This paper is a survey of changes to virtual machine interfaces,
implementation, architecture, and simulation techniques as they
affect IBM System/370 and 303X (3031, 3032, 3033) processors,
the system control program to which virtual machines interface,
and other virtual machines executing on the same real computing
system or elsewhere. The paper seeks to summarize such changes
and provide a perspective on the virtual machine environment,
New uses of virtual machine subsystems are discussed as they
relate to inter-virtual-machine communication.

The changing virtual machine environment: Interfaces to
real hardware, virtual hardware, and other virtual machines

by R. A. MacKinnon

When IBM introduced virtual machine products with CP-67 on the
System/360 Model 67, an early view of the uniqueness of virtual
machines focused on the isolation of one virtual machine from
another.”” CP-67 was able to provide System/360 hardware sys-
tems with a variety of operating system environments, or virtual
machines, all independent of each other. This was accomplished
with dynamic address translation hardware and the use of mul-
tiple virtual address spaces, hypervision by the control program
(cP), and cP’s handling of the real machine. System/360 split in-
structions into privileged system control instructions and non-
privileged computational instructions, enabling CP to achieve its
objectives with virtual machines by exploiting the real hardware
whenever possible.

CP-67’s ability to handle a variety of virtual machine software en-
vironments and the separation and isolation of virtual machines
made the system attractive to users. Development of the Cam-
bridge Monitor System (CMS) provided conversational computing
to CP-67, which became known as CP-67/CMS.*

Since 1972, the use of virtual machines has become more wide-
spread with the availability of IBM’s Virtual Machine Facility/370
(vM/7370) for many models of System/370.* Virtual machine archi-
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tecture and the implementation of vM/370 are discussed in Refer-
ences 35, 6, and 7. This paper examines how VM/370 has progressed
beyond its predecessor, CP-67/CMS.

1. Outline of the paper

Various hardware and software implementations have been de-
signed to improve VM/370 system performance, as well as the per-
formance of individual virtual machines and cp. Initially, a Sys-
tem/370 hardware implementation called virtual machine assist
was designed to enhance the execution of privileged instructions
and supervisor calls (normally associated with virtual machine
operating systems). VM assist is discussed in Section II.

VM assist extended hardware capability beyond the defined Sys-
tem/370 instruction set while preserving the virtual machine’s
view of its instruction set. Certain processors are now provided
with information about the virtual machine execution environ-
ment, and these processors are optimized or tailored to enhance
vM/370 performance. On certain processors, this extension has
continued to enhance CP execution and expand VM assist through
more hardware support. Again, the objective is to improve sys-
tem execution time by assisting, with direct hardware execution,
routines that handle certain CP functions. This further develop-
ment (which is additional to VM assist) is called Extended Control
Program Support:vM370 (ECPS:vM/370). It is covered in Section
III.

¢MS is discussed by Seawright and MacKinnon in the preceding
paper.’ Other major trends in virtual machine interfaces and exe-

cution can be found in some non-CMS environments. Hand-
shaking is the name used here for the changes to the DOS/vS and
08/VS1 system control programs that enable them to recognize
and take advantage of their execution in a virtual machine envi-
ronment.” While the implementation is different in each of these
operating systems, their handshaking objectives remain the
same—bypassing, eliminating, or reducing functions that are re-
dundant or operationally inefficient in the virtual machine envi-
ronment. The result has been enhanced performance of DOS/VS
and 05/VS1 in virtual machines and improved operation of virtual
machine systems. Handshaking is discussed in Section IV.

However, while handshaking complements the VM assist and
ECPS:VM/370 hardware functions, it does not employ hardware.
Even with handshaking, the problem programs managed by
0s/vS1 and DOS/VS do not recognize their virtual machine environ-
ment. This holds true for cMs and Multiple Virtual Storage (MVS)
problem state programs as well. They regard their operating sys-
tem as controlling a real machine.
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Section V discusses the use of virtual machine architecture for
system development and implementation. Emphasis is on inter-
virtual-machine communication, which departs from the earlier
view that total isolation was to many users a dominant view or
desirable.

Section VI treats control program assist approaches in environ-
ments other than VM. New instructions in System/370 Models
158-3 and 168-3 and in the 303X processors for the MVS System
Extensions Program Product (MvVS/SEPP)*' are discussed both as
examples of how control program assists extend beyond vM/370
and as they relate to MVS in the virtual machine environment.
These assists apply to MVS/SEPP even when executed in a virtual
machine. The MVS discussion includes CP changes designed to
achieve ‘‘partial’’ (one-sided) handshaking on behalf of MVS.
This section concludes with a discussion of Extended Control
Program Support (ECPS) for 0s/vS1 and of the APL assist for micro-
code execution of APL statements, to amplify the point that hard-
ware and software changes in VM/370 also appear elsewhere.

Finally, possible future evolutionary trends are charted in the
Conclusions.

{l. Virtual machine assist

VM assist is a hardware implementation designed to improve the
performance of some VM/370 virtual machines, and thereby en-
hance the performance of that particular system.'”*® This dis-
cussion concentrates on the function of VM assist and how it helps
the execution of virtual machines, rather than its actual imple-
mentation on various CPU’s. The primary interface between vir-
tual machines and CP occurs when the operating system in the
virtual machine executes a privileged instruction or a supervisor
call (SvC). As an additional interface, CMS employs the DIAGNOSE
instruction for functions such as disk 70 and depends on CP for its
operation. CMS can execute only in a virtual machine. The inter-
faces between virtual machines and CP are discussed by
Seawright and MacKinnon.?

So what VM assist seeks to do is emulate, whenever possible,
certain CP routines that simulate the instruction that the virtual
machine executed. VM assist produces results that are function-
ally equivalent to CP’s results. Significantly, VM assist executes
directly, without CP, and thus can dispense with the interruption
handling and redispatching associated with the transfer of control
between virtual machines and CP. There are exceptions to this
support. The non-high-performance and not-well-definable vir-
tual machine uses of certain privileged instructions are not as-
sisted.
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Figure 1 Control register 6

Bit Function and use

0 Virtual machine assists ON/OFF—used by VM assist, EVMA, and VITA;
can be turned on and off for each virtual machine.

Virtual machine problem or supervisor state—set by CP and VM assist;
will determine whether an instruction was issued in privileged state.

ISK and SSK instructions—whether VM assist should handle these in-
structions.

System/360 or System/370 mode —helps VM assist and ECPS:VM/370 de-
termine which instruction set is valid for the virtual machine.

SVC handling—set by CP to tell VM assist whether non-SVC 76’s should
be reflected to the virtual machine.

Shadow table fixup—activates handling by VM assist.

CP assist—set by CP for entire system; in conjunction with bit 0, defines
which assists (VM assist, EVMA, VITA, CPA) are active.

Virtual interval timer assist (VITA) for ECPS:VM/370

Real address of VM pointer list.

Emulation of System/370 extended instructions executed in virtual ma-
chine by virtual machine extended-facility assist.

30-31 Reserved and undefined.

VM assist relies on control register 6' for key information to gov-
ern its actions for individual virtual machines. CP manipulates its
settings of control register 6 as part of dispatching the virtual ma-
chine or establishing its contents for CP execution. Figure 1 maps
this register. As an example, note that VM assist handles privi-
leged instructions only when it is ON (bit 0), the CPU is in the real
problem state (from the current program status word), and the
virtual machine is in the virtual supervisor state (bit 1).

The specific instructions handled by VM assist are listgd in Table
1.">'% A distinction is made between System/370-only and Sys-
tem/370 and System/360 virtual machines. That distinction is in-
dicated to VM assist by bit 3 in control register 6.

The System/370-exclusive instructions are most likely to be found
in operating systems that support virtual storage management.
Early System/360 operating systems such as DOS and 0S do not
use them at all and thus derive less benefit from VM assist.
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Table 1 Privileged instructions handled by VM assist

System/360 and System/370 System/370 only

INSERT STORAGE KEY (ISK) INSERT PSW KEY (IPK)
LOAD PSW (LPSW) LOAD REAL ADDRESS (LRA)
SET STORAGE KEY (SSK) RESET REFERENCE BIT (RRB)
SET SYSTEM MASK (SSM) SET PSW KEY FROM ADDRESS (SPKA)
STORE CONTROL (STCTL)
STORE THEN AND SYSTEM MASK
(STNSM)
STORE THEN OR SYSTEM MASK
(STOSM)

As VM assist encounters one of the privileged instructions listed
in Table 1, it performs the appropriate emulation and then returns
control to that virtual machine’s next instruction. This process
bypasses the following CP routines: interruption handling, analy-
sis of the operation to be simulated, the actual simulation, and
invocation of CP’s dispatch routine. Performance improvement
comes from hardware implementation rather than software exe-
cution, and from having to perform only the actual simulation.

When executing an SVC instruction, a virtual machine does not
have to be in the virtual supervisor state. Essentially, SvC’s are
handled exactly as outlined for the vM-assist-related privileged
instructions. The exception is $VC 76 which has been reserved
arbitrarily for CP to handle or reflect real machine error informa-
tion to the virtual machine.'” Thus VM assist does not handle SVC
76.

Virtual machines operating in extended control mode with the
dynamic address translation (DAT) facility ON require that special

page and segment tables be created and maintained by cp.”"*"

These **shadow’’ tables enable the virtual machine operating sys-
tem to utilize DAT hardware and manage its virtual storage as it
would on a real machine. CP manages the ‘‘real’’ storage associ-
ated with the virtual machines through demand paging and its
own set of segment and page tables. The shadow tables enable CP
to let the virtual machine manage its virtual storage while CP man-
ages its real storage. Note that the virtual machine’s page size
may differ from CP’s page size.

VM assist’s role in shadow table management is to receive trans-
lation exception conditions caused by the virtual machine and
handle them without causing an actual translation interruption.
Specifically, instead of directing the translation exception to CP,
VM assist checks to see if the page that caused the translation
exception is actually in real storage. This is determined by check-
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ing the virtual operating system’s DAT tables and the real segment
and page tables. VM assist finds both sets of tables through the
virtual machine pointer list addressed via control register 6.' If
VM assist finds that the desired page is in fact in real storage, it
marks the shadow page table entry valid, places the proper page
frame address within the entry, and keeps control in the virtual
machine. If the desired page is not in real storage, VM assist re-
flects a translation exception to CP. In summary, this aspect of vM
assist reduces the occasion for an actual interruption and CP anal-
ysis when the needed page is already available.

Since not all models of System/370 provide VM assist, CP’s initial
program load (IPL) sequence determines VM assist’s availability
and activates it when present, using bit settings in control register
6 (see Figure 1). The SET command provides the CP system oper-
ator with a means to deactivate then reactivate the vM assist facil-
ity through this register. Individual virtual machine console oper-
ators can disable or enable VM assist services for their specific
virtual machines through the SET command. Further selectivity
can be exercised by disabling the SvC handling component of VM
assist with the SET command.

The result is maximum flexibility for the installation and the indi-
vidual user during evaluation of VM assist, performance analysis,
and benchmarking. The effect of VM assist on the overall system,
and for individual virtual machine execution, can be assessed
without any CP changes.

VM assist, then, is a first hardware step toward partitioning CP
simulation services between CP and VM assist hardware facilities.
The time used by VM assist is problem state time and is so re-
flected. In most cases, VM assist uses a significantly reduced
amount of real supervisor state time and a slightly increased
amount of real problem state time. The effects of this change on
overall system throughput, response time, and specific virtual
machine environments are shown in Table 2.

The information in Table 2 is taken from Horton, Wagler, and
Tallman.'® The table summarizes results of a variety of measure-
ments intended to demonstrate approximations of the effects of
VM assist. The results do not necessarily represent typical oper-
ating environments. The tests, in fact, were run using vM/370 Re-
lease 3, Program Level Change 2. The important considerations
are the relative improvements, rather than precision or relevance
to current releases or maintenance levels. In no way is this series
of benchmarks intended to provide a comparison among various
processors or system control programs.

Across a spectrum of operating systems (DOS/VS, 0S/VS1, OS/VS2
SVS) issuing privileged instructions and svC’s, the benchmark re-
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Table 2 Effects of VM assist on system throughput and specific virtual machines.

Model 135 Model 145 Model 158

DOS/IVS DOSIVS VS1 Vs2

Elapsed time (seconds)

Native 2788

Virtual machine 8172

Virtual machine with VM assist 4226
Relative batch throughput

without VM assist 0.34
Relative batch throughput

with VM assist 0.66
Reduction in supervisor state time

(Vm assist vs. non-VM assist)
Reduction in elapsed time

(VM assist vs. non-VM assist)
Reduction in total number of

privileged instructions simulated by

VM/370 (VM assist vs. non-VM

assist)

sults portray the effects of vM assist in terms of native through-
put, virtual machine elapsed time, relative batch throughput,” su-
pervisor state and elapsed time, and the number of privileged
operations simulated by CP. The tests were run using System/370
Models 135, 145, and 158.

Although many virtial machine environments benefit from vM
assist, clearly not all do. For example, cM$ virtual machines in-
terface to CP for specific services and thus do not execute privi-
leged instructions as frequently as non-cMs virtual machines. The
DIAGNOSE instruction is CMS’s primary interface to CP. Also, non-
virtual operating systems such as DOS/360, OS/MFT, and OS/MVT do
not benefit as directly from VM assist because they are less apt to
issue the range of instructions aided by VM assist—those associ-
ated with extended control mode and DAT operation on System/
370.

Thus the implementation of VM assist was a starting point for ad-
dressing virtual machine performance problems. How this was
done has been discussed. The next section shows how this point
of departure has broadened considerably for vM/370 on certain
System/370 configurations.

lll. Extended Control Program Support

Extended Control Program Support: VM/370 (ECPS:vM)”*! provides
for the further utilization of hardware to enhance vM/370 perform-
ance on Models 135-3, 138, 145-3, and 148 of System/370.
ECPS:VM works in conjunction with VM assist, providing even
more comprehensive services for the virtual machines and ex-
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tending the assist concept to CP execution. ECPS is controlled by
bit settings in control register 6 (see Figure 1) as well as by new
System/370 instructions which change the hardware interface be-
tween CP and the CPU. As discussed below, this enhancement and
extension consists of new functions completely handled by hard-
ware, functions that are partly handled by hardware, and func-
tions that are a combination. ECPS:VM has an expanded VM assist
component, a virtual interval timer assist component, and a con-
trol program assist component, and it works in conjunction with
VM assist.

ECPS:VM works in conjunction with VM assist but does not include
it. Thus when VM assist handles certain instructions—LOAD PSW
(LPSW), SET SYSTEM MASK (SSM), STORE THEN AND SYSTEM MASK
(STNSM), STORE THEN OR SYSTEM MASK (STOSM)—it calls on the
expanded VM assist (EVMA) component of ECPS to complete the
simulation. EVMA undertakes the simulation when entered from
VM assist. Should it not be able to complete the operation, it
causes CP to simulate the instruction by directly passing control
to CP. CP then handles to completion as if VM assist were not
originally available. Figure 2 shows this sequence, using LPSW as
an example.

When VM assist or EVMA can handle one of the designated privi-
leged instructions, control returns to the virtual machine without
recourse to CP. Supervisor calls are handled as discussed in Sec-
tion II, above.

Along with the partial handling discussed above for VM assist,
EVMA provides complete handling of the privileged instructions
PURGE TRANSLATION LOOKASIDE BUFFER (PTLB), STORE CPU
TIMER (STPT), and TEST CHANNEL (TCH). In addition, portions of
other new functions for SET CLOCK COMPARATOR (SCKC), START
1/0 (SI0), START I/O FAST RELEASE (SIOF), and SET CPU TIMER (SPT)
are handled by EVMA, with CP simulation completing the func-
tions. :

Insight into how EVMA and CP work together can be gained by
examining the execution of DIAGNOSE. Starting with the vM/370
System Extensions Program Product (SEPP) and the Basic System
Extensions Program Product (BSEPP),” software now supports
EVMA hardware for assisting the DIAGNOSE instruction when exe-
cuted by a virtual machine. When issued under assisted condi-
tions, EVMA bypasses the program exception interruption and
CP’s first-level interruption handler and transfers control directly
to CP routine DMKHVC, where DIAGNOSE code analysis and simu-
lation actually take place. Section V covers the use of DIAGNOSE
by cMSs and other virtual machines, but it is sigificant to point out
here that this major interface is now included among the assists
provided by hardware.

IBM SYST J e VOL 18 ® NO 1 ® 1979 MACKINNON

VM assist

expanded VM
assist




virtual interval timer
assist

Figure 2 Interaction of software and microcode hardware (EVMA and CPA) for VM assist
and ECPS:VM/370
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The degree of instruction simulation performed by EVMA in cases
of partial execution differs by instruction. At the very least, EVMA
hardware prepares certain ‘‘housekeeping’’ functions, such as
register saving and unloading and decoding of the privileged in-
struction. Other possibilities include partial simulation or no sim-
ulation, leaving CP to provide such function. For more informa-
tion on this topic, see Reference 21.

Whether or not VM assist or EVMA calls on CP, control eventually
returns to the virtual machine, which does not recognize whether
hypervision is performed by CP, hardware, or both.

The virtual interval timer assist (VITA) component of ECPS:VM
maintains the virtual interval timer (in location 80 of page 0 of the

MACKINNON IBM SYST J » VOL 18 « NO 1 ¢ 1979
(] [ [




virtual machine) and handles interruptions related to the virtual
timer. VITA explicitly has the following responsibilities:

e When a virtual machine is executing, VITA decrements its vir-
tual interval timer whenever the real interval timer decre-
ments.

If page 0 of the virtual machine is not in real storage at this
time (CP may have paged-out this page), VITA maintains the
timer in this virtual machine’s central control block
(VMBLOK).

As the virtual interval timer turns to a negative value, VITA
seeks to present a timer interruption to the virtual machine if
possible. Examples in which this is not possible are timer in-
terruptions disabled in the virtual machine and page 0 not in
real storage. If the virtual machine cannot accept such an in-
terruption, VITA presents a virtual interval-timer interruption
to CP in such a way that CP can differentiate between real and
virtual interval-timer interruptions. CP then reflects the inter-
ruption back to the virtual machine after handling the situation
that prevented VITA from doing it directly. In short, the inter-
ruption is stacked by Cp instead of by the hardware.

VITA hardware function benefits virtual machines by eliminating
programming routines and enhances accuracy in timer servicing
because necessary interruptions can be presented faster,

VM assist, EVMA, and VITA all assist a specific virtual machine.
New System/370 instructions, which provide for assisting CP, can
be generally beneficial to vM/370 and reduce more general ‘‘over-
head.”” Starting with vM/370 Version 3, Program Level Change 8,
programming support is provided for those models of System/370
that have the ECPS:VM facility installed. The control program as-
sist (CPA) component utilizes new System/370 instructions to as-
sist certain CP routines. The presence of this capability is deter-
mined as CP executes a new privileged instruction, STORE ECPS/
VM LEVEL IDENTIFIER (STECPSVM), which detects whether
ECPS:VM is installed and operating at the appropriate ievel. If not,
the new System/370 instructions for ECPS are made no-opera-
tions, and CP uses existing software routines rather than ECPS.
Next, CP determines whether VM assist is installed and, if so, acti-
vates it. Thus vM/370 can support machines with ECPS, with only
VM assist, or with neither, as determined at CP’s IPL time.

The new System/370 instructions for CP’s use have the extended
storage-to-storage format shown in Figure 3, in which X'E6’ is
the operation code of the CPA instruction and X'cc' defines the
specific function to be performed. The two operands provide pa-
rameters to the specific assist function. These instructions are not
defined in the System/370 Principles of Operation, nor do they
have assembler-language mnemonics. They appear as DC state-
ments in the source code distributed for cP. The specific CP func-
tions assisted by the CPA instructions are listed in the Appendix.
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Figure 3 Extended storage-to-storage format of new System/370 instructions for CP’s use
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ECPS:VM is implemented with considerable flexibility as to which
components support VM/370 at any given moment. During IPL of
CP, all components are activated, but the system operator can
disable then enable all ECPS components, or disable then enable
them selectively. At the virtual machine level, the console oper-
ator for the virtual machine can disable then enable EVMA and
VvITA. The virtual machine cannot affect the status of the CpA
function. With vM BSEPP and SEPP software, additional selectivity
is supported for EVMA. Through an assist control field in the vM
list addressed by control register 6, selected instructions can be
enabled or disabled for EVMA support.” Such flexibility is helpful
both in maintaining system availability should hardware problems
arise with specific ECPS hardware modules and in achieving a high
degree of system portability across CPU configurations without CP
change.

ECPS:VM significantly extends System/370 support of VM/370 exe-
cution. It builds on the capabilities introduced by vM assist and
extends the assist philosophy to CP as well. In sum, hardware can
assist the virtual machine environment, CP can benefit from assist
hardware, and CPU control can pass from virtual machine privi-
leged operation to VM assist or EVMA hardware to CP (for com-
pletion) and back to the virtual machine, as in Figure 2.

The consequence is improved performance of certain virtual ma-
chine operations and certain CP routines. The extent to which any
given system benefits is a function of understanding ECPS func-
tions and program behavior. CMS does not benefit as much from
VM assist as do virtual machines that run DOS/VS or 0S/VS. CMS
does benefit, however, from DIAGNOSE, which is a primary inter-
face to CP, and from CPA operation once control has passed from
CMS to CP. Thus the mix of CMS and other virtual machines deter-
mines the benefits provided by ECPS/VM (as distinct from VM as-
sist).
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Table 3 Effect of VM assist on CMS batch processing on System/370 Model 145

Percentage of time Paging rate Real problem
in indicated state (per second) percentage*

Real Real
supervisor problem

Without VM assist 60.3 39.7 39.8
With VM assist 57.9 42.1 42.8
Difference - 3.98 + 6.05 + 7.54

*Percentage of total real problem state time used by virtual problem state

Table 4 Effect of VM assist and ECPS:VM on CMS batch processing on Systerm/370 Model
148 configured like Model 145

Percentage of time Paging rate Real problem
in indicated state (per second) percentage*

Real Real
supervisor problem

VM assist only 46.5 52.7
Full ECPS 33.6 62.8
Difference =277 +19.2

*Percentage of total real problem state time used by virtual problem state

As noted in the earlier discussion of VM assist, ECPS has further
addressed VM performance problems and made even greater con-
tributions to such improvements.

Tables 3 and 4 summarize the results of benchmarks that provide
approximate comparisons of the assists discussed above. CMS vir-
tual machines issue relatively few privileged instructions or su-
pervisor calls, so it is interesting to consider how VM assist affects
CMS environments. Table 3 shows how VM assist can affect a CMS
batch processing application on a System/370 Model 145. The
same job stream was run on a Model 148 configured like the
Model 145. The results, summarized in Table 4, provide insight
into the effects of VM assist and ECPS/VM during CMS execution.

IV. Handshaking

A common view of the virtual machine environment stresses the
isolation of the virtual machine from the real environment. That
is, a program (including operating system code) that runs in a
virtual machine does not recognize that CP controls the execution
of privileged instructions, handles real interruptions and other
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asynchronous events, and reflects events back to the virtual ma-
chine programming exactly as if the virtual machine were a real
machine (with the exception of timing considerations). This capa-
bility allows diverse System/360 and System/370 programs to be
multiprogrammed without interfering with or causing problems
for one another. CP addresses discrepancies between the virtual
and real environments.

Handshaking changes the above view for DOS/VS and 0S/VS1 in
that they are given the information that they are executing in vir-
tual machines and can take certain actions using that information.
Virtual machine isolation remains; what changes is the behavior
of the operating system within the virtual machine and the inter-
face to cp. It is important to understand that in these operating
systems, the problem program partition (or user) does not recog-
nize the virtual machine environment, and the interface to its op-
erating system remains unchanged.

In simulating multiple virtual machines, CP’s role is to provide
services to those virtual machines (as requested) and handle the
real hardware system. As to what is actually going on within a
virtual machine, CP has very limited information. CP is largely
restricted to reflecting back to the virtual machine’s operating
system conditions that relate to it. For example, CP is not in-
volved in how an operating system manages multiprogramming
and multitasking within a virtual machine. They are the responsi-
bility of the virtual machine’s operating system. CP gives control
to a virtual machine, then it is up to the virtual machine’s oper-
ating system to dispatch units of work according to its own prior-
ity scheme.

CP regards virtual machine execution as a continuum. The initia-
tion and termination of jobs and tasks within the virtual machine
are hidden. CP only regards the virtual machine as a whole. This
has proved a mixed blessing, for it has both ensured the trans-
parency of CP to the virtual machine and distorted the time spec-
trum between a virtual machine’s partition or task losing control
and regaining control from its operating system. Given this dis-
tortion, the relative batch throughput or transaction rate of a non-
CMS virtual machine, or a VM system as a whole, can be adversely
affected. Handshaking directly addresses these functional prob-
lems and provides some operational improvements.

0S/VS1 handshaking

Analysis of 0S/VS1 execution as a virtual machine quickly leads to
identification of several areas of duplication in vS1 and CP, where
different implementations or operational improvements could en-

hance the VSt virtual machine environment.”* Of primary impor-

tance is to provide vs1 with the information that it is interfacing to

MACKINNON IBM SYST J @ VOL 18 @ NO 1 e 1979




cP rather than to a real machine. A system generation option
gives VS1 new capability, so that at IPL time it receives that infor-
mation. During IPL, it issues a STORE CPU ID instruction to dis-
cover whether it is in control of a real machine. If not, it issues a
DIAGNOSE instruction to ensure that cp will provide handshaking
support. Then vS1 goes through the nucleus initialization process
to activate handshaking on its behalf.

Thus handshaking is two-sided, with cooperation on both sides of
the interface between CP and the virtual machine. Implementa-
tions that have resulted from the above process are nonpaged
mode, pseudo page-fault handling, Cp spool files, and 1/O-related
items. They are discussed in the following paragraphs.

Provided enough virtual machine storage is defined, vS1 marks all
virtual page frames fixed, builds page tables only in the systems
queue area, and disables demand paging. It does not open an ex-
ternal page storage file or attempt to translate the channel pro-
grams it uses, and it reduces its use of the LOAD REAL ADDRESS
and INSERT STORAGE KEY instructions (keys are handled by a
table rather than real hardware). Here 08/vS1 is turning the busi-
ness of demand paging over to cP. While double paging is thus
eliminated as a programming overhead item, the virtual machine
executes with DAT hardware ON.

Through the SET PAGEX command, the virtual machine console
operator can exercise an option that affects how CP handles real
page faults attributed to an 0S/vS1 virtual machine. When a page
fault occurs, CP gains control. The key question is which virtual
machine should be dispatched by cP while the page /0 operation
is under way? Ordinarily, CP places the entire virtual machine in a
page wait status and dispatches another virtual machine. When
exercised, this pseudo page-fault facility causes CP to reflect a
special page fault to vS1 (even though the latter is not paging). VSi
makes specific use of this situation by marking the affected parti-
tion or task as being in a page wait status; then it is free to dis-
patch another partition or task. As a result, vS1 can multiprogram
properly.

When cP completes the real paging operation, it reflects page 1/0
completion to VS1 to clear page wait for that partition or task.
This accommodation by CP enhances the performance of multi-
programming or multitasking within the vS1 virtual machine.
When the multiprogramming level of the virtual machine is low,
with no multitasking, pseudo page-fault handling can be disabled
by the vS1 console operator, and CP then resumes normal dis-
patching of virtual machines.

Looking at the system as a whole, the installation might utilize
PAGEX OFF to skew dispatching emphasis to a partition that is
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executing telecommunications and a program like the Customer
Information Control System (CICS), which does its own multi-
tasking.

Since CP does not detect the end of a job or job step within a vS1
virtual machine, operational problems arise as to when CP is to
start processing spool file output (punch or printer). Without
some mechanism, a manual step is needed: an operator must
close the vS1 spool file to release the output to cp. Handshaking
provides a vS1 interface to CP for this explicit purpose. A DIAG-
NOSE instruction issued by VSt signals CP that the job or job step
has been completed and that CP’s spool output operations can be
scheduled. Here is a good example of an operational improve-
ment resulting from handshaking techniques.

In any operating system that supports demand paging, the I/0 su-
pervisor increases system overhead. This is especially true of
code that requires translation of channel programs. Handshaking
improves the way vS1 handles I/0 in such cases. VS1 neither trans-
lates channel programs nor builds indirect data addressing lists
when handshaking is operative. Similarly, vS1 allows CP to handle
IBM 2314 and 2319 direct-access-storage seek separation opera-
tions, and it refrains from issuing a TEST CHANNEL (TCH) instruc-
tion prior to executing the START /O instruction. These functions
are performed later by CP.

Particularly thorny for virtual machine 1/0 is the modification of
channel programs after they start. Normally CP does not guaran-
tee proper handling of such channel programs, but the vS1 Basic
Telecommunications Access Method (BTAM) is an exception

when its autopoll feature is in use. Autopoll modifies the virtual
communications channel programs for a line. Without hand-
shaking, CP utilizes flags in the real channel program to signal it to
inspect the BTAM virtual channel program for changes. Hand-
shaking eliminates this approach by providing a VS1 DIAGNOSE
instruction, which signals CP at the time of change to allow CP to
update the real channel program it builds and maintains. CP’s con-
tinuous investigation of BTAM is thereby eliminated.

A somewhat related implementation applies to the Telecommuni-
cations Access Method (TCAM) at Release 5. Regardless of
whether its operating system supports handshaking, TCAM can be
generated for execution in a virtual machine, with DIAGNOSE in-
structions to signal CP whenever a TCAM channel program is being
modified. The objective is to allow such programs to run in a vir-
tual machine as paged rather than with the earlier nonpaging re-
striction. This process can be considered handshaking for a spe-
cial purpose.
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DOS/VS handshaking

Handshaking implementations for pos/vs***® differ considerably
from those for 0s/vsi, but the objectives remain identical. The
main difference involves virtual-timer updating, which enables
the accounting routines of DOS/VS to more accurately reflect timer
settings when a DOS/VS job terminates. DOS/VS signals CP so that it
can update the virtual interval timer. CP can also be signaled when
DOS/VS changes the timer’s value. This is a programming ap-
proach to what the VITA hardware component of ECPS provides
on System/370 Models 135-3, 145-3, 138, and 148.

Handshaking is a system generation option for DOS/VS but, unlike
VSl, the resulting system can be executed only as a virtual ma-
chine. It is not an IPL option.

Performance enhancement

Handshaking is a programming approach to enhancing the per-
formance and operational effectiveness of virtual machines. It
can operate with the hardware assists discussed above. Alone,
handshaking can both aid virtual machine execution and reduce
real supervisor state (CP) execution time by reducing the number
of privileged instructions, virtual machine paging 1/0, etc. To a
large degree, assists and handshaking try to solve the same prob-
lems, so knowledge of where specific benefits accrue requires
considerable knowledge of the behavior of virtual machines. For
instance, elimination of double paging greatly reduces the 1/0 ac-
tivity that CP must handle and the number of privileged instruc-
tions executed in the virtua] machine. It also ensures that when a
virtual machine has control, execution will tend to be more in the
virtual problem state than in the virtual supervisor state; more

work is being done hy executing application user code directly.

The pseudo page-fault facility is a good example of how CP makes
use of the information that multiprogramming or multitasking is
going on in a virtual machine. SPOOL CLOSE addresses the prob-
lem of virtual machine job or task transition by allowing the oper-
ating system in the virtual machine to notify CP by means of the
DIAGNOSE instruction. The DIAGNOSE interface, then, has found
use beyond CMS, and its increasing usefulness benefits from
ECPS:VM’s assistance.

The performance improvement that can result from handshaking
is indicated by results of a benchmark conducted at the 1BM
World Trade Systems Center in Poughkeepsie, New York. The
benchmark consisted of running 12 jobs on a System/370 Model
158 with vM assist and prototype handshaking code. Ten jobs ex-
ecuted the COMPILE LINK AND GO (CLG) step in FORTRAN. One
COBOL job executed five CLG steps with SORT called by COBOL,
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and one job, also in COBOL, executed CLG, SORT, and CLG steps.
Operator setup was minimal, and native CPU utilization averaged
about 90 percent. The following results are pertinent:

Relative batch throughput: With handshaking, when CP paged
an 0S/VS1 virtual machine, the relative batch throughput in-
creased 35 percent (from 0.55 to 0.74) while total CPU time
decreased 29 percent (from 781 to 557 seconds). When the
benchmark was rerun with the 0$/vS1 virtual machine execut-
ing out of VM’'s virtual-equals-real area, handshaking im-
proved relative batch throughput by 14 percent (from 0.69 to
0.79), and CPU time decreased by 20 percent (from 717 to 570
seconds).

Pseudo page-fault handling: The benchmark used six initia-
tors, and, with PAGEX OFF, nine of the 12 jobs ran in VS1 parti-
tions 0-2, while partitions 3-5 did not get beyond a single job.
With PAGEX ON, partitions 3 and 4 each ran a second job.
Thus, although pseudo page-fault handling did not affect per-
formance throughout the benchmark, it did affect the level of
multiprogramming by 0S/VS1.

Effect of handshaking apart from vM assist: Since the runs
described above used VM assist, two runs were made without
VM assist—one with handshaking and PAGEX OFF, and one
with no handshaking. Relative batch throughput was 0.54 with
handshaking and 0.24 without.

V. Inter-virtual-machine communication

Emphasis to this point has been on hardware and programming
approaches to improving the performance and function of vM/370
and specific virtual machines. As indicated by Seawright and
MacKinnon,? this improvement was an enabling event which re-
sulted in increased acceptance of vM/370 for many CPU configura-
tions, with a diversity of end-user applications.

The balance of this paper seeks to review and assess another
trend which has similarly affected vM/370. Inter-virtual-machine
communication, in which the objective is to send data or control
information between virtual machines, is examined. Mechanisms
for accomplishing this objective are described, and motivations
behind this trend are examined. Examples show how inter-vir-
tual-machine communication has increased the potential role of
virtual machines.

It is important to note the growth of virtual machines as sub-
systems. Users have conducted experiments and designed sys-
tems to create virtual-machine-resident software with character-
istics different from those discussed above. They are subsystems
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that have information about and are dependent on CP and the vir-
tual machine environment. In this sense, they more closely re-
semble CMS than other operating systems.

A subsystem incorporated by IBM into VM/370 was the Remote
Spooling Communications Subsystem (RSCS),?” which operates as
a separate virtual machine. RSCS manages spool files transmitted
between virtual machines and remote-job-entry stations, between
remote CPU’s operating as remote-job-entry stations, and be-
tween other CPU’s operating HASP or ASP spooling components
and RSCS (and thereby viewing VM/370 as a remote work station).
RSCS also manages files sent from remote work stations and CPU’s
and destined either for machines within this VM/RSCS system or
for output on other work stations or CPU’s connected to this
system.

RSCS is a special-purpose operating system. It contains its own
multitasking supervisor, and it provides storage and task manage-
ment, line drivers for the communications links, and service rou-
tines for command processing. It can operate only in a virtual
machine environment. It can operate in disconnected mode if
communication with the RSCS virtual machine operator is not re-
quired.

RSCS interfaces to CP via the latter’s local spool files and by use of
a DIAGNOSE interface. It is both a special-purpose subsystem con-
structed as a virtual machine, and a means by which a virtual
machine can transmit data outside itself (and, indeed, outside the
real machine as well). RSCS was an early step toward a virtual
machine networking capability.

CP’s local spooling capability is mentioned only in the context of
the use of spool files by RSCS for sending and receiving data ex-
ternally on communications lines. Spool files aiso have been used
by virtual machines to exchange data within the same real ma-
chine, in that one virtual machine can send data to its card punch
or printer for spooling to the card reader of another virtual ma-
chine. This approach has the advantage of using a well known and
externally defined function of CP while maintaining the isolation
and logical view of virtual machines.

A disadvantage for transaction handling lies primarily in the in-
flexibility of the data formats (unit record) and the 110 overhead
associated with transcribing the data to and from the spool packs.
What evolved was a series of techniques for efficient inter-virtual-
machine communication employing storage-to-storage data trans-
fer. This spurred development of additional subsystems based on
virtual machine architecture.
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Generalized Management
Information System

An early approach was use of the virtual channel-to-channel
adapter (CTCA) support already in CP. Originally it was intended
to facilitate testing of ASP loosely coupled multiprocessing config-
urations in a virtual machine environment. Through a CP COUPLE
command, two virtual machines are connected through a virtual
CTCA path, and the READ/WRITE /O commands issued by these
machines are simulated by cp. Data can then be exchanged be-
tween virtual address spaces via CP’s move instruction rather
than by an /O operation (assuming that no page fault occurs).

A more elaborate approach was devised by A. N. Chandra at
1BM’s Thomas J. Watson Research Center.” The resulting virtual
machine, called SPY, was particularly useful because it managed a
variety of special-purpose virtual machines (for data management
or networking, for instance), it recorded virtual machine accesses
and linkages, and—most important for this discussion—it pro-
vided another protocol and facility for the interchange of data
between virtual machines. CP’s Virtual Machine Communications
Facility (VMCF) is based on this part of spy.”?**

VMCF uses two principal interfaces to allow virtual machines to
communicate, First, a DIAGNOSE instruction requests special
VMCF facilities from CP. The second interface is an external inter-
ruption which serves as a signal for notification and synchro-
nization of transmissions and acknowledgments between virtual
machines. CP generates these interruptions for both sending and
receiving virtual machines.

VMCF provides for transfer between storage—the virtual address
space of a sending virtual machine (called the source) and receiv-
ing virtual machines (called sinks). A single source is able to send
to more than one sink. In the process, two real page frames are
locked. VMCF, then, formalizes procedures for inter-virtual-ma-
chine communication and recognizes a need for in-storage data
transfer among any number of virtual machines. The next section
considers the purposes served by such communication.

Many intercommunications problems were addressed in the
course of a joint study conducted by the IBM Cambridge Scientific
Center, the MIT Sloan School of Management (Center for Infor-
mation Systems Research), the MIT Energy Laboratory, and the
New England Regional Commission, a Federal-New England
States co-partnership. The system that grew out of that study, the
Generalized Management Information System (Gumis),”"** is men-
tioned here because of its use of a separate virtual machines ar-
chitecture for communication within the same real system. It ex-
emplifies the application of many trends discussed in this section.
The virtual machines include:
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Interactive cMS virtual machines which use FORTRAN, PL/
and APL interpreters.

End-user virtual machines with application-oriented software
such as econometric, time series analysis, and modeling pack-
ages.

Experimental query machines which run SEQUEL.*

A data-base-manager virtual machine which provides access
to an experimental relational data base system. It activates
itself and interfaces to other machines when they are needed.
Interface virtual machines which accept requests from inter-
active virtual machines (running APL, for instance) and link
them to facilities such as a relational-data-base manager. The
user is unaware of this link. The linking and communication
process is hidden from the application programmer and termi-
nal user, who asks for and receives data and services without
involvement in the intercommunication processes.

When the joint study began in 1975, the use of virtual punches
and readers for intermachine communication was unsatisfactory
because of the associated /0 and system overhead. Then CMS
minidisks were used to exchange data among virtual machines.
But the greatest improvement came with the experimental SPY
interface discussed above. SPY was used both for virtual machine
management and for the transfer of data. Finally, in the con-
cluding months of the study, VMCF was used for transferring data
between certain virtual machines.

The primary objective of GMIS was to interconnect a wide variety
of language processors, application programs, analysis tools, and
data base structures. Interconnection is made as the terminal user
logs on the interactive virtual machine and decides what tools and
resources are needed. This computational environment has been
called an ‘‘ad hoc”’ decision support system (DSS).>® The inter-
communication capabilities and interface virtual machines were
vital to the utilization of existing application programming and
language processors without substantial modification. GMIS dem-
onstrates the traditional virtual machine ability to accept diverse
software environments without changing the software domains,
even while providing sophisticated intercommunication and ac-
cess to programming and data structures unknown to the appli-
cation-oriented end user.

Research on virtual machine intercommunication continues.
C. R. Attanasio of the IBM Thomas J. Watson Research Center
has developed an experimental extension to vM/370 called Virtual
Control Storage (VCS), a protected, fast-access execution and
data domain for virtual machines.*

VMCF and vCS may appear to overlap when viewed strictly in
terms of data transfer. Their architecture differs considerably,
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Table 5 Performance comparisons of several virtual machine communications methods (times in seconds)1

Method No. of
records

Send/ Average Average Average Average
receive time virtual total no. of
to send CPU time CPU time SIO0’s

Spool
(virtual
punch to
reader)

send 2.0 0.030 0.156
recv — 0.094 0.350
send 11.2 0.252 1.010
recv — 0.752 2.414
send 114.2 2.494 9.448
recv — 7.492 23.547

DASD
(shared CMS
minidisks)

send 3.2 0.060 0.210
recv — 0.050 0.220
send 14.4 0.248 0.796
recv — 0.238 0.752
send 102.8 2.170 6.338
recv — 2.086 6.008

send 0.8 0.004 0.030
recv — 0.006 0.056
send 1.4 0.024 0.140
recv — 0.032 0.190
send 13.0 0.256 1.230
recv — 0.318 1.412

'These benchmarks were conducted by Clifford H. Avey at the IBM Cambridge Scientific Center.
*External interruptions for VMCF are counted as SIO’s.

VM/370 networking

however, in that VMCF provides an asynchronous transfer mecha-
nism between distinct virtual machines, whereas vCS provides
synchronous data transmission between separate domains in the
same virtual machine. Also, VMCF employs hardware storage
protection and storage-to-storage transfer, whereas vVCS relies on
restricted addressability and segment sharing. vCS does not use
an asynchronous communication-like protocol, but rather a syn-
chronous instruction-like protocol. And the VCS program is able
to modify areas of virtual storage and also general-purpose regis-
ters and the program status word. vCs applies, then, to far more
than data transfer.

To place some of the communications techniques and develop-
ments in perspective, Table 5 cites several benchmarks that com-
pare virtual punch-to-reader transfer, shared minidisk DASD, and
VMCF, which uses storage-to-storage transfer. The benchmarks
were conducted at the Cambridge Scientific Center using 80-byte
records and sending and receiving virtual machines.

This discussion of inter-virtual-machine communication con-
cludes with real-machine networking for vM/370, including trans-
parent communication between virtual machines on physically
separate real machines. Using RSCS as a base, peer CPU-t0-CPU
networking has been provided between systems connected on
dial-up and leased lines or real channel-to-channel adapters. This
capability is provided in the Network Job Entry/Network Job In-
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terface (NJE/NJI) programming packages.*® The vM/370 component
is called VNET.” It provides peer connection to other CPU’s
(rather than the master-slave relationship in remote job entry).
When those CPU’s also run VNET, there is inter-virtual-machine
communication between multiple real machines.

This approach, used extensively within 18M,* literally broadens
the horizons for potential usage of virtual machines. In an experi-
mental application at the Cambridge Scientific Center, for ex-
ample, System/370 Models 158 and 115 were connected by a
channel-to-channel adapter. Both ran vM/370, but the Model 115
executed a substantially smaller nucleus (approximately 100K
bytes).* The experiment was meant to evaluate VM/370 in such an
environment, and also to use the Model 115 to simulate a front-
end processor by transmitting data to and from the Model 158.
Both cPU’s executed VNET and used it as their communications
vehicle.

It is interesting to note that VNET’s architecture necessitated no
changes to CP and that it accommodated itself to a very small real
machine environment without change. VNET resided in each of
these two real machines. Because VNET supports CTCA and com-
munications links for virtual-machine-to-virtual-machine pro-
tocols, the Model 115 just as easily could have been remote from
the Model 158, to establish a concentrator or distributed process-
ing application environment.

VI. Further use of operating system assist

The hardware assist philosophy, as discussed above for vM/370, is
now provided in some other operating systems. Brief discussion
is included here to balance the prior discussion and enable the
reader to see that assist implementation is hardly limited to
vM/370. Specifically, 0S/vS1 benefits from a hardware assist on
some models of System/370,*" as does the MvS System Exten-
sions Program Product for processors that support the System/
370 Extended Facility.*

The hardware assist for 0s/vS1 is called Extended Control Pro-
gram Support:vs1 (ECPs:vs1).**** ECPS:VS1 and ECPS:VM can si-
multaneously reside in the writable control storage of a real sys-
tem and provide a hardware assist to their respective control pro-
grams, For example, vSI can be executing as a virtual machine
under vM/370 and benefit from ECPS:VS1. CP and other virtual ma-
chines can benefit from EcCPS:vM when they have control.
ECPS:VM and ECPS:VS1 are not necessarily cumulative in their to-
tal effect on system performance, however. For instance, there is
some overlap in ECPS:Vsi function and vs1 handshaking.**
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The Mvs System Extensions Program Product supports the Sys-
tem/370 Extended Facility. It can enhance system performance
through new privileged instructions, path length reduction, and a
variety of internal implementation changes to the system. Of the
14 new instructions defined by the System/370 Extended Facility,
12 are provided so¥ely to assist MvS.*

While the assist hardware now has relevance for MVS on a real
machine, there are also implications for MVS execution in a vir-
tual machine. VM/370 SEPP accommodates and improves MVS per-
formance in a virtual machine in part because the System/370 Ex-
tended Facility provides for execution of the new MVS privileged
instructions by the assist hardware when MVS SEPP is running in a
virtual machine. This capability is called the virtual machine ex-
tended facility and is specified through control register 6.*° In ad-
dition, changes have been made to CP which improve MvS per-
formance. This development might be called ‘‘partial hand-
shaking’ since changes are one-sided—only CP has been
changed, in that it provides new MVS console SET commands SET
STM and SET STBY.

Together, these new commands allow CP to share shadow page
tables”™*"® among the multiple virtual address spaces of a single
MVS virtual machine when, in fact, the address space they ppint
to is common. This will be the case in an MVS virtual _nlachine for
the nucleus and common area at the top of the ‘virtual address
space managed by Mvs. The comma_nds bypass shadow tables
when MVS is running in a virtual-equals-real mode in the virtual
machine. ‘ ‘ ‘

Finally, users of APL interpreters on some models of Sys}em/370
experience faster execution because of the APL microcode assist.
APL emulatlon involves djrect execution of APL statements by mi-
crocode that works with a new System/370 instruction, APL EMU-
LATION CALL (APLEC). Further discussion here is unnecessary,
other than to note that the APL assist yields the greatest perform-
ance 1mprovement of all the assists discussed in this papér Given
its early availability, the APL assist served to demonstrate what an
effective microcode assist can ach1eve, and it stlmulated sub-
sequent assist 1mplementatlons

Vil. Summary

Since 1972, the implementation of System/370 virtual machines
has changed considerably, specifically in CP and in the v1rtua1 ma-
chine interface. Changes within the virtual machine environment
range from the APL assist microcode to virtual machine hand-
shaking with CP, to accommodations for MVS virtual machines.
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All of these changes had the dual objectives of improving per-
formance and improvifig the functions of individual virtual ma-
chines, CP, and the entire system. Operational improvements pro-
vided with handshaking address certain needs associated with the
virtual machine environment.

Virtual machine isolation and integrity have been preserved,
along with optional extended facilities and interfaces that foster
intermachine communication when desired. DIAGNOSE and VMCF
in VM/370 make such interfaces generally available to the appli-
cation developer and systems architect. To an extent, inter-vir-
tual-machine communication has always existed—it is its growth
and potential that are most relevant.

Several explicit examples, stich as RSCS, VNET, and GMIS, illus-
trate new approaches to providing function, facility, and commu-
nication. They hold significant promise for innovative future use
of the virtual machine concept and increased sharing of data and
programming.

VIIl. Conclusions

One can envision future uses of virtual machinés that will exploit
a proliferation of multiple, interconnected real and virtual ma-
chines. While the interconnections may be local or communica-
tions-based, the logical view can remain the same. VM/370 at-
tached processor support*® can be viewed as a first step—for large
systems and in a tightly-coupled context. Multiple logical and real
systems (large or small) are appropriate and fertile fields for fu-
ture experimentation and investigation.

Possible implementations

A virtual machine controlled by CP could assume responsibility
for data management and encryption while connected to peer pro-
cessing machines. It is important to note that these ‘‘data’’ and
‘‘processing’” machines can be in the same real machine complex
or in separate real machines. Logically, the processing machines
might transmit requests in blocks to the ‘‘back-end’” machine,
which would asynchronously manage the data and transmit
blocks of data responses (in clear or encrypted form). This tech-
nique of transmitting blocks of data already has been employed in
the I1BM 3705 communications controller when it runs the network
control program/virtual storage (NCP/vS) for communication be-
tween hosts and the 3705 with Systems Network Architecture
(SNA).

The GMIS and VCS experimental systems show that function can
be divided among separate virtual machines or address spaces.
For virtual machines to become separate real machines seenis a
logical next step. The possibility of improved ‘‘processing-ma-
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chine” performance, coupled with enhanced abilities to inter-
connect and share data in a secure fashion, should easily motivate
future experimentation.

The virtual machine philosophy and system intercommunication
capabilities (local and remote, virtual and real) hold promise for
solving problems of distributed processing. The reliability and
relative security of virtual machine systems enhance their attrac-
tiveness as vehicles for such experiments. The need to remotely
assess and manage performance, malfunction, and operational
problems is critical to such systems. Management of such prob-
lems is facilitated by the hypervision of virtual machine control in
VvM/370, and it is practical, considering the peer network con-
nections that are available today. The ‘‘user-friendly’” and ease-
of-use characteristics of VM/370° also hold potential for such distri-
bution, without increased complexity for the distributed system
user.

The concept of a disconnected virtual machine as a programmed
operator has been implemented at many VM/370 installations.*® At
Cambridge, for example, this concept has proved useful for direc-
tory and password management, mail and message handling, and
secure volume mounting. Special virtual machines can be acti-
vated automatically by the programmed operator at a specified
time to accomplish performance monitoring, for example. Such
programmed operators in separate real machines may well prove
beneficial for small systems that cannot support the programmed
operations aspects of ASP or JES3 multisystems. When combined
with network linking or as part of distributed processing systems,
the programmed operator addresses unattended operation and
human factors problems of computer operation in a non-data-pro-
cessing environment (such as an office).

cMS has long demonstrated the productivity that can be achieved
with a single virtual machine. And while cMS is implemented to
run on System/370, this type of virtual machine may well prove
effective when running on a different hardware base—whether in
a small computer like the IBM 5110 or in an intelligent terminal.
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Appendix: CP functions
The following CP functions are assisted by the CPA instructions:

Obtain free space from free storage area

Return space to free storage

Page lock

Page unlock

Decode the first channel command word (CCW) in a list; also
decode subsequent CCW’s

Free ccw storage

Dispatch a control block or virtual machine

Locate virtual 1/0 control blocks

Locate real 1/0 control blocks

Translate virtual address and (f possible) test for shared page
Translate virtual address and (if possible) lock the page
Invalidate segment table; invalidate page table

Entry into virtual machine dispatch

Common CCW processing

Untranslate the channel status word (CSW)

Dispatch control block or virtual machine

LINK (initiated by CP’s SvC 8)

RETURN (initiated by CP’s SVC 12)

Change shared page scan
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IBM Corporation, Department D58, P.O. Box 390, Poughkeepsie, New York
12602.

. OS/VS2 MVS/System Extensions General Information Manual, IBM Sys-
tems Library, order number GC28-0872, IBM Corporation, Department D58,
P.O. Box 390, Poughkeepsie, New York 12602.

. The packaging and availability of VM assist (apart from any ECPS consid-
erations) is different for different CPU’s. It is standard on System/370 Models
135-3, 138, 145-3, and 148, and on the 3031 processor. It is a no-charge op-
tional feature on System/370 Models 135-0, 145-0, and 158, and it is an RPQ
on Model 168 and on the 3032 and 3033 processors.

. P. H. Tallman, R. A. Denson, T. A. Gilbert, J. M. Nichols, and D. E. Stucki,
Virtual Machine Assist Architecture Description, Technical Report TR
00.2506, IBM Corporation, Poughkeepsie, New York (January 1974),

. F. R. Horton, D. W. Wagler, and P. H. Tallman, Virtual Machine Assist:
Performance and Architecture, Technical Report TR 75.0006, IBM Corpora-
tion, Poughkeepsie, New York (April 1974).

. Control register 6 is used by the hardware assists and by CP as an interface for
their various activities.

. For a discussion of the specific instructions, see IBM System/370 Principles of
Operation, IBM Systems Library, order number GA22-7000, IBM Corpora-
tion, Department D58, P.Q. Box 390, Poughkeepsie, New York 12602.

. For a summary of the architecture and alist of System/370 instructions, see R.
P. Case and A. Padegs, ‘‘Architecture of the IBM System/370,”” Communica-
tions of the ACM 21, No. 1, 73-96 (January 1978).

. To consolidate the error recording file (LOGREC) wherever possible, for the
entire VM system (since CP has overall responsibility for control of the real
hardware), VM assist presents SVC 76 to CP in the real machine, instead of
the virtual machine’s operating system. Most operating systems use SVC 76
to request the recording of certain error conditions (CPU and 1/O) on their
LOGREC files. When an interruption occurs, CP analysis determines
whether CP can perform error recording and, if so, CP translates virtual de-
vice addresses into real ones and writes to LOGREC. When CP cannot
handle SVC 76 (perhaps because of insufficient information from the virtual
machine), it is reflected back to the virtual machine, whose operating system
records the error information on its separate LOGREC file.

. S. E. Madnick and J. J. Donovan, Operating Systems, McGraw-Hill Book
Company, New York (1974). Chapter 9-5 offers a discussion of shadow tables
for the general reader.

. The virtual pointer list contains these relevant fields: addresses of the real
segment table, virtual control registers, virtual program status word, and a
virtual interruption-pending indication, as well as the assist control field
(MICEVMA).

. Relative batch throughput is the ratio of throughput on a native, real machine
controlled by the specific operating system to throughput of the same job
stream in a virtual machine controlled by VM/370.

. A. G. Olbert, Functional Description of Extended Control Program Support:
VM/370, Technical Report TR 01.2146, IBM Corporation, Endicott, New
York (May 1978).

. IBM Virtual Machine Facility/370 System Extensions General Information
Manual, IBM Systems Library, order number GC20-1827, and IBM Virtual
Machine Facility(370 Basic System Extensions General Information Manual
IBM Systems Library, order number GC20-1828, IBM Corporation, Depart-
ment D58, P.O. Box 390, Poughkeepsie, New York 12602.

. The instructions are LPSW, PTLB, SCKC, SPT, SIO, STNSM, STOSM,
STPT, TCH, and DIAGNOSE.

MACKINNON IBM SYST J & VOL 18 @ NO 1 » 1979




. OSWVirtual Storage 1 Features Supplement, IBM Systems Library, order
number GC20-1752, IBM Corporation, Department 824, 1133 Westchester
Avenue, White Plains, New York 10604,

. Advanced Functions—DOS/VS General Information, IBM Systems Library,
order number GC33-6040, IBM Laboratory, Publications Department,
Schoenaicher Strasse 220, D7030 Boeblingen, Germany.

. Advanced Functions—DOS/VS Design Objectives, IBM Systems Library, or-
der number GC33-6039, IBM Laboratory, Publications Department,
Schoenaicher Strasse 220, D7030 Boeblingen, Germany.

. E. C. Hendricks and T. C. Hartmann, ‘“Evolution of a virtual machine sub-
system,” IBM Systems Journal 18, No. 1, 111-142 (1979, this issue).

. A. N. Chandra and A. M. Katcher, VM/370 Intermemory Communications —
Comparative Measurements, Research Report RC 5820, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York 10598 (January
1976).

. IBM Virtual Machine Facility/370: System Programmer’s Guide, IBM Sys-
tems Library, order number GC20-1807, IBM Corporation, Department D58,
P.0O. Box 390, Poughkeepsie, New York 12602.

. R. M. Jensen, ‘‘A formal approach for communication between logically iso-
lated virtual machines,”” IBM Systems Journal 18, No. 1, 71-92 (1979, this
issue).

. 1. J. Donovan and H. D. Jacoby, ‘‘Virtual machine communication for the
implementation of decision support systems,” IEEE Transactions on Soft-
ware Engineering SE-3, No. 5, 333-342 (September 1977).

. J. J. Donovan, ‘‘A note on performance of VM/370 in the integration of mod-
els and data bases,”’ The Computer Journal 21, No. 1, 20-24 (February 1978).

. J. J. Donovan, R. Fessel, S. G. Greenberg, and L. M. Gutentag, An Experi-
mental VM/[370 Based Information System, Technical Report G320-2107,
IBM Cambridge Scientific Center, 545 Technology Square, Cambridge, Mas-
sachusetts 02139 (July 1975).

. C. 8. Chandersekaran, and K. S. Shankar, ‘‘On virtual machine integrity,”
and J. J. Donovan and S. E. Madnick, ‘‘Virtual machine advantages in secu-
rity, integrity and decision support systems,”” IBM Systems Journal 15, No.
3, 264-278 (1976). This exchange of letters deals with the problem of virtual
machine integrity and the use of GMIS.

. D. D. Chamberlin and R. F. Boyce, ““SEQUEL.: a structured English query
language,”” ACM SIGMOD Workshop on Data Description, Access and Con-
trol (Ann Arbor), 249-264 (May 1974).

. J. J. Donovan and S. E. Madnick, ‘‘Institutional and ad hoc DSS and their
effective use,”” Data Base 8, No. 3, 79-88 (Winter 1977).

. C. R. Attanasio, ‘‘Virtual Control Storage—security measures in VM/370,”
IBM Systems Journal 18, No. 1, 93-110 (1979, this issue).

. VM/370 Networking Program (No. 5799-ATA, PRPQ No. PO%007). This pro-
gram was written by T. C. Hartmann and E. C. Hendricks, who extended
their earlier work on RSCS.

. The NJE/NJI networking packages have been used extensively in IBM’s de-
velopment and scientific laboratories, both during development of the pro-
grams and after their release. As of this writing, approximately 240 CPU’s can
communicate over leased lines or channel-to-channel adapters from Germany
to California. For more information see R. P. Crabtree, ‘‘Job networking,”
and R. O. Simpson and G. H. Phillips, ‘‘Network job entry facility for JES2.”’
IBM Systems Journal 17, No. 3, 206-220 and 221-240 (1978).

. The nucleus reduction work was done at the IBM Cambridge Scientific Center
by L. Wheeler and J. Ravin. Dr. N. Sorensen conducted the VNET experi-
ment.

. Assist hardware for OS/VSI1 is available on System/370 Models 135-3, 138,
145-3, 148, and 158, and on the 3031 processor.

. IBM System/370 Extended Facility, IBM Systems Library, order number
GA22-7072, IBM Corporation, Department D58, P.O. Box 390, Pough-
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keepsie, New York 12602. This facility is available on System/370 Models
158-3 and 168-3 and on the 3031, 3032, and 3033 processors.

. Specific functions performed by ECPS:VS1 are: page supervision (page en-
queue and dequeue control blocks, short term fix/unfix, and invalidate page
table entry); I/O supervision (CCW translation, local GET/FREE MAIN);
storage management (GET/FREE MAIN of protected queue area or pro-
tected free queue element, SMF storage monitor maintenance); SVC handler
(first-level handler code and, if needed, entry into SVC trace table); dispatch
(the last portions of this routine); and trace recording (entries in trace table for
SIO, IO interrupt, and dispatch entry).

. CCW translation and functions related to page table management performed
by ECPS:VS1 microcode are eliminated when OS/VS1 handshaking is in ef-
fect. CP handles these functions and is helped by ECPS:VM.

. The 12 instructions comprise four lock handling instructions, six tracing in-
structions, and page fix and SVC instructions.

. See Figure 1 for the layout of control register 6. The virtual machine extended
facility is supported only by the VM/370 System Extensions Program Product
(Program No. 5748-XE1) and is controlled by bit 29 in control register 6. For
its use to be valid, the MVS virtual machine must be in the virtual supervisor
state and the real machine in the problem state. VM assist can be active at the
same time. CP simulates the two new instructions—INVALIDATE PAGE
TABLE ENTRY (IPTE) and TEST PROTECTION (TPROT)—which are
part of the new architecture but not MVS-specific.

. The APL assist concept is not unique with VM or CMS. APL assist features
are available for the VSAPL interpreter supported by the VSPC Program
Product (which runs under DOS/VS, OS/VS, and CMS), as well as for the
APL/CMS interpreter which runs only on CMS systems. For additional infor-
mation, the reader is urged to consult A. Hassitt and L. E. Lyon, ‘“An APL
emulator on System/370,"” IBM Systems Journal 15, No. 4, 358-378 (1976).

. VM/370 supports attached processors for System/370 Models 158AP and
168AP and for the 3031AP; and for Models 158MP and 168MP and the
3033MP when configured for asymmetric I/0. For more information on at-
tached processor support, see L. H. Holley, R. P. Parmelee, C. A. Salisbury,
and D. N. Saul, ““VM/370 asymmetric multiprocessing,”” IBM Systems Jour-
nal 18, No. 1, 47-70 (1979, this issue).

. W. J. Doherty and R. P. Kelisky, ‘‘Managing VM/CMS systems for user ef-
fectiveness,”” IBM Systems Journal 18, No. 1, 143-163 (1979, this issue).
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