long delays between the time that a
request is executed and a response is produced.

A virtual machine is, in fact, a schedulable and dispatchable unit
of work such as an operating system task. The execution charac-
teristics of the machine may be controlled by a priority and guar-
anteed a certain amount of CPU time (when available). The ele-
ments involved in a multiprogramming system may include a seri-
alization technique (ENQ/DEQ), a synchronization process (WAIT/
POST), common storage, and a mechanism for dynamically attach-
ing and detaching tasks. The ingredients for creating such a pro-
cess between virtual machines is possible with VMCF. The control
program provides an autolog command that may approximate the
attach command. The autolog command will allow a virtual ma-
chine to be created (logged on) without a terminal and to the spec-
ifications of a predefined profile. Parameters may be supplied to

IBM SYST J & VOL 18 « NO 1 & 1979 JENSEN

multitasking/
muitiprogramming

testing

intravirtual
machine
communication

Figure 6 Virtual machine subtask

CONTROL

BACKGROUND
EXECUTION

the virtual machine to control the program or programs that are
executed. The force or logoff commands may be used to approxi-
mate the detach command, i.e., it terminates the virtual machine
(see Figure 6). The vMCF functions may provide the connection
of common storage and the synchronization and serialization pro-
cesses. The control program provides the facilities to weight the
execution of tasks, i.e., priorities, biases, and guarantees.

A simplified example of this process may be the CMs batch mon-
itor.

In many cases the testing (particularly performance) of a com-
ponent requires external controls that have little impact on the
component itself. The small amount of code required to imple-
ment VMCF (and associated overhead) provides a nice ‘‘hook”
into a system that can be controlled by an external interface or
virtual machine. The shoulder-tap capability may be used for
simple ‘‘wake-up’’ of a virtual machine. The process could also in-
volve a comprehensive external simulator. For example, a SIO in-
struction could be replaced by a VMCF request, and a mechanism
could be employed that simulates an entire /O operation without
actually requiring the hardware device. The fact that the process
is external to the target allows the simulation process to be ma-
nipulated, controlled, and maintained in an isolated virtual ma-
chine.

This process involves connecting isolated components of a single
virtual machine. As described earlier in this paper, VMCF sup-
ports a logical wrap-around connection that allows a virtual ma-
chine to communicate with itself (e.g., a CTCA connected to twp
channels on the same CPU). The uses of this facility may be simi-

lar to the CTCA environment. It is conceivable that a primitive
multitasking system running in a virtual machine could use this
facility to connect separated tasks (if such a feature is not avail-
able). The process may also have its advantages for testing such
as that done between virtual machines.

Synopsis and conclusions

VMCF, then, is an interface that provides a mechanism to transfer
data and communicate between virtual machines. The interface is
a software process that is not bound by the external elements of a
data processing system. VMCF is localized to a single real CPU
running any number of virtual machines and is viewed by the user
(programmer) as consisting of certain interface components:

e A diagnose instruction to invoke a specific function.

® A user parameter list to describe the function.
e External interrupts to synchronize the functions.

JENSEN IBM SYST J » VOL 18 ¢ NO 1 ¢ 1979

e A message header to describe external interrupts and data
transmission characteristics.
o User data.

The characteristics of data transfer between virtual machines is a
function of the protocol used for any given transaction. VMCF
provides several protocols that allow for one-way or two-way
data transmission. Control functions are available to assist a user
in managing the interface. The mechanics of VMCF are efficient as
an asynchronous process for communicating between virtual ma-
chines. The good points of its predecessor (virtual CTCA) were
retained and improvements or extensions were made. Several
features are provided to ensure a high degree of user data integ-
rity and security.

The potential applications for VMCF were described at the system
level and categorized as follows:

Virtual machine subsystems (logical extensions to VM/370).
Resource sharing (serialization).

Multiprogramming (virtual machine subtasks).

Testing (externally controlled simulation).

Intravirtual machine communication (task to task).

VMCF is a base for future virtual machine applications, many that
have yet to be conceived.

ACKNOWLEDGMENTS
The original prototype for VMCF was developed by A. N. Chan-
dra at the IBM Thomas J. Watson Research Center in Yorktown

Heights, New York. The Chandra prototype was later developed
by the vM/370 Development Group.

I am indebted to H. M. Gladney and C. G. Colas, IBM Research,
San Jose, for prompting me to write this paper, to G. Strickland,
1BM Data Processing Division, Palo Alto, for giving me the op-
portunity to write the paper, and to the referees for their useful
and constructive comments regarding this paper.

CITED REFERENCES AND NOTE

1. L. H. Seawright and R. A. MacKinnon, ‘*VM/370—a study of multiplicity
and usefulness,”” IBM Systems Journal 18, No. 1, 4-17 (1979, this issue).

2. IBM Virtual Machine Facility/370 Introduction, GC20-1800, IBM Corpora-
tion, Data Processing Division, White Plains, NY 10604.

. IBM Virtual Machine Facility/370: Operating Systems in a Virtual Machine,
GC20-1821, IBM Corporation, Data Processing Division, White Plains, NY
10604.

. IBM System/370 Principles of Operation, GA22-7000, IBM Corporation, Data
Processing Division, White Plains, NY 10604.

. IBM Virtual Machine Facility/370: System Programmer’s Guide , GC20-1807,
IBM Corporation, Data Processing Division, White Plains, NY 10604.

IBM SYST J ® VOL 18 ® NO 1 » 1979 JENSEN

92

. C. R. Attanasio, P. W. Markstein, and R. J. Phillips, ‘‘Penetrating an oper-
ating system: a study of VM/370 integrity,”” IBM Svystems Journal 18, No. 1,
102-116 (1976).

. Source listing for module DMKVMC. This is the primary VMCF support
module; it contains a SCRIPT prologue which details its functions.

. E. C. Hendricks and T. C. Hartmann, *‘Evolution of a virtual machine sub-
system,”” IBM Systems Journal 18, No. 1, 111-142 (1979, this issue).

. IBM Virtual Machine Facility/370: CMS Users Guide, GC20-1819, IBM
Corporation, Data Processing Division, White Plains, NY 10604.

. W. C. McGee, ‘‘The information management system IMS/VS,”’ IBM Sys-
tems Journal 16, No. 2, 84-168 (1977).

. D. J. Eade, P. Homan, and J. H. Jones, ‘“CICS/VS and its role in Systems
Network Architecture,”” IBM Systems Journal 16, No. 3, 258-286 (1977).

GENERAL REFERENCES

IBM Virtual Machine Facility/370: System Logic and Problem Determination
Guide, SY20-0886, IBM Corporation, Data Processing Division, White Plains,
NY 10604,

M. McGrath, **Virtual machine computing in an engineering environment,”’ IBM
Systems Journal 11, No. 2, 131-149 (1972).

R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J. Hatfield, ** Virtual storage
and virtual machine concepts,”” IBM Systems Journal 11, No. 2, 99-130 (1972).

Reprint Order No. G321-5087.

JENSEN IBM SYST J e VOL 18 ®« NO 1 ® 1979

