
This paper is a survey of changes to virtual machine interfaces,
implementation, architecture, and simulation techniques as they
affect IBM System1370 and 303X (3031, 3032, 3033) processors,
the system control program to which virtual machines interface,
and other virtual machines executing on the same real computing
system or elsewhere. The paper seeks to summarize such changes
and provide a perspective on the virtual machine environment.
New uses of virtual machine subsystems are discussed as they
relate to inter-virtual-machine communication.

The changing virtual machine environment: Interfaces to
real hardware, virtual hardware, and other virtual machines

by R. A. MacKinnon

When IBM introduced virtual machine products with CP-67 on the
System/360 Model 67, an early view of the uniqueness of virtual
machines focused on the isolation of one virtual machine from
another.lS2 CP-67 was able to provide Systed360 hardware sys-
tems with a variety of operating system environments, or virtual
machines, all independent of each other. This was accomplished
with dynamic address translation hardware and the use of mul-
tiple virtual address spaces, hypervision by the control program
(cP), and CP’S handling of the real machine. Systed360 split in-
structions into privileged system control instructions and non-
privileged computational instructions, enabling CP to achieve its
objectives with virtual machines by exploiting the real hardware
whenever possible.

CP-67’s ability to handle a variety of virtual machine software en-
vironments and the separation and isolation of virtual machines
made the system attractive to users. Development of the Cam-
bridge Monitor System (CMS) provided conversational computing
to CP-67, which became known as CP-67/CMS.3

Since 1972, the use of virtual machines has become more wide-
spread with the availability of IBM’S Virtual Machine Facility/37O
(VM/370) for many models of Sy~tem/370.~ Virtual machine archi-

Copyright 199 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

18 MACKINNON IBM SYST J VOL 18 NO 1 1979

tecture and the implementation of VMi370 are discussed in Refer-
ences 5 , 6 , and 7. This paper examines how VMi370 has progressed
beyond its predecessor, CP-67ICMS.

1. Outline of the paper

Various hardware and software implementations have been de-
signed to improve VMl370 system performance, as well as the per-
formance of individual virtual machines and CP. Initially, a Sys-
tend370 hardware implementation called virtual machine assist
was designed to enhance the execution of privileged instructions
and supervisor calls (normally associated with virtual machine
operating systems). VM assist is discussed in Section 11.

VM assist extended hardware capability beyond the defined Sys-
tend370 instruction set while preserving the virtual machine’s
view of its instruction set. Certain processors are now provided
with information about the virtual machine execution environ-
ment, and these processors are optimized or tailored to enhance
vMi370 performance. On certain processors, this extension has
continued to enhance CP execution and expand VM assist through
more hardware support. Again, the objective is to improve sys-
tem execution time by assisting, with direct hardware execution,
routines that handle certain CP functions. This further develop-
ment (which is additional to VM assist) is called Extended Control
Program Support:VMl370 (E C P S : V M I ~ ~ O) . It is covered in Section
111.

CMS is discussed by Seawright and MacKinnon in the preceding
paper.3 Other major trends in virtual machine interfaces and exe-
cution can be found in some non-CMS environments. f f a n d -
shaking is the name used here for the changes to the DoSivS and
o s i v s l system control programs that enable them to recognize
and take advantage of their execution in a virtual machine envi-
ronment.8 While the implementation is different in each of these
operating systems, their handshaking objectives remain the
same-bypassing, eliminating, or reducing functions that are re-
dundant or operationally inefficient in the virtual machine envi-
ronment. The result has been enhanced performance of DoSivS
and OS/VSI in virtual machines and improved operation of virtual
machine systems. Handshaking is discussed in Section IV.

However, while handshaking complements the VM assist and
ECPS:VM/370 hardware functions, it does not employ hardware.
Even with handshaking, the problem programs managed by
o s / v s ~ and DOSIVS do not recognize their virtual machine environ-
ment. This holds true for CMS and Multiple Virtual Storage (MVS)
problem state programs as well. They regard their operating sys-
tem as controlling a real machine.

IBM SYST J VOL 18 NO I 1979 MACKINNON

Section V discusses the use of virtual machine architecture for
system development and implementation. Emphasis is on inter-
virtual-machine communication, which departs from the earlier
view that total isolation was to many users a dominant view or
desirable.

Section VI treats control program assist approaches in environ-
ments other than VM. New instructions in Systed370 Models
158-3 and 168-3 and in the 303X processors for the MvS System
Extensions Program Product (MVS/SEPP)~”~ are discussed both as
examples of how control program assists extend beyond VW370
and as they relate to MVS in the virtual machine environment.
These assists apply to MVSISEPP even when executed in a virtual
machine. The MVS discussion includes CP changes designed to
achieve “partial” (one-sided) handshaking on behalf of MVS.
This section concludes with a discussion of Extended Control
Program Support (ECPS) for oS/vS1 and of the APL assist for micro-
code execution of APL statements, to amplify the point that hard-
ware and software changes in VM/370 also appear elsewhere.

Finally, possible future evolutionary trends are charted in the
Conclusions.

II. Virtual machine assist

VM assist is a hardware implementation designed to improve the
performance of some VW370 virtual machines, and thereby en-
hance the performance of that particular ~ys t em.””~ This dis-
cussion concentrates on the function of VM assist and how it helps
the execution of virtual machines, rather than its actual imple-
mentation on various CPU’S. The primary interface between vir-
tual machines and CP occurs when the operating system in the
virtual machine executes a privileged instruction or a supervisor
call (SVC). As an additional interface, CMS employs the DIAGNOSE
instruction for functions such as disk YO and depends on CP for its
operation. CMS can execute only in a virtual machine. The inter-
faces between virtual machines and CP are discussed by
Seawright and Ma~Kinnon .~

So what VM assist seeks to do is emulate, whenever possible,
certain CP routines that simulate the instruction that the virtual
machine executed. VM assist produces results that are function-
ally equivalent to CP’S results. Significantly, VM assist executes
directly, without CP, and thus can dispense with the interruption
handling and redispatching associated with the transfer of control
between virtual machines and CP. There are exceptions to this
support. The non-high-performance and not-well-definable vir-
tual machine uses of certain privileged instructions are not as-
sisted.

20 MACKINNON IBM SYST I VOL 18 NO 1 1979

Figure 1 Control register 6

Bit Function and use

0 Virtual machine assists ON/OFF-used by VM assist, EVMA, and VITA;
can be turned on and off for each virtual machine.

1 Virtual machine problem or supervisor state-set by CP and VM assist;
will determine whether an instruction was issued in privileged state.

2 ISK and SSK instructions-whether VM assist should handle these in-
structions.

3 System/360 or Systed370 mode-helps VM assist and ECPS:VMI370 de-
termine which instruction set is valid for the virtual machine.

4 SVC handling-set by CP to tell VM assist whether non-SVC 76’s should
be reflected to the virtual machine.

5 Shadow table fixup-activates handling by VM assist.

6 CP assist-set by CP for entire system; in conjunction with bit 0, defines
which assists (VM assist, EVMA, VITA, CPA) are active.

7 Virtual interval timer assist (VITA) for ECPS:VM/370

8-28 Real address of VM pointer list.

29 Emulation of System/370 extended instructions executed in virtual ma-
chine by virtual machine extended-facility assist.

30-3 1 Reserved and undefined.

VM assist relies on control register 614 for key information to gov-
ern its actions for individual virtual machines. CP manipulates its
settings of control register 6 as part of dispatching the virtual ma-
chine or establishing its contents for CP execution. Figure l maps
this register. As an example, note that VM assist handles privi-
leged instructions only when it is ON (bit O) , the CPU is in the real
problem state (from the current program status word), and the
virtual machine is in the virtual supervisor state (bit 1) .

The specific instructions handled by VM assist are listed in Table
l.15,16 A distinction is made between Systed370-only and Sys-
tern1370 and Systed360 virtual machines. That distinction is in-
dicated to VM assist by bit 3 in control register 6.

The System/370-exclusive instructions are most likely to be found
in operating systems that support virtual storage management.
Early Systed360 operating systems such as DoS and os do not
use them at all and thus derive less benefit from VM assist.

IBM SYST J VOL 18 NO 1 1979 MACKINNON

Table 1 Privileged instructions handled by VM assist

Systernl360 und System1370 System1370 only

INSERT STORAGE KEY (ISK) INSERT PSW KEY (IPK)
LOAD PSW (LPSW) LOAD REAL ADDRESS (LRA)
SET STORAGE KEY (SSK) RESET REFERENCE BIT (RRB)
SET SYSTEM MASK (SSM) SET PSW KEY FROM ADDRESS (SPKA)

STORE CONTROL (STCTL)
STORE THEN AND SYSTEM MASK

STORE THEN OR SYSTEM MASK
(STNSM)

(STOSM)

As VM assist encounters one of the privileged instructions listed
in Table 1, it performs the appropriate emulation and then returns
control to that virtual machine’s next instruction. This process
bypasses the following CP routines: interruption handling, analy-
sis of the operation to be simulated, the actual simulation, and
invocation of CP’S dispatch routine. Performance improvement
comes from hardware implementation rather than software exe-
cution, and from having to perform only the actual simulation.

SVC handling When executing an svc instruction, a virtual machine does not
have to be in the virtual supervisor state. Essentially, SVC’S are
handled exactly as outlined for the VM-assist-related privileged
instructions. The exception is svc 76 which has been reserved
arbitrarily for CP to handle or reflect real machine error informa-
tion to the virtual machine. Thus VM assist does not handle svc
76.

17

shadow pagetable Virtual machines operating in extended control mode with the
management dynamic address translation (DAT) facility ON require that special

page and segment tables be created and maintained by C P . ~ ~ ” ~ ’ *
These “shadow” tables enable the virtual machine operating sys-
tem to utilize DAT hardware and manage its virtual storage as it
would on a real machine. CP manages the “real” storage associ-
ated with the virtual machines through demand paging and its
own set of segment and page tables. The shadow tables enable CP
to let the virtual machine manage its virtual storage while CP man-
ages its real storage. Note that the virtual machine’s page size
may differ from CP’S page size.

VM assist’s role in shadow table management is to receive trans-
lation exception conditions caused by the virtual machine and
handle them without causing an actual translation interruption.
Specifically, instead of directing the translation exception to CP,
VM assist checks to see if the page that caused the translation
exception is actually in real storage. This is determined by check-

22 MACKINNON LBM SYST J VOL I S 0 NO I 1979

ing the virtual operating system’s DAT tables and the real segment
and page tables. VM assist finds both sets of tables through the
virtual machine pointer list addressed via control register 6.” If
VM assist finds that the desired page is in fact in real storage, it
marks the shadow page table entry valid, places the proper page
frame address within the entry, and keeps control in the virtual
machine. If the desired page is not in real storage, VM assist re-
flects a translation exception to CP. In summary, this aspect of VM
assist reduces the occasion for an actual interruption and CP anal-
ysis when the needed page is already available.

Since not all models of Systed370 provide VM assist, CP’s initial
program load (IPL) sequence determines VM assist’s availability
and activates it when present, using bit settings in control register
6 (see Figure 1). The SET command provides the CP system oper-
ator with a means to deactivate then reactivate the VM assist facil-
ity through this register. Individual virtual machine console oper-
ators can disable or enable VM assist services for their specific
virtual machines through the SET command. Further selectivity
can be exercised by disabling the svc handling component of VM
assist with the SET command.

The result is maximum flexibility for the installation and the indi-
vidual user during evaluation of VM assist, performance analysis,
and benchmarking. The effect of VM assist on the overall system,
and for individual virtual machine execution, can be assessed
without any CP changes.

VM assist, then, is a first hardware step toward partitioning CP
simulation services between CP and VM assist hardware facilities.
The time used by VM assist is problem state time and is so re-
flected. In most cases, VM assist uses a significantly reduced
amount of real supervisor state time and a slightly increased
amount of real problem state time. The effects of this change on
overall system throughput, response time, and specific virtual
machine environments are shown in Table 2.

The information in Table 2 is taken from Horton, Wagler, and
Tallman.I3 The table summarizes results of a variety of measure-
ments intended to demonstrate approximations of the effects of
VM assist. The results do not necessarily represent typical oper-
ating environments. The tests, in fact, were run using VMi370 Re-
lease 3, Program Level Change 2. The important considerations
are the relative improvements, rather than precision or relevance
to current releases or maintenance levels. In no way is this series
of benchmarks intended to provide a comparison among various
processors or system control programs.

Across a spectrum of operating systems (DoSIVS, OSIVSI, OS/VS2
SVS) issuing privileged instructions and s v c ’ s , the benchmark re-

IBM SYST J * VOL 18 * N O 1 * 1979 MACKINNON

Table 2 Effects of VM assist on system throughput and specific virtual machines.

Model I35 Model I45 Model 158

DOSlVS vs I DOSIVS VSI VSI vs2

Elapsed time (seconds)
Native 2788
Virtual machine 8172
Virtual machine with VM assist 4226

without VM assist 0.34

with VM assist 0.66

(Vm assist vs. non-VM assist) 74%

(VM assist vs. non-VM assist) 48%

privileged instructions simulated by
VMl370 (VM assist vs. non-VM
assist) 87%

Relative batch throughput

Relative batch throughput

Reduction in supervisor state time

Reduction in elapsed time

Reduction in total number of

3035
1 1 598

4063

0.26

0.75

89%

65%

95%

2150 1418
4520 4089
2723 2024

0.48 0.35

0.79 0.70

73% 86%

40% 51%

86% 94%

1386
3769
2004

0.37

0.69

82%

47%

91%

572
2696
1149

0.21

0.50

69%

57%

74%

sults portray the effects of VM assist in terms of native through-
put, virtual machine elapsed time, relative batch throughput,20su-
pervisor state and elapsed time, and the number of privileged
operations simulated by CP. The tests were run using Systed370
Models 135, 145, and 158.

Although many virtual machine environments benefit from VM
assist, clearly not all do. For example, cMS virtual machines in-
terface to CP for specific services and thus do not execute privi-
leged instructions as frequently as non-CMs virtual machines. The
DIAGNOSE instruction is CMS’S primary interface to CP. Also, non-
virtual operating systems such as DOS/360,OS/MFT, and OSlMVT do
not benefit as directly from VM assist because they are less apt to
issue the range of instructions aided by VM assist-those associ-
ated with extended control mode and DAT operation on System/
370.

Thus the implementation of VM assist was a starting point for ad-
dressing virtual machine performance problems. How this was
done has been discussed. The next section shows how this point
of departure has broadened considerably for vW370 on certain
Systed370 configurations.

111. Extended Control Program Support

Extended Control Program Support:VM/370 (ECPS:VM)7’21 provides
for the further utilization of hardware to enhance VW370 perform-
ance on Models 135-3, 138, 145-3, and 148 of Systed370.
ECPS:VM works in conjunction with VM assist, providing even
more comprehensive services for the virtual machines and ex-

24 MACKINNON IBM SYST J VOL 18 NO 1 1979

tending the assist concept to CP execution. ECPS is controlled by
bit settings in control register 6 (see Figure 1) as well as by new
Systed370 instructions which change the hardware interface be-
tween CP and the CPU. As discussed below, this enhancement and
extension consists of new functions completely handled by hard-
ware, functions that are partly handled by hardware, and func-
tions that are a combination. ECPS:VM has an expanded VM assist
component, a virtual interval timer assist component, and a con-
trol program assist component, and it works in conjunction with
VM assist.

ECPS:VM works in conjunction with VM assist but does not include
it. Thus when VM assist handles certain instructions-LOAD PSW
(LPSW), SET SYSTEM MASK (SSM), STORE THEN AND SYSTEM MASK

expanded VM assist (EVMA) component of EcPS to complete the
simulation. EVMA undertakes the simulation when entered from
VM assist. Should it not be able to complete the operation, it
causes CP to simulate the instruction by directly passing control
to CP. CP then handles to completion as if VM assist were not
originally available. Figure 2 shows this sequence, using LPSW as
an example.

When VM assist or EVMA can handle one of the designated privi-
leged instructions, control returns to the virtual machine without
recourse to CP. Supervisor calls are handled as discussed in Sec-
tion 11, above.

Along with the partial handling discussed above for VM assist,
EVMA provides complete handling of the privileged instructions

(STNSM), STORE THEN OR SYSTEM MASK (ST0SM)”it Calls on the

PURGE TRANSLATION LOOKASIDE BUFFER (PTLB), STORE CPU
TIMER (STPT), and TEST CHANNEL (TCH). In addition, portions Of

other new functions for SET CLOCK COMPARATOR (SCKC), START
I/O (SIO), START I/O FAST RELEASE (SIOF), and SET CPU TIMER (SPT)
are handled by EVMA, with CP simulation completing the func-
tions.

Insight into how EVMA and CP work together can be gained by
examining the execution of DIAGNOSE. Starting with the VM/370
System Extensions Program Product (SEPP) and the Basic System
Extensions Program Product (BSEPP),” software now supports
EVMA hardware for assisting the DIAGNOSE instruction when exe-
cuted by a virtual machine. When issued under assisted condi-
tions, EVMA bypasses the program exception interruption and
CP’S first-level interruption handler and transfers control directly
to CP routine DMKHVC, where DIAGNOSE code analysis and sirnu-
lation actually take place. Section V covers the use of DIAGNOSE
by cMS and other virtual machines, but it is sigificant to point out
here that this major interface is now included among the assists
provided by hardware.

IBM SYST J VOL 18 NO 1 1979 MACKINNON

2 Interaction of SJftWare and microcode hardware (EVMA and CPA) for VM assist
and ECPS:VM/370

SYSTEM/37O MICROCODE HARDWARE
REAL PROBLEM STATE I

I I

Lpsw+/& ACTIVE

LYES I
0-

0 I
0 I I

I
I
I
I

I
I

I
I

EAL SUPERVISOR STATE 1 I
I

I
I

I

?OGRAM INTERRUPTION e--!"

DMKOSPB
0

I
I

I

:I
I
I
I

I
I

I
I

DISPATCH
X 'E607.-. I

i 1
PERFORM

INSTRUCTION
LPSW

STORE NEW

VMBLOK
PSW IN

I

The degree of instruction simulation performed by EVMA in cases
of partial execution differs by instruction. At the very least, EVMA
hardware prepares certain "housekeeping" functions, such as
register saving and unloading and decoding of the privileged in-
struction. Other possibilities include partial simulation or no sim-
ulation, leaving CP to provide such function. For more informa-
tion on this topic, see Reference 21.

Whether or not VM assist or EVMA calls on CP, control eventually
returns to the virtual machine, which does not recognize whether
hypervision is performed by CP, hardware, or both.

virtual interval timer The virtual interval timer assist (VITA) component of ECPS:VM
assist maintains the virtual interval timer (in location 80 of page 0 of the

1

26 MACKINNON IBM SYST J VOL 18 NO 1 1979

0 When a virtual machine is executing, VITA decrements its vir-
tual interval timer whenever the real interval timer decre-
ments.

0 If page 0 of the virtual machine is not in real storage at this
time (CP may have paged-out this page), VITA maintains the
timer in this virtual machine’s central control block
(VMBLOK).

0 As the virtual interval timer turns to a negative value, VITA
seeks to present a timer interruption to the virtual machine if
possible. Examples in which this is not possible are timer in-
terruptions disabled in the virtual machine and page 0 not in
real storage. If the virtual machine cannot accept such an in-
terruption, VITA presents a virtual interval-timer interruption
to CP in such a way that CP can differentiate between real and
virtual interval-timer interruptions. CP then reflects the inter-
ruption back to the virtual machine after handling the situation
that prevented VITA from doing it directly. In short, the inter-
ruption is stacked by CP instead of by the hardware.

VITA hardware function benefits virtual machines by eliminating
programming routines and enhances accuracy in timer servicing
because necessary interruptions can be presented faster.

VM assist, EVMA, and VITA all assist a specific virtual machine. control program
New System/370 instructions, which provide for assisting CP, can assist
be generally beneficial to VMi370 and reduce more general “over-
head.” Starting with VMi370 Version 3, Program Level Change 8,
programming support is provided for those models of System/370
that have the ECPS:VM facility installed. The control program as-
sist (CPA) component utilizes new System/370 instructions to as-
sist certain CP routines. The presence of this capability is deter-
mined as CP executes a new privileged instruction, STORE ECPSi
VM LEVEL IDENTIFIER (STECPSVM), which detects whether
ECPS:VM is installed and operating at the appropriate level. If not,
the new System/370 instructions for ECPS are made no-operu-
tions, and CP uses existing software routines rather than ECPS.
Next, CP determines whether VM assist is installed and, if so, acti-
vates it. Thus V M ~ O can support machines with ECPS, with only
VM assist, or with neither, as determined at CP’S IPL time.

The new System/370 instructions for CP’S use have the extended
storage-to-storage format shown in Figure 3, in which X’E6‘ is
the operation code of the CPA instruction and X‘cc‘ defines the
specific function to be performed. The two operands provide pa-
rameters to the specific assist function. These instructions are not
defined in the System/370 Principles o j Oprrution, nor do they
have assembler-language mnemonics. They appear as DC state-
ments in the source code distributed for CP. The specific CP func-
tions assisted by the CPA instructions are listed in the Appendix.

0 8 16 20 32 36

OP Extended Bl Dl B2 D2
CODE OP
X'E6' CODE

X ' C C '

J

component ECPS:VM is implemented with considerable flexibility as to which
activation components support VM/370 at any given moment. During IPL of

CP, all components are activated, but the system operator can
disable then enable all ECPS components, or disable then enable
them selectively. At the virtual machine level, the console oper-
ator for the virtual machine can disable then enable EVMA and
VITA. The virtual machine cannot affect the status of the CPA
function. With VM BSEPP and SEPP software, additional selectivity
is supported for EVMA. Through an assist control field in the VM
list addressed by control register 6 , selected instructions can be
enabled or disabled for EVMA Such flexibility is helpful
both in maintaining system availability should hardware problems
arise with specific ECPS hardware modules and in achieving a high
degree of system portability across CPU configurations without CP
change.

ECPS:VM significantly extends System/370 support of VM/370 exe-
cution. It builds on the capabilities introduced by VM assist and
extends the assist philosophy to CP as well. In sum, hardware can
assist the virtual machine environment, CP can benefit from assist
hardware, and CPU control can pass from virtual machine privi-
leged operation to VM assist or EVMA hardware to CP (for com-
pletion) and back to the virtual machine, as in Figure 2.

The consequence is improved performance of certain virtual ma-
chine operations and certain CP routines. The extent to which any
given system benefits is a function of understanding ECPS func-
tions and program behavior. CMS does not benefit as much from
VM assist as do virtual machines that run DOS/VS or OS/VS. CMS
does benefit, however, from DIAGNOSE, which is a primary inter-
face to CP, and from CPA operation once control has passed from
CMS to CP. Thus the mix of CMS and other virtual machines deter-
mines the benefits provided by ECPSiVM (as distinct from VM as-
sist).

28 MACKINNON IBM SYST J VOL 18 NO 1 1979

Table 3 Effect of VM assist on CMS batch processing on Systeml370 Model 145

Percentage of time Paging rate Realproblem
in indicated state (per second) percentage*

Real Real
supervisor problem

Without VM assist 60.3 39.7 39.8 30.6
With VM assist 57.9 42.1 42.8 29.4
Difference - 3.98 + 6.05 + 7.54 - 3.92

*Percentage of total real problem state time used by virtual problem state

Table 4 Effect of VM assist and ECPS:VM on CMS batch processing on Systeml370 Model
148 configured like Model 145

Percentage of time Paging rate Real problem
in indicated state (per second) percentage*

Real Real
supervisor problem

VM assist only 46.5 52.7 45.6 26.0
Full ECPS 33.6 62.8 47.0 25.6
Difference -27.7 + 19.2 + 3.1 - 1.5

*Percentage of total real problem state time used by virtual problem state

As noted in the earlier discussion of VM assist, ECPS has further
addressed VM performance problems and made even greater con-
tributions to such improvements.

Tables 3 and 4 summarize the results of benchmarks that provide
approximate comparisons of the assists discussed above. CMS vir-
tual machines issue relatively few privileged instructions or SU-

pervisor calls, so it is interesting to consider how VM assist affects
CMS environments. Table 3 shows how VM assist can affect a CMS
batch processing application on a System/370 Model 145. The
same job stream was run on a Model 148 configured like the
Model 145. The results, summarized in Table 4, provide insight
into the effects of VM assist and ECPS/VM during CMS execution.

IV. Handshaking

A common view of the virtual machine environment stresses the
isolation of the virtual machine from the real environment. That
is, a program (including operating system code) that runs in a
virtual machine does not recognize that CP controls the execution
of privileged instructions, handles real interruptions and other

IBM SYST J VOL 18 NO 1 1979 MACKINNON

30

asynchronous events, and reflects events back to the virtual ma-
chine programming exactly as if the virtual machine were a real
machine (with the exception of timing considerations). This capa-
bility allows diverse System/360 and Systemi370 programs to be
multiprogrammed without interfering with or causing problems
for one another. CP addresses discrepancies between the virtual
and real environments.

Handshaking changes the above view for DOSIVS and OSivSl in
that they are given the information that they are executing in vir-
tual machines and can take certain actions using that information.
Virtual machine isolation remains; what changes is the behavior
of the operating system within the virtual machine and the inter-
face to CP. It is important to understand that in these operating
systems, the problem program partition (or user) does not recog-
nize the virtual machine environment, and the interface to its op-
erating system remains unchanged.

In simulating multiple virtual machines, CP’S role is to provide
services to those virtual machines (as requested) and handle the
real hardware system. As to what is actually going on within a
virtual machine, CP has very limited information. CP is largely
restricted to reflecting back to the virtual machine’s operating
system conditions that relate to it. For example, CP is not in-
volved in how an operating system manages multiprogramming
and multitasking within a virtual machine. They are the responsi-
bility of the virtual machine’s operating system. CP gives control
to a virtual machine, then it is up to the virtual machine’s oper-
ating system to dispatch units of work according to its own prior-
ity scheme.

CP regards virtual machine execution as a continuum. The initia-
tion and termination of jobs and tasks within the virtual machine
are hidden. CP only regards the virtual machine as a whole. This
has proved a mixed blessing, for it has both ensured the trans-
parency of CP to the virtual machine and distorted the time spec-
trum between a virtual machine’s partition or task losing control
and regaining control from its operating system. Given this dis-
tortion, the relative batch throughput or transaction rate of a non-
CMS virtual machine, or a VM system as a whole, can be adversely
affected. Handshaking directly addresses these functional prob-
lems and provides some operational improvements.

OS/VSl handshaking

Analysis of os/vsl execution as a virtual machine quickly leads to
identification of several areas of duplication in vs1 and CP, where
different implementations or operational improvements could en-
hance the vS1 virtual machine e n v i r ~ n m e n t . ” ~ ~ Of primary impor-
tance is to provide vs1 with the information that it is interfacing to

MACKINNON IBM SYST J VOL 18 NO 1 e 1979

CP rather than to a real machine. A system generation option
gives VSI new capability, so that at IPL time it receives that infor-
mation. During IPL, it issues a SlORE CPU ID instruction to dis-
cover whether it is in control of a real machine. If not, it issues a
DIAGNOSE instruction to ensure that CP will provide handshaking
support. Then vsl goes through the nucleus initialization process
to activate handshaking on its behalf.

Thus handshaking is two-sided, with cooperation on both sides of
the interface between CP and the virtual machine. Implementa-
tions that have resulted from the above process are nonpaged
mode, pseudo page-fault handling, CP spool files, and I/o-related
items. They are discussed in the following paragraphs.

Provided enough virtual machine storage is defined, vs1 marks all
virtual page frames $xed, builds page tables only in the systems
queue area, and disables demand paging. It does not open an ex-
ternal page storage file or attempt to translate the channel pro-
grams it uses, and it reduces its use of the LOAD REAL ADDRESS
and INSERT STORAGE KEY instructions (keys are handled by a
table rather than real hardware). Here OS/VSI is turning the busi-
ness of demand paging over to CP. While double paging is thus
eliminated as a programming overhead item, the virtual machine
executes with DAT hardware ON.

Through the SET PAGEX command, the virtual machine console
operator can exercise an option that affects how CP handles real
page faults attributed to an OS/VSI virtual machine. When a page
fault occurs, CP gains control. The key question is which virtual
machine should be dispatched by CP while the page I/O operation
is under way? Ordinarily, CP places the entire virtual machine in a
page wait status and dispatches another virtual machine. When
exercised, this pseudo page-fault facility causes CP to reflect a
special page fault to vs1 (even though the latter is not paging). vsl
makes specific use of this situation by marking the affected parti-
tion or task as being in apage wait status; then it is free to dis-
patch another partition or task. As a result, vs1 can multiprogram
properly.

When CP completes the real paging operation, it reflects page I/O
completion to VSI to clear page wait for that partition or task.
This accommodation by CP enhances the performance of multi-
programming or multitasking within the vs1 virtual machine.
When the multiprogramming level of the virtual machine is low,
with no multitasking, pseudo page-fault handling can be disabled
by the vs1 console operator, and CP then resumes normal dis-
patching of virtual machines.

Looking at the system as a whole, the installation might utilize
PAGEX OFF to skew dispatching emphasis to a partition that is

IBM SYST J VOL 18 N O 1 1979 MACKINNON

executing telecommunications and a program like the Customer
Information Control System (cIcS), which does its own multi-
tasking.

CP spool Since CP does not detect the end of a job or job step within a vs1
files virtual machine, operational problems arise as to when CP is to

start processing spool file output (punch or printer). Without
some mechanism, a manual step is needed: an operator must
close the vs1 spool file to release the output to CP. Handshaking
provides a VSI interface to CP for this explicit purpose. A DIAG-
NOSE instruction issued by VSI signals CP that the job or job step
has been completed and that CP’S spool output operations can be
scheduled. Here is a good example of an operational improve-
ment resulting from handshaking techniques.

I/O-related In any operating system that supports demand paging, the I/o su-
items pervisor increases system overhead. This is especially true of

code that requires translation of channel programs. Handshaking
improves the way VSI handles I/O in such cases. vs1 neither trans-
lates channel programs nor builds indirect data addressing lists
when handshaking is operative. Similarly, vS1 allows CP to handle
IBM 2314 and 23 19 direct-access-storage seek separation opera-
tions, and it refrains from issuing a TEST CHANNEL (TCH) instruc-
tion prior to executing the START I/o instruction. These functions
are performed later by CP.

Particularly thorny for virtual machine I/O is the modification of
channel programs after they start. Normally CP does not guaran-
tee proper handling of such channel programs, but the vs1 Basic
Telecommunications Access Method (BTAM) is an exception
when its autopoll feature is in use. Autopoll modifies the virtual
communications channel programs for a line. Without hand-
shaking, CP utilizes flags in the real channel program to signal it to
inspect the BTAM virtual channel program for changes. Hand-
shaking eliminates this approach by providing a VSI DIAGNOSE
instruction, which signals CP at the time of change to allow CP to
update the real channel program it builds and maintains. CP’S con-
tinuous investigation of BTAM is thereby eliminated.

A somewhat related implementation applies to the Telecommuni-
cations Access Method (TCAM) at Release 5 . Regardless of
whether its operating system supports handshaking, TCAM can be
generated for execution in a virtual machine, with DIAGNOSE in-
structions to signal CP whenever a TCAM channel program is being
modified. The objective is to allow such programs to run in a vir-
tual machine as paged rather than with the earlier nonpaging re-
striction. This process can be considered handshaking for a spe-
cial purpose.

32 MACKINNON IBM SYST J VOL 18 NO 1 1979


~~~~ ~ 

DOSNS handshaking 

Handshaking implementations  for DOS/VS25s26 differ considerably 
from those  for os/vsl, but  the  objectives remain identical. The 
main difference invqlves virtual-timer updating, which enables 
the accounting routines of DOS/VS to  more accurately reflect timer 
settings when a ~os /vs  job terminates. DOS/VS signals CP so that it 
can  update  the  virtual  interval  timer. CP can  also  be signaled when 
DOS/VS changes the  timer’s  value.  This is a programming ap- 
proach to what the VITA hardware  component of ECPS provides 
on System/370 Models 135-3,  145-3,  138, and 148. 

Handshaking is a system  generation  option  for DOS/VS but, unlike 
vs1,  the resulting system  can be executed only as a virtual ma- 
chine. It is not an IPL option. 

Performance  enhancement 

Handshaking is a programming approach  to enhancing the  per- 
formance  and  operational  effectiveness of virtual machines. It 
can  operate with the hardware  assists  discussed  above.  Alone, 
handshaking can both aid virtual machine  execution  and  reduce 
real  supervisor state (CP) execution  time by reducing the number 
of privileged instructions, virtual machine paging I/o, etc.  To a 
large degree,  assists  and handshaking try  to solve the  same  prob- 
lems, so knowledge of where specific benefits accrue  requires 
considerable knowledge of the  behavior of virtual machines. For 
ipstance, elimination of double paging greatly  reduces  the 1/0 ac- 
tivity that CP must handle  and  the  number of privileged instruc- 
tions  executed in the virtual machine. It also  ensures  that  when  a 
virtual machine has  control,  execution will tend to  be more in the 
virtual problem state than in the  virtual  supervisor state; more 
work is being done by executing  application  user  code  directly. 

The  pseudo page-fault facility is a good example of how CP makes 
use of the information that multiprogramming or multitasking is 
going On in a virtual machine. SPOOL CLOSE addresses  tbe  prob- 
lem of virtual machine job  or task  transition by allowing the  oper- 
ating system in the  virtual machine to notify CP by means of the 
DIAGNOSE instruction.  The DIAGNOSE interface,  then,  bas  found 
use beyond CMS,  and  its increasing usefulness benefits from 
ECPS:VM’S assistance. 

The performance improvement  that  can  result from handshaking 
is indicated by results of a benchmark  conductefl  at the IBM 
World Trade  Systems  Center in Poughkeepsie, New York.  The 
benchmark  consisted of running 12 jobs on a Systed370 Model 
158 with VM assist  and  prototype  handshaking  code.  Ten jobs ex- 
ecuted  the C ~ M P I L E  LINK AND GO (CLG) step in FORTRAN. One 
COBOL job executed five CLG steps with SORT called by COBOL, 

IBM SYST J VOL 18 NO 1 1979 MACKINNON 

results of 
a benchmark 

33 



and  one job, also in COBOL, executed CLG, SORT, and CLG steps. 
Operator  setup was minimal, and  native CPU utilization averaged 
about 90 percent.  The following results are pertinent: 

e Relative  batch  throughput: With handshaking, when CP paged 
an osmsl virtual  machine,  the  relative  batch  throughput in- 
creased 35 percent (from 0.55 to 0.74) while total CPU time 
decreased 29 percent (from 781 to 557 seconds). When the 
benchmark was rerun with the os/vs1 virtual machine execut- 
ing out of VM’S virtual-equals-real area, handshaking im- 
proved  relative  batch  throughput by 14 percent (from 0.69 to 
0.79), and CPU time decreased by 20 percent (from 717 to 570 
seconds). 

e Pseudo pageTfuult handling: The  benchmark used six initia- 
tors,  and, with PAGEX OFF, nine of the 12 jobs ran in VS1 parti- 
tions 0-2, while partitions 3-5 did not get beyond a single job. 
With PAGEX ON, partitions 3 and 4 each ran a second  job. 
Thus, although pseudo page-fault handling did not  affect  per- 
formance  throughout  the  benchmark, it did affect the level of 
multiprogramming by OS/VS I .  
Effect of handshaking  apart from V M  assist: Since the  runs 
described  above used VM assist,  two  runs were made without 
VM assist-one with handshaking and PAGEX OFF, and  one 
with no handshaking. Relative batch  throughput was 0.54 with 
handshaking and 0.24 without. 

V. Inter-virtual-machine  communication 

Emphasis  to  this  point  has been on hardware and programming 
approaches  to improving the performance  and function of VMi370 
and specific virtual machines. As indicated by Seawright and 
Ma~Kinnon ,~  this  improvement was an enabling event which re- 
sulted in increased  acceptance of V M ~ O  for many CPU configura- 
tions, with a  diversity of end-user  applications. 

The balance of this  paper  seeks to review  and assess another 
trend which has similarly affected VM/370. Inter-virtual-machine 
communication, in which the  objective is to send data  or  control 
information between virtual machines, is examined.  Mechanisms 
for accomplishing this  objective are  described, and motivations 
behind this trend are examined.  Examples  show how inter-vir- 
tual-machine communication has increased  the potential role of 
virtual machines. 

It is important to note  the  growth of virtual machines as sub- 
systems.  Users  have  conducted  experiments and designed sys- 
tems  to  create  virtual-machine-resident  software with character- 
istics different from  those  discussed  above.  They  are  subsystems 

34 MACKINNON 1BM SYST J 8 VOL 18 * NO I 1979 



that  have information about  and  are  dependent on CP and  the vir- 
tual machine environment.  In  this sense, they more closely re- 
semble CMS than  other  operating  systems. 

A subsystem  incorporated by IBM into VM/370 was the  Remote 
Spooling Communications  Subsystem (RSCS),’~ which operates  as 
a separate virtual machine. RSCS manages spool files transmitted 
between virtual machines  and  remote-job-entry  stations,  between 
remote CPU’S operating as remote-job-entry  stations,  and be- 
tween  other CPU’S operating HASP or ASP spooling components 
and RSCS (and thereby viewing VM/370 as a  remote work station). 
RSCS also manages files sent from remote work stations  and ceu’s 
and destined either  for machines within this VM/RSCS system or 
for  output  on  other work stations or CPU’S connected to this 
system. 

RSCS is a  special-purpose  operating  system. It contains  its own 
multitasking supervisor,  and it provides  storage and task manage- 
ment, line drivers  for  the  communications  links, and service  rou- 
tines  for command processing. It can  operate only in a virtual 
machine environment. It can  operate in disconnected  mode if 
communication with the RSCS virtual machine operator is not  re- 
quired. 

RSCS interfaces to CP via the  latter’s local spool files and by use of 
a DIAGNOSE interface. It is both a special-purpose  subsystem  con- 
structed  as  a virtual machine,  and  a  means by  which a  virtual 
machine can  transmit  data  outside itself (and,  indeed,  outside the 
real machine as well). RSCS was an early step toward a virtual 
machine networking capability. 

CP’S local spooling capability is mentioned only in the  context of 
the use of spool files by RSCS for  sending  and receiving data  ex- 
ternally on communications  lines.  Spool files also have been used 
by virtual machines to exchange data within the  same  real ma- 
chine, in that  one virtual machine can send  data  to its card  punch 
or printer  for spooling to the  card  reader of another  virtual ma- 
chine. This approach  has  the  advantage of using a well known  and 
externally defined function of CP while maintaining the  isolation 
and logical view of virtual machines. 

A disadvantage  for  transaction handling lies primarily in the in- 
flexibility of the data formats (unit record) and the I/O overhead 
associated with transcribing  the  data to  and from the  spool  packs. 
What evolved was a  series of techniques  for efficient inter-virtual- 
machine communication employing storage-to-storage  data  trans- 
fer.  This  spurred  development of additional  subsystems  based  on 
virtual machine architecture. 

IBM SYST .I VOL 18 NO I 1979 MACKINNON 35 

Remote  Spooling 
Communications  Subsystem 



An early approach was use of the  virtual  channel-to-channel 
adapter (CTCA) support already in CP. Originally it was  intended 
to facilitate testing of ASP loosely coupled multiprocessing config- 
urations in a virtual machine environment.  Through a CP COUPLE 
command,  two  virtual machines are  connected through a virtual 
CTCA path,  and  the READ/WRITE I/o commands issued by these 
machines are  simulated by CP. Data can  then be exchanged be- 
tween virtual address  spaces via CP’S move instruction  rather 
than by an I/O operation (assuming that  no page fault  occurs). 

otherapproaches- A  more  elaborate  approach was devised by A. N. Chandra at 
SPY and VMCF IBM’S Thomas J. Watson  Research Center.’* The resulting virtual 

machine, called SPY, was particularly useful because it managed a 
variety of special-purpose virtual machines (for data  management 
or networking, for  instance), it recorded  virtual machine accesses 
and linkages, and-most important for this discussion-it pro- 
vided another  protocol  and facility for  the  interchange of data 
between virtual machines. CP’S Virtual Machine  Communications 
Facility (VMCF) is  based  on  this  part of  SPY.^,^^,^^ 

VMCF uses two principal interfaces to allow virtual machines to 
communicate. First, a DIAGNOSE instruction  requests  special 
VMCF facilities from CP. The  second  interface is an  external  inter- 
ruption which serves  as  a signal for notification and  synchro- 
nization of transmissions and acknowledgments between virtual 
machines. CP generates  these  interruptions  for both sending and 
receiving virtual machines. 

VMCF provides for  transfer between storage-the virtual address 
space of a sending virtual machine (called the  source)  and  receiv- 
ing virtual machines (called sinks). A single source is able to send 
to more  than  one  sink. In  the  process,  two  real page frames  are 
locked. VMCF, then, formalizes procedures  for  inter-virtual-ma- 
chine communication and recognizes a  need  for in-storage data 
transfer among any  number of virtual  machines.  The  next  section 
considers  the  purposes  served by such  communication. 

Generalized  Management Many intercommunications problems were  addressed in the 
Information  System course of a joint  study  conducted by the IBM Cambridge Scientific 

Center,  the MIT Sloan  School of Management  (Center for Infor- 
mation Systems  Research),  the MIT Energy  Laboratory,  and  the 
New England Regional Commission, a Federal-New  England 
States  co-partnership.  The  system  that  grew  out of that study,  the 
Generalized  Management  Information  System (GMZS) ,31-34 is men- 
tioned here  because of its use of a separate virtual machines  ar- 
chitecture  for  communication within the same real system. It ex- 
emplifies the  application of many trends  discussed in this  section. 
The virtual machines include: 

36 MACKINNON IBM SYST J VOL 18 NO 1 1979 



0 Interactive CMS virtual machines which use FORTRAN, PLiI 
and APL interpreters. 

0 End-user  virtual machines with application-oriented  software 
such as econometric, time series  analysis,  and modeling pack- 
ages. 

0 Experimental query machines which run SEQUEL.35 
0 A data-base-manager virtual machine which provides  access 

to  an  experimental relational data  base  system. It activates 
itself and interfaces to  other machines when they  are  needed. 

e Interface virtual machines which accept  requests  from  inter- 
active virtual machines (running APL, for instance) and link 
them to facilities such  as  a  relational-data-base manager. The 
user is unaware of this link. The linking and  communication 
process is hidden from  the  application programmer and  termi- 
nal user, who asks  for  and  receives  data  and  services  without 
involvement in the  intercommunication  processes. 

When the  joint  study began in 1975, the use of virtual punches 
and readers  for  intermachine  communication was unsatisfactory 
because of the  associated I/O and system  overhead.  Then CMS 
minidisks were  used  to  exchange data among virtual machines. 
But the greatest  improvement  came with the  experimental SPY 
interface  discussed  above. SPY was  used  both  for virtual machine 
management and for  the  transfer of data.  Finally, in the  con- 
cluding months of the  study, VMCF was used for transferring data 
between certain virtual  machines. 

The primary objective of GMiS was to  interconnect a wide variety 
of language processors, application programs, analysis tools,  and 
data  base  structures.  Interconnection is made as  the terminal user 
logs on the  interactive virtual machine and  decides  what  tools  and 
resources  are  needed.  This  computational  environment  has  been 
called an “ad  hoc” decision support  system (DSS).36 The  inter- 
communication capabilities and interface virtual machines were 
vital to  the utilization of existing application programming and 
language processors without substantial modification. GMIS dem- 
onstrates  the  traditional virtual machine ability to accept  diverse 
software  environments without changing the  software  domains, 
even while providing sophisticated  intercommunication  and  ac- 
cess  to programming and  data  structures unknown to  the appli- 
cation-oriented end user. 

Research  on  virtual machine intercommunication  continues. Virtual Control 
C. R.  Attanasio of the IBM Thomas J. Watson Research  Center Storage 
has developed an  experimental  extension  to VMi370 called Virtual 
Control Storage (VCS), a  protected,  fast-access  execution  and 
data domain for virtual 

VMCF and vcs may appear to  overlap when viewed strictly in 
terms of data  transfer.  Their  architecture differs considerably, 

IBM SYST 1 VOL 18 NO 1 1979 MACKINNON 37 



Table 5 Performance  comparisons of several  virtual  machine  communications  methods  (times  in  seconds)’ 

Method No. of Sendl  Average  Average  Average  Average 
records  receive time virtual rota1 no. of 

to send CPU time CPU time SlO’S 

Spool 
(virtual 
punch to 
reader) 

DASD 
(shared CMS 
minidisks) 

100 send 

1000 
recv 
send 
recv 

10 000 send 
recv 

100 send 

1000 
recv 
send 

10 000 
recv 
send 
recv 

2.0 

11.2 

114.2 

- 

- 

- 

3.2 

14.4 

102.8 

- 

- 
- 

0.030 
0.094 
0.252 
0.752 
2.494 
7.492 

0.060 
0.050 
0.248 
0.238 
2.170 
2.086 

0.156 
0.350 
1.010 
2.414 
9.448 

23.547 

0.210 
0.220 
0.796 
0.752 
6.338 
6.008 

13 
20 

104 
1 1 1  

1006 
1013 

___ 
47 
38 

229 
219 

2033 
2023 

VMCF’ 100 send 0.8 0.004 0.030 1 
recv - 0.006 0.056 1 

1000 send 1.4 0.024 0.140 11 
recv - 0.032 0. I90 10 

10 000 send 13 .O 0.256 1.230 111 
recv - 0.318 1.412 106 

‘These benchmarks were conducted by  Clifford H. Avey  at the IBM  Cambridge Scientific Center 
’External intemptions for VMCF are counted as SlO’s. 

however, in that VMCF provides an  asynchronous  transfer  mecha- 
nism between distinct virtual machines,  whereas vcs provides 
synchronous data transmission  between  separate  domains in the 
same virtual machine. Also, VMCF employs  hardware  storage 
protection  and  storage-to-storage  transfer,  whereas VCS relies on 
restricted  addressability  and segment sharing. vcs does  not  use 
an asynchronous communication-like protocol, but rather a syn- 
chronous instruction-like protocol. And the vcs program is able 
to modify areas of virtual storage  and  also  general-purpose regis- 
ters and the program  status  word. vcs applies,  then, to  far more 
than  data  transfer. 

To place some of the communications  techniques and develop- 
ments in perspective,  Table 5 cites  several  benchmarks  that com- 
pare virtual punch-to-reader  transfer,  shared minidisk DASD, and 
VMCF, which uses  storage-to-storage  transfer. The benchmarks 
were  conducted at  the Cambridge Scientific Center using 80-byte 
records and sending and receiving virtual machines. 

VM/370 networking This discussion of inter-virtual-machine communication con- 
cludes with real-machine networking for ~ ~ 1 3 7 0 ,  including trans- 
parent communication between  virtual machines on physically 
separate  real  machines. Using RSCS as a base,  peer CPU-to-CPU 
networking has  been provided between  systems  connected on 
dial-up and  leased  lines or real channel-to-channel  adapters.  This 
capability is provided in the  Network Job Entry/Network Job  In- 

38 MACKINNON IBM SYST 1 VOL 18 NO I 1979 



terface  (NJE/NJI) programming packages.38  The VM/370 component 
is called VNET.’~ It provides  peer  connection  to  other CPU’s 
(rather  than  the  master-slave  relationship in remote job  entry). 
When those CPU’S also  run VNET,  there is inter-virtual-machine 
communication between multiple real  machines. 

This  approach,  used  extensively within I B M , ~ ’  literally broadens 
the  horizons  for  potential usage of virtual  machines.  In  an  experi- 
mental application at  the Cambridge Scientific Center,  for  ex- 
ample, System/370 Models 158 and 115 were  connected by a 
channel-to-channel adapter. Both ran VM/370, but  the Model 115 
executed  a  substantially  smaller  nucleus (approximately lOOK 
bytes).40  The  experiment was meant to evaluate VM/370 in such  an 
environment,  and  also to use  the Model 115 to simulate a front- 
end  processor by transmitting  data  to  and from the Model 158. 
Both CPU’S executed VNET and  used  it as their  communications 
vehicle. 

It is interesting to note  that VNET’S architecture  necessitated  no 
changes  to CP and that it accommodated itself to a very small real 
machine environment without change. VNET resided in each of 
these  two  real  machines.  Because VNET supports CTCA and  com- 
munications links for virtual-machine-to-virtual-machine pro- 
tocols,  the Model 115 just  as easily could  have been remote  from 
the Model 158, to  establish  a  concentrator  or  distributed  process- 
ing application environment. 

VI. Further use of operating  system  assist 

The hardware  assist  philosophy, as discussed  above  for VM/370, is 
now provided in some  other  operating  systems. Brief discussion 
is included here to balance the  prior  discussion and enable  the 
reader  to  see  that  assist implementation is hardly limited to 
VMi370. Specifically, OS/VSI benefits from a hardware  assist on 
some models of System/370,*’ as  does  the MVS System  Exten- 
sions Program Product  for  processors  that  support  the  System/ 
370 Extended 

The  hardware  assist  for osivsl is called Extended Control Pro- 
gram  Support:vsI ( E C P S : V S Z ) . ~ ~ , ~ ~  ECPS:VSl and ECPS:VM can si- 
multaneously reside in the writable control  storage of a real sys- 
tem and provide a  hardware  assist  to  their  respective  control  pro- 
grams. For example, VSI can be  executing  as  a virtual machine 
under VMi370 and benefit from ECPS:VSI . CP and  other  virtual ma- 
chines  can benefit from ECPS:VM when they  have  control. 
EcPS:VM and ECPS:VSI are  not  necessarily cumulative in their  to- 
tal effect on  system  performance,  however. For instance, there is 
some overlap in ECPS:VSl function  and vs1 hand~hak ing .~~  

IBM SYST J VOL 18 NO 1 1979 MACKINNON 



The MVS System  Extensions Program Product  supports  the  Sys- 
ted370 Extended Facility. It can enhance system performance 
through new privileged instructions,  path length reduction,  and  a 
variety of internal implementation changes to* the system. Of the 
14 new instructions defined by the System/370 Extended  Facility, 
12 are provided solely to assist M V S . ~ ~  

While the  assist  hardware now has relevance  for MVS on  a  real 
machine, there are also implications for MVS execution in a vir- 
tual machine. VM/370 SEPP accommodates  and improves MVS per- 
formance in a virtual machine in gart  because  the System/370 Ex- 
tended Facility provides  for  execution of the new MVS privileged 
instructions by the  assist hardware when MVS SEPP is running in a 
virtual machine. This capability is called the virtual machine ex- 
tended facility and is specified through control register 6.46 In ad- 
dition, changes have been made to cp which improve MVS per- 
formance. This development might be called “partial  hand- 
shaking” since changes  are one-sided-only CP has  been 
changed, in that it provides new MVS console SET commands: SET 
STM and SET STBY. 

Together,  these new commands allow CP to  share  shadow page 
 table^"^^'^* among the multiple virtual address  spaces of a single 
MVS virtual machine when, in fact, the  address  space  they  pgint 
to is commoq. This will be  the  case in an MKS virtual machine for 
the nucleus and common  area  at  the top of the .virtual address 
space managed by MVS. The commapds  bypass  shadow  tables 
when MVS is running in a virtual-equals-real mode in the virtual 
machine. 

Finally, users of APL interpreters  on  some models of  Syq{em/370 
experience  faster  execution  because of the APL micrococle assist. 
APL emulatipn involves direct execution of APL statements by  mi- 
crocode  that  works with a new System/370 instructjon, APL EMU- 
LATION CALL (APLEC). Further  discussion  here is unnecessary, 
other  than  to  note  that  the APL assist yields the  greatest  perform- 
ance  improvepent of all the  assists  discussed in this papkr. Given 
its early availability, the APL assist  served to demopstrate  what an 
effective microcode assist  can  achieve,  and’  it stimulated sub- 
sequent assist jmp~ementations.~~ 

\ .  

VII. Summary 

Since 1972, the implementation of System/370 virtual machines 
has changed considerably, specifically in CP and in the  virtual ma- 
chine interface. Changes within the  virtual machine environment 
range from the APL assist microcode to virtual machine hand- 
shaking with CP, to accommodations for MVS virtual’ machines. 

40 MACKINNON IBM SYST J VOL 18 8 NO 1 8 1979 

% 



~~ 

All of these  changes had the  dual  objectives of improving per- 
formance  and improvirlg the  functions of individual virtual ma- 
chines, CP, and  the  entire  system.  Operational  improvements  pro- 
vided with handshaking  address  certain  needs  associated with the 
virtual machine environment. 

virtual machine isolation arld integrity  have been preserved, 
along with optional  extended facilities and  interfaces  that  foster 
intermachine  communication when desired. DIAGNOSE and VMCF 
in V M ~ O  make such  interfaces  generally available to  the appli- 
cation  developer and systems  architect.  To  an  extent, inter-vir- 
tual-machine  communication  has  always existed-it  is  its growth 
and  potential  that  are  most  relevant. 

Several explicit examples,  such  as RSCS,  VNET, and GMIS, illus- 
trate new approaches to providing function,  facility,  and  commu- 
nication. They hold significant promise  for innovative future  use 
of the virtual machine concept  and  increased sharing of data  and 
programming. 

VIII. Conclusions 
One can envision future uses of virtual machines that will exploit 
a proliferation of multiple,  interconnected  real  and  virtual ma- 
chines. While the  interconnections may be local or commhnica- 
tions-based, the logical view can  remain  the  same. VM/370 at- 
tached  processor support4’ can be viewed as a first step-for large 
systems and in a tightly-coupled context. Multiple logical and real 
systems (large or small) are  appropriate  and fertile fields for fu- 
ture  experimentation  and investigation. 

Possible  implementations 

A virtual machine controlled by CP could  assume responsibility data  base 
for  data management and  encryption while connected  to  peer  pro- machine 
cessing machines. It is important  to  note  that  these “data”  and 
“processing”  machines  can  be in the  same  real machine complex 
or in separate  real  machines. Logically, the  processing  machines 
might transmit  requests in blocks to  the “back-end’’ machine, 
which would asynchronously  manage  the  data and transmit 
blocks of data  responses (in clear or encrypted form). This  tech- 
nique of transmitting blocks of data  already  has been employed in 
the IBM 3705 communications  controller when it runs  the  network 
control  programhirtual  storage (NCP/VS) for communication be- 
tween  hosts and the 3705 with Systems  Network  Architecture 
(SNA). 

The GMIS and vcs experimental  systems  show  that  function  can 
be divided among separate virtual machines or address  spaces. 
For virtual machines to become  separate real machines seems a 
logical next  step. The possibility of improved  “processing-ma- 

IBM SYST J VOL 18 - NO 1 1979 MACKINNON 41 



chine”  performance, coupled with enhanced abilities to inter- 
connect and share  data in a secure  fashion, should easily motivate 
future  experimentation. 

distributed The virtual machine philosophy and  system  intercommunication 
processing capabilities (local and  remote, virtual and real) hold promise  for 

solving problems of distributed  processing. The reliability and 
relative  security of virtual machine systems  enhance  their  attrac- 
tiveness  as vehicles for  such  experiments.  The need to remotely 
assess and manage performance,  malfunction,  and  operational 
problems is critical  to  such  systems. Management of such  prob- 
lems is facilitated by the hypervision of virtual machine control in 
VM/370, and it is practical, considering the  peer  network  con- 
nections  that are available  today. The “user-friendly”  and  ease- 
of-use characteristics of v ~ / 3 7 0 ~  also hold potential  for  such  distri- 
bution, without increased complexity for  the  distributed  system 
user. 

programmed The  concept of a disconnected virtual machine as a programmed 
operator operator  has  been implemented at many VM/370  installation^.^^ At 

Cambridge, for  example,  this  cdncept  has proved useful for  direc- 
tory  and  password  management, mail and message handling, and 
secure volume mounting. Special virtual machines can be  acti- 
vated automatically by the programmed operator  at a specified 
time to accomplish performance  monitoring,  for  example.  Such 
programmed operators in separate  real machines may well prove 
beneficial for small systems  that  cannot  support  the  programmed 
operations  aspects of ASP or JES3 multisystems. When combined 
with network linking or  as  part of distributed processing systems, 
the programmed operator  addresses  unattended  operation  and 
human factors  problems of computer  operation in a  non-data-pro- 
cessing  environment (such as  an office). 

personal CMS has long demonstrated  the  productivity  that  can  be  achieved 
computing with a single virtual machine. And while CMS is implemented to 

run on System/370, this  type of virtual machine may well prove 
effective when running  on a different hardware base-whether in 
a small computer  like  the IBM 51 10 or in an intelligent terminal. 

ACKNOWLEDGMENTS 
I wish to  express my appreciation  to D. N. Saul, R. P.  Parmelee, 
R. Reynolds, L. H. Holley, G. C. McQuilken, and L. H. 
Seawright of the IBM Cambridge Scientific Center  for  their  scru- 
tiny of the  manuscript  and  attention to technical  and  performance 
details  that  eluded me;  to W. J. Doherty,  C. R. Attanasio,  and 
A. N. Chandra of IBM Research,  who enlightened me on SPY, 
v c s ,  and virtual machine subsystems; to E. C. Hendricks of IBM 
Research, who first drew my attention  to virtual machine archi- 
tecture, its value for  subsystems,  and  how it is used by RSCS and 
VNET; to A. G. Olbert of IBM’S System  Products  Division,  who 

42 MACKINNON  IBM SYST J VOL 18 NO I 1979 



was a codesigner of ECPS:VM and  who provided a valuable cri- 
tique of this paper  and  enhanced my understanding of ECPS:VM; 
to  Barbara McCullough of IBM’S Data Processing  Division,  who 
wrote  the Virtual Machine  Facility1370  Features  Supplement and 

1 has helped many, including myself, with her masterful descrip- 
i tion of ~ ~ 1 3 7 0 ;  finally, to  the students at MIT’S Sloan School  who 

raised  the  essential  questions  that  prompted me to write this  pa- 
per. 

Appendix: CP functions 
The following CP functions  are  assisted by the CPA instructions: 

0 Obtain free  space from free  storage  area 
0 Return  space to free  storage 
0 Page lock 
0 Page unlock 
0 Decode the first channel command word (CCW) in a list;  also 

0 Free ccw storage 
0 Dispatch a control block or virtual machine 
0 Locate virtual 110 control blocks 
0 Locate  real Iio control blocks 
0 Translate  virtual  address  and (if possible) test  for  shared page 
0 Translate  virtual  address  and (if possible) lock the page 
0 Invalidate  segment  table;  invalidate page table 
0 Entry  into  virtual machine dispatch 
0 Common ccw processing 
0 Untranslate  the  channel  status word (CSW) 
0 Dispatch control block or virtual machine 
0 LINK (initiated by CP’s  SVC 8) 

RETURN (initiated by CP’S SVC 12) 
Change shared page scan 

decode  subsequent CCW’S 

CITED  REFERENCES  AND  NOTES 
1. R.  A.  Meyer  and L.   H.  Seawright, “A virtual  machine  time-sharing  system,” 

IBM Systems  Journal 9, No. 3, 199-218 (1970). 
2. R. P. Parmelee, T.  I. Peterson,  C.  C.  Tillman,  and  D. J .  Hatfield,  “Virtual 

storage  and  virtual  machine  concepts,” IBM Systems Journal 11, No. 2, 99- 
130 (1972). 

3. L. H. Seawright  and  R.  A.  MacKinnon, “VM/370-A study of multiplicity 
and  usefulness,” IBM Systems Journal 18, No. 1, 4-17 (1979, this  issue). 

4. VMi370 is  able to  run  on System/370  Models 135, 138, 145, 148, 15511,  16511, 
158, 168, 158AP, 168AP,  and 158MP and  168MP  (configured  with  asymmetric 
UO), and on  processors 3031, 3031AP, 3032, 3033, and 3033MP (configured 
with  asymmetric IiO). 

5 .  IBM Virrual Machine  Facilityi370  Introduction, IBM  Systems  Library,  order 
number GC20-1800, IBM  Corporation,  Department D58, P.O. Box 390, 
Poughkeepsie,  New  York 12602. 

6. IBM Virtual  Machine  Facilityl370:  Operating  Systems in a  Virtual  Machine, 
IBM  Systems  Library,  order  number GC20-1821, IBM  Corporation,  Depart- 
ment D58, P.O.  Box 390, Poughkeepsie,  New  York 12602. 

7. Virtual  Machine Facility1370 Features  Supplement, IBM  Systems  Library, 
order  number GC20-1757, IBM  Corporation,  Department 824, 1133 West- 
Chester Avenue,  White  Plains,  New  York 10604. 

IBM SYST J VOL 18 NO 1 1979 MACKINNON 43 



8. The term handshaking normally has  been used only with OS/VSI,  since 
DOS/VS  uses the DOS/VS-VM/370 Linkage Facility in the Advanced Func- 
tion-DOSIVS Program  Product. 

9. OSIVS2  MVS Overview, IBM Systems  Library,  order  number GC28-0984, 
IBM  Corporation, Department D58, P.O. Box 390, Poughkeepsie, New York 
12602. 

10. OSIVS2  MVSISystem  Extensions  General  Information  Manual, IBM  Sys- 
tems  Library,  order  number GC28-0872, IBM  Corporation,  Department D58, 
P.O. Box 390, Poughkeepsie,  New York 12602. 

11. The packaging and availability of VM assist  (apart from any  ECPS consid- 
erations) is different for different CPU’s. It is  standard  on System/370  Models 
135-3,  138, 145-3, and 148, and on the 3031 processor.  It is a no-charge op- 
tional feature on  System/370  Models 135-0, 145-0, and 158, and it is  an  RPQ 
on Model 168 and  on  the 3032 and 3033 processors. 

12. P. H. Tallman, R.  A.  Denson, T. A. Gilbert, J .  M.  Nichols,  and  D.  E.  Stucki, 
Virtual  Machine  Assist  Architecture  Description, Technical Report  TR 
00.2506, IBM Corporation, Poughkeepsie, New York  (January 1974). 

13. F.  R.  Horton,  D. W. Wagler, and P. H. Tallman, Virtual  Machine Assist: 
Performance  and  Architecture, Technical Report  TR 75.0006, IBM Corpora- 
tion,  Poughkeepsie, New York (April 1974). 

14. Control register 6 is used by the  hardware  assists  and by CP  as  an  interface  for 
their  various activities. 

15. For a  discussion  of the specific instructions, see IBM  Systemi370  Principles  of 
Operation, IBM Systems  Library,  order  number GA22-7000, IBM Corpora- 
tion, Department D58, P.O. Box 390, Poughkeepsie, New  York 12602. 

16. For a summary of the  architecture  and a list  of  System/370 instructions,  see R. 
P. Case  and  A. Padegs,  “Architecture of the  IBM System/370,” Comnmnica- 
tions of the   ACM 21, No. 1, 73-96 (January 1978). 

17. To consolidate  the error recording file (LOGREC)  wherever possible, for the 
entire VM system  (since CP has overall  responsibility for control of the  real 
hardware), VM assist  presents  SVC 76 to  CP in the real  machine, instead of 
the virtual machine’s operating system. Most operating  systems  use  SVC 76 
to  request  the  recording of certain error  conditions (CPU and I/O) on  their 
LOGREC files. When  an  interruption occurs,  CP analysis determines 
whether  CP  can  perform  error recording and, if so, CP translates  virtual de- 
vice addresses  into real ones  and writes to  LOGREC. When CP  cannot 
handle  SVC 76 (perhaps  because of insufficient information  from the virtual 
machine), it is reflected back  to  the virtual machine, whose operating  system 
records  the  error information  on its  separate  LOGREC file. 

18. S. E. Madnick and J.   J .  Donovan, Operating  Systems, McGraw-Hill  Book 
Company,  New  York (1974). Chapter 9-5 offers a discussion of shadow  tables 
for the general reader. 

19. The virtual pointer list contains  these  relevant fields: addresses of the real 
segment table, virtual control  registers, virtual  program status  word,  and a 
virtual  interruption-pending  indication, as well as  the  assist  control field 
(MICEVMA). 

20. Relative batch  throughput  is  the ratio of throughput  on a native,  real  machine 
controlled by the specific  operating system  to throughput of the  same  job 
stream in a virtual  machine  controlled by VM/370. 

21. A. G.  Olbert, Functional  Description of Extended  Control  Program  Support: 
VMl370, Technical Report  TR 01.2146, IBM Corporation, Endicott,  New 
York (May 1978). 

22. IBM Virtual  Machine  Facilityi370 System  Extensions  General  Information 
Manual, IBM Systems  Library,  order  number GC20-1827, and IBM Virtual 
Machine  Facility/370  Basic  System  Extensions  General  Information  Manual, 
IBM Systems  Library,  order  number GC20-1828, IBM Corporation,  Depart- 
ment D58, P.O.  Box 390, Poughkeepsie, New York 12602. 

23. The instructions are  LPSW,  PTLB,  SCKC,  SPT, SIO, STNSM,  STOSM, 
STPT,  TCH,  and  DIAGNOSE. 

44 MACKINNON IBM SYST J VOL 18 NO 1 1979 



24. OSIVirtual Storage 1 Features  Supplement, IBM  Systems  Library,  order 
number GC20-1752, IBM Corporation,  Department 824, 1133 Westchester 
Avenue, White Plains,  New York 10604. 

25. Advanced  Functions-DOSIVS  General  Information, IBM Systems  Library, 
order number GC33-6040, IBM Laboratory, Publications Department, 
Schoenaicher  Strasse 220, D7030 Boeblingen, Germany. 

26. Advanced  Functions-DOSIVS  Design Objectives, IBM  Systems Library, or- 
der  number GC33-6039, IBM Laboratory, Publications Department, 
Schoenaicher  Strasse 220, D7030 Boeblingen, Germany. 

27. E.  C.  Hendricks  and  T.  C.  Hartmann,  “Evolution of a virtual machine sub- 
system,” IBM Systems Journal 18, No. 1 ,  1 11-142 (1979, this issue). 

28. A. N. Chandra  and A. M. Katcher, VMl370 Intermemory  Communications- 
Comparative  Measurements, Research  Report  RC 5820, IBM Thomas  J. 
Watson Research Center, Yorktown Heights,  New York 10598 (January 
1976). 

29. IBM Virtual Machine Facilityl370:  System  Programmer’s  Guide, IBM  Sys- 
tems  Library,  order  number GC20-1807, IBM  Corporation,  Department D58, 
P.O. Box 390, Poughkeepsie,  New York 12602. 

30. R. M. Jensen, “A formal approach  for communication  between logically iso- 
lated  virtual machines,” IBM Systems Journal 18, No. 1 ,  71-92 (1979, this 
issue). 

31. J.  J. Donovan and  H. D. Jacoby,  “Virtual machine  communication for  the 
implementation of decision support  systems,” IEEE Transactions  on So f -  
ware Engineering SE-3, No. 5 ,  333-342 (September 1977). 

32. J. J.  Donovan,  “A  note  on performance of VM/370 in the integration of mod- 
els  and  data  bases,” The Computer Journal 21, No.  1,20-24 (February 1978). 

33. J.  J.  Donovan, R. Fessel, S. G.  Greenberg,  and  L. M. Gutentag, An  Experi- 
mental  VMN70  Based  Information System, Technical Report G320-2107, 
IBM  Cambridge  Scientific Center, 545 Technology Square, Cambridge,  Mas- 
sachusetts 02139 (July 1975). 

34. C. S. Chandersekaran,  and K .  S. Shankar,  “On virtual  machine integrity,” 
and J .  J. Donovan and S. E. Madnick, “Virtual machine  advantages in secu- 
rity, integrity and decision support  systems,” IBM Systems Journal 15, No. 
3, 264-278 (1976). This  exchange of letters  deals with the problem of virtual 
machine integrity and  the  use of GMIS. 

35. D. D. Chamberlin and  R. F. Boyce,  “SEQUEL: a structured English query 
language,” ACM  SIGMOD  Workshop on Data  Description,  Access  and  Con- 
trol (Ann  Arbor), 249-264 (May 1974). 

36. J.  J. Donovan and S. E. Madnick, “Institutional  and ad hoc DSS and  their 
effective use,” Data  Base 8, No.  3,79-88 (Winter 1977). 

37. C .  R. Attanasio,  “Virtual  Control  Storage-security  measures in VMl370,” 
IBM Systems Journal 18, No. 1 ,  93-110 (1979, this  issue). 

38. VMl370 Networking  Program (No. 5799-ATA, PRPQ  No. P09007). This  pro- 
gram  was  written by T.  C.  Hartmann  and E.  C.  Hendricks,  who  extended 
their earlier  work on RSCS. 

39. The  NJEINJI networking  packages have  been used  extensively in IBM’s  de- 
velopment and scientific laboratories,  both during  development of the pro- 
grams and  after  their  release. As  of  this  writing,  approximately 240 CPU’s  can 
communicate over  leased lines or channel-to-channel adapters  from  Germany 
to California. For  more information see  R.  P.  Crabtree, “Job networking,” 
and R. 0. Simpson and  G. H. Phillips, “Network  job  entry facility for  JES2.” 
IBM Systems Journal 17, No.  3, 206-220 and 221-240 (1978). 

40. The nucleus reduction work was done  at  the  IBM Cambridge Scientific Center 
by L. Wheeler and  J. Ravin.  Dr. N.  Sorensen  conducted the VNET experi- 
ment. 

41. Assist hardware  for  OS/VSl is available on  Systed370 Models 135-3, 138, 
145-3, 148, and 158, and  on  the 3031 processor. 

42. IBM Systerd370  Extended  Facility, IBM Systems  Library,  order  number 
GA22-7072, IBM Corporation,  Department D58, P.O. Box 390, Pough- 

IBM SYST J VOL I8 NO 1 1979 MACKINNON 45 



46 MACKINNON 


