Discussed in this paper is a computing center management meth-
odology based on the premise that the computer user’s time and
work product are valuable. Experience in the use of interactive
systems in a research environment from 1965 to the present time
is presented. Current user experience and management of VM|
cMS are emphasized. The use of computers as tools for extending
users’ powers of memory and logic and the development of new
methods of managing VM/CMS are discussed in detail.

Managing VM/CMS systems for user effectiveness
by W. J. Doherty and R. P. Kelisky

This paper discusses the evolution of the Virtual Machine/Con-
versational Monitor System (VM/CMS) interactive computing
services at the IBM Thomas J. Watson Research Center, York-
town Heights, NY, and the necessary changes in viewpoint
needed to manage interactive computing services effectively for
the user community. (We use the familiar name ‘‘Yorktown”’
throughout this paper.) Computer users at Yorktown have avail-
able a variety of computing services. VM/370 is provided on two
seven-megabyte System/370 Model 168’s, one of which has an
Attached Processor. MVS, i.e., 0S/VS2, together with the Time
Sharing Option (TSO) is provided on an eight-megabyte System/
370 Model 168-3. Employees at Yorktown are urged to use these
computing facilities to do creative and innovative work. Adminis-
trative personnel, as well as scientists, use computers where it is
cost-effective for them to do so. Since nearly all computing ser-
vices are accessed interactively from terminals in users’ offices,
terminal rooms, or, in some cases, home terminals, we have at-
tempted to develop management policies and practices that make
interactive computing services more effective for the user.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J e VOL 18 ® NO 1 ® 1979 DOHERTY AND KELISKY

Interactive computing began as a service at Yorktown with the
introduction of APL in 1965, and presented users with an interface
fundamentally new and different from that of batch computing.
Clearly, most of the strong acceptance of APL resulted from the
APL language and the APL system, but these positive character-
istics might not have sufficed if at the same time the APL group
had not recognized that this new way of computing required a
new way of managing computing services. That is, management
recognized that interactive computing must be available in order
to be useful. The user must be able to turn on the terminal at any
time and, with a high degree of confidence, find the interactive
system up and running. APL service was provided on a System/
360 Model 50 essentially twenty-four hours a day, seven days a
week. Preventive maintenance was limited to a few hours every
three weeks, and because of the intrinsic reliability of the APL
system and the machine, the user was able to assume that APL
would be available whenever needed: day and night, weekends,
and holidays. Although computing center management may not
have realized it at the time, criteria for user effectiveness, system
availability, and system reliability were being established for in-
teractive computing services. These criteria have strongly influ-
enced subsequent management practices of the Yorktown com-
puting center.

In 1967, the Time Sharing System, TSS/360, was introduced at
Yorktown on a System/360 Model 67. On T5S/360, we began to
experiment with and understand the effect of system response
time on user productivity, as well as the value of indicating to the
user a measure of system load prior to his logging on, the impor-
tance of scheduling controls in order to distribute system re-
sources equitably, and the need for ‘‘transparent’’ management

of a growing on-line user data base. Although TSS/360 no longer
runs at Yorktown, the experience gained has suggested new ex-
tensions to vM/370 and TSO, so that these systems might become
more effective for the user.

In 1969, the Control Program, CP/67, the predecessor of vM/370,
was introduced on a second System/360 Model 67 to serve as a
software development facility for operating systems. An irresist-
ible user demand for cMS, which was not offered at first to our
computer users, showed the importance of providing an easy-to-
use system for people without special knowledge of computers.
An increased load on the system, resulting from demand for CMS,
showed that it would be necessary to give the programmers who
had responsibility for maintaining CpP/67, and later vM/370, which
replaced CP/67 in 1972, tools to enable them to understand what
was taking place inside the system so that a few users could not
usurp system resources to the detriment of system performance
for the entire user community. We also learned that interactive
system users are reluctant to give up a function or facility that had

DOHERTY AND KELISKY IBM SYST J e VOL 18 @ NO 1 e 1979

proved useful on an earlier interactive system. For example, a
facility equivalent to the ease of data management, as provided
on TSS, had to be made available on vM/370.

Lessons learned

In later sections, we examine in more detail results of our experi-
ence with managing interactive systems, but first we present the
most important lessons learned from experience.

o The computer user’s time and work product are valuable.
Therefore, interactive systems should be managed so that
ability to work is enhanced with the least inconvenience to the
user.

For most interactive computing, the aggregate user time is more
costly than the computer time. Figure 1 shows the cumulative
percentage of VM/CMS CPU cycles consumed at Yorktown by com-
puter users versus the cumulative percentage of people using vM/
CMS over a month. Similar curves characterize the distribution of
computing usage in many other installations.’ In general, less
than ten percent of the people consume about seventy-five per-
cent of the computing resource. Focusing on that top ten percent
of the computer users, we find that a small fraction of their inter-
actions dominates their demand for computing. Each user’s own
management, not the computing center, must determine whether
the machine-intensive computing is technically justified. Such
computing occurs for about five percent or less of the inter-
actions. The remainder of the interactions involve immediate, on-
going communications between people and the system. To illus-
trate the economic implication, assuming a cost of $800 per hour
for a large computer, the twenty-five percent of the system that
accounts for ninety-five percent of the interactions costs $200 per
hour. And assuming one hundred simultaneous users at $20 per
hour, the user cost is $2000 per hour. These figures are only for
illustration. At Yorktown, computer costs are less, users’ time
costs more, and there are normally many more than one hundred
simultaneous users on each of two vM/370 systems. Therefore, for
more than ninety-five percent of the computer interactions, the
users’ time is much more costly than that of the computer, and
these costs are diverging. Thus, our aim is to provide an environ-
ment in which the computer user can make effective use of time
and efficient use of the computing resources provided.

Figure 2 shows the growth in interactive computing at Yorktown
from 1973 through 1977. The aggregate cost of the users’ time is
greater than computer costs, and this difference continues to
grow. Therefore, we seek maintenance and enhancement strate-
gies, within budget limits, that help users to do their work and

IBM SYST J e VOL 18 e NO 1 ® 1979 DOHERTY AND KELISKY

Figure 1

Yorktown VM/CMS

—
o
=1

® 0
=] =]

CUMULATIVE PERCENT OF CPU
~
=]

| L

60 70 80 90 100
CUMULATIVE PERCENT OF USERS

Figure 2 Comparative ranges of user hours, cost of user time, and computing costs at York-
town

100 000

DOLLARS PER YEAR
HOURS PER MONTH

MONTHLY
CONNECT HOURS

TOTALDP . —

—

DP HARDWARE _ . —~

|

1975 1976 1977

that tend to give highest priority to users’ needs for service. This
means that we isolate changes from one another and allow both
old and new versions of functions to coexist, so that system im-
provements do not force the user to change his ways of working.

An essential tool for our maintenance and enhancement strategy
is the virtual machine in vM/370. In virtual machines, we can test
new versions of most subsystems or applications without disturb-
ing existing versions. The fact that we can isolate many special
functions within separate virtual machines provides the ability to
tailor the appearance of a given function, and thereby simplify the
user interface without fear of ‘‘contamination’ from other irrele-
vant function. When CMS is the operating system in the virtual
machine, we find that the system overhead for performing that
function is small.

& Complexity in the man-machine interface is wasteful of users’
time, and can be reduced by the judicious use of procedures.”

DOHERTY AND KELISKY IBM SYST] & VOL 18 & NO | 1979

In April, 1978, the Yorktown computing center processed more
than ten million interactions. An interaction is any user input and
its accompanying system response. If the information content per
interaction is too small, people may be unknowingly slowed down
by excessive interaction. Viewed another way, a decrease in the
amount of work the user has to do to derive a useful result from
an interaction makes the system more effective for that user.

Often, computer users take great care in determining an effective
combination of computing functions for a frequently performed
task. Once they have done this, the combination of functions is
given a name and stored on secondary storage, so that the person
need not repeat those thought processes again. These procedures
(called EXEC’s) may include useful default values for parameters
as well as logic to make the system adapt to the user’s environ-
ment, rather than requiring the user to adapt to the machine.
Once someone has constructed an EXEC, others can and do take
advantage of it. For example, there are EXEC’s to simplify the use
of the IBM internal computer network, so that the user normally
does not have to be concerned with the kind of data involved, the
protocols, or the ways of addressing the person or group to whom
data are sent or from whom they are received. The naive user
need not even be aware of the existence of the commands or pa-
rameters inside EXEC’s. By this process, complexity is reduced,
typing errors are avoided, and the user-effectiveness of inter-
action increases.

From examining twenty percent of the users on one of the vm/
CMS systems at Yorktown, we find that there are twice as many
EXEC’s as all other source programs in conventional programming
languages combined.® Elsewhere, in 1977, the Stanford Linear

Accelerator Center (SLAC) installation observed an average of
twenty-five commands executed from EXEC’s for each command
typed at a terminal* when using WYLBUR, a highly sophisticated
editing and batch submission subsystem developed by Stanford
University about ten years ago. In 1971 at Yorktown, the number
of commands executed per person, counted at execution time af-
ter procedure expansion, doubled in just five months. Thus, expe-
rience indicates that there is continued growth in function as
users make the system adapt to their requirements. We can think
of this growth as arising from ‘‘captured intelligence.”’ In the
early sixties the computing industry speculated on the notion of
“artificial intelligence,”” whereby the computer would heuristi-
cally determine the solution to some problem. In practice, we find
the concept of captured intelligence extremely useful in raising
the man-machine interface to a level meaningful for many people.

e Display terminals are able to provide a user more information
in a given time than typewriters. They can be especially valu-
able in helping one understand how to use the system.

IBM SYST J e VOL 18 @« NO | o 1979 DOHERTY AND KELISKY

Where justified by the user’s work, in the view of the user’s man-
agement, it is our objective to place an IBM 3277 display terminal
on each user’s desk. In general, we find terminal usage of an hour
or more per day to be a prerequisite for such an installation. An
example of the value of the display terminal in accelerating the
user’s work is provided by our documentation practices on
EXEC’s. It has become customary to include comments on the use
of each EXEC directly in line with the EXEC code. Thus, each user
can determine the functions each EXEC performs, its syntax, and
the default values of parameters. These are obtained by entering
the name of the EXEC followed by a ‘‘?’’. By having the com-
ments included in line with the EXEC, these comments are then
more likely to be changed whenever the EXEC is changed, which
maintains currency between the documentation and the code.
The Yorktown user community finds that these ‘‘self-defining”’
commands are much more useful than any other form of docu-
mentation or education. Such a facility is not feasible with the
slower data rates of typewriter terminals.

o Since systems programming is costly, management seeks so-
lutions to user problems that do not lead to growing com-
mitments in systems programming time.

Systems programmers are a scarce and costly resource, and strat-
egies that increase systems programming requirements are to be
avoided. In general, a local change to an operating system carries
with it an obligation to reevaluate that change every time there is
another change to that part of the operating system. Such local
changes represent a kind of promissory note on which one pays
interest (system programming time) indefinitely. Yorktown com-
puting center management seeks ways to reduce this cost. For
example, we have selected a way of attaching new display termi-
nals that avoids repeated reprogramming as the underlying oper-
ating system changes. This subsystem, called the Advanced Ter-
minal Subsystem, attaches non-1BM terminals to an IBM System/7
that has been programmed so that the underlying operating sys-
tems (VM/CMS, MVS/TSO, and formerly TSS) on the System/370
Model 168’s need not be changed. Change is localized to the Sys-
tem/7, and new terminal types are introduced by means of table
entry rather than by modifications to MVS and vM/370.

By giving people special virtual machines and access to whatever
source code they need, together with good tools for debugging
changes and for finding out who else might be interested in any
given function, we provide an environment in which changes take
place but reliability remains high. Special libraries exist to allow
users to make their changes available to others. By simply typing
the command OWNER followed by a command name, any person
can determine the current owner of a given version of a function,
and communicate problems or new ideas for enhancement di-

DOHERTY AND KELISKY IBM SYST J e VOL 18 ® NO 1 e 1979

rectly to that owner through the system itself. Once such func-
tions have proved to have value to many people, they can readily
be incorporated into the central library, with little effort by the
systems programmers.

e Because the development of new computing services is
costly, installation management develops new services in-
crementally in order to evaluate these services before the next
step is taken.

We avoid development projects that must span several years be-
fore their benefits are available to the users. Not only are such
projects costly, but also there is the great risk that the problem to
be solved has changed or has disappeared during the develop-
ment process. Because program development is a very complex
process, we find that feedback is required continuously through-
out the development cycle. By bringing the computer to the per-
son who has the greatest knowledge of the problem to be solved,
and providing adequate computing resources and an appropriate
set of tools, we find that that person can build a prototype solu-
tion, try it personally, and ask others to try it. Many such itera-
tions refine and perfect the prototype so as to yield the required
function. We find that this is a fast way to produce high quality
function for low cost, or perhaps for the lowest cost. We also find
that even very skillful programmers absolutely require such feed-
back throughout the development cycle. There is accumulated
evidence to show that most errors have occurred in the design
stage,” and that individual skills are the major factor in determin-
ing the quality of programming projects of fewer than fifty thou-
sand lines of executable source code.

By developing new services in an iterative fashion, we are more
likely to be sure that we are solving the right problems, that the
proposed solutions are indeed perceived by the users to be useful
solutions, and that the function can be readily changed as future
needs dictate. vM/CMS and the virtual machine provide the basic
environment we need to work in this fashion. Our experience sug-
gests that the iterative method of program development is a major
improvement over the traditional programming development pro-
cess.

e User need for batch processing grows proportionally to inter-
active computing, a fact that increases the need for the avail-
ability of well-planned specialized function.

The load distribution curve of Figure 1 is the same for interactive
computing as it is for batch processing. Because of the growth in
interactive computing that has continued for the past ten years,
there has been pressure to detach work that is large in computing
resource demand, or that has reached some logical stage of com-

IBM SYST J ¢ VOL 18 #« NO 1 » 1979 DOHERTY AND KELISKY

pletion. If this were not done, a long-running process would act as
ablock at the terminal, and prevent a person from accessing other
data while that long-running process is completing. By packaging
special functions in special-purpose virtual server machines, it
becomes easier to off-load work whenever appropriate. These
machines need not run on the same real machine, and, in many
cases, they do not. To facilitate communication among such spe-
cial-purpose virtual machines, an experimental mechanism has
been developed for communication among different virtual ma-
chines that run on the same real machine. We have used this
mechanism in text processing, laboratory automation,’ and in a
vM/370-based Mass Storage System (MSS) data migration system.
The Virtual Machine Communication Facility (VMCF) of vM/CMS
is an outgrowth of this work. Network Job Entry and Network
Job Interface software products have given us the necessary facil-
ities for communication among different real machines. By being
able to communicate with other machines, whether virtual or
real, we can permit new and old functions to coexist. Our users
communicate with old functions as needed rather than convert
old functions to new environments. By insisting on having most
of our terminals locally attached, we minimize response time
delays, reduce security problems associated with remote access,
and reduce the number of hardware subsystems required to be
available simultaneously. Thus, ‘‘networking’’ data rather than
people is a more effective way to promote collaboration and to
avoid replication of work.

The following sections discuss management actions as they have
affected availability and reliability, response time, expansion fac-
tors and visibility of service, data management, and specialized

function.

Availability and reliability

Since computing services at Yorktown are available, insofar as
possible, twenty-four hours a day, seven days a week, one may
ask whether such a schedule is justified. Technical management
has authorized more computing than can be accommodated dur-
ing prime shift, but there are other reasons why such a schedule
was established: the requirement for computer availability by ex-
perimentalists, the necessity that system maintenance not be
done during prime shift, and the relatively low incremental cost to
provide these added services. There are, however, impediments
to such a schedule: software or hardware failures, scheduled
software changes or tests, scheduled hardware shutdowns for
engineering changes, preventive hardware maintenance, hard-
ware relocation, and the unavailability of personnel to operate
the systems on weekends and holidays.

DOHERTY AND KELISKY IBM SYST J @ VOL 18 @ NO 1 e 1979

As to whether such extreme availability is necessary, we note
that researchers (computer scientists, chemists, physicists, engi-
neers, etc.) expect and require a degree of flexibility in working
conditions. Experiments cannot be confined to the normal eight-
hour working day, and there are experimentalists who may ex-
tend or shift their working hours to coincide with the require-
ments of their experiments. There are also scientists who work
more than eight hours per day, or who are simply more produc-
tive if given access to the tools they need in the middle of the
night, on weekends, and on holidays. Finally, we realized that if
users are to entrust all their programs, procedures, documents,
and data to the interactive systems, that information must be
available whenever they are working, in the same sense that the
contents of a locked file in the user’s office are available.

This policy is at times incompatible with the need to test new
software at night, modify or repair hardware, or carry out neces-
sary housekeeping tasks (such as making copies of the on-line
data base as a safeguard against destruction). But, given a com-
mitment to provide around-the-clock service, compromises can
be worked out so that many hardware changes are postponed to
third shift or to weekends. Together with our users, we have
evolved a strategy for software testing so that changes to the soft-
ware system are introduced on prescheduled days, usually during
a shutdown at 18:00 lasting fifteen to twenty minutes. Then the
period from 18:00 to 8:00 the next day is designated as a ‘‘user-
risk session,”’ so that users know that new (and possibly un-

stable) software is being tested. The computing center is allowed
two system crashes, after which the standard prime shift system
is restarted, and users know that no further software testing will
be done that night. Housekeeping tasks can usually be designed

to run in a time-shared mode, so that back-up of the data base can
be done after 18:00, even though users are on the systems. Such
tasks take longer to complete when executed in the time-shared
mode rather than in the stand-alone mode. However, the stand-
alone mode of the computer is employed very rarely because it
limits user access to the systems.

When new software changes to the operating systems have been
tested for about a month on second and third shifts, they are then
introduced on prime shift, usually on a Friday, so that we have
the weekend to solve new problems that may appear. In general,
after one prime shift failure of the new software we return to the
older standard system. If the new software runs for a week with-
out prime shift failures it becomes the new standard system.

Hardware failures usually call for immediate repair in many com-
puting centers. In general, our policy is to restart the system and
maintain service, even when it is degraded. Only if failures be-
come so frequent that users cannot proceed with useful work, or

IBM SYST J @ VOL 18 « NO 1 e 1979 DOHERTY AND KELISKY

software
maintenance

hardware
maintenance

system
operations

management
commitment

if we cannot restart the system, do we give up the system for
service on prime shift. Relocation of hardware and the addition of
engineering changes are limited to second and third shift periods
or weekends, excluding 8:00 to 18:00 on Saturday if possible.

Despite our intentions to provide around-the-clock service, a ma-
jor difficulty is that of operator availability. Because we operate
under manpower limitations, we were led to seek new ways to
increase operator availability with a fixed number of operators.
We recognized that we could not operate each machine from its
own console and continue to mount tapes and disks on demand
with the available operations staff. Therefore, we designed a cen-
tral *‘operations bridge’’ from which the three System/370 Model
168’s can be operated by means of IBM 7412 terminals and 3277
display terminals, and, where necessary, we have also made
changes to the operating systems so that they may be started and
controlled remotely. Since all the operators must operate all sys-
tems, it is more difficult to develop operators who are highly
skilled on those systems. Consequently, MVS/TSO/JES3 and VM/370
each have an operator team with a lead operator. Members of one
team can operate the other system, but do not necessarily have
specialized knowledge of it. This strategy allows the computing
center to operate on weekdays with six operators on prime shift,
five operators on second shift and three operators on third shift.
On weekends and holidays there is one operator for each of
two twelve-hour periods per day. On certain holidays, the inter-
active systems run unattended, with the understanding that pri-
vate tapes and disks cannot be mounted. Nevertheless, there are
persons who come into the laboratory on holidays to use the com-
puters, or who, in a limited number of cases, dial in from home
terminals.

Another important aspect of system availability is that of manage-
ment flexibility. Computing center management must be willing
to make compromises in schedules in order to serve special needs
of users. When computing center schedules are published each
week, or when sudden changes to those schedules must be pub-
lished by means of log-on messages to users, we invite users with
special needs to contact us. If a user is attempting to finish a pa-
per to meet a deadline, or has urgent work that is due at a certain
time, the computing center tries to adapt to the user rather than
insisting that users always adapt to the computing center. On the
other hand, it is important to adhere to schedules that promise
service at specified hours. It is extremely frustrating to come into
the laboratory on a weekend or holiday, expecting to use the
computer, and find that the computing center has changed the
schedule, even though the reason may be a good one. There is
also a special telephone number from which one can obtain a re-
corded message on the status of the systems. This message is
changed and time-stamped whenever a system failure or other

DOHERTY AND KELISKY IBM SYST J e VOL 18 ¢ NO 1 ¢ 1979

Figure 3 Occurrences of particular combinations of response time and numbers of simulta-
neous users for TSS/360 at Yorktown in 1971

S}

RESPONSE TIME (S)

|
50 55

NUMBER OF SIMULTANEQUS USERS

emergency changes the service schedule. The main disadvantage
of the recorded message is that it is just not accurate enough for
brief system failures, although it is useful for failures that last
more than five minutes. Users report that recorded messages are
accurate no more than seventy percent of the time, and we are
seeking a better way of informing them of the status of the sys-
tems.

Performance management and visibility of service

System response time is the time the user waits, measured from
his signal to the system that there is work to be done to the point
at which the system begins to present those results to the user.
Figure 3 is a representation of response time to a single smail

IBM SYST] & VOL 18 ¢ NO 1 & 1979 DOHERTY AND KELISKY

system
expansion
factor

response
time

Figure 4 Effect of system response
time on user response
time

USER RESPONSE TIME (S)
N W
q S

~N
=]

| |
5 10 15
SYSTEM RESPONSE TIME (S)

program that ran every twenty seconds in the spring of 1971.
Each twenty-second period, the program would awaken and re-
cord the number of logged-on users and the response time that it
received from the system. Figure 3 might be considered a three-
dimensional graph in which the z-coordinate is the number of
times a specific combination of response time with a given num-
ber of simultaneous users occurred. Darker shading denotes more
frequently observed operating conditions.

As the number of simultaneous users increases, the response time
steadily and sharply degrades. Thus, if we act so as to maximize
the number of simultaneous users, the effect is to maximize the
number of people to whom we are presenting a sharply degraded
service. This means that the number of simultaneous system
users is a misleading measure of system load. System expansion
factor, rather than number of simultaneous users, is a better mea-
sure for the computing center and for the users. This factor is
defined as the ratio of the actual time to do a unit of computer-
limited work to the minimum time to do that work in a stand-
alone environment, and is calculated by dividing the total system
service time plus queuing time to perform some user-requested
action by the CPU time plus the estimated 1/0 time. This assumes
that computation time and 1/0 time for any one user are not over-
lapped. It also assumes that all paging and disk arm movement
are overhead, induced by contention. Although this is not entirely
true in all cases, it serves well enough as a first-order approxima-
tion of what actually happens.

We find that significant performance improvements lead to a re-
duction in the number of simultaneous system users, perhaps be-
cause they do their planned work sooner. This is accompanied by

an increase in the number of interactions processed, coupled with
decreased overhead needed to do that work. Figure 4 shows the
profound influence that system response time degradation can
have on user behavior. If we break an interaction into two parts, a
System Response Time (SRT), during which the system is pro-
cessing a request for a user, and a User Response Time (URT),
during which a user is keying in the next request to the system,
each second of system response degradation leads to a similar
degradation added to the user’s time for the following request.’
This phenomenon seems to be related to an individual’s attention
span. The traditional model of a person thinking after each sys-
tem response appears to be inaccurate. Instead, people seem to
have a sequence of actions in mind, contained in a short-term
mental memory buffer. Increases in SRT seem to disrupt the
thought processes, and this may result in having to rethink the
sequence of actions to be continued. This phenomenon was stud-
ied at Yorktown in 1971 during normative studies of interactive
computing, and is discussed in Reference 7. We recorded every
interaction on TSS for three years, and this data base, which in-

DOHERTY AND KELISKY IBM SYST } ® VOL 18 ¢ NO 1 ¢ 1979

Table 1 Benchmark tasks on System/370 Model 158

VM/370 VM/370
with Resource Manager without Resource Manager

Storage 2 Mbyte 1 Mbyte 2Mbyte 2Mbyte 1Mbyte 1Mbyte
Users 80 80 80 60 80 60
Response 0.146s 0.624s 2.2s 0.537s 1.6s 0.601s
Transactions 12,374 11,149 7,921 9,176 7,319 8,062
Problem CPU 60.4% 50.3% 33.6% 37.1% 23.8% 43.5%
Total CPU 98.5% 88.8% 66.6% 97.4% 51.2% 73.2%
Drum I/O 95% 95% 65% 65% 65% 65%
Disk I/O 5% 5% 35% 35% 35% 35%

cluded a wide range of human tasks, was used in the reported
study. It is interesting to note that controlled behavior studies®
going back to 1938 show that the following three things happen in
a stimulus-response situation when the stimulus becomes both
long and erratic: People slow down in their work, they become
emotionally upset, and they make more mistakes. Given an inter-
action rate of nine million per month, a system response time
delay of two seconds, and assuming the short-term human mem-
ory buffer model, there would be a calculated minimum of 36 mil-
lion seconds per month of lost user time. That is 10 000 man-
hours or 60 full-time persons lost for the month. Thus our objec-
tive is to keep 90 percent of our interactions to a response time of
one-half second or less. Subsecond response time appears to be
as important a human requirement as an economic one.

Figure 5 shows the distribution of User Response Time (URT),
which has been known as ‘‘think time.’” The mode of this distri-
bution is 2 seconds, the median is 8.5 seconds, and the mean is 12
to 15 seconds, depending when one terminates the data points. If
all end points, such as the two-hour Iunch break or the times
when users forgot to log off, are included, nearly any average is
conceivable. In the extreme case, the quantity measured is the
length of time the system stayed up. By truncating after two min-
utes, we have found a consistent URT average of 12 to 15 seconds
over the past several years.

Table 1 highlights the effect of scheduling on the man-machine
interface. It shows the effect of the Resource Manager facility for
VM/370 in a benchmark environment as it would affect users. The
columns with VM/370 Resource Manager show the results of run-
ning with that facility in a heavily loaded environment. The col-
umns without vM/370 Resource Manager show that same heavily
loaded environment without that facility. Notice that in this envi-
ronment, fifty percent more interactions can be handled by the
system with the Resource Manager. And the response time at the
ninetieth percentile is twenty times better. Notice also that the

IBM SYST J @ VOL 18 ¢ NO 1 ® 1979 DOHERTY AND KELISKY

Figure 5 Frequency of user re-
sponse time

FREQUENCY

5
MODE MEDIAN MEAN
USER RESPONSE TIME (S)

resource
management
facility

Figure 6 Effect of expansion or in-
creasing load on produc-
tive time

OVERHEAD
TIME DUE

\DLE TIME JO QVERLCAD

PRODUCTIVE
TIME

EXPANSION OR LOAD

Figure 7 Effect of underlpad and
overload on hardware
cost

LOST HARDWARE DOLLARS PER HOUR
- — — — — N
o = > w = o o
<] S =3 S S S S

©
(=]

®
(=]

I I B
2 4 6 8 10 12

ELAPSED-TIME SYSTEM EXPANSION FACTOR

performance

base system handles more interactions with sixty persons than
with eighty. By allowing those extra twenty users onto the system
in that overloaded environment, we observe that we have ef-
fectively lost the twenty people and slowed down the other sixty.
Without a knowledge of the expansion factor, the number of si-
multaneous users served is a poor measure of the load on the
system. The Resource Manager has been included as a part of the
Systems Extension Program Product beginning with Release 5 of
VM/370.

Figure 6 shows computer cost as a function of the expansion
factor. If a machine is underused, most of its costs may become
lost dollars. As the demand for computing service grows, the
expansion factor also grows. Within a certain range of expan-
sion factors, the system is optimally used, in the sense that as the
load builds to still higher expansion factors, a significant portion
of the hardware usage goes into the unproductive work of system
overhead.

Figure 7 shows the lost hardware dollars per hour that result from
underload and overload on one of the VM/CMS systems at York-
town. The V-shaped curve is an envelope that contains the actual
operating points. The expansion factor used here is an elapsed-
time expansion factor, which is the period of time needed to pro-
cess a unit of computer-limited work divided by the minimum
time to do that work in a stand-alone environment.

Figure 8 shows the cost of the lost user time per hour versus the
expansion factor. The expansion factor grows together with the
number of simultaneous users. The number of persons being
slowed down by the delivery of poorer service to each one also
grows.

Figure 9 shows dollars lost due to a combination of hardware op-
erating points and user costs. The graph suggests that there is
indeed an optimal operating range, having expansion factors in
the range of four to six, that depends on both the operating sys-
tem and the machine speed. The cost of overload is far greater
than the cost of underload when the user’s time is considered.

We have software instrumentation called vM/Monitor to accumu-
late data on the daily use of the VM/CMS systems at Yorktown,’
and we attempt to maintain the operating point not exceeding an
expansion factor of six for any hour. Note that the definition of
expansion factor that uses the ratio of elapsed time to stand-alone
time differs by about a factor of three from that reported via the
INDICATE command in VM/370.

Techniques and programs discussed in Reference 9 gather data
and analyze the service each user receives each day. These pro-

DOHERTY AND KELISKY IBM SYST J @ VOL 18 ® NO 1 @ 1979

grams are run each night, and give us a clear indication of the
quality of service rendered that day, the likely causes of prob-
lems, and the relative pressure on each system resource. These
programs calculate the expansion factor for each hour of the day
and make the business of tuning, capacity planning, and service
analysis a fairly straightforward task. Reference 10 suggests that
the performance of an entity (a function, a system, etc.) is the
difference between the observed behavior of an entity and the
observer’s expectations of behavior. We have found that if the
computer user can be given some notion of the current state of
the system, the user’s expectations are modified accordingly, and
sensible decisions in planning work can be made. In TSS we in-
troduced a numerical measure called the ““THI’’ (borrowed from
the Temperature-Humidity Index of human comfort) which was
an averaged value of the time needed to perform a standard task.
The THI was available to the user before he logged on, and could
be interpreted in terms of the work the user was planning to do.
For example, editing received reasonable response, even with a
relatively high THI, whereas a PL/1 compilation and execution
might be unacceptably slow under the same conditions.

It was reasonable to transfer this experience with the THI to v/
370, but it was also desirable to give vM/370 users more informa-
tion about the status of vM/370 than the simple THI of TSS. Accord-
ingly, a special THI'' was implemented for vM/370, and the user
logs on to VM/370 to obtain this information. The components of
the VM/370 THI are available to both the control program and a
user program that is executing in virtual storage. Certain mainte-
nance tasks, such as data base backup or data migration, can
check for low system activity before proceeding, and thus mini-
mize their effect on the user community. We have also found that
information about system overloads derived from the THI enables
the operator to ask dominant users to postpone or moderate their
activities, and to detect program looping not apparent to the user.
The Yorktown version of the vM/370 THI and other information-
collecting facilities were made part of vM/370 Release 2, and are
known as the vM/370 Measurement Facility. The vM/370 THI is now
known as the Load Indicator.

Data management

In 1965, APL on the Yorktown System/360 Model 50 imposed rigid
constraints on the size of a user’s data base: 36K bytes of working
space of which about 32K bytes were available to the user (who
constantly protested against those limits). At that time, the only
way to increase work space size in APL was to provide more main
storage and/or reduce the number of work spaces in main storage
simultaneously (thereby usually increasing response time). Until
APL/CMS became available, the APL work space limitation was an

IBM SYST J ¢ VOL 18 ¢ NO 1 e 1979 DOHERTY AND KELISKY

" Figure 8 Cost of lost user time per

hour as a function of sys-
tem expansion factor

" —
o ~n
o =3
o [=3

LOST USER DOLLARS PER HOUR
8
=3

SYSTEM EXPANSION FACTOR

Figure 9 Dollars lost due to a com-
bination of hardware op-
erating points and user
costs

—
B
<
=]

LOST DOLLARS PER HOUR
e
— n
8 8

|

SYSTEM EXPANSION FACTOR

data set
migration

annoyance to many users. On TSS/360, the situation was radically
different because TSS appeared to its users to be a one-level store.
To the limits of allocated disk space, the TSS user could create
data sets, file them, and retrieve them by data set name. The sys-
tem managed all direct-access storage space for users. Although
we could not continue to add on-line disk storage to TSS, we none-
theless wanted to avoid requiring the user to spend time moving
data sets to and from private tape or disk volumes. We therefore
developed a data set migration facility for TSS that became opera-
tional in April 1969, and had the following characteristics:

e Data sets were marked with the date last referred to.

e Data sets not referred to for more than a specified number of

days (a number that was estimated to maintain a safe level of
on-line space available) would be compressed and migrated
from the on-line disk volumes to demountable disk volumes
and stored off-line.
If a user referred to a migrated data set, the system informed
him that it had been migrated and told him how to obtain it.
Users could list the names of all migrated data sets, volun-
tarily migrate data sets not needed in the near future, and
erase unneeded data sets.

TSs Data Migration met many users’ data management require-
ments, but it had some limitations. There was no mechanism by
which users could specify that any migrated data set to which he
referred be restored automatically without additional action. This
was an annoyance even though the user was given a message that
contained the name of the migrated data set. If the user knew that
he must restore a migrated data set, he was still required to initi-
ate the restoration process and wait until restoration was com-

plete. Most users preferred that restoration proceed without lock-
ing the terminal, so that other work could continue, and then in-
form them when restoration had been completed.

With the introduction of CP/67 and later vM/370 at Yorktown, the
interactive system user found that the burden of on-line space
management was transferred back from the system to the user.

o Because each user is given a fixed allocation of disk space, the
user might have to stop during work to decide which files to
erase or move to tape, in order to make room for new files
being created.

As a user’s files grew, the user had to try to persuade installa-
tion management to allocate more space. On the other hand,
the user was being pressed by management to give up space
not actually in use.

When the user was given more space, the previous allocation
had to be copied by the computing center into the new space.
This was an overnight operation, and usually required that

DOHERTY AND KELISKY IBM SYST J ¢ VOL 18 @ NO 1 & 1979

many users’ space allocations had to be copied, even though
they might not be changed in size.

By late 1972, the computing center had more requests to add new
users than available disk space for them. Since user disk space on
VvM/370 is frequently only partially used, and since on-line disk
space is only fractionally active at any point in time, rather than
invest heavily in additional disk storage devices, management ex-
plored two strategies. Least acceptable to the user community
was an external schedule that distributed the available system
time among the users by mounting only certain subsets of users’
disk files at certain times. This not only constrained each user to
specific times, but frequently made it impossible to access a col-
league’s files if those files were available only at a different time.
This strategy also resulted in wasted space occupied by extra
copies.

As a result, we began a one-man development effort of a second
strategy to determine whether user files could be managed by the
system so that only ‘‘active’ files occupied on-line disk space.
This design was very promising, and by 1973 we decided to trans-
fer our experience from TSS to the minidisk concept in vM/370.
The most convenient unit of space on VM/370 is not that of users’
files (although we subsequently implemented voluntary file migra-
tion), but the minidisk, which is a specific number of contiguous
cylinders of on-line disk space.

VM/370 data migration, as implemented at Yorktown, moves and
compresses an entire inactive minidisk to a demountable disk,
thereby leaving an empty slot on-line into which an active mini-
disk of that size can be moved on demand. As in the case of TSS,
the decision to migrate a minidisk is made on the basis of a speci-
fied number of days elapsed since the minidisk was last accessed.
The user whose minidisk has been migrated experiences a longer
than normal delay during his first log-on, while the minidisk is
being located, expanded, and moved into an empty on-line slot.
Subsequent log-ons proceed normally, unless the user again fails
to log on within a specified number of days.

Since the minidisk migration task must be available at all times,
we have implemented an AUTOLOGON facility that automatically
logs on specified tasks after a system restart. AUTOLOGON has
had value far beyond its role in minidisk migration. As a result of
demands for asynchronous processing mentioned earlier in this
paper, we find that there are many special tasks that carry out
important services for our users. For example, the NETWORK
task, which enables users to send work between systems, a func-
tion that previously required manual restart by an operator, is
now started automatically at system load time. The file migration
capability that we have added to vM/CMS enables users to migrate

IBM SYST J e VOL 18 e NO | e 1979 DOHERTY AND KELISKY

data
management
strategies

AUTOLOGON

files by file name from a minidisk to a Mass Storage System car-
tridge, making it possible to save and retrieve CMs files. A valu-
able consequence of VM/370 migration is the backup capability it
affords the installation. On third shift, copies are made of all mini-
disks that have been accessed on the previous day. These mini-
disks are stored on a second set of on-line disks that are copied to
tape. If a user inadvertently erases files, within four hours the
computing center can restore a copy of the minidisk that is no
more than twenty-four hours old. The computing center has
rarely lost a user’s data; nearly all data losses take place when
one erases or inadvertently writes over his own files.

Another major benefit of the data migration facility is the reduc-
tion in the cost of managing on-line data. Just before the in-
troduction of these facilities for vM/CMS in 1973, there were about
three hundred fifty tape mounts per day and two hundred disk
mounts per day throughout the computing center. By early 1978,
when the use of computing had grown by a factor of eight times
that of 1973, we were processing thirty tape mounts and five disk
mounts per day. Thus an effective reduction of at least a factor of
eighty has been achieved in the frequency of tape and disk mount-
ing.

Specialized function

A user’s virtual machine in vM/370 is well isolated from other vir-
tual machines so that the user may cause only his own virtual
machine to crash, but cannot normally affect others. Therefore,
we believe that the virtual machine is an excellent vehicle for the
development of special functions that can then be tailored for
ease of use, ease of maintenance, and good performance. An im-
portant strength of VM/370 is the strong isolation provided by vir-
tual machines.

Complexity in a user’s interface is lessened because in VM/370 a
particular function can be isolated from all other functions, and
the user need learn only that function to use it. As a function
evolves over time, tradeoffs in efficiency and ease of use can
evolve together without being clouded by other, irrelevant issues.

Because users of interactive systems have become increasingly
inventive and demanding in their uses of the system, interactive
growth has resulted in a proportional increase in the demand to
do computing that is separated in time from one’s interaction with
the system. This has usually been called ‘‘batch processing.”” By
grouping special-purpose functions in special machines, we can
apply better controls to those functions. This includes special
scheduling controls, the grouping of requests so as to reduce the
overhead of initialization, and the tailoring of functions over time
in accordance with a user’s evolving needs. Also, by giving users

DOHERTY AND KELISKY IBM SYST J @ VOL 18 4 NO 1 & 1979

the ability to submit work to virtual machines to be processed at a
later time, we remove bottlenecks between a user’s interface to
the system and the user’s data. It is important to note also that
these special-purpose functions need not run on the same real
machine as the one on which the user entered the function.

Thus the virtual machine concept applies directly to distributed
processing. The gains to be had for load distribution may be real,
but they are small in comparison with the gains in reduced com-
plexity, ease of maintenance, and improved service to the user.
Our experience with distributed specialized function leads us to
the conclusion that we have now seen three distinct stages of
computing center activities. The first occurred in the early sixties,
when the computing center provided computing services and
served as a pool of applications programmers who were allocated
to help scientists develop programs for using computers to solve
problems that were machine limited. At that time, computing was
about one hundred times more costly, and so only a few appli-
cations were cost justifiable. There also existed at that time a lack
of data management facilities and a primitive user interface.

The second stage was that of the systems programmer, when
most computing centers grew rapidly in size of both hardware and
software. Highly skilled people were required and change man-
agement grew increasingly complex. During this period, the com-
puting center personnel were devoted to making the systems
more manageable, and their time no longer went directly to the
user. Scientists and administrative personnel became direct users
of the systems.

Our current environment is the third stage, in which the systems
personnel are primarily involved in basic systems changes and
the management of tools for distributing the responsibility of
change control to the users, who have the strongest need for the
changes. In this way, users themselves can better control their
own environment. Our networking capability allows our users to
communicate freely with one another and exchange new func-
tions directly in machine readable form. Systems programmers
are seldom involved. Our users send an average of 3000 files per
day in and out of Yorktown computing systems. The typical file
size is 50 000 characters, which is equivalent to a twenty-page
paper. That is a measure of the communication among users on
physically different real machines. Communication among users
of the same physical machine but different virtual machines is
probably far greater.

Summary

Appropriate management actions can significantly enhance the
effectiveness of an interactive system from the user’s point of

IBM SYST J ® VOL 18 ¢ NO 1 ® 1979 DOHERTY AND KELISKY

view. During more than ten years’ experience with interactive
systems at the 1BM Thomas J. Watson Research Center, we have
made management decisions that extend the capability of these
systems to work for the user by enabling sensible decisions to be
made about the user’s own time, and by selectively adding to the
systems facilities that enable the user to spend less time compen-
sating for system limitations and more time on the problem. In-
creased emphasis has been placed on using the computer as a tool
to extend the users’ memory as well as their logic power. Our
computing systems are adapted by experienced users, via
EXEC’s, so that the effectiveness of man-machine communication
ingreases with time. This is of special benefit to the inexperienced
user who then takes advantage of the experienced user’s evolu-
tionary growth. The ways in which we have dealt with issues of
availability, distributed change management, data management,
in-line documentation, response time, expansion factors, special-
ized function, and effective user-to-user communication have
been the key to our success. VM/370 and CMS are the primary vehi-
cles that our users have found to be effective for their rapidly
evolving interactive environment.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of VM/CMS managers
at Yorktown, who include W. M. Buco, A. N. Chandra, B. Lie,
D. T. Mainey, N. J. Pass, and H. Serenson. P. H. Callaway and
W. H. Tetzlaff have contributed to the performance management
of vM/CMS. A. M. Katcher, W. R. Deniston, D. T. Mainey, and
R. P. Carroll developed the data management facilities. L.. H.
Wheeler and W. M. Buco have developed scheduling and re-
source management strategies. C. J. Stephenson has been respon-
sible for the evolution of the EXEC language since 1971. W. E.
Daniels developed a set of EXEC’s that are collectively called
MAINTAIN. A. N. Chandra developed an experimental mechanism
for communication among different virtual machines that run on
the same real machine.

CITED REFERENCES

1. A. W. Luehrmann and J. M. Nevison, ‘*“Computer use under a free-access
policy,’” Science 184, 957-961 (1974).

2. W. E. Daniels and R. W. Ryniker, EXEC 2, A Computer Language for Word
Programming, Research Report RC6292, IBM Thomas J. Watson Research
Center, Yorktown Heights, New Yerk 10598 (1976). (ITIRC AAA77A000736)

. W. J. Doherty, ‘“Human factors: Impact on interactive computing,” Pro-
ceedings of SHARE 50 2, 1244-1266 (1977).

. T. Johnson (SLAC) and W. J. Doherty, private communication, February
1977.

. B. W. Boehm, Software Engineering, Report SS-76-08, TRW, Incorporated,
Redondo Beach, CA.

. A. Guido and J. P. Considine, ‘‘Laboratory automation via a VM/370 tele-
processing virtual machine,”” AFIPS Conference Proceedings 46 (National
Computer Conference, Dallas, Texas, June 13-16, 1977), 865-877 (1977).

162 DOHERTY AND KELISKY IBM SYST J e VOL 18 e NO 1 ® 1979

. S. J. Boies and J. D. Gould, ‘*User performance in an interactive computer
system,”” Proceedings of the Fifth Annual Conference on Information Sci-
ences and Systems, Department of Electrical Engineering, Princeton Univer-
sity, Princeton, New Jersey (1971), p. 122.

. R. S. Woodworth, Experimental Psychology, Henry Holt and Co., New York
(1938).

. W. H. Tetzlaff, **State sampling of interactive VM/370 users,”’ IBM Systems
Journal 18, No. 1, 164-180 (1979, this issue).

10. W. J. Doherty, ‘‘Measurement and management of interactive computing,”’
Proceedings of SHARE XLIV 3, 1587-1598 (1975).

11. P. H. Callaway, ‘‘Performance measurement tools for VM/370,” IBM Sys-
tems Journal 14, No. 2, 134-160 (1975).

Reprint Order No. G321-5090.

IBM SYST J e VOL 18 ® NO 1 ® 1979 DOHERTY AND KELISKY 163

