
The  design  and  implementation  of vM1370 attachedprocessor  sup- 
port is discussed from  the point  of view of adding radical new 
function  to  an existing  operating  system.  Three major  design  de- 
cisions  are  described,  and performance  is  analyzed  as it relates 
to  those  decisions. 

VM/370 asymmetric  multiprocessing 
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This  paper  discusses  the design and implementation of the  at- 
tached  processor (AP) support first available in Release 4 of vM/ 
370. The  term attached  processor in this context  refers  to  the  spe- 
cific implementation on Systed370 Models 158 and 168 and on 
the 3031 processor of an  asymmetric  processor configuration. 
This implementation comprises  one  central  processing unit (CPU) 
with full execution,  channel,  and  inputloutput (I/o) capability,  and 
one  attached  processing unit (APU) which shares main storage 
with the CPU but  has only execution  capability. 

Described  are  considerations  for adding shared  storage multi- 
processing to the  then  existing ~ ~ 1 3 7 0  operating  system  and the 
tradeoffs that  were  required to achieve  a practical result. We 
hope to  show how significant new function  was provided in VMl370 
within the  context of an original operating  system design which 
did not provide for  such  function.  The major design points  are 
covered, with emphasis  on how they affected performance. It is 
not our intent to present  a  complete view of VM/370 Release 4, but 
rather  to highlight the overall  design,  the  tools,  and  the  tech- 
niques of design and implementation as  they  relate  to  attached 
processing. Toward that end, three  central design problems  are 
presented in detail,  and  others of lesser significance are men- 
tioned briefly. 

Copyright 1979  by International Business  Machines Corporation. Copying is per- 
mitted without payment of royalty  provided that ( 1 )  each reproduction is done 
without  alteration and (2) the Journd reference and IBM copyright  notice are 
included on the first page. The title and  abstract may be used without further 
permission in computer-based  and  other information-service systems. Permission 
to republish other  excerpts should be obtained  from the  Editor. 

IBM SYST J VOL 18 NO 1 1979 HOLLEY ET AL. 47 



It is assumed  that  the  reader is familiar with the  concepts  and 
facilities of IBM'S Virtual Machine Facility/370 (VW370). If not, 
the  paper by Seawright  and  MacKinnon  elsewhere in this issue' 
provides basic information and  an  extensive bibliography. 

The  genesis of this  project lay in the i-apid growth of large VM/370 
systems  and  the  requirement  for more processing  capability  to 
satisfy that growth. The multiprocessing options of Systeml370 
suggested an  obvious  and  attractive solution to  this  problem.  The 
additional  processing  power could be provided,  and  the single 
system image of a uniprocessor  could be maintained.  But many 
questions  concerning  the  nature and feasibility of software  sup- 
port remained to be  answered. 

Prior  to VM/370 Release 4, the only IBM systtm control  programs 
that supported  shared  storage multiprocessing on Systtd370 
were Multiple Virtual Storage (MVS) and  Time Sharing System/ 
370 (TSSi370). Both  systems  supported  symmetric (multi- 
processor)  as well as  asymmetric  (attached  processor)  hardware 
configurations. The  control of multiple processors was an inher- 
ent  part of the design objectives  for  both MVSZa3 and TSS.4 The 
software  architecture of each had basic multiprocessor  functions 
such as locking, signaling, and  interprodessor  communication. 
Further,  the  code in these  systems  was  organized so that parallel 
execution was possible. These  essential primitive operations 
were  not defined in VM/370. 

In  other  words, VW370 did not have the  fundamental building 
blocks required  to  suppprt parallel processing.  Lacking  were 
functions  for locking and unlocking (enqueuing and dequeuing) 
nonsharable  resources, provision for parallel execution of shared 
code,  protocols  for  communication  between  processors,  and  a 
mechanism for serializing I/O processing.  Moreover, much of the 
control program supervisor provided no design base  for parallel 
execution. A total  rewrite of VMi370 was not practical,  so an effort 
was undertaken  to  selectively rewrite parts of the  control  pro- 
gram (CP) to fulfill the  requirements for integrity and  performance 
while minimizing user  disruption.  Finally, it was decided to sup- 
port  an  attached  processor configuration rather  than  a  symmetric 
multiprocessor configuration. 

Review of multiprocessing 

The  basic  characteristic  that distinguishes a tightly coupled multi- 
processing  system  from a multicomputer  system is shared main 
storage, with simultaneous  operation of the multiple processors 
under  control of a single operating s y ~ t e m . ~  In loosely coupled 
configurations such  as ASP, shared  spool,  and J E S ~ ,  each proces- 
sor  has  its own supervisor, so these configurations are  not  consid- 
ered  true multiprocessing systems. Also outside  the  above defini- 
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tion are multiprogramming systems  that  support  concurrent, 
rather  than  simultaneous,  execution. A multiprogramming sys- 
tem may appear  to  have multiple functions  operating  at  the  same 
time,  but at  any given instant, only a single instruction  stream is 
in execution  on the  processor. A multiprocessor  has  two  (or 
more)  streams in execution  at  the same time. All the  above  sys- 
tems are sometimes  considered parallel processors  but  this desig- 
nation is misleading since  the  degree  and  level of parallelism can 
vary. 

Enslow' defines a true  multiprocessor  as having four  character- 
istics: 

0 Two or more processors,  each of approximately  equal  power. 
0 Shared  access to memory. 
0 Shared  access to input  and  output. 
0 A single operating  system in control. 

By this  strict definition, the Systed370 attached  processor  does 
not qualify as a  true  multiprocessor  because the APU has no ac- 
cess  to input  or  output.  The  consequences of this variant are dis- 
cussed  under Serialization of [Io control on  the C P U ,  below. 

Given the  characteristics listed above,  the  two major focal points 
in designing a multiprocessing  system are sharing and inter- 
action. Control of shared  resources  can be accomplished in any 
of several  ways.  The  three most basic  to current multiprocessing 
design are serialization of the  resource by means of a  lock, repli- 
cation of the  shared  resource,  and  restriction to running on a spe- 
cific processor. Identification of the  resource  owner is also impor- 
tant.  The  processors  interact at several levels of commurlication 
(such as memory, vo bus,  cache,  and CPU signaling instruction). 

The Systed370 multiprocessing feature7  provides fot coordina- 
tion of multiple processors. Prefixing hardware  permits  the  first 
4096 bytes of each  processor's  storage  to be replicated.  This  area 
contains processor  dependent locations such as those for program 
status  words,  logout,  and general processor  and program status. 
Locking is accomplished by the COMPARE AND SWAP (cs) instruc- 
tion, which ensures serialization during its execution and provides 
a field for ownership identification.8 Processor  coordination is 
provided explicitly by the SIGNAL PROCESSOR (SIGP) instruction, 
and at several implicit levels (such as storage  protect  and  cache). 
System/370 multiprocessing always  deals with two  processors of 
equal  power. 

There  are  three  alternative  software  architectures  for multi- 
processing  hardware.  There  can  be  a  master-slave  relationship, 
there  can be a  separate  executive  for  each  processor,  or  each 
processor  can be treated  as  a  symmetric  resource.  The third is the 
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most useful and also the  most difficult to implement. Its useful- 
ness  derives from its ability to  support  a  general  set of parallel 
functions  without  restricting  what  can  run at any time on any 
processor.  This generality requires a higher level of supervisor 
code  and more care in implementation. A variation of it  is the 
basis for  attached  processor  support in VM/370. 

Attached  processor 

The  justification  for  multiprocessing  support in VW370 derived 
from the  need  for  additional  instruction  processing  power  on 
large systems.  The first design decision concerned  the  forms  of 
System/370 multiprocessors  that  should  be  supported. Fully 
symmetrical multiprocessors5 would have required parallelism 
throughout  the  control  program. But by restricting uo operations 
to one  processor,  as in an  attached  processor or asymmetric mul- 
tiprocessor configuration, many fewer  changes  were  required in 
VM/370. In making the  choice  to  support  the  attached  processor 
concept, it was  clear  that  the  system’s applicability would be re- 
stricted  to  users with a  requirement  for  additional CPU power 
only.  These  users,  however,  are  a significant subset of all VM 
users. Typically they  have many cMS systems  or mixed CMS-pro- 
duction  virtual  machines.  Compared with a  uniprocessor, an at- 
tached  processor  does not provide for  any  additional I/O capabil- 
ity. 

Figure 1 Logical  hardware configu- In an attached  processor configuration, any functions that relate 
ration to real I/O (START vo and  interruptions,  for  example)  can  run only 

and ensures  serialization within the I/O process.  The real hard- 
ware configuration is shown  conceptually in Figure 1. 

Project  constraints 

The design of attached  processor  support in VM/370 Release 4 was 

- on  the CPU. This limitation reduces  the  complexity of the design 
SHARED 

MAIN STORAGE 

APU 

CPU 
OR undertaken  under  the following project  constraints: CPU 

I 0 The flexibility to  experiment was constrained by the  develop- 
ment process  and its schedules. 

0 Compatibility with all v ~ 3 7 0  functions available in uni- 
processor mode was  to be maintained without significantly de- 
grading uniprocessor  performance. 

0 The integrity of all serial  processes  was to  be maintained. 
0 Cost-justified performance was to be ensured. 
0 A base  was  to be created  for  the VM/370 Resource Management 

Program.’ 
0 Control program modifications were to be minimized to re- 

duce  the rewriting required  for  user modifications. The  objec- 
tive  was stability and minimal regression. 

0 The  attached  processor capability was  to  be  an  option which 
could be added  to VMi370 during system  generation. 

50 HOLLEY ET AL. IBM SYST J VOL 18 NO 1 1979 



0 Any changes made for multiprocessing should have minimal 
effect on  uniprocessor  operation. 

Fundamental multiprocessing problems and solutions 

The  central design problem in multiprocessing is selecting  the Figure 2 Task  relationships 

means by which computing  tasks  are  to  be divided among the 
processors so that,  for  the  duration of that unit of work,  each +"*cpuI 

processor  has logically consistent  instructions  and data. Con- 
sider,  for  example,  the  stream of instructions  executed by a uni- 
processor,  and  suppose  the  instructions  are divided into  comput- 
ing tasks  as  depicted in Figure 2(A).  A task may  be a single ma- UN'PRocESSoR MULT'PRoCESSoR 

chine  instruction or  several  thousand. Deferring for  the moment 
the design issues  associated with identifying these  tasks,  the  cen- 
tral design question  becomes: Given some division of  the uni- 
processor  instruction  stream  into  tasks, when is it permissible to 
overlap  the  execution of these  tasks with two  or more proces- 
sors? Figure 2(B) depicts  an  overlapped  relationship. 

H"+ I B t 
CPUZ 

(A) (6) 

This question is closely  related  to  a design issue in uniprocessing: 
Given two  successive  tasks, A and B, as  shown in Figure 2(A), 
when is it permissible to  reorder  these  tasks?  For  example, if task 
B is the  processing of an I/O interruption  and A is a  task  that 
normally runs disabled for 110 interruptions,  what  are  the  con- 
sequences of enabling for  interruptions during task A, so that B 
can be executed before or during A rather  than  after  it? 

The  reordering of two uniprocessor  tasks may be disallowed by Figure 3 Logical and  data  depen- 

either  a logical dependence  or a  data  dependence of task B on 
task A. B is logically dependent  on A if B may or may not  be 
executed,  depending  on  the  execution of A. Tasks B and  C in 
Figure 3 are logically dependent  on  task A, since  either B or C 
may be executed,  depending  on  the result of the  execution of A. CTR = CTR - I CTR = CTR + 1 

Data  dependence is illustrated by tasks B and  D in Figure 3 .  The 
output value of task B is the input to task D.  Data  dependence 
may occur in several  other  ways if the  term data is broadened to 
include any storage  location or register, or  other task input or 
output. 

dencies 

I =CTR 

If two  sequential  uniprocessor  tasks  are logically independent 
and data  independent,  they  can be reordered. In multiprocessing 
systems,  attention must be paid to  both logical and data de- 
pendence when tasks  are divided among processors. 

A task TI can be viewed as a mapping from input data I, to out- data 
put  data 0, as shown in Figure 4(A). Parts (B), (C), (D), and (E) of dependence 
Figure 4 illustrate various relationships between input and  output 
data  for  two  tasks. In 4(B) the  data  elements  for  the  two  tasks  are 
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Figure 4 Multiprocessing  data  dependencies 

n n 

disjoint. In 4(C) the input data overlaps.  In 4(B) and 4(C) there 
would not be a problem for multiprocessing, but in 4(D) and 4(E) 
there could be inconsistent  results.  Therefore special precautions 
should be taken in instances  such as  these. 

In the  uniprocessor version of vMi370, system  tasks  presented 
many conflicts like those in 4(D) and 4(E) for  any  reasonable divi- 
sion of tasks.  Indeed,  the principal obstacle  to design was  the 
diffuse  ownership of system  data  areas in a  system  not designed 
for multiprocessing. 

Four  general  strategies are employed to cope with these  data  de- 

I 

" 



~~~ ~ 

0 Serialize the use of the  shared data with a  gatekeeper  function 

0 Replicate  the  shared  data  items, assigning one  set  to  each 

0 Force all tasks  that  require  a  particular  set of data  items  to  run 

0 Redesign tasks  to minimize data conflict. 

Aspects of VMi370 design which illustrate  these  strategies  are dis- 
cussed  under Design strategies, below. 

Much research  into  the  theoretical problems associated with mul- logical 
tiprocessing has concentrated  on parallel execution within a dependence 
single program.  Baer”  surveys some of this  work. In the  context 
of a single program, the problem of logical dependence is acute. 
Special language features  are  required  to identify which portions 
of the program can be executed in parallel and to synchronize 
execution of the  processors  at  various  points in the  program. Al- 
though this fine-granularity multiprocessing is an important  theo- 
retical  and  practical problem for some computing  environments, 
many large systems  do not require  such  solutions.  These  systems 
are  characterized by competition  for CPU resource among many 
tasks  which, by necessity,  have  a large measure of logical inde- 
pendence. For example,  two  batch jobs or  two time-sharing users 
often will be totally independent  except  when  they  require  super- 
visor services. 

Often a uniprocessor  system provides a  central  function for 
queuing and  dispatching of these  independent  tasks.  A  system 
may take  advantage of this  independence,  for  example,  to  reorder 
the  tasks  according  to  a  user- or system-determined  priority. The 
design for multiprocessing in VM/370 exploits  the logical indepen- 
dence of the  tasks  on  the  central  queues.  This design choice  also 
reduces  the  requirement  for  interprocessor  communication. It is 
part of the new system  but is required only rarely. 

or lock. 

processor. 

on  a  particular  processor. 

Design  strategies 

Locking 

This section  describes  the locking structure of VW370 attached 
processor  support,  the specific types of locks  implemented,  and 
their uses. 

The structure of software  locks  introduced  into  the vM/370 super- locking 
visor to  support multiple processors allows different virtual ma- structures 
chines to be in execution simultaneously on  each of the  proces- 
sors. It  does  not, in general, allow simultaneous  supervisor  exe- 
cution on behalf of those  virtual  machines.  The design principle 
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used is that  only  one  processor at a time can  execute  supervisor 
functions,  except  for  selected  paths. Specific supervisor  paths 
that  are used frequently  and do not share  much  data with the bulk 
of the  supervisor  were programmed selectively  to allow simulta- 
neous  execution  on multiple processors. 

A logical software lock is implemented by designating a word of 
storage as the physical lock.  The unlocked and  locked  states  cor- 
respond  respectively  to  the  zero  and  nonzero values of the  word. 
When locked,  the specific nonzero value identifies the  processor 
that  has acquired the  lock. Acquisition of the lock is attempted  by 
trying  to  replace  a  zero  word value with a nonzero value using the 
Systed370 COMPARE AND  SWAP instruction, which is a  proper 
hardware serializing primitive.  The  replacement  occurs only if 
the  current  content of the  word  matches  the  zero value specified 
in the  instruction. If multiple processors  simultaneously perform 
the  operation  on a given word of zero  value, only one is success- 
ful. 

If the  replacement is successful,  the invoking processor  can use 
all the serially reusable  resources  protected by the lock,  and it 
will be  the only user of those  resources.  Software  convention  en- 
sures  that  they  cannot be used unless the lock has  been  acquired. 
When it has finished using the  resources,  the processor  releases 
the lock by placing a value of zero in the given word,  thus allow- 
ing  it to be acquired  subsequently by any other processor. 

If the  replacement is unsuccessful,  the  processor  can  suspend  ex- 
ecution of the unit of work  that  requires lock acquisition, or spin 
(that  is,  loop)  on  acquisition  attempts by continuously  testing  the 
state of the  lock until it is released  and  subsequently  acquired. 
The  proper  course of action  for software normally is related to the 
use of the serially reusable  resources  protected by a given lock. 
Thus  a lock can be categorized as a suspend lock or a spin lock. 
Suspension usually implies the  additional  work of saving  enough 
information about  the  current unit of work so that it can be re- 
sumed later,  ensuring  that it  will  be resumed  when  the  unacquired 
lock is later  released,  and switching to some other unit of work.  It 
would appear  that spinning on  attempted lock acquisition wastes 
processor  power,  but if spinning takes  less time than  the  work 
introduced by suspension, it is the more economical  alternative. 

specific locks The VM/370 supervisor’s  use of most data fields  in control  blocks 
is widely scattered  throughout the  system  control  program. To 
protect  those fields as serially reusable  resources,  the  processor 
normally acquires  one  system lock upon  entering  the  supervisor 
state  at  one of the first-level interruption  handlers,  and  it  releases 
the lock upon exiting from the  central  dispatcher  to  either  virtual 
machine execution or  the wait state. If this lock cannot  be  ac- 
quired,  the  processor  suspends  execution by saving the  state of 
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the  current  task  for  later  resumption  and  proceeding  directly  to 
the  dispatcher  to  perform work that  does  not  require  the  lock 
(that  is, it puts  another  virtual machine into execution).  Thus  this 
system lock serializes the use of most supervisor  resources. 

Each  virtual machine is serialized by a unique lock, which is ac- 
quired  before  a  processor  puts a virtual machine into  execution or 
performs  supervisor  functions  on its behalf. Its lock is released, 
normally in the  dispatcher,  when  the  processor  stops  servicing 
the  machine.  Transition of a processor  from  executing a virtual 
machine (problem state)  to performing supervisor  functions  for it 
(supervisor  state)  does  not involve any  change in the  state of a 
virtual machine lock.  The lock was  acquired in the  dispatcher 
before  virtual machine execution began and will be held through 
the  supervisor  state until deliberately  released.  Suspension of ex- 
ecution  consists merely of bypassing selection of this  particular 
virtual machine in favor of another whose lock can  be  acquired. 

As stated  above,  most  supervisor  resources  are serialized by the 
system  lock.  Resources used before system lock acquisition is 
attempted,  or  as  part of the  suspension mechanism if acquisition 
fails, are  exceptional  resources  that  require  separate serial- 
ization. Most are  queues (free storage  blocks,  runnable users, 
timer  requests,  etc.) which are  updated as elements are inserted 
or  deleted. Since updating a  queue is a relatively brief operation, 
these  queue locks are  spin  locks. 

Some data items  are  locked by the  data  itself.  Event  counters  (to 
be incremented by one)  and  the  pointer  to  the  curfent  system 
trace  table  entry (to  be advanced by each  trace  event)  are single 
storage  words which are  updated  directly  by COMPARE AND  SWAP 
instructions.  The  replacement value of such  words is uniquely 
determined by the  current  value. If simultaneous  replacement is 
attempted by two  processors,  one will fail, causing  a  redetermina- 
tion of the replacement value and  another  attempt.  This  process 
is a form of spin lock. 

Detailed description of a selected  path should clarify the  interplay 
among locks. Figure 5 provides  an  overview of the  relationships 
among various  portions of the supervisor. Assume that  a  pro- 
cessor  has  been  directly  executing  a virtual machine which has 
just attempted  to  execute a privileged instruction (for example, 
START VO). Since virtual machines  are managed by forcing direct 
execution in problem state  and simulating privileged operations, 
the  hardware  causes  a privileged-operation program interruption. 
Thus  supervisor  software is invoked at  the first-level program in- 
terruption  handler.  The  processor holds the virtual machine lock 
of the  virtual machine that  just caused the interruption; it does 
not hold any  other  locks.  The  contents of the processor’s regis- 
ters  and of the  program-interruption old program status  word  that 
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Figure 5 Supervisor path overview 
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identifies the  virtual  state  can be saved in control block areas  seri- 
rllized by the virtual machine lock.  The  virtual machine is flagged 
as nonrunnable until simulation by supervisor  functions is com- 
plete. 

When supervisor  functions  determine that system  resources 
other  than  those specific to  the virtual machine are  necessary  to 
complete  the  simulation, an attempt is made to  acquire  the  sys- 
tem .lock. If the  attempt is succysful,  the  processor  proceeds 
through the balance of the  supervisor while holding both  the sys- 
tem lock and  the virtual machine lock. It may also temporarily 
hold one of the spin locks  on specific queues. When the  processor 
eventually  reaches  the  dispatcher, it still holds the  system  and 
virtual machine locks. At this point the  processor  either  redis- 
patches  the, virtual machine or performs  some  other unit of work. 
Redispatching  the  virtual machine means that  the system lock is 
released,  and  the  processor  returns  to problem state still holding 
the  virtual machine lock. To perforni other system  work,  the vir- 
tual machine lock must be released  and  the  system lock retained. 

If the  system lock cannot be acquired  when  needed,  the pro- 
cessor follows the  defer path,  as shown in Figure 5 .  Deferred 
service  requires  that  the logical point in the simulation and  any 
interruption information be saved.  General  register  and  instruc- 
tion counter  contents  are  stored in a control block appendage  that 
defines the virtual machine.  This  appendage is then  queued  on  a 
chain of system  requests  to  be  processed  when  the  system lock 
has  been  acquired. (A spin lock on this chain is held briefly while 
the queuing is performed.)  Control is then  passed  to a special 
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DSPRU entry point in the  dispatcher,  where  the  current  virtual 
machine lock is released  and acquisition of another is attempted. 
Exit from the  dispatcher is either to problem state (holding a 
virtual machine lock), or  to wait state (holding no locks). The 
DSPRU entry point is  the  start of a special path  through  the dis- 
patcher which has no need of the  system  lock.  System-wide  re- 
sources  such  as  free  storage  queues, which must be used by this 
path,  are serialized by separate spin locks. 

As can be seen from the  above  discussion,  most  state  changes in 
suspend  locks  occur in the dispatcher.  Entry  into  the  dispatcher 
normally represents  the  termination of some unit of work,  and 
exit  represents  the initiation of another.  One way of exiting from 
the  dispatcher is to  execute a  system  request  that  bas  been 
queued’by  another  supervisor  function.  Such  requests, of which 
the  defer  path  appendage is one  instance,  are invoked while the 
system lock and  the  pertinent virtual machinc lock are held. 

Some  selected  paths in the  synchronous first-level interruption 
handlers  (supervisor  call  and program check  interruptions  from 
‘proble$ state)  were programmed to  operate without acquiring 
the  system lock if they  ended by returning to problem state  exe- 
cution of the  same virtual machine.  Such  paths were constrained 
to  use only those  system  resources serialized by the virtual ma- 
chine lock held on  entry  or by specific spin locks.  System  per- 
formance  was  enhanced by these  paths  because of their  fre- 
quency of use. 

Serialization of UO control  on  the CPU 

As discussed  above,  an  attached  processor  system  is  a multi- 
processor with all I/O devices  attached to one  processor, so that 
all I/o activity is serialized on that  processor. Only the CPU can 
initiate input or  output (the APu responds to all Yo instructions 
with a  condition  code  that  indicates  that  the  addressed  device is 
not’  operational)  and only the CPU can  respond  to an I/O inter- 
ruption.  In  other  words,  only  the CPU can  execpte the code in the 
system  control  program’s first-level I/O interruption  handler. 

Reviewing briefly the I/O handling logic of CP, recall that  the vo 
supervisor  performs  the following three  functions: 

0 Accepts I/O requests  made by other  components of CP. These 
requests  are  enqueued  from  the  appropriate I/O control  block, 
and  an vo operation is started if a path’to  the requested  device 
is free. 

0 Accepts uo interruptions. If an  interrupfion  indicates  com- 
pletion of an I/O task,  the supervisor  passes  that  task  to  the 
dispatching module of the  system. 

0 Dequeues and starts  one  or more new vo tasks  if,  as  a  result of 
an I/O interruption, a path to a  requested  device becomes free. 
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The 110 supervisor module in CP is essentially a self-contained 
package of code which contains all  of CP’S I/O interruption han- 
dling logic. Although its internal logic is somewhat  complex, its 
interactions with the  remainder of the  system  are well defined. 
However, it does  not  control all the initiation of V O  in CP. There 
are many code modules that initiate I/O, and  the  interactions of 
these modules with the  remainder of the  system  are  complex.  In 
particular,  at some point, many of the  various terminal handling 
routines  attempt  to initiate I/O to a terminal. 

I/O design In view of the YO handling considerations  outlined  above,  the  de- 
sign problem for input and  output has three  aspects: 

Ensuring  that only the cPu will initiate I/o. 
Ensuring  that  the uo control blocks are not  changed by the 
attached  processor in such  a way as  to  cause the CPU to make 
an  error. 

0 Ensuring  that  the  interactions  between I/O handling and  the 
remainder of the  system  are suitably interlocked. 

The major decision in designing I/O support  for VMi370 was that 
only the CPU would execute  code  that made use of the dynami- 
cally changed  real uo control  structure.  The  intent of this  decision 
was to  ensure that all I/O interruption  processing could be done 
without  the  system  lock,  for, in effect, there is no multiprocessing 
of the uo logic. All other  paths  that  share  data with this unlocked 
path  must  be serialized on  the CPU. The result is that all paths, 
other  than  the I/O interruption  handler,  that  refer  to  the I/O control 
blocks must operate with the  double  constraint of being con- 
trolled by the  system lock and running on  the CPU. The uo inter- 
ruption  path  shares, with other  paths in the  system,  the following 
resources: fields in the I/O control  blocks, fields in the  other  sys- 
tem  control  blocks,  and  system  free  storage  and  queue  pointers. 

110 control  block Consider all dynamically changed fields in the real Yo control 
considerations blocks that  were used (that  is, modified or referred  to). All paths 

that  use  these fields, other  than  the  interruption  handler, must be 
switched to  the CPU. This was accomplished by defining a SWITCH 
macroinstruction  and adding an AFFINITY option  to  the CALL 
macroinstruction, so that  one  routine could call another with as- 
surance  that  the called routine would return  to  the  same  pro- 
cessor. 

Next, all sections of the  system  that used the 1/0 control  struc- 
ture,  other  than  the I/O interruption handling path,  were  examined 
to find (or  create)  closed  paths of execution  that  could be 
switched  onto  the CPu by the SWITCH macroinstruction.  The 
macroinstruction  was  invoked  at  the beginning of the  path  and, if 
necessary,  an AFFINITY option  was  added to  each CALL within 
each  path. 
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The design rules for  restricting all I/O control  to  the CPU have one 
exception, in that  the page device manager manipulates  the  queue 
of drum-storage page requests so that they are slot  sorted.  This is 
done  only  for  the paging drums so that  one I/O task will cause 
several page I/O operations,  without  the  delays  inherent in sepa- 
rate START 110 instructions  for  each paging operation.  In  particu- 
lar, if an I/O task is already  active  on  the paging drum,  the page 
device manager places the  current  request in its proper place in 
the  queue of tasks  that will  be started when the  current I/O task 
finishes. On the  other  hand, if the  drum is idle,  the page device 
manager passes its I/O request by calling the uo supervisor. 

The design problem caused by this  exception is that  the page de- 
vice manager manipulates  the I/O control  structure,  and  to  con- 
form to  the design rule stated  above,  this  portion of the  code 
would have  to be switched to  the CPU. As a  result,  performance 
could be severely degraded.  Consider  the following situation: 

The APU, operating with the  system  lock,  has finished processing 
a page fault. All that  remains to be done is to  insert a request  into 
a  queue. But since the  processing is being done by the APU (not 
the CPu), a SWITCH must be performed.  The delay caused in 
switching to  the CPU more than offsets the  performance  advan- 
tage of placing the I/O request in the  queue. 

The solution chosen was to define a spin lock for  the  task  queue 
associated with each real device.  This lock ensured mutual ex- 
clusion of the  dequeuing of tasks by the I/O interruption  handler 
and the  enqueuing of tasks by the page I/O manager, while allow- 
ing the high performance  advantage of slot sorting page 1/0 
requests. 

The remaining major concern in this part of the design was the 
requirement  that  access  to  system  resources be shared by the in- 
terruption  path  and  the  rest of the  system.  Since  the major design 
decision  for YO was  that only the CPU would refer to 110 control 
blocks,  the I/O interruption  handler did not need the  system  lock. 
Two other resources are shared by the  interruption  path  and  the 
rest of the  system.  They  are  the  scheduler  code  (protected by the 
system  lock) and fields in the virtual machine control block (pro- 
tected by virtual machine lock).  The following example  illustrates 
the problem. 

An I/O interruption is received, indicating completion of one I/O 
task and freeing a  path  to  the I/O hardware.  Therefore  one or more 
other 110 tasks  can be started.  Performance  considerations  re- 
quire  that  restarting of the I/O hardware  not be delayed. At least 
three  virtual machines are involved in the  processing: 
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~~~~~ ~ 

0 The machine that  was  executing when the  interruption  was 

0 The machine for which the  interruption is destined. 
0 One or more  machines waiting for a START 110 instruction  to  be 

issued;  as  a  result of this  interruption,  the machines can  have 
their I/O started  and  become  candidates  for being run. 

received. 

The  existing logic of the  interruption  handler was to place the 
completed uo task in the  queue of completed  tasks. Next,  the 
interruption handler restarted  the YO hardware  and  made  one or 
more virtual  machines  dispatchable  by  turning off a bit in their 
virtual machine control  blocks  and calling the  scheduler  to make 
them eligible for  dispatching. For  attached  processor  support, 
this logic presents  two  problems:  the field  in the virtual machine 
control block is  protected by a  suspend  lock,  and the scheduler 
has  to  operate while holding the  system lock (also a suspend 
lock).  In  other  words,  the I/O interruption handling path  contained 
two  points at which suspend  locks  were  required,  yet  the design 
goal was  to have an interruption handling path  that  was unlocked. 

The solution was to replicate  a portion of the  scheduler  function 
in the uo interruption handling path,  thereby removing the  re- 
quirement  for  the  system  suspend  lock.  The  other  suspend  lock 
requirement  cannot be avoided.  Thus,  an  attempt is made to lock 
the  virtual  machine. If the  attempt is successful,  the  replicated 
portion of the  scheduler  function is executed,  and  the  virtual ma- 
chine is unlocked. If the lock cannot be obtained,  a CP execution 
request block is built and  stacked. As discussed  under Locking, 
above,  the  dispatcher  ensures  that this request is executed with 
the  associated virtual machine control block locked. 

freestorage The uo interruption  path  required  access  to  the  two  task  execu- 
and systemqueuing tion queues  (for CP execution  request  and 1/0 task  processing). 

considerations These  queues  are  locked,  and  access  to  them is controlled (serial- 
ized) by a  central  routine.  Note  that  the  locks  are  spin  locks, so 
control is never  lost  as  a  result of queuing an element  on  them. 

Finally,  the uo interruption  path  requires  free  storage  to handle 
I/O errors. By design,  free  storage is protected by a spin lock. 
Thus,  on receipt of an I/O interruption  that  indicates  an error,  the 
CPU calls for  free  storage,  and only if the APU is currently getting 
or returning  free  storage will the CPU spin momentarily before 
continuing. 

an  illustrative The  discussion  above  concentrates more on what  the 1/0 control 
example logic does  than  on how it treats any  one  task. It is perhaps helpful 

to  step through  the  sequence of events  when  the APU is running a 
virtual machine and  encounters a START uo instruction. When 
START uo is executed,  the APU executes  the logic in the program 
interruption  handler.  This  includes  a  sequence of checks  to  deter- 
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mine that a virtual machine was running, a privileged instruction 
execution was attempted, and the  virtual machine was in super- 
visor state. 

The APU executes  the logic to  decode  the  instruction. When it has 
been determined  that  the  instruction is a START Uo, the  processor 
must acquire  the  system lock before proceeding  further. If the 
system lock cannot be acquired,  the virtual machine is blocked,  a 
deferred  execution  task is stacked,  and  the APU finds and  runs 
another virtual machine. 

As an example,  assume  that  the  system lock is free.  The APU 
acquires  the lock and  proceeds with START I/O simulation for the 
virtual machine.  The APU checks  the  virtual  device  address, 
builds an 110 task  block,  translates  the  addresses in the  channel 
command  words from the  address  space of the virtual machine to 
the  real  address  space of the  system, and finally passes  the UO 
task to  the uo supervisor  for  processing. 

It is important to note that until this  point, no reference  has  been 
made to the real uo control  blocks. It is in the uo supervisor  that 
the SWITCH macroinstruction  determines  whether it  is the CPU or 
APU that is executing  the  code. When it is the APu, as in this 
example,  supervisor call (SVC) 24 (new to APU support in CP) is 
executed. Processing of this  supervisor call entails building a task 
execution block and  stacking it for  execution by the CPU. After 
the  task block has  been  stacked,  the APU goes to  the  dispatch 
routine,  where it tries  to  run  another virtual machine.  No signal is 
sent  to  the CPU; rather,  the CPU encounters  this  switched uo task 
in its normal course of events  (that  is,  on  its  next  trip  through  the 
locked supervisor). 

When this switched task is unstacked by the CPU, control  passes 
to  the  instruction  that follows svc 24. Now the CPU is executing 
the logic, and  the  supervisor lock is held, permitting access  to  the 
real device blocks and  the  real I/O hardware.  The CPU queues  the 
vo task  and, when the  real  device is available,  starts  the I/O opera- 
tion. Simulation of the  virtual machine’s START VO is now com- 
plete (although the YO itself has not yet been  completed).  The CPU 
marks the virtual machine as runnable  and  either  proceeds with 
other YO supervision or  enters the  dispatcher. In any case,  the 
virtual machine is run by the CPU or  the APU according  to which 
gets to it first. 

Shared segment support 

VM/370 supports  the  sharing of read-only virtual  address  space 
among several virtual machines.  The  units of read-only sharing 
are 64K-byte segments, which can be discontiguous. The princi- 
pal benefits of sharing segments  are  that  less main storage is re- 
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erations  are  needed  to  complete  a  command.  The major design 
and implementation problem is not  the  sharing of address  space, 
but  ensuring its read-only integrity and  properly  treating  the vir- 
tual machine that has changed it (or attempted  to  change  it). 

Historically,  two  approaches  to ensuring integrity have been em- 
ployed in the various releases of VW370. They  are  key-based  and 
change-bit-based  storage  protection. 

key-based  protection Releases 1 and 2 of VW370 utilized storage  protection  keys so that 
Systed370 hardware  prevented  any  change  to  the  shared seg- 
ments. Read-only pages were placed in key 0, and  the virtual ma- 
chine was never allowed to run with key 0 or change the  keys 
of the shared segments.  Since CMS was using the  keys  to  protect 
other  parts of storage,  however, CP and CMS were, in effect,  shar- 
ing the  storage  protection  keys. CP cannot  ensure  that  the virtual 
machine (or its  user) will abide by any  convention  for key use, 
so CP had to  simulate key 0 execution  for virtual machines with 
shared  segments.  This  requirement led to  the use of a key-flipping 
algorithm, which increased CP overhead by approximately ten 
percent.  Further, it precluded the  use of virtual machine assist 
hardware”  because  that  hardware  allows a virtual machine to 
switch its execution  key without CP’S intervention. For shared 
segment integrity,  however,  the  virtual machine must never  ex- 
ecute in key 0. 

change-bit-based Release  3 of VM altered the manner of ensuring integrity by using 
protection a  change bit to  detect (after  the  fact)  a  change to a read-only page. 

CP scans  these  change bits each time it dispatches  another virtual 
machine. Any modification of a read-only page can  thus be identi- 
fied, and  the virtual machine that  caused  the  change  can be given 
a  private  copy of the  segment.  The  result is that no other virtual 
machine is affected by the change.  The  cost of this technique is 
that  about  ten  percent of CP’S execution time is devoted  to  scan- 
ning the change bits. Note  that  this  cost  increases with the num- 
ber of active  shared  segments.  The significant benefit of this  ap- 
proach,  compared with the  key-based  technique, is that  virtual 
machine assist  hardware  can be used in running virtual machines 
with shared  segments. 

multiprocessing As with uniprocessing, the multiprocessor design problem is to 
considerations ensure  the integrity of shared  segments.  That  is, no CP design 

problems  are  created by allowing segment sharing. The technical 
issue  becomes  whether  the  shared  segments  are  to be protected 
by keys  (that  is,  read-only)  or  checked  for  change  after  the  fact. 

The  most  important  distinction  between  these  approaches is 
whether  the  segments  can be shared  simultaneously. Only if the 
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shared  segments are protected by keys can the CPU and APU si- 
multaneously run virtual  machines  that  share  access  to a single 
copy of one  (or more) segments.  The following example illus- 
trates  the  problem. 

If the APU and CPU both  have  been running virtual machines that 
have simultaneous  access  to  a segment of virtual storage,  and if a 
change bit is found to be on, then  two  questions  arise: Which 
virtual machine is responsible  for  the  change? Which virtual ma- 
chine  gets  a  private  copy of the  shared  segment?  In  short, usually 
it  is unacceptable  to  have  simultaneous sharing without  read-only 
protection.  The  alternative is not  to  share  segments simultane- 
ously.  The need for  simultaneous sharing can be avoided by du- 
plicating the  resource-that is, by providing one  copy  (or  partial 
copy) of each segment for  each  processor. An alternative is to 
establish  a lock structure  to  ensure serialization of the  resource. 

The design choice that was made was to  provide change bit scan- 
ning and  to duplicate the  shared  segments. As a rqplt, both APU 
and CPU have  segments  (or  portions  thereof) available for  sharing 
by the  virtual machines that  each  dispatches,  and upon switching 
from one virtual machine to  another,  each  processor  can identify 
the  virtual machine that  has modified its  copy of the  shared seg- 
ment. 

Once  this design decision was made,  the remaining problems 
were  restricted to implementation.  The most important  was  what 
to do when there  was  a  changed page in a  shared  segment.  The 
design constraints  were  such  that upon detecting a changed page 
in a shared  segment, CP would give the offending virtual machine 
a private  copy of the now changed segment and allow that ma- 
chine  to  continue  execution. An implementation problem arises 
because  the  scan  for  changed  shared  segments is part of the defer 
path  (that  is,  the  unlocked  supervisor  code,  as  discussed  under 
Locking, above).  The  unsharing of a  changed  shared segment 
must be part of the  locked  supervisor  code  because unsharing 
requires  extensive  changes  to  the page and segment tables. 

The implementation problem was how to make the unsharing of 
shared  segments  a  completely  deferrable  task.  The problem was 
solved by dividing a single process (scanning for  an unsharing of 
changed segments) into disjoint processes of scanning and un- 
sharing. 

Scanning for changed pages in shared  segments is performed in 
one  step (with no loss of control)  without requiring the  system 
lock.  After scanning has  been  completed,  the  system  (virtual ma- 
chines,  core  tables, etc.), is in a  state  that allows continued  ac- 
cess  to  the  shared  segments  (except  for  the  changed pages). 
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When changed pages are  detected,  each is marked invalid and 
suitable  changes  are made to  core-, swap-,  and page-table entries. 
These  changes allow for full reconstruction of the offending 
user’s  address  space,  even  after  other  virtual machines that  have 
run with the  shared  segment  have  changed  pages in it. 

Finally,  the  system  acquires  and  stacks  a CP execution  request 
that  this  user’s  address  space be unshared from the  shared  copy 
to a private  copy.  This  task  can be deferred  for  an  arbitrary  pe- 
riod. 

unsharing The  unsharing  process is a  separate  and  deferrable  task  that  runs 
with the  system  lock.  That  is,  at  some  point,  the CP execution 
request  that was stacked  when  the  change to a  shared segment 
was detected will be unstacked.  Execution will then be on the 
same  processor  that  owned  the  shared segment and will  be con- 
trolled by  the  system  lock. The unsharing process  constructs new 
segment and page tables  for  each  shared  segment  changed by the 
offending virtual machine.  Finally,  the unsharing process places 
in these new segments the pages that  were  changed by that virtual 
machine (thereby  removing  them from the  shared  segment). 

This  approach  is in contrast  to  that of VM/370 Release 3,  in which 
the offending virtual machine was given the  shared-segment page 
tables,  and  a new shared-segment page table was constructed. 

Performance 

performance  measurement Performance is always an important design consideration in soft- 
and  the  design  process ware  systems,  and in attached  processor  support  for VM/370 it  is 

the  central  issue.  The principal aim of that  support is to increase 
the  processing capability of VM/370 systems.  Consequently,  dur- 
ing the  development  cycle, it was  considered  essential  to  have 
detailed  performance data  to aid in making design choices  and to 
refine implementation details in line with overall  performance ob- 
jectives. 

Performance  measurements  were  obtained in two  ways.  First,  a 
prototype  system  was  constructed  and  measured so that  the main 
design approach could be validated. In  addition,  a  benchmark 
was designed to  duplicate key elements of the  mu-bound envi- 
ronments in which attached  processors would be required. The 
benchmark  was  run  repeatedly with interim versions of the final 
system. In each  case,  the system  was  thoroughly  instrumented 
with software  and  hardware  monitors.  These  measurements in- 
cluded  the detailed distribution pf supervisor  state time across  the 
various modules of the  system.  The  measurements  were used pri- 
marily to refine implementation details.  However, as illustrated 
below,  the  measurements  also provided the basis for  some design 
alterations. 
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The following sections  describe some of the  performance insights 
gleaned during the  development  cycle. 

It is customary  to  rate  the effectiveness of multiprocessing soft- 
ware by comparison with uniprocessor  performance.  Frequently 
the  comparison is summarized with a single ratio or range,  but 
this simplification masks  four major dependencies: 

The  performance  variables or figures of merit used. 
0 Load  dependencies. 

Hardware effects. 
The  software  system itself. 

Consider  the problem of selecting key performance  measures. 
VW370 can  support  diverse  computing  environments, including 
both batch  processing  and time sharing. Response  time  and 
throughput are suggested as key variables.  Response time gener- 
ally is measured in terms of the  total  elapsed time required to 
process  commands or transactions  entered at a terminal.  Typi- 
cally in VM/370 systems,  most  such  commands make only a mod- 
est demand on  the CPU. In addition,  the  scheduler  attempts  to 
order  these  interactive  tasks  ahead of longer running tasks.  Con- 
sequently,  average  response time tends  to reflect paging delays 
and uo delays  rather  than CPU use or  contention,  even though the 
CPU may be saturated. Of course  there  are  exceptions. 

On the  other  hand,  the aggregate throughput of the  system may 
well be constrained by the available CPU resource. Bard12 sug- 
gests  means  to  detect  and  measure  the  degree  of this constraint. 
A convenient  measure of throughput is total problem state  time, 
since all virtual machine execution is  in problem state.  The  ratio 
of this  quantity  between  multiprocessor  and  uniprocessor  sys- 
tems is a  reasonable figure of merit with which to  evaluate multi- 
processing  software  designs. A poor design increases  supervisor 
state time and  thus  decreases  this  number. 

This  quality  measure  has  two  disadvantages,  however.  First, su- 
pervisor  state should not be considered  pure  overhead.  The  sys- 
tem provides  storage  management, UO service, command pro- 
cessing,  etc.  Thus the supervisor  state also contains useful work. 
Second,  an  attempt  to  isolate  the  increase in supervisor  state time 
due to multiprocessing support  shows  that  there may  be an  equiv- 
alent  increase in supervisor  overhead  for widely varying values of 
the problem state  ratio,  depending  on  the  relative  distribution  be- 
tween problem and  supervisor  states. 

For  example, let P be  the problem state  fraction  for a uni- 
processor  benchmark.  Then, if the CPU is saturated, 1 - P is the 
supervisor  state  fraction.  Supervisor  state  per unit problem state 
is then (1 - P )  t P .  The  expansion, E, of this  quantity in a multi- 
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Figure 6 Problem  state ratio versus  supervisor  expansion 

1.42 1.74 2.0 

= AP PROBLEM STATE TIME 
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processing  system is a  first-order  measure of increased  overhead. 
If the  ratio, R, of multiprocessing  to  uniprocessing  total problem 
state time is taken as  the figure of merit,  then  the  best-case value 
of R can be computed from the following equation: 

R(P + E(l - P ) )  = 2 

The right-hand side of this  equation reflects the  fact  that maxi- 
mum throughput  occurs  when  both  processors  are  saturated. 

This  equation defines a family of curves  for  various  distributions 
of uniprocessor problem state  and  supervisor state,  as shown in 
Figure 6. Thus,  as a first-order effect, a supervisor  expansion of 
1.5 yields a problem state  ratio ranging from 1.42 to 1.74 as  the 
problem state  fraction  varies from 0.2 to 0.7. As discussed  below, 
other  factors  prevent high supervisor  state  environments from 
achieving maximal throughput. 

Both supervisor  expansion  and  the problem state ratio from our 
measurements  are given in Table 1 .  Taking hardware effects into 
account,  these quality measures  are  further refined. 

effectsof The most obvious effect of any  additional function is to  increase 
designdecisions path  lengths in the  supervisor. In the  attached  processor imple- 

mentation, this effect comes primarily from the  additional  work 
necessary  to  defer  a  virtual machine when the  system lock is re- 
quired  but unavailable. Additional work also is required  to  re- 
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Table 1 Illustrative  performance  comparisons 

Ratio of problem state time 1.77 
Ratio of problem state instructions 1.63 

Problem state instruction rate uniprocessor (MIPs) 1.18 
Problem state instruction  rate multiprocessor (average MIPs) 1.09 

Expansion in supervisor time  per  unit  problem state 1.46 
Expansion in supervisor instructions per  unit  problem state 1.27 

Supervisor instruction rate uniprocessor (MIPs) 0.92 
Supervisor instruction rate multiprocessor (average MIPs) 0.80 

sume that deferred  task.  Path lengths also increase  somewhat  be- 
cause of the need to  acquire  and  release local locks, but generally 
this requirement  has had only a modest effect on  the  path  lengths 
of most modules. One  outstanding  exception is the  free  storage 
handler, in which the original paths  were so short  that just the 
addition of the LOCK macroinstructions is significant. Measure- 
ments  thus  far  have  shown  that spin lock contention is quite 
small,  accounting for less  than  one  percent of supervisor  time. 
This  result, which had been obtained also on  the prototype  sys- 
tem, served  to confirm the  expected low contention  for  the spin 
locks. 

As noted  above, a processor  that  performs  either  supervisor  or 
problem state  execution for a virtual machine must hold the vir- 
tual  machine’s  lock. As a  consequence,  there is no performance 
gain if only one virtual machine is in the  system,  since  there 
would be no overlapped  execution. 

A portion of the  supervisor  executes  without acquiring the  sys- 
tem lock.  This portion is concentrated primarily in the first-level 
interruption  handlers  and  the  dispatcher. Most other  supervisor 
work,  such  as  storage  management, vo simulation, and command 
processing,  operates  under  the  system  lock. As a consequence, 
load environments  characterized by  high supervisor  state  execu- 
tion may perform less well under  this design than  load  environ- 
ments  characterized by a higher percentage of problem state  exe- 
cution.  In  such  environments,  the  attached  processor  tends  to 
become idle as  the main processor handles stacked  supervisor 
tasks that require the system  lock. 

Generally the APU becomes  idle,  rather  than  the CPU, because 
some of the  stacked  supervisor  requests  involve I/O that  can  be 
executed only on the CPU, and  these  tasks  are shifted to  the CPU. 
When the CPU holds the  system  lock,  on  the  other  hand,  there  are 
few tasks  that  can be executed only on  the APu. Consequently, 
once  the CPU obtains  the  system  lock, it tends  to hold it much 
longer than  the APU. This tendency  also  accounts  for a substantial 
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migration of supervisor  state  execution to  the CPU. The lock de- 
sign, therefore,  has biased the  system in favor of multi- 
programming environments  characterized by a higher percentage 
of problem state  than  supervisor  state. 

Replication of shared  resources  as  a design strategy  can make for 
slower handling of shared  segments.  The  possible effect of this 
replication  on  storage should be evaluated  on  a  case-by-case 
basis. 

As noted  above, design changes  occasionally  were  dictated by 
feedback from measurements made during  the  development 
cycle. Accounting provides  a good example.  Supervisor  time is 
accumulated  for  users in a data field  in the  virtual machine control 
block (VMBLOK). Ordinarily it would be  guarded by the virtual 
machine lock.  However, in a few places in the  system it  is desir- 
able  to be able  to  charge  supervisor time to a virtual machine 
without having to  acquire  its  lock. For example, vo interruption 
processing is charged  to the owner of the I/O task,  even though 
that  user may be executing  on  the  other  processor at  the time of 
the  interruption.  The original design attempted  to serialize the use 
of the supervisor time field by using the  synchronizing primitive 
COMPARE DOUBLE AND SWAP in a common  subroutine.  This  ap- 
proach was found  to  cost  approximately eight percent of supervi- 
sor time for  this  function  alone. Replication of this  accounting 
field, at some small cost in storage, virtually eliminated this  over- 
head.  The  two  separate  accounting fields simply are combined 
when the  total  is  required  for  an  accounting  record. 

effects of Aggregate problem state  time  has been suggested as one measure 
multiprocessing  hardware of the  throughput of a multiprocessing system.  A  more  accurate 

measure would take  into  account any change in the instruction 
rate of the machine.  Because of hardware memory interference 
effects,  instruction  rates of processors in a multiprocessing con- 
figuration are  somewhat  lower  than  the  equivalent  uniprocessor 
rate.  For  this  reason,  the aggregate number of problem state in- 
structions is a more accurate  measure of throughput. Similarly, 
the  expansion in supervisor  state time per unit problem state is 
caused in part by increased  path length and in part  by  hardware 
slowdown. 

When comparing  uniprocessor  and  multiprocessor  performance, 
it is reasonable to assume that  the mix  of problem state  instruc- 
tions is constant. On the  other  hand,  the mix of supervisor in- 
structions  could  change  between  uniprocessor  and multi- 
processor  measurements.  Thus  the difference between  supervisor 
time and  the  number of supervisor  instructions as a  measure of 
additional  overhead is caused  partly by multiprocessing hardware 
effects and  partly by a possible change in the  instruction mix. 
Measurements of the effect of various  instruction  streams  on  the 
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performance of multiprocessing hardware  should provide a fertile 
area  for  further  experimentation.  For a discussion of some addi- 
tional hardware effects in the  context of MVS measurements, see 
White. l3 

The  performance effects discussed  above are illustrated by the 
data in Table 1. Caution should be observed in any attempt to 
extrapolate  the  data. All measurements  were made on a  three- 
megabyte Systed370 Model 158. The load consisted of 80 CMS 
users  executing  various  scripts  repetitively.  The  uniprocessor 
problem state was approximately 65 percent.  The load was  ade- 
quate  to  saturate both  processors in the  multiprocessor  runs. All 
comparisons  are  between  the  multiprocessor  system  and  the uni- 
processor  system  prior  to implementation of multiprocessor  sup- 
port.  Somewhat different results would be obtained in a  com- 
parison based  on  uniprocessor  measurements of the  system level 
that  supports  attached  processors. 

As Table 1 shows,  the  attached  processor  system  produced 1.77 
times the problem state time of the  uniprocessor  system.  This 
result is consistent with other  measurements, which have been in 
the-range 1.5 to 1.8. Because of hardware  slowdown,  these mea- 
surements yielded a ratio of l .63  in terms  of problem state in- 
structions.  These  numbers also indicate the order of magnitude of 
the  increase in path  lengths in the  supervisor as measured by su- 
pervisor  instruction-count inflation. 

The magnitude of these  hardware effects clearly  illustrates  the 
need  for data from hardware monitors in evaluating multi- 
processor  systems. 

Concluding remarks 

In undertaking an effort like the  one  described  herein,  there are 
many decisions  to be made and pitfalls to be avoided. It is hoped 
that some insight has been gained into  the problem of adding a 
major new function  to  an  operating  system that did not  provide 
for  that function originally. It is gratifying to  see  the results of that 
labor  operating in production  environments  and performing up  to 
its  objectives. 
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