
This paper is a  survey of changes  to virtual machine  interfaces, 
implementation,  architecture,  and  simulation  techniques  as  they 
affect IBM System1370 and 303X (3031,  3032,  3033) processors, 
the system  control  program  to which  virtual  machines interface, 
and  other virtual machines  executing  on  the  same real  computing 
system or elsewhere.  The  paper  seeks  to  summarize  such  changes 
and  provide  a  perspective on  the virtual machine  environment. 
New  uses of virtual machine  subsystems are  discussed  as  they 
relate to inter-virtual-machine  communication. 

The  changing  virtual  machine  environment:  Interfaces to 
real hardware,  virtual  hardware,  and  other  virtual  machines 

by R. A. MacKinnon 

When IBM introduced  virtual machine products with CP-67 on  the 
System/360 Model 67, an  early view of the  uniqueness of virtual 
machines  focused on the isolation of one  virtual machine from 
another.lS2 CP-67 was  able  to provide Systed360 hardware  sys- 
tems with a variety of operating  system  environments, or virtual 
machines, all independent of each  other.  This was accomplished 
with dynamic address  translation  hardware  and  the use of  mul- 
tiple virtual address  spaces,  hypervision by the control program 
(cP), and CP’S handling of the  real  machine. Systed360 split in- 
structions  into privileged system  control  instructions  and non- 
privileged computational  instructions, enabling CP to achieve its 
objectives with virtual  machines by exploiting the real hardware 
whenever possible. 

CP-67’s ability to handle a  variety of virtual machine software en- 
vironments  and  the  separation and isolation of virtual machines 
made the  system  attractive to users.  Development of the Cam- 
bridge Monitor  System (CMS) provided conversational  computing 
to CP-67, which became known as CP-67/CMS.3 

Since 1972, the use of virtual  machines  has  become  more wide- 
spread with the availability of IBM’S Virtual Machine Facility/37O 
(VM/370) for many models of Sy~tem/370.~ Virtual machine archi- 
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tecture  and  the implementation of VMi370 are discussed in Refer- 
ences 5 , 6 ,  and 7. This  paper  examines how VMi370 has  progressed 
beyond its predecessor, CP-67ICMS. 

1. Outline of the paper 

Various hardware  and  software implementations have been de- 
signed to improve VMl370 system  performance,  as well as  the  per- 
formance of individual virtual machines and CP. Initially, a  Sys- 
tend370 hardware implementation called virtual  machine  assist 
was designed to enhance  the  execution of privileged instructions 
and supervisor calls (normally associated with virtual machine 
operating  systems). VM assist is discussed in Section 11. 

VM assist  extended  hardware capability beyond  the defined Sys- 
tend370 instruction  set while preserving the virtual machine’s 
view  of its instruction set. Certain  processors  are now provided 
with information about  the virtual machine execution  environ- 
ment,  and  these  processors  are optimized or tailored to  enhance 
vMi370 performance. On certain  processors,  this  extension  has 
continued  to  enhance CP execution  and  expand VM assist  through 
more hardware  support. Again, the  objective is to improve sys- 
tem execution time by assisting, with direct hardware  execution, 
routines  that handle certain CP functions.  This  further  develop- 
ment (which is additional to VM assist) is called Extended  Control 
Program Support:VMl370 ( E C P S : V M I ~ ~ O ) .  It is covered in Section 
111. 

CMS is discussed by Seawright and MacKinnon in the preceding 
paper.3  Other major trends in virtual machine interfaces  and  exe- 
cution  can be found in some non-CMS environments. f f a n d -  
shaking is the name used here  for  the  changes  to  the DoSivS  and 
o s i v s l  system  control programs that  enable  them to recognize 
and take  advantage of their  execution in a virtual machine envi- 
ronment.8 While the implementation is different in each of these 
operating  systems,  their handshaking objectives remain the 
same-bypassing, eliminating, or reducing functions  that  are  re- 
dundant or operationally inefficient in the virtual machine envi- 
ronment.  The result has  been  enhanced  performance of DoSivS  
and OS/VSI in virtual machines and improved operation of virtual 
machine systems.  Handshaking is discussed in Section IV. 

However, while handshaking  complements  the VM assist  and 
ECPS:VM/370 hardware  functions, it does  not employ hardware. 
Even with handshaking,  the problem programs managed by 
o s / v s ~  and DOSIVS do not recognize their virtual machine environ- 
ment. This holds true for CMS and Multiple Virtual Storage (MVS) 
problem state programs as well. They regard their  operating sys- 
tem as controlling a  real  machine. 
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Section V discusses  the  use of virtual machine architecture  for 
system  development  and  implementation.  Emphasis is on  inter- 
virtual-machine  communication, which departs from the  earlier 
view that  total isolation was  to many users  a  dominant view or 
desirable. 

Section VI treats  control  program  assist  approaches  in  environ- 
ments  other  than VM. New  instructions in Systed370 Models 
158-3 and 168-3 and in the 303X processors  for  the MvS System 
Extensions Program Product (MVS/SEPP)~”~ are discussed  both as 
examples of how control  program  assists  extend  beyond VW370 
and  as  they  relate to MVS in the  virtual machine environment. 
These  assists apply to MVSISEPP even when executed in a virtual 
machine.  The MVS discussion includes CP changes designed to 
achieve  “partial” (one-sided) handshaking on behalf of MVS. 
This  section  concludes with a discussion of Extended  Control 
Program Support (ECPS) for oS/vS1 and of the APL assist for micro- 
code  execution  of APL statements, to amplify the point that hard- 
ware  and  software  changes in VM/370 also appear  elsewhere. 

Finally, possible future  evolutionary  trends  are  charted in the 
Conclusions. 

II. Virtual  machine  assist 

VM assist is a  hardware implementation designed to  improve  the 
performance of some VW370 virtual machines, and thereby  en- 
hance  the  performance of that  particular ~ys t em.””~  This dis- 
cussion  concentrates  on  the  function of VM assist  and how it helps 
the  execution of virtual  machines,  rather  than its actual imple- 
mentation  on  various CPU’S. The primary interface  between vir- 
tual machines and CP occurs when the  operating  system in the 
virtual machine executes  a privileged instruction or a supervisor 
call (SVC). As an additional  interface, CMS employs the DIAGNOSE 
instruction  for  functions  such as disk YO and  depends  on CP for  its 
operation. CMS can  execute only in a virtual machine.  The  inter- 
faces  between virtual machines  and CP are discussed by 
Seawright  and Ma~Kinnon .~  

So what VM assist  seeks  to  do is emulate,  whenever  possible, 
certain CP routines  that  simulate  the  instruction  that  the virtual 
machine executed. VM assist  produces  results  that are function- 
ally equivalent to CP’S results. Significantly, VM assist  executes 
directly, without CP, and  thus  can  dispense with the  interruption 
handling and redispatching  associated with the  transfer of control 
between virtual machines  and CP. There  are  exceptions  to  this 
support.  The  non-high-performance  and not-well-definable vir- 
tual machine uses of certain privileged instructions  are  not  as- 
sisted. 
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Figure 1 Control  register 6 

Bit Function and use 

0 Virtual  machine  assists  ON/OFF-used  by VM assist,  EVMA,  and  VITA; 
can  be  turned on and off for  each  virtual  machine. 

1 Virtual  machine  problem or supervisor  state-set by CP  and  VM  assist; 
will determine  whether  an  instruction  was  issued in privileged  state. 

2 ISK and SSK instructions-whether VM assist  should  handle  these  in- 
structions. 

3  System/360 or Systed370 mode-helps VM assist  and  ECPS:VMI370  de- 
termine  which  instruction  set is valid  for  the  virtual  machine. 

4 SVC handling-set by CP  to  tell  VM  assist  whether  non-SVC 76’s should 
be reflected to  the virtual  machine. 

5 Shadow  table  fixup-activates  handling by VM assist. 

6 CP assist-set by CP  for  entire  system; in conjunction  with  bit 0, defines 
which  assists  (VM  assist,  EVMA,  VITA,  CPA)  are  active. 

7  Virtual  interval  timer  assist  (VITA) for ECPS:VM/370 

8-28 Real  address of VM pointer  list. 

29 Emulation of System/370  extended  instructions  executed in virtual  ma- 
chine by virtual  machine  extended-facility  assist. 

30-3 1 Reserved  and  undefined. 

VM assist relies on control  register 614 for  key information to gov- 
ern  its  actions  for individual virtual machines. CP manipulates  its 
settings of control  register 6 as part of dispatching  the virtual ma- 
chine or establishing its  contents  for CP execution. Figure l maps 
this register. As an  example,  note  that VM assist  handles privi- 
leged instructions  only when it  is ON (bit O ) ,  the CPU is in the real 
problem state (from the  current program status  word),  and  the 
virtual machine is  in the virtual  supervisor  state (bit 1) .  

The specific instructions handled by VM assist  are listed in Table 
l.15,16 A distinction is made between Systed370-only and  Sys- 
tern1370 and Systed360 virtual machines. That  distinction is  in- 
dicated  to VM assist by bit 3 in control  register 6. 

The System/370-exclusive instructions  are  most likely to be found 
in operating  systems  that  support virtual storage  management. 
Early Systed360 operating  systems  such  as DoS and os do not 
use them at all and  thus  derive  less benefit from VM assist. 
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Table 1 Privileged instructions handled by VM assist 

Systernl360 und System1370 System1370 only 

INSERT  STORAGE  KEY (ISK) INSERT  PSW KEY (IPK) 
LOAD  PSW (LPSW) LOAD  REAL  ADDRESS  (LRA) 
SET  STORAGE KEY  (SSK) RESET  REFERENCE  BIT  (RRB) 
SET  SYSTEM MASK (SSM) SET PSW KEY  FROM  ADDRESS  (SPKA) 

STORE  CONTROL (STCTL) 
STORE  THEN  AND  SYSTEM MASK 

STORE  THEN  OR  SYSTEM  MASK 
(STNSM) 

(STOSM) 

As VM assist  encounters  one of the privileged instructions listed 
in Table 1, it performs the  appropriate  emulation  and  then  returns 
control  to  that virtual machine’s  next  instruction.  This  process 
bypasses the following CP routines:  interruption handling, analy- 
sis of the operation  to be simulated,  the  actual  simulation,  and 
invocation of CP’S dispatch  routine.  Performance  improvement 
comes from hardware implementation rather  than  software  exe- 
cution,  and from having to perform only the  actual  simulation. 

SVC handling When executing  an svc instruction,  a  virtual machine does not 
have  to  be in the virtual supervisor  state.  Essentially, SVC’S are 
handled exactly  as outlined for  the VM-assist-related privileged 
instructions.  The  exception is svc 76 which has been reserved 
arbitrarily for CP to handle or reflect real machine error informa- 
tion to  the virtual machine.  Thus VM assist  does not handle svc 
76. 

17 

shadow pagetable Virtual machines operating in extended  control mode with the 
management dynamic  address  translation (DAT) facility ON require  that special 

page and segment tables be created and maintained by C P . ~ ~ ” ~ ’ *  
These  “shadow”  tables  enable the virtual machine operating sys- 
tem to utilize DAT hardware  and manage its virtual storage as it 
would on a real machine. CP manages the “real” storage  associ- 
ated with the virtual machines through demand paging and its 
own set of segment and page tables.  The  shadow  tables  enable CP 
to let the virtual machine manage its virtual storage while CP man- 
ages its real storage.  Note  that  the virtual machine’s page size 
may differ from CP’S page size. 

VM assist’s role in shadow  table management is to  receive  trans- 
lation exception  conditions  caused by the virtual machine and 
handle them  without  causing an actual  translation  interruption. 
Specifically, instead of directing the translation  exception to CP, 
VM assist  checks  to  see if the page that  caused  the  translation 
exception is actually in real  storage.  This is determined by check- 
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ing the virtual operating  system’s DAT tables  and  the  real  segment 
and page tables. VM assist finds both sets of tables  through  the 
virtual machine pointer list addressed via control  register 6.” If 
VM assist finds that  the  desired page is in fact in real  storage, it 
marks  the  shadow page table  entry valid, places  the  proper page 
frame  address within the  entry, and  keeps  control in the  virtual 
machine. If the desired page is not in real  storage, VM assist  re- 
flects a  translation  exception to CP. In  summary,  this  aspect of VM 
assist  reduces  the  occasion  for  an  actual  interruption  and CP anal- 
ysis when the  needed page is already available. 

Since  not all models of Systed370 provide VM assist, CP’s initial 
program load (IPL) sequence  determines VM assist’s availability 
and  activates it when present, using bit settings in control  register 
6 (see Figure 1). The SET command  provides  the CP system  oper- 
ator with a  means to deactivate  then  reactivate  the VM assist facil- 
ity through  this  register. Individual virtual machine console  oper- 
ators  can disable or enable VM assist  services  for  their specific 
virtual machines through  the SET command.  Further  selectivity 
can  be  exercised by disabling the svc handling component of VM 
assist with the SET command. 

The  result is maximum flexibility for  the installation and  the indi- 
vidual user during evaluation of VM assist,  performance  analysis, 
and benchmarking. The effect of VM assist  on  the  overall  system, 
and  for individual virtual machine execution,  can be assessed 
without  any CP changes. 

VM assist,  then, is a first hardware  step  toward partitioning CP 
simulation services  between CP and VM assist  hardware facilities. 
The time used by VM assist is problem state time and is so re- 
flected. In most cases, VM assist  uses  a significantly reduced 
amount of real supervisor  state time and  a slightly increased 
amount of real problem state time. The effects of this change on 
overall  system  throughput,  response  time,  and specific virtual 
machine environments are shown in Table 2. 

The information in Table 2 is taken from Horton, Wagler, and 
Tallman.I3 The  table  summarizes  results of a variety of measure- 
ments  intended  to  demonstrate  approximations of the effects of 
VM assist.  The  results  do  not necessarily represent typical oper- 
ating environments. The  tests, in fact, were  run using VMi370 Re- 
lease 3,  Program Level Change 2. The  important  considerations 
are the relative improvements,  rather  than  precision or relevance 
to  current  releases  or  maintenance  levels.  In no way is this  series 
of benchmarks  intended  to  provide  a  comparison among various 
processors or system  control  programs. 

Across  a  spectrum of operating  systems (DoSIVS, OSIVSI,  OS/VS2 
SVS) issuing privileged instructions and s v c ’ s ,  the  benchmark  re- 
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Table 2 Effects of VM assist  on  system  throughput  and  specific  virtual  machines. 

Model I35 Model I45 Model 158 

DOSlVS vs I DOSIVS VSI VSI vs2 

Elapsed time (seconds) 
Native 2788 
Virtual  machine 8172 
Virtual machine with VM assist 4226 

without VM assist 0.34 

with VM assist 0.66 

(Vm assist vs. non-VM assist) 74% 

(VM assist vs. non-VM assist) 48% 

privileged  instructions  simulated by 
VMl370 (VM assist vs. non-VM 
assist) 87% 

Relative batch throughput 

Relative batch throughput 

Reduction in supervisor state time 

Reduction in elapsed time 

Reduction in total number of 

3035 
1 1  598 

4063 

0.26 

0.75 

89% 

65% 

95% 

2150 1418 
4520 4089 
2723 2024 

0.48 0.35 

0.79 0.70 

73%  86% 

40% 51% 

86%  94% 

1386 
3769 
2004 

0.37 

0.69 

82% 

47% 

91% 

572 
2696 
1149 

0.21 

0.50 

69% 

57% 

74% 

sults  portray  the effects of VM assist in terms of native through- 
put, virtual machine elapsed  time, relative batch  throughput,20su- 
pervisor  state  and  elapsed  time,  and  the  number of privileged 
operations simulated by CP. The tests  were  run using Systed370 
Models 135, 145, and 158. 

Although many virtual machine environments benefit from VM 
assist, clearly not all do.  For example, cMS virtual machines in- 
terface to CP for specific services and thus  do not execute privi- 
leged instructions as frequently as non-CMs virtual  machines.  The 
DIAGNOSE instruction is CMS’S primary interface  to CP. Also,  non- 
virtual operating  systems  such  as DOS/360,OS/MFT, and OSlMVT do 
not benefit as directly from VM assist  because  they are  less  apt  to 
issue  the range of instructions aided by VM assist-those  associ- 
ated with extended  control mode and DAT operation  on  System/ 
370. 

Thus  the implementation of VM assist  was a starting  point  for  ad- 
dressing virtual machine performance  problems. How this  was 
done  has been discussed.  The  next  section  shows how this point 
of departure has broadened  considerably  for vW370 on  certain 
Systed370 configurations. 

111. Extended Control Program Support 

Extended  Control Program Support:VM/370 (ECPS:VM)7’21 provides 
for  the  further utilization of hardware  to  enhance VW370 perform- 
ance  on Models 135-3,  138,  145-3, and 148  of Systed370. 
ECPS:VM works in conjunction with VM assist, providing even 
more comprehensive  services  for  the  virtual machines and ex- 
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tending the  assist  concept  to CP execution. ECPS is controlled by 
bit settings in control  register 6 (see Figure 1) as well as by new 
Systed370 instructions which change  the  hardware  interface be- 
tween CP and  the CPU. As discussed below, this  enhancement  and 
extension  consists of new functions completely handled by hard- 
ware,  functions  that  are  partly handled by hardware,  and  func- 
tions that  are a combination. ECPS:VM has  an  expanded VM assist 
component, a virtual interval  timer  assist  component,  and  a  con- 
trol program assist  component,  and it works in conjunction with 
VM assist. 

ECPS:VM works in conjunction with VM assist  but does not  include 
it.  Thus when VM assist handles certain instructions-LOAD PSW 
(LPSW), SET SYSTEM MASK (SSM), STORE THEN AND SYSTEM MASK 

expanded VM assist (EVMA) component of EcPS to  complete  the 
simulation. EVMA undertakes  the  simulation when entered  from 
VM assist. Should it not be able  to  complete  the  operation, it 
causes CP to  simulate the instruction by directly passing control 
to CP. CP then  handles  to  completion as if VM assist  were  not 
originally available. Figure 2 shows  this  sequence, using LPSW as 
an example. 

When VM assist or EVMA can  handle one of the designated privi- 
leged instructions,  control  returns  to  the virtual machine without 
recourse  to CP. Supervisor calls are handled  as discussed in Sec- 
tion 11, above. 

Along  with the  partial handling discussed  above  for VM assist, 
EVMA provides  complete handling of the privileged instructions 

(STNSM), STORE THEN OR SYSTEM MASK (ST0SM)”it Calls on the 

PURGE TRANSLATION LOOKASIDE BUFFER (PTLB), STORE CPU 
TIMER (STPT), and TEST CHANNEL (TCH). In addition,  portions Of 

other new functions  for SET CLOCK COMPARATOR (SCKC), START 
I/O (SIO), START I/O FAST RELEASE (SIOF), and SET CPU TIMER (SPT) 
are handled by EVMA, with CP simulation completing the  func- 
tions. 

Insight into how EVMA and CP work together can be gained by 
examining the  execution of DIAGNOSE. Starting with the VM/370 
System  Extensions Program Product (SEPP) and  the Basic System 
Extensions Program Product (BSEPP),” software now supports 
EVMA hardware  for assisting the DIAGNOSE instruction when exe- 
cuted by a  virtual  machine. When issued  under  assisted  condi- 
tions, EVMA bypasses  the program exception  interruption  and 
CP’S first-level interruption handler and  transfers  control  directly 
to CP routine DMKHVC, where DIAGNOSE code analysis and sirnu- 
lation actually take  place.  Section V covers  the  use of DIAGNOSE 
by cMS and  other  virtual  machines,  but it is sigificant to point  out 
here  that  this major interface is now included among the  assists 
provided by hardware. 
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2 Interaction of SJftWare  and microcode hardware (EVMA and CPA) for VM assist 
and ECPS:VM/370 

SYSTEM/37O MICROCODE HARDWARE 
REAL PROBLEM STATE I 

I I 

Lpsw+/& ACTIVE 

LYES I 
0- 

0 I 
0 I I 

I 
I 
I 
I 

I 
I 

I 
I 

EAL SUPERVISOR STATE 1 I 
I 

I 
I 

I 

?OGRAM INTERRUPTION e--!" 

DMKOSPB 
0 

I 
I 

I 

:I 
I 
I 
I 

I 
I 

I 
I 

DISPATCH 
X 'E607.-. I 

i 1 
PERFORM 

INSTRUCTION 
LPSW 

STORE NEW 

VMBLOK 
PSW IN  

I 

The degree of instruction simulation performed by EVMA in cases 
of partial execution differs by instruction. At the very least, EVMA 
hardware prepares  certain "housekeeping" functions,  such as 
register saving and unloading and decoding of the privileged in- 
struction.  Other possibilities include partial simulation or no sim- 
ulation, leaving CP to provide such function.  For more informa- 
tion on this topic,  see Reference 21. 

Whether or not VM assist or EVMA calls on CP, control eventually 
returns to the virtual machine, which does not recognize whether 
hypervision is performed by CP, hardware,  or both. 

virtual interval timer The virtual interval timer assist (VITA) component of ECPS:VM 
assist maintains the virtual interval timer (in location 80 of page 0 of the 

1 
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0 When a virtual machine is executing, VITA decrements its vir- 
tual interval timer  whenever the real interval timer decre- 
ments. 

0 If page 0 of the virtual machine is not in real storage  at  this 
time (CP may have paged-out this page), VITA maintains the 
timer in this virtual machine’s  central  control block 
(VMBLOK). 

0 As the virtual interval timer turns  to  a negative value, VITA 
seeks  to  present  a timer interruption to the virtual machine if 
possible.  Examples in which this is not possible are  timer in- 
terruptions disabled in the virtual machine and page 0 not in 
real storage. If the virtual machine cannot  accept  such  an in- 
terruption, VITA presents  a virtual interval-timer  interruption 
to CP in such  a way that CP can differentiate between real and 
virtual interval-timer  interruptions. CP then reflects the  inter- 
ruption back to  the virtual machine after handling the  situation 
that  prevented VITA from doing it directly. In short,  the  inter- 
ruption is stacked by CP instead of  by the  hardware. 

VITA hardware  function benefits virtual machines by eliminating 
programming routines  and  enhances  accuracy in timer servicing 
because  necessary  interruptions  can be presented  faster. 

VM assist, EVMA, and VITA all assist a specific virtual machine. control program 
New System/370 instructions, which provide  for assisting CP, can assist 
be generally beneficial to VMi370 and  reduce more general “over- 
head.” Starting with VMi370 Version 3, Program Level Change 8,  
programming support is provided for  those models of System/370 
that  have  the ECPS:VM facility installed.  The  control program as- 
sist (CPA) component utilizes new System/370 instructions  to  as- 
sist certain CP routines.  The  presence of this capability is deter- 
mined as CP executes  a new privileged instruction, STORE  ECPSi 
VM LEVEL  IDENTIFIER (STECPSVM), which detects  whether 
ECPS:VM is installed and operating  at  the  appropriate  level. If not, 
the new System/370 instructions  for ECPS are made no-operu- 
tions, and CP uses existing software  routines  rather  than ECPS. 
Next, CP determines  whether VM assist is installed and, if so, acti- 
vates  it.  Thus V M ~ O  can support  machines with ECPS, with only 
VM assist,  or with neither,  as  determined  at CP’S IPL time. 

The new System/370 instructions  for CP’S use have the  extended 
storage-to-storage  format shown in Figure 3, in which X’E6‘ is 
the operation code of the CPA instruction  and  X‘cc‘ defines the 
specific function to be performed.  The  two  operands  provide pa- 
rameters  to the specific assist  function.  These  instructions are not 
defined in the System/370  Principles o j  Oprrution, nor do they 
have assembler-language mnemonics. They  appear  as DC state- 
ments in the  source  code  distributed  for CP. The specific CP func- 
tions  assisted by the CPA instructions are listed in the  Appendix. 



0 8 16 20 32 36 

OP Extended Bl   Dl  B2 D2 
CODE OP 
X'E6' CODE 

X ' C C '  

J 

component ECPS:VM is implemented with considerable flexibility as to which 
activation components  support VM/370 at any given moment. During IPL of 

CP, all components are  activated,  but  the  system  operator  can 
disable  then  enable all ECPS components,  or disable then  enable 
them  selectively.  At the virtual  machine  level,  the  console  oper- 
ator  for the  virtual machine can  disable  then enable EVMA and 
VITA. The virtual machine cannot affect the status of the CPA 
function. With VM BSEPP and SEPP software, additional selectivity 
is supported  for EVMA. Through  an  assist  control field in the VM 
list addressed by control  register 6 ,  selected  instructions  can  be 
enabled or disabled for EVMA Such flexibility is helpful 
both in maintaining system availability should hardware  problems 
arise with specific ECPS hardware  modules  and in achieving a high 
degree of system  portability  across CPU configurations without CP 
change. 

ECPS:VM significantly extends System/370 support of VM/370 exe- 
cution. It builds on  the  capabilities  introduced by VM assist  and 
extends  the  assist philosophy to CP as well. In  sum,  hardware  can 
assist  the  virtual machine environment, CP can benefit from  assist 
hardware, and CPU control  can  pass  from virtual machine privi- 
leged operation to VM assist  or EVMA hardware to CP (for com- 
pletion) and back to  the virtual machine, as in Figure 2. 

The  consequence  is improved performance of certain  virtual ma- 
chine  operations  and  certain CP routines. The extent  to which any 
given system benefits is a function of understanding ECPS func- 
tions and program behavior. CMS does  not benefit as much  from 
VM assist as  do virtual machines that  run DOS/VS or OS/VS. CMS 
does benefit, however, from DIAGNOSE, which is a primary inter- 
face  to CP, and  from CPA operation  once  control  has  passed  from 
CMS to CP. Thus  the mix of CMS and  other virtual machines deter- 
mines the benefits provided by ECPSiVM (as  distinct  from VM as- 
sist). 
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Table  3  Effect of VM  assist  on CMS batch  processing  on  Systeml370  Model 145 

Percentage of time  Paging  rate Realproblem 
in indicated  state (per second) percentage* 

Real  Real 
supervisor  problem 

Without VM assist 60.3 39.7 39.8 30.6 
With VM assist 57.9 42.1 42.8 29.4 
Difference - 3.98 + 6.05 + 7.54 - 3.92 

*Percentage of total real problem state time used by  virtual problem state 

Table 4 Effect of VM  assist  and ECPS:VM on CMS batch  processing  on  Systeml370  Model 
148 configured  like  Model 145 

Percentage of time  Paging  rate  Real  problem 
in indicated  state (per second) percentage* 

Real  Real 
supervisor  problem 

VM assist only 46.5 52.7 45.6 26.0 
Full ECPS 33.6 62.8 47.0 25.6 
Difference -27.7 + 19.2 + 3.1 - 1.5 

*Percentage of total real problem state time used by  virtual problem state 

As noted in the  earlier discussion of VM assist, ECPS has  further 
addressed VM performance problems and made even  greater  con- 
tributions to such  improvements. 

Tables 3 and 4 summarize  the  results of benchmarks  that  provide 
approximate  comparisons of the  assists  discussed  above. CMS vir- 
tual machines issue relatively few privileged instructions or SU- 

pervisor  calls, so it is interesting to  consider how VM assist affects 
CMS environments.  Table 3 shows how VM assist can affect  a CMS 
batch processing application on a System/370 Model 145. The 
same job stream  was  run on a Model 148 configured like the 
Model 145. The  results, summarized in Table 4, provide insight 
into  the effects of VM assist  and ECPS/VM during CMS execution. 

IV. Handshaking 

A common view of the virtual machine environment  stresses  the 
isolation of the  virtual machine from the real  environment. That 
is, a program (including operating system  code)  that  runs in a 
virtual machine does  not recognize that CP controls  the  execution 
of privileged instructions, handles real  interruptions  and  other 
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asynchronous  events,  and reflects events back to  the virtual ma- 
chine programming exactly  as if the virtual machine were  a real 
machine (with the  exception of timing considerations).  This  capa- 
bility allows diverse System/360 and Systemi370 programs  to  be 
multiprogrammed without interfering with or causing problems 
for one  another. CP addresses  discrepancies between the virtual 
and  real  environments. 

Handshaking changes  the  above view for DOSIVS and OSivSl in 
that  they  are given the information that  they  are  executing in vir- 
tual machines and can take  certain  actions using that  information. 
Virtual machine isolation remains; what changes is the  behavior 
of the  operating  system within the  virtual machine and the  inter- 
face  to  CP.  It is important  to  understand  that in these  operating 
systems,  the problem program partition (or user)  does  not recog- 
nize the virtual machine environment,  and  the  interface  to  its  op- 
erating  system  remains  unchanged. 

In simulating multiple virtual machines, CP’S role is to  provide 
services to those virtual machines (as  requested) and handle  the 
real  hardware  system. As to what is actually going on within a 
virtual machine, CP has  very limited information. CP is largely 
restricted  to reflecting back to  the  virtual machine’s operating 
system  conditions  that  relate  to  it. For example, CP is not in- 
volved in  how an  operating  system  manages multiprogramming 
and multitasking within a virtual machine.  They  are the responsi- 
bility of the  virtual  machine’s  operating  system. CP gives control 
to a virtual machine,  then it is up  to  the virtual machine’s oper- 
ating system to dispatch units of work according  to its own prior- 
ity scheme. 

CP regards virtual machine execution as a continuum.  The initia- 
tion and termination of jobs and tasks within the virtual machine 
are hidden. CP only regards the virtual machine as  a  whole.  This 
has proved a mixed blessing, for it has  both  ensured  the  trans- 
parency of CP to  the virtual machine and  distorted  the  time  spec- 
trum between a virtual machine’s  partition or task losing control 
and regaining control from its operating  system. Given this dis- 
tortion,  the relative batch  throughput or transaction  rate of a non- 
CMS virtual machine, or a VM system as a whole, can be adversely 
affected. Handshaking  directly  addresses  these functional prob- 
lems and  provides  some  operational  improvements. 

OS/VSl handshaking 

Analysis of os/vsl execution as a virtual machine quickly leads  to 
identification of several  areas of duplication in vs1 and CP, where 
different implementations or operational  improvements could en- 
hance  the vS1 virtual machine e n v i r ~ n m e n t . ” ~ ~  Of primary impor- 
tance is to  provide vs1 with the information that it  is interfacing to 
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CP rather  than  to  a  real machine. A system generation option 
gives VSI new capability, so that at IPL time it receives that infor- 
mation. During IPL, it issues  a SlORE CPU ID instruction to dis- 
cover  whether it is in control of a real  machine. If not, it issues  a 
DIAGNOSE instruction  to  ensure  that CP will provide  handshaking 
support.  Then vsl goes through the  nucleus initialization process 
to activate  handshaking on its behalf. 

Thus handshaking is two-sided, with cooperation on both  sides of 
the interface  between CP and  the  virtual machine. Implementa- 
tions  that  have  resulted from the  above  process  are  nonpaged 
mode,  pseudo page-fault handling, CP spool files, and  I/o-related 
items. They are discussed in the following paragraphs. 

Provided enough virtual machine storage is defined, vs1 marks all 
virtual page frames $xed, builds page tables only in the  systems 
queue area, and  disables demand paging. It does not open  an  ex- 
ternal page storage file or attempt  to  translate  the  channel  pro- 
grams it uses, and it reduces its use of the LOAD REAL  ADDRESS 
and INSERT STORAGE KEY instructions  (keys  are handled by a 
table  rather  than  real  hardware). Here OS/VSI is turning the busi- 
ness of demand paging over  to CP. While double paging is thus 
eliminated as a programming overhead  item,  the virtual machine 
executes with DAT hardware ON. 

Through the SET PAGEX command, the virtual machine console 
operator can exercise  an option that affects how CP handles real 
page faults attributed to an OS/VSI virtual machine. When a page 
fault occurs, CP gains control.  The  key  question is which virtual 
machine should be dispatched by CP while the page I/O operation 
is  under way? Ordinarily, CP places the  entire virtual machine in a 
page wait status  and  dispatches  another virtual machine. When 
exercised,  this  pseudo page-fault facility causes CP to reflect a 
special page fault to vs1 (even though the latter is not paging). vsl 
makes specific use of this  situation by marking the affected parti- 
tion or  task as being in apage wait status; then it is free to dis- 
patch  another  partition or task. As a  result, vs1 can multiprogram 
properly. 

When CP completes  the real paging operation, it reflects page I/O 
completion to VSI to clear page wait for  that partition or  task. 
This  accommodation by CP enhances  the  performance of multi- 
programming or multitasking within the vs1 virtual machine. 
When the multiprogramming level of the virtual machine is low, 
with no multitasking, pseudo page-fault handling can be disabled 
by the vs1 console  operator,  and CP then  resumes normal dis- 
patching of virtual  machines. 

Looking at  the  system  as a whole, the installation might utilize 
PAGEX OFF to  skew dispatching emphasis to a partition that is 
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executing telecommunications and a program like the  Customer 
Information Control  System (cIcS), which does  its own multi- 
tasking. 

CP spool Since CP does not detect  the  end of a job  or  job step within a vs1 
files virtual  machine,  operational  problems  arise as to when CP is  to 

start processing spool file output  (punch or printer). Without 
some  mechanism,  a manual step is needed: an operator  must 
close  the vs1 spool file to  release  the output  to CP. Handshaking 
provides a VSI interface  to CP for  this explicit purpose. A DIAG- 
NOSE instruction  issued by VSI signals CP that  the  job  or  job  step 
has been completed  and  that CP’S spool  output  operations  can  be 
scheduled.  Here is a good example of an operational  improve- 
ment resulting from handshaking techniques. 

I/O-related In any operating system  that  supports  demand paging, the I/o su- 
items pervisor  increases  system  overhead.  This is especially true of 

code  that  requires  translation of channel  programs.  Handshaking 
improves  the way VSI handles I/O in such  cases. vs1 neither  trans- 
lates  channel  programs nor builds indirect  data  addressing  lists 
when handshaking is operative. Similarly, vS1 allows CP to handle 
IBM 2314 and 23  19 direct-access-storage  seek  separation  opera- 
tions,  and it refrains  from issuing a TEST CHANNEL (TCH) instruc- 
tion prior  to  executing  the START I/o instruction.  These  functions 
are performed later by CP. 

Particularly thorny  for virtual machine I/O is the modification of 
channel  programs  after  they  start.  Normally CP does  not  guaran- 
tee  proper handling of such  channel  programs,  but  the vs1 Basic 
Telecommunications  Access  Method (BTAM) is  an  exception 
when its autopoll feature is in use.  Autopoll modifies the  virtual 
communications channel  programs  for  a  line. Without hand- 
shaking, CP utilizes flags in the  real  channel program to signal it to 
inspect  the BTAM virtual  channel  program for changes.  Hand- 
shaking eliminates this  approach by providing a VSI DIAGNOSE 
instruction, which signals CP at  the time of change to allow CP to 
update  the  real  channel program it builds and maintains. CP’S con- 
tinuous investigation of BTAM is thereby eliminated. 

A  somewhat  related implementation applies  to  the  Telecommuni- 
cations  Access  Method (TCAM) at  Release 5 .  Regardless of 
whether  its  operating  system  supports  handshaking, TCAM can be 
generated  for  execution in a virtual  machine, with DIAGNOSE in- 
structions  to signal CP whenever  a TCAM channel program is being 
modified. The  objective  is  to allow such  programs  to  run in a vir- 
tual machine as paged rather  than with the earlier nonpaging re- 
striction. This process  can  be  considered handshaking for a  spe- 
cial purpose. 
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DOSNS handshaking 

Handshaking implementations  for DOS/VS25s26 differ considerably 
from those  for os/vsl, but  the  objectives remain identical. The 
main difference invqlves virtual-timer updating, which enables 
the accounting routines of DOS/VS to  more accurately reflect timer 
settings when a ~os /vs  job terminates. DOS/VS signals CP so that it 
can  update  the  virtual  interval  timer. CP can  also  be signaled when 
DOS/VS changes the  timer’s  value.  This is a programming ap- 
proach to what the VITA hardware  component of ECPS provides 
on System/370 Models 135-3,  145-3,  138, and 148. 

Handshaking is a system  generation  option  for DOS/VS but, unlike 
vs1,  the resulting system  can be executed only as a virtual ma- 
chine. It is not an IPL option. 

Performance  enhancement 

Handshaking is a programming approach  to enhancing the  per- 
formance  and  operational  effectiveness of virtual machines. It 
can  operate with the hardware  assists  discussed  above.  Alone, 
handshaking can both aid virtual machine  execution  and  reduce 
real  supervisor state (CP) execution  time by reducing the number 
of privileged instructions, virtual machine paging I/o, etc.  To a 
large degree,  assists  and handshaking try  to solve the  same  prob- 
lems, so knowledge of where specific benefits accrue  requires 
considerable knowledge of the  behavior of virtual machines. For 
ipstance, elimination of double paging greatly  reduces  the 1/0 ac- 
tivity that CP must handle  and  the  number of privileged instruc- 
tions  executed in the virtual machine. It also  ensures  that  when  a 
virtual machine has  control,  execution will tend to  be more in the 
virtual problem state than in the  virtual  supervisor state; more 
work is being done by executing  application  user  code  directly. 

The  pseudo page-fault facility is a good example of how CP makes 
use of the information that multiprogramming or multitasking is 
going On in a virtual machine. SPOOL CLOSE addresses  tbe  prob- 
lem of virtual machine job  or task  transition by allowing the  oper- 
ating system in the  virtual machine to notify CP by means of the 
DIAGNOSE instruction.  The DIAGNOSE interface,  then,  bas  found 
use beyond CMS,  and  its increasing usefulness benefits from 
ECPS:VM’S assistance. 

The performance improvement  that  can  result from handshaking 
is indicated by results of a benchmark  conductefl  at the IBM 
World Trade  Systems  Center in Poughkeepsie, New York.  The 
benchmark  consisted of running 12 jobs on a Systed370 Model 
158 with VM assist  and  prototype  handshaking  code.  Ten jobs ex- 
ecuted  the C ~ M P I L E  LINK AND GO (CLG) step in FORTRAN. One 
COBOL job executed five CLG steps with SORT called by COBOL, 
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and  one job, also in COBOL, executed CLG, SORT, and CLG steps. 
Operator  setup was minimal, and  native CPU utilization averaged 
about 90 percent.  The following results are pertinent: 

e Relative  batch  throughput: With handshaking, when CP paged 
an osmsl virtual  machine,  the  relative  batch  throughput in- 
creased 35 percent (from 0.55 to 0.74) while total CPU time 
decreased 29 percent (from 781 to 557 seconds). When the 
benchmark was rerun with the os/vs1 virtual machine execut- 
ing out of VM’S virtual-equals-real area, handshaking im- 
proved  relative  batch  throughput by 14 percent (from 0.69 to 
0.79), and CPU time decreased by 20 percent (from 717 to 570 
seconds). 

e Pseudo pageTfuult handling: The  benchmark used six initia- 
tors,  and, with PAGEX OFF, nine of the 12 jobs ran in VS1 parti- 
tions 0-2, while partitions 3-5 did not get beyond a single job. 
With PAGEX ON, partitions 3 and 4 each ran a second  job. 
Thus, although pseudo page-fault handling did not  affect  per- 
formance  throughout  the  benchmark, it did affect the level of 
multiprogramming by OS/VS I .  
Effect of handshaking  apart from V M  assist: Since the  runs 
described  above used VM assist,  two  runs were made without 
VM assist-one with handshaking and PAGEX OFF, and  one 
with no handshaking. Relative batch  throughput was 0.54 with 
handshaking and 0.24 without. 

V. Inter-virtual-machine  communication 

Emphasis  to  this  point  has been on hardware and programming 
approaches  to improving the performance  and function of VMi370 
and specific virtual machines. As indicated by Seawright and 
Ma~Kinnon ,~  this  improvement was an enabling event which re- 
sulted in increased  acceptance of V M ~ O  for many CPU configura- 
tions, with a  diversity of end-user  applications. 

The balance of this  paper  seeks to review  and assess another 
trend which has similarly affected VM/370. Inter-virtual-machine 
communication, in which the  objective is to send data  or  control 
information between virtual machines, is examined.  Mechanisms 
for accomplishing this  objective are  described, and motivations 
behind this trend are examined.  Examples  show how inter-vir- 
tual-machine communication has increased  the potential role of 
virtual machines. 

It is important to note  the  growth of virtual machines as sub- 
systems.  Users  have  conducted  experiments and designed sys- 
tems  to  create  virtual-machine-resident  software with character- 
istics different from  those  discussed  above.  They  are  subsystems 
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that  have information about  and  are  dependent on CP and  the vir- 
tual machine environment.  In  this sense, they more closely re- 
semble CMS than  other  operating  systems. 

A subsystem  incorporated by IBM into VM/370 was the  Remote 
Spooling Communications  Subsystem (RSCS),’~ which operates  as 
a separate virtual machine. RSCS manages spool files transmitted 
between virtual machines  and  remote-job-entry  stations,  between 
remote CPU’S operating as remote-job-entry  stations,  and be- 
tween  other CPU’S operating HASP or ASP spooling components 
and RSCS (and thereby viewing VM/370 as a  remote work station). 
RSCS also manages files sent from remote work stations  and ceu’s 
and destined either  for machines within this VM/RSCS system or 
for  output  on  other work stations or CPU’S connected to this 
system. 

RSCS is a  special-purpose  operating  system. It contains  its own 
multitasking supervisor,  and it provides  storage and task manage- 
ment, line drivers  for  the  communications  links, and service  rou- 
tines  for command processing. It can  operate only in a virtual 
machine environment. It can  operate in disconnected  mode if 
communication with the RSCS virtual machine operator is not  re- 
quired. 

RSCS interfaces to CP via the  latter’s local spool files and by use of 
a DIAGNOSE interface. It is both a special-purpose  subsystem  con- 
structed  as  a virtual machine,  and  a  means by  which a  virtual 
machine can  transmit  data  outside itself (and,  indeed,  outside the 
real machine as well). RSCS was an early step toward a virtual 
machine networking capability. 

CP’S local spooling capability is mentioned only in the  context of 
the use of spool files by RSCS for  sending  and receiving data  ex- 
ternally on communications  lines.  Spool files also have been used 
by virtual machines to exchange data within the  same  real ma- 
chine, in that  one virtual machine can send  data  to its card  punch 
or printer  for spooling to the  card  reader of another  virtual ma- 
chine. This approach  has  the  advantage of using a well known  and 
externally defined function of CP while maintaining the  isolation 
and logical view of virtual machines. 

A disadvantage  for  transaction handling lies primarily in the in- 
flexibility of the data formats (unit record) and the I/O overhead 
associated with transcribing  the  data to  and from the  spool  packs. 
What evolved was a  series of techniques  for efficient inter-virtual- 
machine communication employing storage-to-storage  data  trans- 
fer.  This  spurred  development of additional  subsystems  based  on 
virtual machine architecture. 
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An early approach was use of the  virtual  channel-to-channel 
adapter (CTCA) support already in CP. Originally it was  intended 
to facilitate testing of ASP loosely coupled multiprocessing config- 
urations in a virtual machine environment.  Through a CP COUPLE 
command,  two  virtual machines are  connected through a virtual 
CTCA path,  and  the READ/WRITE I/o commands issued by these 
machines are  simulated by CP. Data can  then be exchanged be- 
tween virtual address  spaces via CP’S move instruction  rather 
than by an I/O operation (assuming that  no page fault  occurs). 

otherapproaches- A  more  elaborate  approach was devised by A. N. Chandra at 
SPY and VMCF IBM’S Thomas J. Watson  Research Center.’* The resulting virtual 

machine, called SPY, was particularly useful because it managed a 
variety of special-purpose virtual machines (for data  management 
or networking, for  instance), it recorded  virtual machine accesses 
and linkages, and-most important for this discussion-it pro- 
vided another  protocol  and facility for  the  interchange of data 
between virtual machines. CP’S Virtual Machine  Communications 
Facility (VMCF) is  based  on  this  part of  SPY.^,^^,^^ 

VMCF uses two principal interfaces to allow virtual machines to 
communicate. First, a DIAGNOSE instruction  requests  special 
VMCF facilities from CP. The  second  interface is an  external  inter- 
ruption which serves  as  a signal for notification and  synchro- 
nization of transmissions and acknowledgments between virtual 
machines. CP generates  these  interruptions  for both sending and 
receiving virtual machines. 

VMCF provides for  transfer between storage-the virtual address 
space of a sending virtual machine (called the  source)  and  receiv- 
ing virtual machines (called sinks). A single source is able to send 
to more  than  one  sink. In  the  process,  two  real page frames  are 
locked. VMCF, then, formalizes procedures  for  inter-virtual-ma- 
chine communication and recognizes a  need  for in-storage data 
transfer among any  number of virtual  machines.  The  next  section 
considers  the  purposes  served by such  communication. 

Generalized  Management Many intercommunications problems were  addressed in the 
Information  System course of a joint  study  conducted by the IBM Cambridge Scientific 

Center,  the MIT Sloan  School of Management  (Center for Infor- 
mation Systems  Research),  the MIT Energy  Laboratory,  and  the 
New England Regional Commission, a Federal-New  England 
States  co-partnership.  The  system  that  grew  out of that study,  the 
Generalized  Management  Information  System (GMZS) ,31-34 is men- 
tioned here  because of its use of a separate virtual machines  ar- 
chitecture  for  communication within the same real system. It ex- 
emplifies the  application of many trends  discussed in this  section. 
The virtual machines include: 
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0 Interactive CMS virtual machines which use FORTRAN, PLiI 
and APL interpreters. 

0 End-user  virtual machines with application-oriented  software 
such as econometric, time series  analysis,  and modeling pack- 
ages. 

0 Experimental query machines which run SEQUEL.35 
0 A data-base-manager virtual machine which provides  access 

to  an  experimental relational data  base  system. It activates 
itself and interfaces to  other machines when they  are  needed. 

e Interface virtual machines which accept  requests  from  inter- 
active virtual machines (running APL, for instance) and link 
them to facilities such  as  a  relational-data-base manager. The 
user is unaware of this link. The linking and  communication 
process is hidden from  the  application programmer and  termi- 
nal user, who asks  for  and  receives  data  and  services  without 
involvement in the  intercommunication  processes. 

When the  joint  study began in 1975, the use of virtual punches 
and readers  for  intermachine  communication was unsatisfactory 
because of the  associated I/O and system  overhead.  Then CMS 
minidisks were  used  to  exchange data among virtual machines. 
But the greatest  improvement  came with the  experimental SPY 
interface  discussed  above. SPY was  used  both  for virtual machine 
management and for  the  transfer of data.  Finally, in the  con- 
cluding months of the  study, VMCF was used for transferring data 
between certain virtual  machines. 

The primary objective of GMiS was to  interconnect a wide variety 
of language processors, application programs, analysis tools,  and 
data  base  structures.  Interconnection is made as  the terminal user 
logs on the  interactive virtual machine and  decides  what  tools  and 
resources  are  needed.  This  computational  environment  has  been 
called an “ad  hoc” decision support  system (DSS).36 The  inter- 
communication capabilities and interface virtual machines were 
vital to  the utilization of existing application programming and 
language processors without substantial modification. GMIS dem- 
onstrates  the  traditional virtual machine ability to accept  diverse 
software  environments without changing the  software  domains, 
even while providing sophisticated  intercommunication  and  ac- 
cess  to programming and  data  structures unknown to  the appli- 
cation-oriented end user. 

Research  on  virtual machine intercommunication  continues. Virtual Control 
C. R.  Attanasio of the IBM Thomas J. Watson Research  Center Storage 
has developed an  experimental  extension  to VMi370 called Virtual 
Control Storage (VCS), a  protected,  fast-access  execution  and 
data domain for virtual 

VMCF and vcs may appear to  overlap when viewed strictly in 
terms of data  transfer.  Their  architecture differs considerably, 
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Table 5 Performance  comparisons of several  virtual  machine  communications  methods  (times  in  seconds)’ 

Method No. of Sendl  Average  Average  Average  Average 
records  receive time virtual rota1 no. of 

to send CPU time CPU time SlO’S 

Spool 
(virtual 
punch to 
reader) 

DASD 
(shared CMS 
minidisks) 

100 send 

1000 
recv 
send 
recv 

10 000 send 
recv 

100 send 

1000 
recv 
send 

10 000 
recv 
send 
recv 

2.0 

11.2 

114.2 

- 

- 

- 

3.2 

14.4 

102.8 

- 

- 
- 

0.030 
0.094 
0.252 
0.752 
2.494 
7.492 

0.060 
0.050 
0.248 
0.238 
2.170 
2.086 

0.156 
0.350 
1.010 
2.414 
9.448 

23.547 

0.210 
0.220 
0.796 
0.752 
6.338 
6.008 

13 
20 

104 
1 1 1  

1006 
1013 

___ 
47 
38 

229 
219 

2033 
2023 

VMCF’ 100 send 0.8 0.004 0.030 1 
recv - 0.006 0.056 1 

1000 send 1.4 0.024 0.140 11 
recv - 0.032 0. I90 10 

10 000 send 13 .O 0.256 1.230 111 
recv - 0.318 1.412 106 

‘These benchmarks were conducted by  Clifford H. Avey  at the IBM  Cambridge Scientific Center 
’External intemptions for VMCF are counted as SlO’s. 

however, in that VMCF provides an  asynchronous  transfer  mecha- 
nism between distinct virtual machines,  whereas vcs provides 
synchronous data transmission  between  separate  domains in the 
same virtual machine. Also, VMCF employs  hardware  storage 
protection  and  storage-to-storage  transfer,  whereas VCS relies on 
restricted  addressability  and segment sharing. vcs does  not  use 
an asynchronous communication-like protocol, but rather a syn- 
chronous instruction-like protocol. And the vcs program is able 
to modify areas of virtual storage  and  also  general-purpose regis- 
ters and the program  status  word. vcs applies,  then, to  far more 
than  data  transfer. 

To place some of the communications  techniques and develop- 
ments in perspective,  Table 5 cites  several  benchmarks  that com- 
pare virtual punch-to-reader  transfer,  shared minidisk DASD, and 
VMCF, which uses  storage-to-storage  transfer. The benchmarks 
were  conducted at  the Cambridge Scientific Center using 80-byte 
records and sending and receiving virtual machines. 

VM/370 networking This discussion of inter-virtual-machine communication con- 
cludes with real-machine networking for ~ ~ 1 3 7 0 ,  including trans- 
parent communication between  virtual machines on physically 
separate  real  machines. Using RSCS as a base,  peer CPU-to-CPU 
networking has  been provided between  systems  connected on 
dial-up and  leased  lines or real channel-to-channel  adapters.  This 
capability is provided in the  Network Job Entry/Network Job  In- 
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terface  (NJE/NJI) programming packages.38  The VM/370 component 
is called VNET.’~ It provides  peer  connection  to  other CPU’s 
(rather  than  the  master-slave  relationship in remote job  entry). 
When those CPU’S also  run VNET,  there is inter-virtual-machine 
communication between multiple real  machines. 

This  approach,  used  extensively within I B M , ~ ’  literally broadens 
the  horizons  for  potential usage of virtual  machines.  In  an  experi- 
mental application at  the Cambridge Scientific Center,  for  ex- 
ample, System/370 Models 158 and 115 were  connected by a 
channel-to-channel adapter. Both ran VM/370, but  the Model 115 
executed  a  substantially  smaller  nucleus (approximately lOOK 
bytes).40  The  experiment was meant to evaluate VM/370 in such  an 
environment,  and  also to use  the Model 115 to simulate a front- 
end  processor by transmitting  data  to  and from the Model 158. 
Both CPU’S executed VNET and  used  it as their  communications 
vehicle. 

It is interesting to note  that VNET’S architecture  necessitated  no 
changes  to CP and that it accommodated itself to a very small real 
machine environment without change. VNET resided in each of 
these  two  real  machines.  Because VNET supports CTCA and  com- 
munications links for virtual-machine-to-virtual-machine pro- 
tocols,  the Model 115 just  as easily could  have been remote  from 
the Model 158, to  establish  a  concentrator  or  distributed  process- 
ing application environment. 

VI. Further use of operating  system  assist 

The hardware  assist  philosophy, as discussed  above  for VM/370, is 
now provided in some  other  operating  systems. Brief discussion 
is included here to balance the  prior  discussion and enable  the 
reader  to  see  that  assist implementation is hardly limited to 
VMi370. Specifically, OS/VSI benefits from a hardware  assist on 
some models of System/370,*’ as  does  the MVS System  Exten- 
sions Program Product  for  processors  that  support  the  System/ 
370 Extended 

The  hardware  assist  for osivsl is called Extended Control Pro- 
gram  Support:vsI ( E C P S : V S Z ) . ~ ~ , ~ ~  ECPS:VSl and ECPS:VM can si- 
multaneously reside in the writable control  storage of a real sys- 
tem and provide a  hardware  assist  to  their  respective  control  pro- 
grams. For example, VSI can be  executing  as  a virtual machine 
under VMi370 and benefit from ECPS:VSI . CP and  other  virtual ma- 
chines  can benefit from ECPS:VM when they  have  control. 
EcPS:VM and ECPS:VSI are  not  necessarily cumulative in their  to- 
tal effect on  system  performance,  however. For instance, there is 
some overlap in ECPS:VSl function  and vs1 hand~hak ing .~~  
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The MVS System  Extensions Program Product  supports  the  Sys- 
ted370 Extended Facility. It can enhance system performance 
through new privileged instructions,  path length reduction,  and  a 
variety of internal implementation changes to* the system. Of the 
14 new instructions defined by the System/370 Extended  Facility, 
12 are provided solely to assist M V S . ~ ~  

While the  assist  hardware now has relevance  for MVS on  a  real 
machine, there are also implications for MVS execution in a vir- 
tual machine. VM/370 SEPP accommodates  and improves MVS per- 
formance in a virtual machine in gart  because  the System/370 Ex- 
tended Facility provides  for  execution of the new MVS privileged 
instructions by the  assist hardware when MVS SEPP is running in a 
virtual machine. This capability is called the virtual machine ex- 
tended facility and is specified through control register 6.46 In ad- 
dition, changes have been made to cp which improve MVS per- 
formance. This development might be called “partial  hand- 
shaking” since changes  are one-sided-only CP has  been 
changed, in that it provides new MVS console SET commands: SET 
STM and SET STBY. 

Together,  these new commands allow CP to  share  shadow page 
 table^"^^'^* among the multiple virtual address  spaces of a single 
MVS virtual machine when, in fact, the  address  space  they  pgint 
to is commoq. This will be  the  case in an MKS virtual machine for 
the nucleus and common  area  at  the top of the .virtual address 
space managed by MVS. The commapds  bypass  shadow  tables 
when MVS is running in a virtual-equals-real mode in the virtual 
machine. 

Finally, users of APL interpreters  on  some models of  Syq{em/370 
experience  faster  execution  because of the APL micrococle assist. 
APL emulatipn involves direct execution of APL statements by  mi- 
crocode  that  works with a new System/370 instructjon, APL EMU- 
LATION CALL (APLEC). Further  discussion  here is unnecessary, 
other  than  to  note  that  the APL assist yields the  greatest  perform- 
ance  improvepent of all the  assists  discussed in this papkr. Given 
its early availability, the APL assist  served to demopstrate  what an 
effective microcode assist  can  achieve,  and’  it stimulated sub- 
sequent assist jmp~ementations.~~ 

\ .  

VII. Summary 

Since 1972, the implementation of System/370 virtual machines 
has changed considerably, specifically in CP and in the  virtual ma- 
chine interface. Changes within the  virtual machine environment 
range from the APL assist microcode to virtual machine hand- 
shaking with CP, to accommodations for MVS virtual’ machines. 
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All of these  changes had the  dual  objectives of improving per- 
formance  and improvirlg the  functions of individual virtual ma- 
chines, CP, and  the  entire  system.  Operational  improvements  pro- 
vided with handshaking  address  certain  needs  associated with the 
virtual machine environment. 

virtual machine isolation arld integrity  have been preserved, 
along with optional  extended facilities and  interfaces  that  foster 
intermachine  communication when desired. DIAGNOSE and VMCF 
in V M ~ O  make such  interfaces  generally available to  the appli- 
cation  developer and systems  architect.  To  an  extent, inter-vir- 
tual-machine  communication  has  always existed-it  is  its growth 
and  potential  that  are  most  relevant. 

Several explicit examples,  such  as RSCS,  VNET, and GMIS, illus- 
trate new approaches to providing function,  facility,  and  commu- 
nication. They hold significant promise  for innovative future  use 
of the virtual machine concept  and  increased sharing of data  and 
programming. 

VIII. Conclusions 
One can envision future uses of virtual machines that will exploit 
a proliferation of multiple,  interconnected  real  and  virtual ma- 
chines. While the  interconnections may be local or commhnica- 
tions-based, the logical view can  remain  the  same. VM/370 at- 
tached  processor support4’ can be viewed as a first step-for large 
systems and in a tightly-coupled context. Multiple logical and real 
systems (large or small) are  appropriate  and fertile fields for fu- 
ture  experimentation  and investigation. 

Possible  implementations 

A virtual machine controlled by CP could  assume responsibility data  base 
for  data management and  encryption while connected  to  peer  pro- machine 
cessing machines. It is important  to  note  that  these “data”  and 
“processing”  machines  can  be in the  same  real machine complex 
or in separate  real  machines. Logically, the  processing  machines 
might transmit  requests in blocks to  the “back-end’’ machine, 
which would asynchronously  manage  the  data and transmit 
blocks of data  responses (in clear or encrypted form). This  tech- 
nique of transmitting blocks of data  already  has been employed in 
the IBM 3705 communications  controller when it runs  the  network 
control  programhirtual  storage (NCP/VS) for communication be- 
tween  hosts and the 3705 with Systems  Network  Architecture 
(SNA). 

The GMIS and vcs experimental  systems  show  that  function  can 
be divided among separate virtual machines or address  spaces. 
For virtual machines to become  separate real machines seems a 
logical next  step. The possibility of improved  “processing-ma- 
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chine”  performance, coupled with enhanced abilities to inter- 
connect and share  data in a secure  fashion, should easily motivate 
future  experimentation. 

distributed The virtual machine philosophy and  system  intercommunication 
processing capabilities (local and  remote, virtual and real) hold promise  for 

solving problems of distributed  processing. The reliability and 
relative  security of virtual machine systems  enhance  their  attrac- 
tiveness  as vehicles for  such  experiments.  The need to remotely 
assess and manage performance,  malfunction,  and  operational 
problems is critical  to  such  systems. Management of such  prob- 
lems is facilitated by the hypervision of virtual machine control in 
VM/370, and it is practical, considering the  peer  network  con- 
nections  that are available  today. The “user-friendly”  and  ease- 
of-use characteristics of v ~ / 3 7 0 ~  also hold potential  for  such  distri- 
bution, without increased complexity for  the  distributed  system 
user. 

programmed The  concept of a disconnected virtual machine as a programmed 
operator operator  has  been implemented at many VM/370  installation^.^^ At 

Cambridge, for  example,  this  cdncept  has proved useful for  direc- 
tory  and  password  management, mail and message handling, and 
secure volume mounting. Special virtual machines can be  acti- 
vated automatically by the programmed operator  at a specified 
time to accomplish performance  monitoring,  for  example.  Such 
programmed operators in separate  real machines may well prove 
beneficial for small systems  that  cannot  support  the  programmed 
operations  aspects of ASP or JES3 multisystems. When combined 
with network linking or  as  part of distributed processing systems, 
the programmed operator  addresses  unattended  operation  and 
human factors  problems of computer  operation in a  non-data-pro- 
cessing  environment (such as  an office). 

personal CMS has long demonstrated  the  productivity  that  can  be  achieved 
computing with a single virtual machine. And while CMS is implemented to 

run on System/370, this  type of virtual machine may well prove 
effective when running  on a different hardware base-whether in 
a small computer  like  the IBM 51 10 or in an intelligent terminal. 
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Appendix: CP functions 
The following CP functions  are  assisted by the CPA instructions: 

0 Obtain free  space from free  storage  area 
0 Return  space to free  storage 
0 Page lock 
0 Page unlock 
0 Decode the first channel command word (CCW) in a list;  also 

0 Free ccw storage 
0 Dispatch a control block or virtual machine 
0 Locate virtual 110 control blocks 
0 Locate  real Iio control blocks 
0 Translate  virtual  address  and (if possible) test  for  shared page 
0 Translate  virtual  address  and (if possible) lock the page 
0 Invalidate  segment  table;  invalidate page table 
0 Entry  into  virtual machine dispatch 
0 Common ccw processing 
0 Untranslate  the  channel  status word (CSW) 
0 Dispatch control block or virtual machine 
0 LINK (initiated by CP’s  SVC 8) 

RETURN (initiated by CP’S SVC 12) 
Change shared page scan 

decode  subsequent CCW’S 
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