The design and implementation of VMi370 attached processor sup-
port is discussed from the point of view of adding radical new
function to an existing operating system. Three major design de-
cisions are described, and performance is analyzed as it relates
to those decisions.

VM/370 asymmetric multiprocessing

by L. H. Holley, R. P. Parmelee,
C. A. Salisbury, and D. N. Saul

This paper discusses the design and implementation of the at-
tached processor (AP) support first available in Release 4 of vM/
370. The term attached processor in this context refers to the spe-
cific implementation on System/370 Models 158 and 168 and on
the 3031 processor of an asymmetric processor configuration.
This implementation comprises one central processing unit (CPU)
with full execution, channel, and input/output (I/0) capability, and
one attached processing unit (APU) which shares main storage
with the CPU but has only execution capability.

Described are considerations for adding shared storage multi-
processing to the then existing VM/370 operating system and the
tradeoffs that were required to achieve a practical result. We
hope to show how significant new function was provided in VM/370
within the context of an original operating system design which
did not provide for such function. The major design points are
covered, with emphasis on how they affected performance. It is
not our intent to present a complete view of vM/370 Release 4, but
rather to highlight the overall design, the tools, and the tech-
niques of design and implementation as they relate to attached
processing. Toward that end, three central design problems are
presented in detail, and others of lesser significance are men-
tioned briefly.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J &« VOL 18 ® NO 1 ® 1979 HOLLEY ET AL.




It is assumed that the reader is familiar with the concepts and
facilities of 1BM’s Virtual Machine Facility/370 (vM/370). If not,
the paper by Seawright and MacKinnon elsewhere in this issue!
provides basic information and an extensive bibliography.

The genesis of this project lay in the rapid growth of large vM/370
systems and the requirement for more pirocessing capability to
satisfy that growth. The multiprocessing options of System/370
suggested an obvious and attractive solution to this problem. The
additional processing power could be provided, and the single
system image of a uniprocessor could be maintained. But many
questions concerning the nature and feasibility of software sup-
port remained to be answered.

Prior to vM/370 Release 4, the only IBM system control programs
that supported shared storage multiprocéssing on System/370
were Multiple Virtual Storage (MvS) and Time Sharing System/
370 (Tss/370). Both systems supported symmetric (multi-
processor) as well as asymmetric (attached processor) hardware
configurations. The control of multiple processors was an inher-
ent part of the design objectives for both Mvs™® and Tss.* The
software architecture of each had basic multiprocessor functions
such as locking, signaling, and interprocessor commurication.
Further, the code in these systems was organized so that parallel
execution was possible. These essential primitive operations
were not defined in vMm/370.

In other words, vM/370 did not have the fundamental building
blocks required to support parallel processing. Lacking were
functions for locking and unlocking (enqueuing and dequeuing)
nonsharable resources, provision for parallel execution of shared
code, protocols for communication between processors, and a
mechanism for serializing /0 processing. Moreover, much of the
control program supervisor provided no design base for parallel
execution. A total rewrite of vM/370 was not practical, so an effort
was undertaken to selectively rewrite parts of the control pro-
gram (CP) to fulfill the requirements for integrity and performance
while minimizing user disruption. Finally, it was decided to sup-
port an attached processor configuration rather than a symmetric
multiprocessor configuration.

Review of multiprocessing

The basic characteristic that distinguishes a tightly coupled multi-
processing system from a multicomputer system is shared main
storage, with simultaneous operation of the multiple processors
under control of a single operating system.® In loosely coupled
configurations such as ASP, shared spool, and JES3, each proces-
sor has its own supervisor, so these configurations are not consid-
ered true multiprocessing systems. Also outside the above defini-

HOLLEY ET AL. IBM SYST J & VOL 18 ® NO 1 & 1979




tion are multiprogramming systems that support concurrent,
rather than simultaneous, execution. A multiprogramming sys-
tem may appear to have multiple functions operating at the same
time, but at any given instant, only a single instruction stream is
in execution on the processor. A multiprocessor has two (or
more) streams in execution at the same time. All the above sys-
tems are sometimes considered parallel processors but this desig-
nation is misleading since the degree and level of parallelism can
vary.

Enslow® defines a true multiprocessor as having four character-
istics:

Two or more processors, each of approximately equal power.
Shared access to memory.

Shared access to input and output.

A single operating system in control.

By this strict definition, the System/370 attached processor does
not qualify as a true multiprocessor because the APU has no ac-
cess to input or output, The consequences of this variant are dis-
cussed under Serialization of 1/0 control on the CPU, below.

Given the characteristics listed above, the two major focal points
in designing a multiprocessing system are sharing and inter-
action. Control of shared resources can be accomplished in any
of several ways. The three most basic to current multiprocessing
design are serialization of the resource by means of a lock, repli-
cation of the shared resource, and restriction to running on a spe-
cific processor. Identification of the resource owner is also impor-
tant. The processors interact at several levels of communication
(such as memory, 10 bus, cache, and CPU signaling instruction).

The System/370 multiprocessing feature’ provides fot coordina-
tion of multiple processors. Prefixing hardware permits the first
4096 bytes of each processor’s storage to be replicated. This area
contains processor dependent locations such as those for program
status words, logout, and general processor and program status.
Lockiné is accomplished by the COMPARE AND SWAP (CS) instruc-
tion, which ensures serialization during its execution and provides
a field for ownership identification.® Processor coordination is
provided explicitly by the SIGNAL PROCESSOR (SIGP) instruction,
and at several implicit levels (such as storage protect and cache).
System/370 multiprocessing always deals with two processors of
equal power.

There are three alternative software architectures for multi-
processing hardware. There can be a master-slave relationship,
there can be a separate executive for each processor, or each
processor can be treated as a symmetric resource. The third is the

IBM SYST J @ VOL 18 ¢ NO 1 @ 1979 HOLLEY ET AL.

multiprocessing
defined

software
architecture




Figure 1

Logical hardware configu-
ration

SHARED
MAIN STORAGE

most useful and also the most difficult to implement. Its useful-
ness derives from its ability to support a general set of parallel
functions without restricting what can run at any time on any
processor. This generality requires a higher level of supervisor
code and more care in implementation. A variation of it is the
basis for attached processor support in VM/370.

Attached processor

The justification for multiprocessing support in vM/370 derived
from the need for additional instruction processing power on
large systems. The first design decision concerned the forms of
System/370 multiprocessors that should be supported. Fully
symmetrical multiprocessors® would have required parallelism
throughout the control program. But by restricting VO operations
{0 one processor, as in an attached processor or asymmetric mul-
tiprocessor configuration, many fewer changes were required in
vM7370. In making the choice to support the attached processor
concept, it was clear that the system’s applicability would be re-
stricted to users with a requirement for additional CPU power
only. These users, however, are a significant subset of all vM
users. Typically they have many cMS systems or mixed CMS-pro-
duction virtual machines. Compared with a uniprocessor, an at-
tached processor does not provide for any additional VO capabil-
ity.

In an attached processor configuration, any functions that relate
to real /0 (START I/0 and interruptions, for example) can run only
on the CPU. This limitation reduces the complexity of the design
and ensures serialization within the 10 process. The real hard-
ware configuration is shown conceptually in Figure 1.

Project constraints

The design of attached processor support in vM/370 Release 4 was
undertaken under the following project constraints:

e The flexibility to experiment was constrained by the develop-
ment process and its schedules.
Compatibility with all vM/370 functions available in uni-
processor mode was to be maintained without significantly de-
grading uniprocessor performance.
The integrity of all serial processes was to be maintained.
Cost-justified performance was to be ensured.
A base was to be created for the vM/370 Resource Management
Program.’
Control program modifications were to be minimized to re-
duce the rewriting required for user modifications. The objec-
tive was stability and minimal regression.
The attached processor capability was to be an option which
could be added to VvM/370 during system generation.

HOLLEY ET AL. IBM SYST J e VOL 18 ® NO 1 o 1979




e Any changes made for multiprocessing should have minimal
effect on uniprocessor operation.

Fundamental multiprocessing problems and solutions

The central design problem in multiprocessing is selecting the
means by which computing tasks are to be divided among the
processors so that, for the duration of that unit of work, each
processor has logically consistent instructions and data. Con-
sider, for example, the stream of instructions executed by a uni-
processor, and suppose the instructions are divided into comput-
ing tasks as depicted in Figure 2(A). A task may be a single ma-
chine instruction or several thousand. Deferring for the moment
the design issues associated with identifying these tasks, the cen-
tral design question becomes: Given some division of the uni-
processor instruction stream into tasks, when is it permissible to
overlap the execution of these tasks with two or more proces-
sors? Figure 2(B) depicts an overlapped relationship.

This question is closely related to a design issue in uniprocessing:
Given two successive tasks, A and B, as shown in Figure 2(A),
when is it permissible to reorder these tasks? For example, if task
B is the processing of an /0 interruption and A is a task that
normally runs disabled for 1O interruptions, what are the con-
sequences of enabling for interruptions during task A, so that B
can be executed before or during A rather than after it?

The reordering of two uniprocessor tasks may be disallowed by
either a logical dependence or a data dependence of task B on
task A. B is logically dependent on A if B may or may not be
executed, depending on the execution of A. Tasks B and C in
Figure 3 are logically dependent on task A, since either B or C
may be executed, depending on the result of the execution of A.

Data dependence is illustrated by tasks B and D in Figure 3. The
output value of task B is the input to task D. Data dependence
may occur in several other ways if the term data is broadened to
include any storage location or register, or other task input or
output.

If two sequential uniprocessor tasks are logically independent
and data independent, they can be reordered. In multiprocessing
systems, attention must be paid to both logical and data de-
pendence when tasks are divided among processors.

A task T, can be viewed as a mapping from input data I, to out-
put data O, as shown in Figure 4(A). Parts (B), (C), (D), and (E) of
Figure 4 illustrate various relationships between input and output
data for two tasks. In 4(B) the data elements for the two tasks are

IBM SYST J e VOL 18 @ NO 1 & 1979 HOLLEY ET AL.

Figure 2 Task relationships

A|C
<+—‘|-——*->cpux

B D
H—+—>CPU2

UNIPROCESSOR MULTIPROCESSOR
A) (8)

Figure 3 Logical and data depen-
dencies

data
dependence




52

Figure 4 Multiprocessing data dependencies

(-
ONO
ONC RO

()

ORCORO

g
5]

disjoint. In 4(C) the input data overlaps. In 4(B) and 4(C) there
would not be a problem for multiprocessing, but in 4(D) and 4(E)
there could be inconsistent results. Therefore special precautions
should be taken in instances such as these.

In the uniprocessor version of vM/370, system tasks presented
many conflicts like those in 4(D) and 4(E) for any reasonable divi-
sion of tasks. Indeed, the principal obstacle to design was the
diffuse ownership of system data areas in a system not designed
for multiprocessing.

Four general strategies are employed to cope with these data de-
pendencies:

HOLLEY ET AL. IBM SYST J e VOL 18 ® NO | » 1979




Serialize the use of the shared data with a gatekeeper function
or lock.
Replicate the shared data items, assigning one set to each
processor.
Force all tasks that require a particular set of data items to run
on a particular processor.

e Redesign tasks to minimize data conflict.

Aspects of vM/370 design which illustrate these strategies are dis-
cussed under Design strategies, below.

Much research into the theoretical problems associated with mul-
tiprocessing has concentrated on parallel execution within a
single program. Baer'® surveys some of this work. In the context
of a single program, the problem of logical dependence is acute.
Special language features are required to identify which portions
of the program can be executed in parallel and to synchronize
execution of the processors at various points in the program. Al-
though this fine-granularity multiprocessing is an important theo-
retical and practical problem for some computing environments,
many large systems do not require such solutions. These systems
are characterized by competition for CPU resource among many
tasks which, by necessity, have a large measure of logical inde-
pendence. For example, two batch jobs or two time-sharing users
often will be totally independent except when they require super-
visor services.

Often a uniprocessor system provides a central function for
queuing and dispatching of these independent tasks. A system
may take advantage of this independence, for example, to reorder

the tasks according to a user- or system-determined priority. The
design for multiprocessing in vM/370 exploits the logical indepen-
dence of the tasks on the central queues. This design choice also
reduces the requirement for interprocessor communication. It is
part of the new system but is required only rarely.

Design strategies

Locking

This section describes the locking structure of vM/370 attached
processor support, the specific types of locks implemented, and
their uses.

The structure of software locks introduced into the vM/370 super-
visor to support multiple processors allows different virtual ma-
chines to be in execution simultaneously on each of the proces-
sors. It does not, in general, allow simultaneous supervisor exe-
cution on behalf of those virtual machines. The design principle

IBM SYST J e VOL 18 ¢ NO 1 » 1979 HOLLEY ET AL.

logical
dependence

locking
structures




specific locks

used is that only one processor at a time can execute supervisor
functions, except for selected paths. Specific supervisor paths
that are used frequently and do not share much data with the bulk
of the supervisor were programmed selectively to allow simulta-
neous execution on multiple processors.

A logical software lock is implemented by designating a word of
storage as the physical lock. The unlocked and locked states cor-
respond respectively to the zero and nonzero values of the word.
When locked, the specific nonzero value identifies the processor
that has acquired the lock. Acquisition of the lock is attempted by
trying to replace a zero word value with a nonzero value using the
System/370 COMPARE AND SWAP instruction, which is a proper
hardware serializing primitive. The replacement occurs only if
the current content of the word matches the zero value specified
in the instruction. If multiple processors simultaneously perform
the operation on a given word of zero value, only one is success-
ful.

If the replacement is successful, the invoking processor can use
all the serially reusable resources protected by the lock, and it
will be the only user of those resources. Software convention en-
sures that they cannot be used unless the lock has been acquired.
When it has finished using the resources, the processor releases
the lock by placing a value of zero in the given word, thus allow-
ing it to be acquired subsequently by any other processor.

If the replacement is unsuccessful, the processor can suspend ex-
ecution of the unit of work that requires lock acquisition, or spin
(that is, loop) on acquisition attempts by continuously testing the

state of the lock until it is released and subsequently acquired.
The proper course of action for software normally is related to the
use of the serially reusable resources protected by a given lock.
Thus a lock can be categorized as a suspend lock or a spin lock.
Suspension usually implies the additional work of saving enough
information about the current unit of work so that it can be re-
sumed later, ensuring that it will be resumed when the unacquired
lock is later released, and switching to some other unit of work. It
would appear that spinning on attempted lock acquisition wastes
processor power, but if spinning takes less time than the work
introduced by suspension, it is the more economical alternative.

The vM/370 supervisor’s use of most data fields in control blocks
is widely scattered throughout the system control program. To
protect those fields as serially reusable resources, the processor
normally acquires one system lock upon entering the supervisor
state at one of the first-level interruption handlers, and it releases
the lock upon exiting from the central dispatcher to either virtual
machine execution or the wait state. If this lock cannot be ac-
quired, the processor suspends execution by saving the state of

HOLLEY ET AL. IBM SYST J e VOL 18 @ NO 1 o 1979




the current task for later resumption and proceeding directly to
the dispatcher to perform work that does not require the lock
(that is, it puts another virtual machine into execution). Thus this
system lock serializes the use of most supervisor resources.

Each virtual machine is serialized by a unique lock, which is ac-
quired before a processor puts a virtual machine into execution or
performs supervisor functions on its behalf. Its lock is released,
normally in the dispatcher, when the processor stops servicing
the machine. Transition of a processor from executing a virtual
machine (problem state) to performing supervisor functions for it
(supervisor state) does not involve any change in the state of a
virtual machine lock. The lock was acquired in the dispatcher
before virtual machine execution began and will be held through
the supervisor state until deliberately released. Suspension of ex-
ecution consists merely of bypassing selection of this particular
virtual machine in favor of another whose lock can be acquired.

As stated above, most supervisor resources are serialized by the
system lock. Resources used before system lock acquisition is
attempted, or as part of the suspension mechanism if acquisition
fails, are exceptional resources that require separate serial-
ization. Most are queues (free storage blocks, runnable users,
timer requests, etc.) which are updated as elements are inserted
or deleted. Since updating a queue is a relatively brief operation,
these queue locks are spin locks.

Some data items are locked by the data itself. Event counters (to
be incremented by one) and the pointer to the curfent system
trace table entry (to be advanced by each trace event) are single
storage words which are updated directly by COMPARE AND SWAP

instructions. The replacement value of such words is uniquely
determined by the current value. If simultaneous replacement is
attempted by two processors, one will fail, causing a redetermina-
tion of the replacement value and another attempt. This process
is a form of spin lock.

Detailed description of a selected path should clarify the interplay
among locks. Figure 5 provides an overview of the relationships
among various portions of the supervisor. Assume that a pro-
cessor has been directly executing a virtual machine which has
just attempted to execute a privileged instruction (for example,
START I/0). Since virtual machines are managed by forcing direct
execution in problem state and simulating privileged operations,
the hardware causes a privileged-operation program interruption.
Thus supervisor software is invoked at the first-level program in-
terruption handler. The processor holds the virtual machine lock
of the virtual machine that just caused the interruption; it does
not hold any other locks. The contents of the processor’s regis-
ters and of the program-interruption old program status word that

IBM SYST J e VOL 18 ® NO 1 o 1979 HOLLEY ET AL.

the selected
paths




Figure 5 Supervisor path overview

SYNCHRONOUS APPENDAGES
INTERRUPTS
(PGM, SVC) [+

PROBLEM
STATE

Lo

PROBLE PROBLEM
Tate” - A T STATE

DEFER PATH

SAVE
ASYNCHRONOUS STATUS
INTERRUPTS N

(EXT, 1/0)

VMBLOK
APPENDAGE

= WAIT STATE
WAIT STATE ——

<4 VIRTUAL MACHINE~s»-{<—1ST LEVEL —#ie— SUPERVISOR—={« DISPATCHER -} VIRTUAL MACHINE —#=
EXECUTION INTERRUPT EXECUTION

HANDLERS
> VIRTUAL MACHINE LOCK HELD

~ — — — & SYSTEM LOCK HELD

identifies the virtual state can be saved in control block areas seri-
dlized by the virtual machine lock. The virtual machine is flagged
as nonrunnable until simulation by supervisor functions is com-
plete.

When supervisor functions determine that system resources
other than thosé specific to the virtual machine are necessary to
complete the simulation, an attempt is made to acquire the sys-
tem lock. If the attempt is succ§ssful, the processor proceeds
through the balance of the supervisor while holding both the sys-

tein lock and the virtual machine lock. It may also temporarily
hold one of the spin locks on specific queues. When the processor
eventually reaches the dispatcher, it still holds the system and
virtual machine locks. At this point the processor either redis-
patches the virtual machine or performs some other unit of work.
Redispatching the virtual machine means that the system lock is
released, and the processor returns to problem state still holding
the virtual machine lock. To perforni other system work, the vir-
tual machine lock must be released and the system lock retained.

If the system lock cannot be acquired when needed, the pro-
cessor follows the defer path, as shown in Figure 5. Deferred
service requires that the logical point in the simulation and any
interruption information be saved. General register and instruc-
tion counter contents are stored in a control block appendage that
defines the virtual machine. This appendage is then queued on a
chain of system requests to be processed when the system lock
has been acquired. (A spin lock on this chain is held briefly while
the queuing is performed.) Control is then passed to a special

HOLLEY ET AL. IBM SYST J @ VOL 18 @ NO 1 ¢ 1979




DSPRU entry point in the dispatcher, where the current virtual
machine lock is released and acquisition of another is attempted.
Exit from the dispatcher is either to problem state (holding a
virtual machine lock), or to wait state (holding no locks). The
DSPRU entry point is the start of a special path through the dis-
patcher which has no need of the system lock. System-wide re-
sources such as free storage queues, which must be used by this
path, are serialized by separate spin locks.

As can be seen from the above discussion, most state changes in
suspend locks occur in the dispatcher. Entry into the dispatcher
normally represents the termination of some unit of work, and
exit represents the initiation of another. One way of exiting from
the dlspatcher is to execute a system request that has been
queued by another supervisor function. Such requests, of which
the defer path appendage is one instance, are invoked while the
system lock and the pertinent virtual machine lock are held.

Some selected paths in the synchronous first-level interruption
handlers (supervisor call and program check interruptions from
problerp state) were programmed to operate without acquiring
the system lock if they ended by returning to problem state exe-
cution of the same virtual machine. Such paths were constrained
to use only those system resources serialized by the virtual ma-
chine lock held on entry or by specific spin locks. System per-
formance was enhanced by these paths because of their fre—
quency of use.

Serialization of I/O control on the CPU

As discussed above, an attached processor system is a multi-
processor with all /O devices attached to one processor, so that
all /o activity is serialized on that processor. Only the CPU can
initiate input or output (the APU responds to all VO instructions
with a condition code that indicates that the addressed device is
not operational) and only the CPU can respond to an I/O inter-
ruption. In other words, only the CPU can execyite the code in the
system control program’s first-level 1O interruption handler.

Reviewing briefly the 10 handling logic of CP, recall that the 10
supervisor performs the following three functions:

e Accepts /O requests made by other components of CP. These
requests are enqueued from the appropriate /O control block,
and an VO operation is started if a path to the requested device
is free.

Accepts V0 interruptions. If an interrupgion indicates com-
pletion of an VO task, the supervisor passes that task to the
dispatching module of the system.

Dequeues and starts one or more new U/O tasks if, as a result of
an 10 interruption, a path to a requested device becomes free.

IBM SYST J ¢« VOL 18 ¢ NO | e 1979 HOLLEY ET AL.




I/O design

1/0 control block
considerations

The 10 supervisor module in CP is essentially a self-contained
package of code which contains all of CP’s /O interruption han-
dling logic. Although its internal logic is somewhat complex, its
interactions with the remainder of the system are well defined.
However, it does not control all the initiation of V0 in CP. There
are many code modules that initiate 170, and the interactions of
these modules with the remainder of the system are complex. In
particular, at some point, many of the various terminal handling
routines attempt to initiate /O to a terminal.

In view of the /0 handling considerations outlined above, the de-
sign problem for input and output has three aspects:

® Ensuring that only the cPU will initiate /0.

e Ensuring that the /O control blocks are not changed by the
attached processor in such a way as to cause the CPU to make
an error.

Ensuring that the interactions between /0 handling and the
remainder of the system are suitably interlocked.

The major decision in designing /0 support for vM/370 was that
only the CPU would execute code that made use of the dynami-
cally changed real 170 control structure. The intent of this decision
was to ensure that all /O interruption processing could be done
without the system lock, for, in effect, there is no multiprocessing
of the 10 logic. All other paths that share data with this unlocked
path must be serialized on the CPU. The result is that all paths,
other than the 1/0 interruption handler, that refer to the 170 control
blocks must operate with the double constraint of being con-
trolled by the system lock and running on the CPU. The /O inter-
ruption path shares, with other paths in the system, the following
resources: fields in the 10 control blocks, fields in the other sys-
tem control blocks, and system free storage and queue pointers.

Consider all dynamically changed fields in the real /O control
blocks that were used (that is, modified or referred to). All paths
that use these fields, other than the interruption handler, must be
switched to the cPU. This was accomplished by defining a SWITCH
macroinstruction and adding an AFFINITY option to the CALL
macroinstruction, so that one routine could call another with as-
surance that the called routine would return to the same pro-
cessor.

Next, all sections of the system that used the 1/0 control struc-
ture, other than the /0 interruption handling path, were examined
to find (or create) closed paths of execution that could be
switched onto the CPU by the SWITCH macroinstruction. The
macroinstruction was invoked at the beginning of the path and, if
necessary, an AFFINITY option was added to each CALL within
each path.

HOLLEY ET AL. IBM SYST J e VOL 18 @ NO 1 1979




The design rules for restricting all /0 control to the CPU have one
exception, in that the page device manager manipulates the queue
of drum-storage page requests so that they are slot sorted. This is
done only for the paging drums so that one /O task will cause
several page /O operations, without the delays inherent in sepa-
rate START I/O instructions for each paging operation. In particu-
lar, if an 1O task is already active on the paging drum, the page
device manager places the current request in its proper place in
the queue of tasks that will be started when the current /O task
finishes. On the other hand, if the drum is idle, the page device
manager passes its 1/0 request by calling the 170 supervisor.

The design problem caused by this exception is that the page de-
vice manager manipulates the O control structure, and to con-
form to the design rule stated above, this portion of the code
would have to be switched to the CPU. As a result, performance
could be severely degraded. Consider the following situation:

The APU, operating with the system lock, has finished processing
a page fault. All that remains to be done is to insert a request into
a queue. But since the processing is being done by the APU (not
the CPU), a SWITCH must be performed. The delay caused in
switching to the CPU more than offsets the performance advan-
tage of placing the 1/0 request in the queue.

The solution chosen was to define a spin lock for the task queue
associated with each real device. This lock ensured mutual ex-
clusion of the dequeuing of tasks by the /O interruption handler
and the enqueuing of tasks by the page VO manager, while allow-
ing the high performance advantage of slot sorting page VO
requests.

The remaining major concern in this part of the design was the
requirement that access to system resources be shared by the in-
terruption path and the rest of the system. Since the major design
decision for /O was that only the CPU would refer to /0 control
blocks, the /0 interruption handler did not need the system lock.
Two other resources are shared by the interruption path and the
rest of the system. They are the scheduler code (protected by the
system lock) and fields in the virtual machine control block (pro-
tected by virtual machine lock). The following example illustrates
the problem.

An 1/O interruption is received, indicating completion of one 1/0
task and freeing a path to the 0 hardware. Therefore one or more
other /O tasks can be started. Performance considerations re-
quire that restarting of the V0 hardware not be delayed. At least
three virtual machines are involved in the processing:

IBM SYST J e VOL 18 @ NO 1 ® 1979 HOLLEY ET AL.

system control block
and system queuing
considerations




free storage
and system queuing
considerations

an illustrative
example

The machine that was executing when the interruption was
received.

The machine for which the interruption is destined.

One or more machines waiting for a START I/0 instruction to be
issued; as a result of this interruption, the machines can have
their 1/0 started and become candidates for being run.

The existing logic of the interruption handler was to place the
completed 1O task in the queue of completed tasks. Next, the
interruption handler restarted the V0 hardware and made one or
more virtual machines dispatchable by turning off a bit in their
virtual machine control blocks and calling the scheduler to make
them eligible for dispatching. For attached processor support,
this logic presents two problems: the field in the virtual machine
control block is protected by a suspend lock, and the scheduler
has to operate while holding the system lock (also a suspend
lock). In other words, the /0 interruption handling path contained
two points at which suspend locks were required, yet the design
goal was to have an interruption handling path that was unlocked.

The solution was to replicate a portion of the scheduler function
in the 1O interruption handling path, thereby removing the re-
quirement for the system suspend lock. The other suspend lock
requirement cannot be avoided. Thus, an attempt is made to lock
the virtual machine. If the attempt is successful, the replicated
portion of the scheduler function is executed, and the virtual ma-
chine is unlocked. If the lock cannot be obtained, a CP execution
request block is built and stacked. As discussed under Locking,
above, the dispatcher ensures that this request is executed with
the associated virtual machine control block locked.

The 1O interruption path required access to the two task execu-
tion queues (for CP execution request and /0 task processing).
These queues are locked, and access to them is controlled (serial-
ized) by a central routine. Note that the locks are spin locks, so
control is never lost as a result of queuing an element on them.

Finally, the /0 interruption path requires free storage to handle
1/0 errors. By design, free storage is protected by a spin lock.
Thus, on receipt of an /0 interruption that indicates an error, the
CPU calls for free storage, and only if the APU is currently getting
or returning free storage will the CPU spin momentarily before
continuing.

The discussion above concentrates more on what the /O control
logic does than on how it treats any one task. It is perhaps helpful
to step through the sequence of events when the APU is running a
virtual machine and encounters a START VO instruction. When
START /O is executed, the APU executes the logic in the program
interruption handler. This includes a sequence of checks to deter-

HOLLEY ET AL. IBM SYST J e VOL 18 @ NO 1 ® 1979




mine that a virtual machine was running, a privileged instruction
execution was attempted, and the virtual machine was in super-
visor state.

The APU executes the logic to decode the instruction. When it has
been determined that the instruction is a START /O, the processor
must acquire the system lock before proceeding further. If the
system lock cannot be acquired, the virtual machine is blocked, a
deferred execution task is stacked, and the APU finds and runs
another virtual machine.

As an example, assume that the system lock is free. The APU
acquires the lock and proceeds with START I/0 simulation for the
virtual machine. The APU checks the virtual device address,
builds an /0 task block, translates the addresses in the channel
command words from the address space of the virtual machine to
the real address space of the system, and finally passes the 1O
task to the /0 supervisor for processing.

It is important to note that until this point, no reference has been
made to the real VO control blocks. It is in the /O supervisor that
the SWITCH macroinstruction determines whether it is the CPU or
APU that is executing the code. When it is the APU, as in this
example, supervisor call (SVC) 24 (new to APU support in CP) is
executed. Processing of this supervisor call entails building a task
execution block and stacking it for execution by the CPU. After
the task block has been stacked, the APU goes to the dispatch
routine, where it tries to run another virtual machine. No signal is
sent to the CPU; rather, the CPU encounters this switched 1/0 task
in its normal course of events (that is, on its next trip through the
locked supervisor).

When this switched task is unstacked by the CPU, control passes
to the instruction that follows SvC 24. Now the CPU is executing
the logic, and the supervisor lock is held, permitting access to the
real device blocks and the real /0 hardware. The CPU queues the
/0 task and, when the real device is available, starts the 1/0 opera-
tion. Simulation of the virtual machine’s START I/O is now com-
plete (although the 10 itself has not yet been completed). The CPU
marks the virtual machine as runnable and either proceeds with
other 1O supervision or enters the dispatcher. In any case, the
virtual machine is run by the CPU or the APU according to which
gets to it first.

Shared segment support

VM/370 supports the sharing of read-only virtual address space
among several virtual machines. The units of read-only sharing
are 64K-byte segments, which can be discontiguous. The princi-
pal benefits of sharing segments are that less main storage is re-

IBM SYST J ¢ VOL 18 @ NO | ¢ 1979 HOLLEY ET AL.




key-based protection

change-bit-based
protection

multiprocessing
considerations

quired, less space is required on secondary paging devices, and
interactive responsiveness is improved because fewer paging op-
erations are needed to complete a command. The major design
and implementation problem is not the sharing of address space,
but ensuring its read-only integrity and properly treating the vir-
tual machine that has changed it (or attempted to change it).

Historically, two approaches to ensuring integrity have been em-
ployed in the various releases of vM/370. They are key-based and
change-bit-based storage protection.

Releases 1 and 2 of vM/370 utilized storage protection keys so that
System/370 hardware prevented any change to the shared seg-
ments. Read-only pages were placed in key 0, and the virtual ma-
chine was never allowed to run with key 0 or change the keys
of the shared segments. Since CMS was using the keys to protect
other parts of storage, however, CP and CMS were, in effect, shar-
ing the storage protection keys. CP cannot ensure that the virtual
machine (or its user) will abide by any convention for key use,
so CP had to simulate key 0 execution for virtual machines with
shared segments. This requirement led to the use of a key-flipping
algorithm, which increased CP overhead by approximately ten
percent. Further, it precluded the use of virtual machine assist
hardware'! because that hardware allows a virtual machine to
switch its execution key without Cp’s intervention. For shared
segment integrity, however, the virtual machine must never ex-
ecute in key 0.

Release 3 of VM altered the manner of ensuring integrity by using
a change bit to detect (after the fact) a change to a read-only page.
CP scans these change bits each time it dispatches another virtual
machine. Any modification of a read-only page can thus be identi-
fied, and the virtual machine that caused the change can be given
a private copy of the segment. The result is that no other virtual
machine is affected by the change. The cost of this technique is
that about ten percent of CP’s execution time is devoted to scan-
ning the change bits. Note that this cost increases with the num-
ber of active shared segments. The significant benefit of this ap-
proach, compared with the key-based technique, is that virtual
machine assist hardware can be used in running virtual machines
with shared segments.

As with uniprocessing, the multiprocessor design problem is to
ensure the integrity of shared segments. That is, no CP design
problems are created by allowing segment sharing. The technical
issue becomes whether the shared segments are to be protected
by keys (that is, read-only) or checked for change after the fact.

The most important distinction between these approaches is
whether the segments can be shared simultaneously. Only if the

HOLLEY ET AL. IBM SYST J & VOL 18 ® NO 1 & 1979




shared segments are protected by keys can the CPU and APU si-
multaneously run virtual machines that share access to a single
copy of one (or more) segments. The following example illus-
trates the problem.

If the APU and CPU both have been running virtual machines that
have simultaneous access to a segment of virtual storage, and if a
change bit is found to be on, then two questions arise: Which
virtual machine is responsible for the change? Which virtual ma-
chine gets a private copy of the shared segment? In short, usually
it is unacceptable to have simultaneous sharing without read-only
protection. The alternative is not to share segments simultane-
ously. The need for simultaneous sharing can be avoided by du-
plicating the resource—that is, by providing one copy (or partial
copy) of each segment for each processor. An alternative is to
establish a lock structure to ensure serialization of the resource.

The design choice that was made was to provide change bit scan-
ning and to duplicate the shared segments. As a result, both APU
and CPU have segments (or portions thereof) available for sharing
by the virtual machines that each dispatches, and upon switching
from one virtual machine to another, each processor can identify
the virtual machine that has modified its copy of the shared seg-
ment.

Once this design decision was made, the remaining problems
were restricted to implementation. The most important was what
to do when there was a changed page in a shared segment. The
design constraints were such that upon detecting a changed page
in a shared segment, CP would give the offending virtual machine

a private copy of the now changed segment and allow that ma-
chine to continue execution. An implementation problem arises
because the scan for changed shared segments is part of the defer
path (that is, the unlocked supervisor code, as discussed under
Locking, above). The unsharing of a changed shared segment
must be part of the locked supervisor code because unsharing
requires extensive changes to the page and segment tables.

The implementation problem was how to make the unsharing of
shared segments a completely deferrable task. The problem was
solved by dividing a single process (scanning for an unsharing of
changed segments) into disjoint processes of scanning and un-
sharing.

Scanning for changed pages in shared segments is performed in
one step (with no loss of control) without requiring the system
lock. After scanning has been completed, the system (virtual ma-
chines, core tables, etc.), is in a state that allows continued ac-
cess to the shared segments (except for the changed pages).

IBM SYST J @ VOL 18 ¢ NO 1| e 1979 HOLLEY ET AL.

scanning




unsharing

performance measurement
and the design process

When changed pages are detected, each is marked invalid and
suitable changes are made to core-, swap-, and page-table entries.
These changes allow for full reconstruction of the offending
user’s address space, even after other virtual machines that have
run with the shared segment have changed pages in it.

Finally, the system acquires and stacks a CP execution request
that this user’s address space be unshared from the shared copy
to a private copy. This task can be deferred for an arbitrary pe-
riod.

The unsharing process is a separate and deferrable task that runs
with the system lock. That is, at some point, the CP execution
request that was stacked when the change to a shared segment
was detected will be unstacked. Execution will then be on the
same processor that owned the shared segment and will be con-
trolled by the system lock. The unsharing process constructs new
segment and page tables for each shared segment changed by the
offending virtual machine. Finally, the unsharing process places
in these new segments the pages that were changed by that virtual
machine (thereby removing them from the shared segment).

This approach is in contrast to that of vM/370 Release 3, in which
the offending virtual machine was given the shared-segment page
tables, and a new shared-segment page table was constructed.

Performance

Performance is always an important design consideration in soft-
ware systems, and in attached processor support for VM/370 it is
the central issue. The principal aim of that support is to increase
the processing capability of vM/370 systems. Consequently, dur-
ing the development cycle, it was considered essential to have
detailed performance data to aid in making design choices and to
refine implementation details in line with overall performance ob-
jectives.

Performance measurements were obtained in two ways. First, a
prototype system was constructed and measured so that the main
design approach could be validated. In addition, a benchmark
was designed to duplicate key elements of the CPU-bound envi-
ronments in which attached processors would be required. The
benchmark was run repeatedly with interim versions of the final
system. In each case, the system was thoroughly instrumented
with software and hardware monitors. These measurements in-
cluded the detailed distribution of supervisor state time across the
various modules of the system. The measurements were used pri-
marily to refine implementation details. However, as illustrated
below, the measurements also provided the basis for some design
alterations.

HOLLEY ET AL. IBM SYST J ® VOL 18 @ NO 1 ® 1979




The following sections describe some of the performance insights
gleaned during the development cycle.

It is customary to rate the effectiveness of multiprocessing soft-
ware by comparison with uniprocessor performance. Frequently
the comparison is summarized with a single ratio or range, but
this simplification masks four major dependencies:

e The performance variables or figures of merit used.
o Joad dependencies.

o Hardware effects.

e The software system itself.

Consider the problem of selecting key performance measures.
VM/370 can support diverse computing environments, including
both batch processing and time sharing. Response time and
throughput are suggested as key variables. Response time gener-
ally is measured in terms of the total elapsed time required to
process commands or transactions entered at a terminal. Typi-
cally in vM/370 systems, most such commands make only a mod-
est demand on the CcPU. In addition, the scheduler attempts to
order these interactive tasks ahead of longer running tasks. Con-
sequently, average response time tends to reflect paging delays
and 10 delays rather than CPU use or contention, even though the
CPU may be saturated. Of course there are exceptions.

On the other hand, the aggregate throughput of the system may
well be constrained by the available CPU resource. Bard!? sug-
gests means to detect and measure the degree of this constraint.
A convenient measure of throughput is total problem state time,
since all virtual machine execution is in problem state. The ratio
of this quantity between multiprocessor and uniprocessor sys-
tems is a reasonable figure of merit with which to evaluate multi-
processing software designs. A poor design increases supervisor
state time and thus decreases this number.

This quality measure has two disadvantages, however. First, su-
pervisor state should not be considered pure overhead. The sys-
tem provides storage management, O service, command pro-
cessing, etc. Thus the supervisor state also contains useful work.
Second, an attempt to isolate the increase in supervisor state time
due to multiprocessing support shows that there may be an equiv-
alent increase in supervisor overhead for widely varying values of
the problem state ratio, depending on the relative distribution be-
tween problem and supervisor states.

For example, let P be the problem state fraction for a uni-
processor benchmark. Then, if the CPU is saturated, | — P is the
supervisor state fraction. Supervisor state per unit problem state
is then (1 — P) + P. The expansion, E, of this quantity in a multi-

IBM SYST J ¢ VOL 18 ® NO | e 1979 HOLLEY ET AL.

quality measures
and load environments




effects of
design decisions

Figure 6 Problem state ratio versus supervisor expansion

P = FRACTION PROBLEM STATE

R(P+E(1-P))=2

E = EXPANSION OF SUPERVISOR PER UNIT PROBLEM STATE

20

_ AP PROBLEM STATE TIME
" UP PROBLEM STATE TIME

processing system is a first-order measure of increased overhead.
If the ratio, R, of multiprocessing to uniprocessing total problem
state time is taken as the figure of merit, then the best-case value
of R can be computed from the following equation:

R(P+E1-P)=2

The right-hand side of this equation reflects the fact that maxi-
mum throughput occurs when both processors are saturated.

This equation defines a family of curves for various distributions
of uniprocessor problem state and supervisor state, as shown in
Figure 6. Thus, as a first-order effect, a supervisor expansion of
1.5 yields a problem state ratio ranging from 1.42 to 1.74 as the
problem state fraction varies from 0.2 to 0.7. As discussed below,
other factors prevent high supervisor state environments from
achieving maximal throughput.

Both supervisor expansion and the problem state ratio from our
measurements are given in Table 1. Taking hardware effects into
account, these quality measures are further refined.

The most obvious effect of any additional function is to increase
path lengths in the supervisor. In the attached processor imple-
mentation, this effect comes primarily from the additional work
necessary to defer a virtual machine when the system lock is re-
quired but unavailable. Additional work also is required to re-

HOLLEY ET AL. IBM SYST J & VOL 18 @ NO 1 « 1979




Table 1 lllustrative performance comparisons

Ratio of problem state time
Ratio of problem state instructions

Problem state instruction rate uniprocessor (MIPs)
Problem state instruction rate multiprocessor (average MIPs)

Expansion in supervisor time per unit problem state
Expansion in supervisor instructions per unit problem state

Supervisor instruction rate uniprocessor (MIPs)
Supervisor instruction rate multiprocessor (average MIPs)

sume that deferred task. Path lengths also increase somewhat be-
cause of the need to acquire and release local locks, but generally
this requirement has had only a modest effect on the path lengths
of most modules. One outstanding exception is the free storage
handler, in which the original paths were so short that just the
addition of the LOCK macroinstructions is significant. Measure-
ments thus far have shown that spin lock contention is quite
small, accounting for less than one percent of supervisor time.
This result, which had been obtained also on the prototype sys-
tem, served to confirm the expected low contention for the spin
locks.

As noted above, a processor that performs either supervisor or
problem state execution for a virtual machine must hold the vir-
tual machine’s lock. As a consequence, there is no performance
gain if only one virtual machine is in the system, since there
would be no overlapped execution.

A portion of the supervisor executes without acquiring the sys-
tem lock. This portion is concentrated primarily in the first-level
interruption handlers and the dispatcher. Most other supervisor
work, such as storage management, I/O simulation, and command
processing, operates under the system lock. As a consequence,
load environments characterized by high supervisor state execu-
tion may perform less well under this design than load environ-
ments characterized by a higher percentage of problem state exe-
cution. In such environments, the attached processor tends to
become idle as the main processor handles stacked supervisor
tasks that require the system lock.

Generally the APU becomes idle, rather than the CPU, because
some of the stacked supervisor requests involve IO that can be
executed only on the CPU, and these tasks are shifted to the CPU.
When the CPU holds the system lock, on the other hand, there are
few tasks that can be executed only on the APU. Consequently,
once the CPU obtains the system lock, it tends to hold it much
longer than the APU. This tendency also accounts for a substantial

IBM SYST J e VOL 18 @« NO 1 ® 1979 HOLLEY ET AL.




effects of
multiprocessing hardware

migration of supervisor state execution to the CPU. The lock de-
sign, therefore, has biased the system in favor of multi-
programming environments characterized by a higher percentage
of problem state than supervisor state.

Replication of shared resources as a design strategy can make for
slower handling of shared segments. The possible effect of this
replication on storage should be evaluated on a case-by-case
basis.

As noted above, design changes occasionally were dictated by
feedback from measurements made during the development
cycle. Accounting provides a good example. Supervisor time is
accumulated for users in a data field in the virtual machine control
block (VMBLOK). Ordinarily it would be guarded by the virtual
machine lock. However, in a few places in the system it is desir-
able to be able to charge supervisor time to a virtual machine
without having to acquire its lock. For example, /0 interruption
processing is charged to the owner of the /O task, even though
that user may be executing on the other processor at the time of
the interruption. The original design attempted to serialize the use
of the supervisor time field by using the synchronizing primitive
COMPARE DOUBLE AND SWAP in a common subroutine. This ap-
proach was found to cost approximately eight percent of supervi-
sor time for this function alone. Replication of this accounting
field, at some small cost in storage, virtually eliminated this over-
head. The two separate accounting fields simply are combined
when the total is required for an accounting record.

Aggregate problem state time has been suggested as one measure
of the throughput of a multiprocessing system. A more accurate
measure would take into account any change in the instruction
rate of the machine. Because of hardware memory interference
effects, instruction rates of processors in a multiprocessing con-
figuration are somewhat lower than the equivalent uniprocessor
rate. For this reason, the aggregate number of problem state in-
structions is a more accurate measure of throughput. Similarly,
the expansion in supervisor state time per unit problem state is
caused in part by increased path length and in part by hardware
slowdown.

When comparing uniprocessor and multiprocessor performance,
it is reasonable to assume that the mix of problem state instruc-
tions is constant. On the other hand, the mix of supervisor in-
structions could change between uniprocessor and multi-
processor measurements. Thus the difference between supervisor
time and the number of supervisor instructions as a measure of
additional overhead is caused partly by multiprocessing hardware
effects and partly by a possible change in the instruction mix.
Measurements of the effect of various instruction streams on the

HOLLEY ET AL. IBM SYST J e VOL 18 ¢ NO 1 ® 1979




performance of multiprocessing hardware should provide a fertile
area for further experimentation. For a discussion of some addi-
tional hardware effects in the context of MVS measurements, see
White. 13

The performance effects discussed above are illustrated by the
data in Table 1. Caution should be observed in any attempt to
extrapolate the data. All measurements were made on a three-
megabyte System/370 Model 158. The load consisted of 80 cMS
users executing various scripts repetitively. The uniprocessor
problem state was approximately 65 percent. The load was ade-
quate to saturate both processors in the multiprocessor runs., All
comparisons are between the multiprocessor system and the uni-
processor system prior to implementation of multiprocessor sup-
port. Somewhat different results would be obtained in a com-
parison based on uniprocessor measurements of the system level
that supports attached processors.

As Table 1 shows, the attached processor system produced 1.77
times the problem state time of the uniprocessor system. This
result is consistent with other measurements, which have been in
the range 1.5 to 1.8. Because of hardware slowdown, these mea-
surements yielded a ratio of 1.63 in terms of problem state in-
structions. These numbers also indicate the order of magnitude of
the increase in path lengths in the supervisor as measured by su-
pervisor instruction-count inflation.

The magnitude of these hardware effects clearly illustrates the
need for data from hardware monitors in evaluating multi-
processor systems.

Concluding remarks

In undertaking an effort like the one described herein, there are
many decisions to be made and pitfalls to be avoided. It is hoped
that some insight has been gained into the problem of adding a
major new function to an operating system that did not provide
for that function originally. It is gratifying to see the results of that
labor operating in production environments and performing up to
its objectives.

ACKNOWLEDGMENTS

The authors thank all the people involved in this effort. In particu-
lar, we thank Charles Weagle for his attached processor proto-
type, which provided the basis for this work, and Marjorie
Schong for the professional work of her development group. We
also recognize Ronald Reynolds for his reworking of the vm/370
Resource Manager PRPQ base code in Release 4. Finally, we ac-
knowledge the efforts of R. A. MacKinnon, who provided en-
couragement and direction for the VM/370 attached processor.

IBM SYST J ¢ VOL 18 ® NO 1 ¢ 1979 HOLLEY ET AL.

illustrative
results




70

CITED REFERENCES

1

2.

. L. H. Seawright and R. A. MacKinnon, ‘‘VM/370—a study of multiplicity and

usefulness,”” IBM Systems Journal 18, No. 1, 4-17 (1979, this issue).

A. L. Scherr, “‘Functional structure of IBM virtual storage operating sys-

tems—Part II: OS/VS2-2 concepts and philosophies,”” IBM Systems Journal

12, No. 4, 382-400 (1973).

. 3. 8. Amold, D. P. Casey, and R. H. McKinstry, ‘‘Design of tightly-coupled
multiprocessing programming,”’ IBM Systems Journal 13, No. 1, 60-87
(1974).

. IBM Time Sharing System Concepts and Facilities, IBM Systems Library,
order number GC28-2003, IBM Corporation, Department 80M, 1133 West-
chester Avenue, White Plains, New York 10604.

. H. Lorin, Parallelism in Hardware and Software: Real and Apparent Con-
currency, Prentice Hall Inc., Englewood Cliffs, New Jersey (1972).

. P. H. Enslow Jr., ‘‘Multiprocessor organization—a survey,”’ ACM Comput-
ing Surveys 9, No. 1, 103-129 (March 1977).

. R. P. Case and A. Padegs, ‘‘ Architecture of the IBM System/370,”” Communi-
cations of the ACM 21, No. 1, 73-96 (January 1978).

. IBM Systemi370 Principles of Operation, IBM Systems Library, order num-
ber GA22-7000, IBM Corporation, Department D58, P.O. Box 390, Pough-
keepsie, New York 12602.

. VM/370 Resource Management Programming RPQ PO0-9006 Installation
Guide, IBM Systems Library, order number SH20-1906, IBM Corporation,
Department 825, 1133 Westchester Avenue, White Plains, New York 10604.

. J. L. Baer, ‘‘A survey of some theoretical aspects of multiprocessing,”” ACM
Computing Surveys 5, No. 1, 31-80 (March 1973).

. R. A. MacKinnon, ‘‘The changing virtual machine environment: Interfaces to
real hardware, virtual hardware, and other virtual machines,”’ IBM Systems
Journal 18, No. 1, 18-46 (1979, this issue).

. Y. Bard, ‘‘Performance analysis of virtual memory time-sharing systems,”’
IBM Systems Journal 14, No. 4, 366-384 (1975).

. W. White, Artached Processing (AP) System Performance Characteristics
and Considerations, IBM Washington Systems Center Technical Bulletin No.
GG22-9004, IBM Corporation, Building 2, 18100 Frederick Pike, Gaithers-
burg, Maryland 20760 (May 1977).

Reprint Order No. G321-5086.

HOLLEY ET AL. IBM SYST J e VOL 18 # NO 1 » 1979




