
The design and implementation of vM1370 attachedprocessor sup-
port is discussed from the point of view of adding radical new
function to an existing operating system. Three major design de-
cisions are described, and performance is analyzed as it relates
to those decisions.

VM/370 asymmetric multiprocessing
by L. H. Holley, R. P. Parmelee,
C. A. Salisbury, and D. N. Saul

This paper discusses the design and implementation of the at-
tached processor (AP) support first available in Release 4 of vM/
370. The term attached processor in this context refers to the spe-
cific implementation on Systed370 Models 158 and 168 and on
the 3031 processor of an asymmetric processor configuration.
This implementation comprises one central processing unit (CPU)
with full execution, channel, and inputloutput (I/o) capability, and
one attached processing unit (APU) which shares main storage
with the CPU but has only execution capability.

Described are considerations for adding shared storage multi-
processing to the then existing ~ ~ 1 3 7 0 operating system and the
tradeoffs that were required to achieve a practical result. We
hope to show how significant new function was provided in VMl370
within the context of an original operating system design which
did not provide for such function. The major design points are
covered, with emphasis on how they affected performance. It is
not our intent to present a complete view of VM/370 Release 4, but
rather to highlight the overall design, the tools, and the tech-
niques of design and implementation as they relate to attached
processing. Toward that end, three central design problems are
presented in detail, and others of lesser significance are men-
tioned briefly.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journd reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J VOL 18 NO 1 1979 HOLLEY ET AL. 47

It is assumed that the reader is familiar with the concepts and
facilities of IBM'S Virtual Machine Facility/370 (VW370). If not,
the paper by Seawright and MacKinnon elsewhere in this issue'
provides basic information and an extensive bibliography.

The genesis of this project lay in the i-apid growth of large VM/370
systems and the requirement for more processing capability to
satisfy that growth. The multiprocessing options of Systeml370
suggested an obvious and attractive solution to this problem. The
additional processing power could be provided, and the single
system image of a uniprocessor could be maintained. But many
questions concerning the nature and feasibility of software sup-
port remained to be answered.

Prior to VM/370 Release 4, the only IBM systtm control programs
that supported shared storage multiprocessing on Systtd370
were Multiple Virtual Storage (MVS) and Time Sharing System/
370 (TSSi370). Both systems supported symmetric (multi-
processor) as well as asymmetric (attached processor) hardware
configurations. The control of multiple processors was an inher-
ent part of the design objectives for both MVSZa3 and TSS.4 The
software architecture of each had basic multiprocessor functions
such as locking, signaling, and interprodessor communication.
Further, the code in these systems was organized so that parallel
execution was possible. These essential primitive operations
were not defined in VM/370.

In other words, VW370 did not have the fundamental building
blocks required to suppprt parallel processing. Lacking were
functions for locking and unlocking (enqueuing and dequeuing)
nonsharable resources, provision for parallel execution of shared
code, protocols for communication between processors, and a
mechanism for serializing I/O processing. Moreover, much of the
control program supervisor provided no design base for parallel
execution. A total rewrite of VMi370 was not practical, so an effort
was undertaken to selectively rewrite parts of the control pro-
gram (CP) to fulfill the requirements for integrity and performance
while minimizing user disruption. Finally, it was decided to sup-
port an attached processor configuration rather than a symmetric
multiprocessor configuration.

Review of multiprocessing

The basic characteristic that distinguishes a tightly coupled multi-
processing system from a multicomputer system is shared main
storage, with simultaneous operation of the multiple processors
under control of a single operating s y ~ t e m . ~ In loosely coupled
configurations such as ASP, shared spool, and J E S ~ , each proces-
sor has its own supervisor, so these configurations are not consid-
ered true multiprocessing systems. Also outside the above defini-

48 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

tion are multiprogramming systems that support concurrent,
rather than simultaneous, execution. A multiprogramming sys-
tem may appear to have multiple functions operating at the same
time, but at any given instant, only a single instruction stream is
in execution on the processor. A multiprocessor has two (or
more) streams in execution at the same time. All the above sys-
tems are sometimes considered parallel processors but this desig-
nation is misleading since the degree and level of parallelism can
vary.

Enslow' defines a true multiprocessor as having four character-
istics:

0 Two or more processors, each of approximately equal power.
0 Shared access to memory.
0 Shared access to input and output.
0 A single operating system in control.

By this strict definition, the Systed370 attached processor does
not qualify as a true multiprocessor because the APU has no ac-
cess to input or output. The consequences of this variant are dis-
cussed under Serialization of [Io control on the C P U , below.

Given the characteristics listed above, the two major focal points
in designing a multiprocessing system are sharing and inter-
action. Control of shared resources can be accomplished in any
of several ways. The three most basic to current multiprocessing
design are serialization of the resource by means of a lock, repli-
cation of the shared resource, and restriction to running on a spe-
cific processor. Identification of the resource owner is also impor-
tant. The processors interact at several levels of commurlication
(such as memory, vo bus, cache, and CPU signaling instruction).

The Systed370 multiprocessing feature7 provides fot coordina-
tion of multiple processors. Prefixing hardware permits the first
4096 bytes of each processor's storage to be replicated. This area
contains processor dependent locations such as those for program
status words, logout, and general processor and program status.
Locking is accomplished by the COMPARE AND SWAP (cs) instruc-
tion, which ensures serialization during its execution and provides
a field for ownership identification.8 Processor coordination is
provided explicitly by the SIGNAL PROCESSOR (SIGP) instruction,
and at several implicit levels (such as storage protect and cache).
System/370 multiprocessing always deals with two processors of
equal power.

There are three alternative software architectures for multi-
processing hardware. There can be a master-slave relationship,
there can be a separate executive for each processor, or each
processor can be treated as a symmetric resource. The third is the

IBM SYST J VOL I8 NO 1 1979 HOLLEY ET AL.

most useful and also the most difficult to implement. Its useful-
ness derives from its ability to support a general set of parallel
functions without restricting what can run at any time on any
processor. This generality requires a higher level of supervisor
code and more care in implementation. A variation of it is the
basis for attached processor support in VM/370.

Attached processor

The justification for multiprocessing support in VW370 derived
from the need for additional instruction processing power on
large systems. The first design decision concerned the forms of
System/370 multiprocessors that should be supported. Fully
symmetrical multiprocessors5 would have required parallelism
throughout the control program. But by restricting uo operations
to one processor, as in an attached processor or asymmetric mul-
tiprocessor configuration, many fewer changes were required in
VM/370. In making the choice to support the attached processor
concept, it was clear that the system’s applicability would be re-
stricted to users with a requirement for additional CPU power
only. These users, however, are a significant subset of all VM
users. Typically they have many cMS systems or mixed CMS-pro-
duction virtual machines. Compared with a uniprocessor, an at-
tached processor does not provide for any additional I/O capabil-
ity.

Figure 1 Logical hardware configu- In an attached processor configuration, any functions that relate
ration to real I/O (START vo and interruptions, for example) can run only

and ensures serialization within the I/O process. The real hard-
ware configuration is shown conceptually in Figure 1.

Project constraints

The design of attached processor support in VM/370 Release 4 was

- on the CPU. This limitation reduces the complexity of the design
SHARED

MAIN STORAGE

APU

CPU
OR undertaken under the following project constraints: CPU

I 0 The flexibility to experiment was constrained by the develop-
ment process and its schedules.

0 Compatibility with all v ~ 3 7 0 functions available in uni-
processor mode was to be maintained without significantly de-
grading uniprocessor performance.

0 The integrity of all serial processes was to be maintained.
0 Cost-justified performance was to be ensured.
0 A base was to be created for the VM/370 Resource Management

Program.’
0 Control program modifications were to be minimized to re-

duce the rewriting required for user modifications. The objec-
tive was stability and minimal regression.

0 The attached processor capability was to be an option which
could be added to VMi370 during system generation.

50 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

0 Any changes made for multiprocessing should have minimal
effect on uniprocessor operation.

Fundamental multiprocessing problems and solutions

The central design problem in multiprocessing is selecting the Figure 2 Task relationships

means by which computing tasks are to be divided among the
processors so that, for the duration of that unit of work, each +"*cpuI

processor has logically consistent instructions and data. Con-
sider, for example, the stream of instructions executed by a uni-
processor, and suppose the instructions are divided into comput-
ing tasks as depicted in Figure 2(A). A task may be a single ma- UN'PRocESSoR MULT'PRoCESSoR

chine instruction or several thousand. Deferring for the moment
the design issues associated with identifying these tasks, the cen-
tral design question becomes: Given some division of the uni-
processor instruction stream into tasks, when is it permissible to
overlap the execution of these tasks with two or more proces-
sors? Figure 2(B) depicts an overlapped relationship.

H"+ I B t
CPUZ

(A) (6)

This question is closely related to a design issue in uniprocessing:
Given two successive tasks, A and B, as shown in Figure 2(A),
when is it permissible to reorder these tasks? For example, if task
B is the processing of an I/O interruption and A is a task that
normally runs disabled for 110 interruptions, what are the con-
sequences of enabling for interruptions during task A, so that B
can be executed before or during A rather than after it?

The reordering of two uniprocessor tasks may be disallowed by Figure 3 Logical and data depen-

either a logical dependence or a data dependence of task B on
task A. B is logically dependent on A if B may or may not be
executed, depending on the execution of A. Tasks B and C in
Figure 3 are logically dependent on task A, since either B or C
may be executed, depending on the result of the execution of A. CTR = CTR - I CTR = CTR + 1

Data dependence is illustrated by tasks B and D in Figure 3 . The
output value of task B is the input to task D. Data dependence
may occur in several other ways if the term data is broadened to
include any storage location or register, or other task input or
output.

dencies

I =CTR

If two sequential uniprocessor tasks are logically independent
and data independent, they can be reordered. In multiprocessing
systems, attention must be paid to both logical and data de-
pendence when tasks are divided among processors.

A task TI can be viewed as a mapping from input data I, to out- data
put data 0, as shown in Figure 4(A). Parts (B), (C), (D), and (E) of dependence
Figure 4 illustrate various relationships between input and output
data for two tasks. In 4(B) the data elements for the two tasks are

IBM SYST J 0 VOL 18 NO 1 1919 HOLLEY ET AL. 51

Figure 4 Multiprocessing data dependencies

n n

disjoint. In 4(C) the input data overlaps. In 4(B) and 4(C) there
would not be a problem for multiprocessing, but in 4(D) and 4(E)
there could be inconsistent results. Therefore special precautions
should be taken in instances such as these.

In the uniprocessor version of vMi370, system tasks presented
many conflicts like those in 4(D) and 4(E) for any reasonable divi-
sion of tasks. Indeed, the principal obstacle to design was the
diffuse ownership of system data areas in a system not designed
for multiprocessing.

Four general strategies are employed to cope with these data de-

I

"


~~~ ~ 

0 Serialize the use of the  shared data with a  gatekeeper  function 

0 Replicate  the  shared  data  items, assigning one  set  to  each 

0 Force all tasks  that  require  a  particular  set of data  items  to  run 

0 Redesign tasks  to minimize data conflict. 

Aspects of VMi370 design which illustrate  these  strategies  are dis- 
cussed  under Design strategies, below. 

Much research  into  the  theoretical problems associated with mul- logical 
tiprocessing has concentrated  on parallel execution within a dependence 
single program.  Baer”  surveys some of this  work. In the  context 
of a single program, the problem of logical dependence is acute. 
Special language features  are  required  to identify which portions 
of the program can be executed in parallel and to synchronize 
execution of the  processors  at  various  points in the  program. Al- 
though this fine-granularity multiprocessing is an important  theo- 
retical  and  practical problem for some computing  environments, 
many large systems  do not require  such  solutions.  These  systems 
are  characterized by competition  for CPU resource among many 
tasks  which, by necessity,  have  a large measure of logical inde- 
pendence. For example,  two  batch jobs or  two time-sharing users 
often will be totally independent  except  when  they  require  super- 
visor services. 

Often a uniprocessor  system provides a  central  function for 
queuing and  dispatching of these  independent  tasks.  A  system 
may take  advantage of this  independence,  for  example,  to  reorder 
the  tasks  according  to  a  user- or system-determined  priority. The 
design for multiprocessing in VM/370 exploits  the logical indepen- 
dence of the  tasks  on  the  central  queues.  This design choice  also 
reduces  the  requirement  for  interprocessor  communication. It is 
part of the new system  but is required only rarely. 

or lock. 

processor. 

on  a  particular  processor. 

Design  strategies 

Locking 

This section  describes  the locking structure of VW370 attached 
processor  support,  the specific types of locks  implemented,  and 
their uses. 

The structure of software  locks  introduced  into  the vM/370 super- locking 
visor to  support multiple processors allows different virtual ma- structures 
chines to be in execution simultaneously on  each of the  proces- 
sors. It  does  not, in general, allow simultaneous  supervisor  exe- 
cution on behalf of those  virtual  machines.  The design principle 

IBM SYST J VOL 18 NO 1 1979 HOLLEY ET AL. 53 



used is that  only  one  processor at a time can  execute  supervisor 
functions,  except  for  selected  paths. Specific supervisor  paths 
that  are used frequently  and do not share  much  data with the bulk 
of the  supervisor  were programmed selectively  to allow simulta- 
neous  execution  on multiple processors. 

A logical software lock is implemented by designating a word of 
storage as the physical lock.  The unlocked and  locked  states  cor- 
respond  respectively  to  the  zero  and  nonzero values of the  word. 
When locked,  the specific nonzero value identifies the  processor 
that  has acquired the  lock. Acquisition of the lock is attempted  by 
trying  to  replace  a  zero  word value with a nonzero value using the 
Systed370 COMPARE AND  SWAP instruction, which is a  proper 
hardware serializing primitive.  The  replacement  occurs only if 
the  current  content of the  word  matches  the  zero value specified 
in the  instruction. If multiple processors  simultaneously perform 
the  operation  on a given word of zero  value, only one is success- 
ful. 

If the  replacement is successful,  the invoking processor  can use 
all the serially reusable  resources  protected by the lock,  and it 
will be  the only user of those  resources.  Software  convention  en- 
sures  that  they  cannot be used unless the lock has  been  acquired. 
When it has finished using the  resources,  the processor  releases 
the lock by placing a value of zero in the given word,  thus allow- 
ing  it to be acquired  subsequently by any other processor. 

If the  replacement is unsuccessful,  the  processor  can  suspend  ex- 
ecution of the unit of work  that  requires lock acquisition, or spin 
(that  is,  loop)  on  acquisition  attempts by continuously  testing  the 
state of the  lock until it is released  and  subsequently  acquired. 
The  proper  course of action  for software normally is related to the 
use of the serially reusable  resources  protected by a given lock. 
Thus  a lock can be categorized as a suspend lock or a spin lock. 
Suspension usually implies the  additional  work of saving  enough 
information about  the  current unit of work so that it can be re- 
sumed later,  ensuring  that it  will  be resumed  when  the  unacquired 
lock is later  released,  and switching to some other unit of work.  It 
would appear  that spinning on  attempted lock acquisition wastes 
processor  power,  but if spinning takes  less time than  the  work 
introduced by suspension, it is the more economical  alternative. 

specific locks The VM/370 supervisor’s  use of most data fields  in control  blocks 
is widely scattered  throughout the  system  control  program. To 
protect  those fields as serially reusable  resources,  the  processor 
normally acquires  one  system lock upon  entering  the  supervisor 
state  at  one of the first-level interruption  handlers,  and  it  releases 
the lock upon exiting from the  central  dispatcher  to  either  virtual 
machine execution or  the wait state. If this lock cannot  be  ac- 
quired,  the  processor  suspends  execution by saving the  state of 

54 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979 



the  current  task  for  later  resumption  and  proceeding  directly  to 
the  dispatcher  to  perform work that  does  not  require  the  lock 
(that  is, it puts  another  virtual machine into execution).  Thus  this 
system lock serializes the use of most supervisor  resources. 

Each  virtual machine is serialized by a unique lock, which is ac- 
quired  before  a  processor  puts a virtual machine into  execution or 
performs  supervisor  functions  on its behalf. Its lock is released, 
normally in the  dispatcher,  when  the  processor  stops  servicing 
the  machine.  Transition of a processor  from  executing a virtual 
machine (problem state)  to performing supervisor  functions  for it 
(supervisor  state)  does  not involve any  change in the  state of a 
virtual machine lock.  The lock was  acquired in the  dispatcher 
before  virtual machine execution began and will be held through 
the  supervisor  state until deliberately  released.  Suspension of ex- 
ecution  consists merely of bypassing selection of this  particular 
virtual machine in favor of another whose lock can  be  acquired. 

As stated  above,  most  supervisor  resources  are serialized by the 
system  lock.  Resources used before system lock acquisition is 
attempted,  or  as  part of the  suspension mechanism if acquisition 
fails, are  exceptional  resources  that  require  separate serial- 
ization. Most are  queues (free storage  blocks,  runnable users, 
timer  requests,  etc.) which are  updated as elements are inserted 
or  deleted. Since updating a  queue is a relatively brief operation, 
these  queue locks are  spin  locks. 

Some data items  are  locked by the  data  itself.  Event  counters  (to 
be incremented by one)  and  the  pointer  to  the  curfent  system 
trace  table  entry (to  be advanced by each  trace  event)  are single 
storage  words which are  updated  directly  by COMPARE AND  SWAP 
instructions.  The  replacement value of such  words is uniquely 
determined by the  current  value. If simultaneous  replacement is 
attempted by two  processors,  one will fail, causing  a  redetermina- 
tion of the replacement value and  another  attempt.  This  process 
is a form of spin lock. 

Detailed description of a selected  path should clarify the  interplay 
among locks. Figure 5 provides  an  overview of the  relationships 
among various  portions of the supervisor. Assume that  a  pro- 
cessor  has  been  directly  executing  a virtual machine which has 
just attempted  to  execute a privileged instruction (for example, 
START VO). Since virtual machines  are managed by forcing direct 
execution in problem state  and simulating privileged operations, 
the  hardware  causes  a privileged-operation program interruption. 
Thus  supervisor  software is invoked at  the first-level program in- 
terruption  handler.  The  processor holds the virtual machine lock 
of the  virtual machine that  just caused the interruption; it does 
not hold any  other  locks.  The  contents of the processor’s regis- 
ters  and of the  program-interruption old program status  word  that 

IBM SYST J VOL 18 NO 1 1979 HOLLEY ET AL. 



Figure 5 Supervisor path overview 

I '  I SYNCHRONOUS 
INTERRUPTS 
(PGM,  SVCI 

ASYNCHRONOUS 1 (EXT, 110) 1 INTERRUPTS 

STATE 

SYSTE 

WAIT STATE 

APPENDAGES 
" - - - - - 
- 

STATUS 

VMBLOK 
APPENDAGE 

SAVE DSPRU 

PROBLEM 
STATE 

DEFER PATH 

WAIT STATE 

+SUPERVISOR 
EXECUTION 

> VIRTUAL MACHINE LOCK HELD 

- - - - - SYSTEM LOCK HELD 

identifies the  virtual  state  can be saved in control block areas  seri- 
rllized by the virtual machine lock.  The  virtual machine is flagged 
as nonrunnable until simulation by supervisor  functions is com- 
plete. 

When supervisor  functions  determine that system  resources 
other  than  those specific to  the virtual machine are  necessary  to 
complete  the  simulation, an attempt is made to  acquire  the  sys- 
tem .lock. If the  attempt is succysful,  the  processor  proceeds 
through the balance of the  supervisor while holding both  the sys- 
tem lock and  the virtual machine lock. It may also temporarily 
hold one of the spin locks  on specific queues. When the  processor 
eventually  reaches  the  dispatcher, it still holds the  system  and 
virtual machine locks. At this point the  processor  either  redis- 
patches  the, virtual machine or performs  some  other unit of work. 
Redispatching  the  virtual machine means that  the system lock is 
released,  and  the  processor  returns  to problem state still holding 
the  virtual machine lock. To perforni other system  work,  the vir- 
tual machine lock must be released  and  the  system lock retained. 

If the  system lock cannot be acquired  when  needed,  the pro- 
cessor follows the  defer path,  as shown in Figure 5 .  Deferred 
service  requires  that  the logical point in the simulation and  any 
interruption information be saved.  General  register  and  instruc- 
tion counter  contents  are  stored in a control block appendage  that 
defines the virtual machine.  This  appendage is then  queued  on  a 
chain of system  requests  to  be  processed  when  the  system lock 
has  been  acquired. (A spin lock on this chain is held briefly while 
the queuing is performed.)  Control is then  passed  to a special 

56 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1919 



DSPRU entry point in the  dispatcher,  where  the  current  virtual 
machine lock is released  and acquisition of another is attempted. 
Exit from the  dispatcher is either to problem state (holding a 
virtual machine lock), or  to wait state (holding no locks). The 
DSPRU entry point is  the  start of a special path  through  the dis- 
patcher which has no need of the  system  lock.  System-wide  re- 
sources  such  as  free  storage  queues, which must be used by this 
path,  are serialized by separate spin locks. 

As can be seen from the  above  discussion,  most  state  changes in 
suspend  locks  occur in the dispatcher.  Entry  into  the  dispatcher 
normally represents  the  termination of some unit of work,  and 
exit  represents  the initiation of another.  One way of exiting from 
the  dispatcher is to  execute a  system  request  that  bas  been 
queued’by  another  supervisor  function.  Such  requests, of which 
the  defer  path  appendage is one  instance,  are invoked while the 
system lock and  the  pertinent virtual machinc lock are held. 

Some  selected  paths in the  synchronous first-level interruption 
handlers  (supervisor  call  and program check  interruptions  from 
‘proble$ state)  were programmed to  operate without acquiring 
the  system lock if they  ended by returning to problem state  exe- 
cution of the  same virtual machine.  Such  paths were constrained 
to  use only those  system  resources serialized by the virtual ma- 
chine lock held on  entry  or by specific spin locks.  System  per- 
formance  was  enhanced by these  paths  because of their  fre- 
quency of use. 

Serialization of UO control  on  the CPU 

As discussed  above,  an  attached  processor  system  is  a multi- 
processor with all I/O devices  attached to one  processor, so that 
all I/o activity is serialized on that  processor. Only the CPU can 
initiate input or  output (the APu responds to all Yo instructions 
with a  condition  code  that  indicates  that  the  addressed  device is 
not’  operational)  and only the CPU can  respond  to an I/O inter- 
ruption.  In  other  words,  only  the CPU can  execpte the code in the 
system  control  program’s first-level I/O interruption  handler. 

Reviewing briefly the I/O handling logic of CP, recall that  the vo 
supervisor  performs  the following three  functions: 

0 Accepts I/O requests  made by other  components of CP. These 
requests  are  enqueued  from  the  appropriate I/O control  block, 
and  an vo operation is started if a path’to  the requested  device 
is free. 

0 Accepts uo interruptions. If an  interrupfion  indicates  com- 
pletion of an I/O task,  the supervisor  passes  that  task  to  the 
dispatching module of the  system. 

0 Dequeues and starts  one  or more new vo tasks  if,  as  a  result of 
an I/O interruption, a path to a  requested  device becomes free. 

IBM SYST J 0 VOL 18 NO I 1979 HOLLEY ET AL. 



The 110 supervisor module in CP is essentially a self-contained 
package of code which contains all  of CP’S I/O interruption han- 
dling logic. Although its internal logic is somewhat  complex, its 
interactions with the  remainder of the  system  are well defined. 
However, it does  not  control all the initiation of V O  in CP. There 
are many code modules that initiate I/O, and  the  interactions of 
these modules with the  remainder of the  system  are  complex.  In 
particular,  at some point, many of the  various terminal handling 
routines  attempt  to initiate I/O to a terminal. 

I/O design In view of the YO handling considerations  outlined  above,  the  de- 
sign problem for input and  output has three  aspects: 

Ensuring  that only the cPu will initiate I/o. 
Ensuring  that  the uo control blocks are not  changed by the 
attached  processor in such  a way as  to  cause the CPU to make 
an  error. 

0 Ensuring  that  the  interactions  between I/O handling and  the 
remainder of the  system  are suitably interlocked. 

The major decision in designing I/O support  for VMi370 was that 
only the CPU would execute  code  that made use of the dynami- 
cally changed  real uo control  structure.  The  intent of this  decision 
was to  ensure that all I/O interruption  processing could be done 
without  the  system  lock,  for, in effect, there is no multiprocessing 
of the uo logic. All other  paths  that  share  data with this unlocked 
path  must  be serialized on  the CPU. The result is that all paths, 
other  than  the I/O interruption  handler,  that  refer  to  the I/O control 
blocks must operate with the  double  constraint of being con- 
trolled by the  system lock and running on  the CPU. The uo inter- 
ruption  path  shares, with other  paths in the  system,  the following 
resources: fields in the I/O control  blocks, fields in the  other  sys- 
tem  control  blocks,  and  system  free  storage  and  queue  pointers. 

110 control  block Consider all dynamically changed fields in the real Yo control 
considerations blocks that  were used (that  is, modified or referred  to). All paths 

that  use  these fields, other  than  the  interruption  handler, must be 
switched to  the CPU. This was accomplished by defining a SWITCH 
macroinstruction  and adding an AFFINITY option  to  the CALL 
macroinstruction, so that  one  routine could call another with as- 
surance  that  the called routine would return  to  the  same  pro- 
cessor. 

Next, all sections of the  system  that used the 1/0 control  struc- 
ture,  other  than  the I/O interruption handling path,  were  examined 
to find (or  create)  closed  paths of execution  that  could be 
switched  onto  the CPu by the SWITCH macroinstruction.  The 
macroinstruction  was  invoked  at  the beginning of the  path  and, if 
necessary,  an AFFINITY option  was  added to  each CALL within 
each  path. 

58 HOLLEY  ET  AL. IBM SYST J 0 VOL 18 NO 1 1979 



The design rules for  restricting all I/O control  to  the CPU have one 
exception, in that  the page device manager manipulates  the  queue 
of drum-storage page requests so that they are slot  sorted.  This is 
done  only  for  the paging drums so that  one I/O task will cause 
several page I/O operations,  without  the  delays  inherent in sepa- 
rate START 110 instructions  for  each paging operation.  In  particu- 
lar, if an I/O task is already  active  on  the paging drum,  the page 
device manager places the  current  request in its proper place in 
the  queue of tasks  that will  be started when the  current I/O task 
finishes. On the  other  hand, if the  drum is idle,  the page device 
manager passes its I/O request by calling the uo supervisor. 

The design problem caused by this  exception is that  the page de- 
vice manager manipulates  the I/O control  structure,  and  to  con- 
form to  the design rule stated  above,  this  portion of the  code 
would have  to be switched to  the CPU. As a  result,  performance 
could be severely degraded.  Consider  the following situation: 

The APU, operating with the  system  lock,  has finished processing 
a page fault. All that  remains to be done is to  insert a request  into 
a  queue. But since the  processing is being done by the APU (not 
the CPu), a SWITCH must be performed.  The delay caused in 
switching to  the CPU more than offsets the  performance  advan- 
tage of placing the I/O request in the  queue. 

The solution chosen was to define a spin lock for  the  task  queue 
associated with each real device.  This lock ensured mutual ex- 
clusion of the  dequeuing of tasks by the I/O interruption  handler 
and the  enqueuing of tasks by the page I/O manager, while allow- 
ing the high performance  advantage of slot sorting page 1/0 
requests. 

The remaining major concern in this part of the design was the 
requirement  that  access  to  system  resources be shared by the in- 
terruption  path  and  the  rest of the  system.  Since  the major design 
decision  for YO was  that only the CPU would refer to 110 control 
blocks,  the I/O interruption  handler did not need the  system  lock. 
Two other resources are shared by the  interruption  path  and  the 
rest of the  system.  They  are  the  scheduler  code  (protected by the 
system  lock) and fields in the virtual machine control block (pro- 
tected by virtual machine lock).  The following example  illustrates 
the problem. 

An I/O interruption is received, indicating completion of one I/O 
task and freeing a  path  to  the I/O hardware.  Therefore  one or more 
other 110 tasks  can be started.  Performance  considerations  re- 
quire  that  restarting of the I/O hardware  not be delayed. At least 
three  virtual machines are involved in the  processing: 

IBM SYST J VOL 18 NO 1 1979 HOLLEY ET AL. 



~~~~~ ~ 

0 The machine that was executing when the interruption was

0 The machine for which the interruption is destined.
0 One or more machines waiting for a START 110 instruction to be

issued; as a result of this interruption, the machines can have
their I/O started and become candidates for being run.

received.

The existing logic of the interruption handler was to place the
completed uo task in the queue of completed tasks. Next, the
interruption handler restarted the YO hardware and made one or
more virtual machines dispatchable by turning off a bit in their
virtual machine control blocks and calling the scheduler to make
them eligible for dispatching. For attached processor support,
this logic presents two problems: the field in the virtual machine
control block is protected by a suspend lock, and the scheduler
has to operate while holding the system lock (also a suspend
lock). In other words, the I/O interruption handling path contained
two points at which suspend locks were required, yet the design
goal was to have an interruption handling path that was unlocked.

The solution was to replicate a portion of the scheduler function
in the uo interruption handling path, thereby removing the re-
quirement for the system suspend lock. The other suspend lock
requirement cannot be avoided. Thus, an attempt is made to lock
the virtual machine. If the attempt is successful, the replicated
portion of the scheduler function is executed, and the virtual ma-
chine is unlocked. If the lock cannot be obtained, a CP execution
request block is built and stacked. As discussed under Locking,
above, the dispatcher ensures that this request is executed with
the associated virtual machine control block locked.

freestorage The uo interruption path required access to the two task execu-
and systemqueuing tion queues (for CP execution request and 1/0 task processing).

considerations These queues are locked, and access to them is controlled (serial-
ized) by a central routine. Note that the locks are spin locks, so
control is never lost as a result of queuing an element on them.

Finally, the uo interruption path requires free storage to handle
I/O errors. By design, free storage is protected by a spin lock.
Thus, on receipt of an I/O interruption that indicates an error, the
CPU calls for free storage, and only if the APU is currently getting
or returning free storage will the CPU spin momentarily before
continuing.

an illustrative The discussion above concentrates more on what the 1/0 control
example logic does than on how it treats any one task. It is perhaps helpful

to step through the sequence of events when the APU is running a
virtual machine and encounters a START uo instruction. When
START uo is executed, the APU executes the logic in the program
interruption handler. This includes a sequence of checks to deter-

60 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

mine that a virtual machine was running, a privileged instruction
execution was attempted, and the virtual machine was in super-
visor state.

The APU executes the logic to decode the instruction. When it has
been determined that the instruction is a START Uo, the processor
must acquire the system lock before proceeding further. If the
system lock cannot be acquired, the virtual machine is blocked, a
deferred execution task is stacked, and the APU finds and runs
another virtual machine.

As an example, assume that the system lock is free. The APU
acquires the lock and proceeds with START I/O simulation for the
virtual machine. The APU checks the virtual device address,
builds an 110 task block, translates the addresses in the channel
command words from the address space of the virtual machine to
the real address space of the system, and finally passes the UO
task to the uo supervisor for processing.

It is important to note that until this point, no reference has been
made to the real uo control blocks. It is in the uo supervisor that
the SWITCH macroinstruction determines whether it is the CPU or
APU that is executing the code. When it is the APu, as in this
example, supervisor call (SVC) 24 (new to APU support in CP) is
executed. Processing of this supervisor call entails building a task
execution block and stacking it for execution by the CPU. After
the task block has been stacked, the APU goes to the dispatch
routine, where it tries to run another virtual machine. No signal is
sent to the CPU; rather, the CPU encounters this switched uo task
in its normal course of events (that is, on its next trip through the
locked supervisor).

When this switched task is unstacked by the CPU, control passes
to the instruction that follows svc 24. Now the CPU is executing
the logic, and the supervisor lock is held, permitting access to the
real device blocks and the real I/O hardware. The CPU queues the
vo task and, when the real device is available, starts the I/O opera-
tion. Simulation of the virtual machine’s START VO is now com-
plete (although the YO itself has not yet been completed). The CPU
marks the virtual machine as runnable and either proceeds with
other YO supervision or enters the dispatcher. In any case, the
virtual machine is run by the CPU or the APU according to which
gets to it first.

Shared segment support

VM/370 supports the sharing of read-only virtual address space
among several virtual machines. The units of read-only sharing
are 64K-byte segments, which can be discontiguous. The princi-
pal benefits of sharing segments are that less main storage is re-

IRM CVCT I . vnr 1 9 . Nn I . 1979 HOLLEY ET AL. 61

erations are needed to complete a command. The major design
and implementation problem is not the sharing of address space,
but ensuring its read-only integrity and properly treating the vir-
tual machine that has changed it (or attempted to change it).

Historically, two approaches to ensuring integrity have been em-
ployed in the various releases of VW370. They are key-based and
change-bit-based storage protection.

key-based protection Releases 1 and 2 of VW370 utilized storage protection keys so that
Systed370 hardware prevented any change to the shared seg-
ments. Read-only pages were placed in key 0, and the virtual ma-
chine was never allowed to run with key 0 or change the keys
of the shared segments. Since CMS was using the keys to protect
other parts of storage, however, CP and CMS were, in effect, shar-
ing the storage protection keys. CP cannot ensure that the virtual
machine (or its user) will abide by any convention for key use,
so CP had to simulate key 0 execution for virtual machines with
shared segments. This requirement led to the use of a key-flipping
algorithm, which increased CP overhead by approximately ten
percent. Further, it precluded the use of virtual machine assist
hardware” because that hardware allows a virtual machine to
switch its execution key without CP’S intervention. For shared
segment integrity, however, the virtual machine must never ex-
ecute in key 0.

change-bit-based Release 3 of VM altered the manner of ensuring integrity by using
protection a change bit to detect (after the fact) a change to a read-only page.

CP scans these change bits each time it dispatches another virtual
machine. Any modification of a read-only page can thus be identi-
fied, and the virtual machine that caused the change can be given
a private copy of the segment. The result is that no other virtual
machine is affected by the change. The cost of this technique is
that about ten percent of CP’S execution time is devoted to scan-
ning the change bits. Note that this cost increases with the num-
ber of active shared segments. The significant benefit of this ap-
proach, compared with the key-based technique, is that virtual
machine assist hardware can be used in running virtual machines
with shared segments.

multiprocessing As with uniprocessing, the multiprocessor design problem is to
considerations ensure the integrity of shared segments. That is, no CP design

problems are created by allowing segment sharing. The technical
issue becomes whether the shared segments are to be protected
by keys (that is, read-only) or checked for change after the fact.

The most important distinction between these approaches is
whether the segments can be shared simultaneously. Only if the

62 HOLLEY ET AL. IBM SYST 1 VOL 18 0 NO 1 1979

shared segments are protected by keys can the CPU and APU si-
multaneously run virtual machines that share access to a single
copy of one (or more) segments. The following example illus-
trates the problem.

If the APU and CPU both have been running virtual machines that
have simultaneous access to a segment of virtual storage, and if a
change bit is found to be on, then two questions arise: Which
virtual machine is responsible for the change? Which virtual ma-
chine gets a private copy of the shared segment? In short, usually
it is unacceptable to have simultaneous sharing without read-only
protection. The alternative is not to share segments simultane-
ously. The need for simultaneous sharing can be avoided by du-
plicating the resource-that is, by providing one copy (or partial
copy) of each segment for each processor. An alternative is to
establish a lock structure to ensure serialization of the resource.

The design choice that was made was to provide change bit scan-
ning and to duplicate the shared segments. As a rqplt, both APU
and CPU have segments (or portions thereof) available for sharing
by the virtual machines that each dispatches, and upon switching
from one virtual machine to another, each processor can identify
the virtual machine that has modified its copy of the shared seg-
ment.

Once this design decision was made, the remaining problems
were restricted to implementation. The most important was what
to do when there was a changed page in a shared segment. The
design constraints were such that upon detecting a changed page
in a shared segment, CP would give the offending virtual machine
a private copy of the now changed segment and allow that ma-
chine to continue execution. An implementation problem arises
because the scan for changed shared segments is part of the defer
path (that is, the unlocked supervisor code, as discussed under
Locking, above). The unsharing of a changed shared segment
must be part of the locked supervisor code because unsharing
requires extensive changes to the page and segment tables.

The implementation problem was how to make the unsharing of
shared segments a completely deferrable task. The problem was
solved by dividing a single process (scanning for an unsharing of
changed segments) into disjoint processes of scanning and un-
sharing.

Scanning for changed pages in shared segments is performed in
one step (with no loss of control) without requiring the system
lock. After scanning has been completed, the system (virtual ma-
chines, core tables, etc.), is in a state that allows continued ac-
cess to the shared segments (except for the changed pages).

IBM SYST J VOL 18 NO 1 1919 HOLLEY ET AL.

When changed pages are detected, each is marked invalid and
suitable changes are made to core-, swap-, and page-table entries.
These changes allow for full reconstruction of the offending
user’s address space, even after other virtual machines that have
run with the shared segment have changed pages in it.

Finally, the system acquires and stacks a CP execution request
that this user’s address space be unshared from the shared copy
to a private copy. This task can be deferred for an arbitrary pe-
riod.

unsharing The unsharing process is a separate and deferrable task that runs
with the system lock. That is, at some point, the CP execution
request that was stacked when the change to a shared segment
was detected will be unstacked. Execution will then be on the
same processor that owned the shared segment and will be con-
trolled by the system lock. The unsharing process constructs new
segment and page tables for each shared segment changed by the
offending virtual machine. Finally, the unsharing process places
in these new segments the pages that were changed by that virtual
machine (thereby removing them from the shared segment).

This approach is in contrast to that of VM/370 Release 3, in which
the offending virtual machine was given the shared-segment page
tables, and a new shared-segment page table was constructed.

Performance

performance measurement Performance is always an important design consideration in soft-
and the design process ware systems, and in attached processor support for VM/370 it is

the central issue. The principal aim of that support is to increase
the processing capability of VM/370 systems. Consequently, dur-
ing the development cycle, it was considered essential to have
detailed performance data to aid in making design choices and to
refine implementation details in line with overall performance ob-
jectives.

Performance measurements were obtained in two ways. First, a
prototype system was constructed and measured so that the main
design approach could be validated. In addition, a benchmark
was designed to duplicate key elements of the mu-bound envi-
ronments in which attached processors would be required. The
benchmark was run repeatedly with interim versions of the final
system. In each case, the system was thoroughly instrumented
with software and hardware monitors. These measurements in-
cluded the detailed distribution pf supervisor state time across the
various modules of the system. The measurements were used pri-
marily to refine implementation details. However, as illustrated
below, the measurements also provided the basis for some design
alterations.

64 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

The following sections describe some of the performance insights
gleaned during the development cycle.

It is customary to rate the effectiveness of multiprocessing soft-
ware by comparison with uniprocessor performance. Frequently
the comparison is summarized with a single ratio or range, but
this simplification masks four major dependencies:

The performance variables or figures of merit used.
0 Load dependencies.

Hardware effects.
The software system itself.

Consider the problem of selecting key performance measures.
VW370 can support diverse computing environments, including
both batch processing and time sharing. Response time and
throughput are suggested as key variables. Response time gener-
ally is measured in terms of the total elapsed time required to
process commands or transactions entered at a terminal. Typi-
cally in VM/370 systems, most such commands make only a mod-
est demand on the CPU. In addition, the scheduler attempts to
order these interactive tasks ahead of longer running tasks. Con-
sequently, average response time tends to reflect paging delays
and uo delays rather than CPU use or contention, even though the
CPU may be saturated. Of course there are exceptions.

On the other hand, the aggregate throughput of the system may
well be constrained by the available CPU resource. Bard12 sug-
gests means to detect and measure the degree of this constraint.
A convenient measure of throughput is total problem state time,
since all virtual machine execution is in problem state. The ratio
of this quantity between multiprocessor and uniprocessor sys-
tems is a reasonable figure of merit with which to evaluate multi-
processing software designs. A poor design increases supervisor
state time and thus decreases this number.

This quality measure has two disadvantages, however. First, su-
pervisor state should not be considered pure overhead. The sys-
tem provides storage management, UO service, command pro-
cessing, etc. Thus the supervisor state also contains useful work.
Second, an attempt to isolate the increase in supervisor state time
due to multiprocessing support shows that there may be an equiv-
alent increase in supervisor overhead for widely varying values of
the problem state ratio, depending on the relative distribution be-
tween problem and supervisor states.

For example, let P be the problem state fraction for a uni-
processor benchmark. Then, if the CPU is saturated, 1 - P is the
supervisor state fraction. Supervisor state per unit problem state
is then (1 - P) t P . The expansion, E, of this quantity in a multi-

IBM SYST J VOL I8 NO 1 1979 HOLLEY ET AL.

quality measures
and load environments

Figure 6 Problem state ratio versus supervisor expansion

1.42 1.74 2.0

= AP PROBLEM STATE TIME
UP PROBLEM STATE TIME

processing system is a first-order measure of increased overhead.
If the ratio, R, of multiprocessing to uniprocessing total problem
state time is taken as the figure of merit, then the best-case value
of R can be computed from the following equation:

R(P + E(l - P)) = 2

The right-hand side of this equation reflects the fact that maxi-
mum throughput occurs when both processors are saturated.

This equation defines a family of curves for various distributions
of uniprocessor problem state and supervisor state, as shown in
Figure 6. Thus, as a first-order effect, a supervisor expansion of
1.5 yields a problem state ratio ranging from 1.42 to 1.74 as the
problem state fraction varies from 0.2 to 0.7. As discussed below,
other factors prevent high supervisor state environments from
achieving maximal throughput.

Both supervisor expansion and the problem state ratio from our
measurements are given in Table 1 . Taking hardware effects into
account, these quality measures are further refined.

effectsof The most obvious effect of any additional function is to increase
designdecisions path lengths in the supervisor. In the attached processor imple-

mentation, this effect comes primarily from the additional work
necessary to defer a virtual machine when the system lock is re-
quired but unavailable. Additional work also is required to re-

66 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

Table 1 Illustrative performance comparisons

Ratio of problem state time 1.77
Ratio of problem state instructions 1.63

Problem state instruction rate uniprocessor (MIPs) 1.18
Problem state instruction rate multiprocessor (average MIPs) 1.09

Expansion in supervisor time per unit problem state 1.46
Expansion in supervisor instructions per unit problem state 1.27

Supervisor instruction rate uniprocessor (MIPs) 0.92
Supervisor instruction rate multiprocessor (average MIPs) 0.80

sume that deferred task. Path lengths also increase somewhat be-
cause of the need to acquire and release local locks, but generally
this requirement has had only a modest effect on the path lengths
of most modules. One outstanding exception is the free storage
handler, in which the original paths were so short that just the
addition of the LOCK macroinstructions is significant. Measure-
ments thus far have shown that spin lock contention is quite
small, accounting for less than one percent of supervisor time.
This result, which had been obtained also on the prototype sys-
tem, served to confirm the expected low contention for the spin
locks.

As noted above, a processor that performs either supervisor or
problem state execution for a virtual machine must hold the vir-
tual machine’s lock. As a consequence, there is no performance
gain if only one virtual machine is in the system, since there
would be no overlapped execution.

A portion of the supervisor executes without acquiring the sys-
tem lock. This portion is concentrated primarily in the first-level
interruption handlers and the dispatcher. Most other supervisor
work, such as storage management, vo simulation, and command
processing, operates under the system lock. As a consequence,
load environments characterized by high supervisor state execu-
tion may perform less well under this design than load environ-
ments characterized by a higher percentage of problem state exe-
cution. In such environments, the attached processor tends to
become idle as the main processor handles stacked supervisor
tasks that require the system lock.

Generally the APU becomes idle, rather than the CPU, because
some of the stacked supervisor requests involve I/O that can be
executed only on the CPU, and these tasks are shifted to the CPU.
When the CPU holds the system lock, on the other hand, there are
few tasks that can be executed only on the APu. Consequently,
once the CPU obtains the system lock, it tends to hold it much
longer than the APU. This tendency also accounts for a substantial

IBM SYST J VOL 18 NO I 1919 HOLLEY ET AL. 67

migration of supervisor state execution to the CPU. The lock de-
sign, therefore, has biased the system in favor of multi-
programming environments characterized by a higher percentage
of problem state than supervisor state.

Replication of shared resources as a design strategy can make for
slower handling of shared segments. The possible effect of this
replication on storage should be evaluated on a case-by-case
basis.

As noted above, design changes occasionally were dictated by
feedback from measurements made during the development
cycle. Accounting provides a good example. Supervisor time is
accumulated for users in a data field in the virtual machine control
block (VMBLOK). Ordinarily it would be guarded by the virtual
machine lock. However, in a few places in the system it is desir-
able to be able to charge supervisor time to a virtual machine
without having to acquire its lock. For example, vo interruption
processing is charged to the owner of the I/O task, even though
that user may be executing on the other processor at the time of
the interruption. The original design attempted to serialize the use
of the supervisor time field by using the synchronizing primitive
COMPARE DOUBLE AND SWAP in a common subroutine. This ap-
proach was found to cost approximately eight percent of supervi-
sor time for this function alone. Replication of this accounting
field, at some small cost in storage, virtually eliminated this over-
head. The two separate accounting fields simply are combined
when the total is required for an accounting record.

effects of Aggregate problem state time has been suggested as one measure
multiprocessing hardware of the throughput of a multiprocessing system. A more accurate

measure would take into account any change in the instruction
rate of the machine. Because of hardware memory interference
effects, instruction rates of processors in a multiprocessing con-
figuration are somewhat lower than the equivalent uniprocessor
rate. For this reason, the aggregate number of problem state in-
structions is a more accurate measure of throughput. Similarly,
the expansion in supervisor state time per unit problem state is
caused in part by increased path length and in part by hardware
slowdown.

When comparing uniprocessor and multiprocessor performance,
it is reasonable to assume that the mix of problem state instruc-
tions is constant. On the other hand, the mix of supervisor in-
structions could change between uniprocessor and multi-
processor measurements. Thus the difference between supervisor
time and the number of supervisor instructions as a measure of
additional overhead is caused partly by multiprocessing hardware
effects and partly by a possible change in the instruction mix.
Measurements of the effect of various instruction streams on the

68 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979

performance of multiprocessing hardware should provide a fertile
area for further experimentation. For a discussion of some addi-
tional hardware effects in the context of MVS measurements, see
White. l3

The performance effects discussed above are illustrated by the
data in Table 1. Caution should be observed in any attempt to
extrapolate the data. All measurements were made on a three-
megabyte Systed370 Model 158. The load consisted of 80 CMS
users executing various scripts repetitively. The uniprocessor
problem state was approximately 65 percent. The load was ade-
quate to saturate both processors in the multiprocessor runs. All
comparisons are between the multiprocessor system and the uni-
processor system prior to implementation of multiprocessor sup-
port. Somewhat different results would be obtained in a com-
parison based on uniprocessor measurements of the system level
that supports attached processors.

As Table 1 shows, the attached processor system produced 1.77
times the problem state time of the uniprocessor system. This
result is consistent with other measurements, which have been in
the-range 1.5 to 1.8. Because of hardware slowdown, these mea-
surements yielded a ratio of l .63 in terms of problem state in-
structions. These numbers also indicate the order of magnitude of
the increase in path lengths in the supervisor as measured by su-
pervisor instruction-count inflation.

The magnitude of these hardware effects clearly illustrates the
need for data from hardware monitors in evaluating multi-
processor systems.

Concluding remarks

In undertaking an effort like the one described herein, there are
many decisions to be made and pitfalls to be avoided. It is hoped
that some insight has been gained into the problem of adding a
major new function to an operating system that did not provide
for that function originally. It is gratifying to see the results of that
labor operating in production environments and performing up to
its objectives.

ACKNOWLEDGMENTS
The authors thank all the people involved in this effort. In particu-
lar, we thank Charles Weagle for his attached processor proto-
type, which provided the basis for this work, and Marjorie
Schong for the professional work of her development group. We
also recognize Ronald Reynolds for his reworking of the VM/370
Resource Manager PRPQ base code in Release 4. Finally, we ac-
knowledge the efforts of R. A. MacKinnon, who provided en-
couragement and direction for the VM1370 attached processor.

IBM SYST J 0 VOL 18 0 NO 1 0 1979 HOLLEY ET AL.

CITED REFERENCES

1. L. H. Seawright and R. A. MacKinnon, “VW370-a study of multiplicity and
usefulness,” IBM Systems Journal 18, No. 1, 4-17 (1979, this issue).

2. A. L. Scherr, “Functional structure of IBM virtual storage operating sys-
tems-Part 11: OSlVS2-2 concepts and philosophies,” ZBM Systems Journal

3. J. S. Arnold, D. P. Casey, and R. H. McKinstry, “Design of tightly-coupled
multiprocessing programming,” IBM Systems Journal 13, No. 1, 60-87
(1974).

4. IBM Time Sharing System Concepts and Facilities, IBM Systems Library,
order number GC28-2003, IBM Corporation, Department 80M, 1133 West-
Chester Avenue, White Plains, New York 10604.

5 . H. Lorin, Parallelism in Hardware and Software: Real and Apparent Con-
currency, Prentice Hall Inc., Englewood Cliffs, New Jersey (1972).

6. P. H. Enslow Jr., “Multiprocessor organization-a survey,” ACM Comput-
ing Surveys 9, No. I , 103-129 (March 1977).

7. R. P. Case and A. Padegs, “Architecture of the IBM Systed370,” Communi-
cations ofthe ACM 21, No. 1, 73-96 (January 1978).

8. IBM System1370 Principles of Operation, IBM Systems Library, order num-
ber GA22-7000, IBM Corporation, Department D58, P.O. Box 390, Pough-
keepsie, New York 12602.

9. VMl370 Resource Management Programming RPQ PO-9006 Installation
Guide, IBM Systems Library, order number SH20-1906, IBM Corporation,
Department 825,1133 Westchester Avenue, White Plains, New York 10604.

10. J. L. Baer, “A survey of some theoretical aspects of multiprocessing,” ACM
Computing Surveys 5, No. 1, 31-80 (March 1973).

11. R. A. MacKinnon, “The changing virtual machine environment: Interfaces to
real hardware, virtual hardware, and other virtual machines,” ZBM Systems
Journal 18, No. 1, 18-46 (1979, this issue).

12. Y. Bard, “Performance analysis of virtual memory time-sharing systems,”
ZBM Systems Journal 14, No. 4, 366-384 (1975).

13. W. White, Attached Processing (AP) System Performance Characteristics
and Considerations, IBM Washington Systems Center Technical Bulletin No.
GG22-9004, IBM Corporation, Building 2, 18100 Frederick Pike, Gaithers-
burg, Maryland 20760 (May 1977).

12, NO. 4, 382-400 (1973).

Reprint Order No. G321-5086.

70 HOLLEY ET AL.

