Composite/Structured Design, Glenford J. Myers, Van Nostrand
Reinhold Company, New York, New York, 1978. 174 pp. (ISBN
0-442-80584-5, $15.95).

It is well known that not only are design errors more frequent
than coding errors in the production of software, but that they
also take more time to be detected and corrected. It is the thesis
of this book that a proper design methodology can produce pro-
grams of higher reliability and extensibility. The author presents
an impressive set of guidelines and principles to aid in the design
of medium- to large-sized programs, as well as examples ‘that
show proper application of the methodology. Most chapters in
the book contain exercises that test the reader’s understanding of
the material presented, and a complete set of answers is provided
at the end.

The key idea of composite design is to reduce complexity by max-
imizing module independence. This is achieved by maximizing
module strength (a measure of the internal relationships of a
single module) and minimizing module coupling (a measure of the
intermodule relationships among all modules of a program). Two
chapters are devoted to a discussion of different types of module
strength and coupling. For example, the most desirable type of
module strength is called informational strength; its purpose is to
hide some concept or data structure within a single module. The
most desirable type of module coupling is called data coupling,
whereby modules communicate with one another by means of
input and output arguments only.

Composite design also comprises a methodology of problem de-
composition. Three types of decomposition are identified and de-
scribed in some detail in a chapter devoted to each. A slightly
different and interesting approach—called the Jackson design
method—is also discussed, but its relationship with the previous
decomposition techniques is not well analyzed at this time.

The ideals of module independence and selection of decomposi-
tion techniques are illustrated in an excellent analysis of a specific
application problem. Finally, six popular programming languages
are compared for those features that support the proposed design
methodology.

In the opinion of the reviewer, the design methodology presented
in this book should become part of the intellectual equipment of
every programmer and system designer. It is reasonable to as-
sume that this approach will be further refined and analyzed in the
years ahead. In particular, many of these ideas should be support-
ed and encouraged by features and concepts that are finding their
way into new programming languages.

B. Leavenworth

IBM SYST J © VOL 17 @ NO 4 ¢ 1978

Advances in Computer Architecture, Glenford J. Myers, John
Wiley & Sons, Inc., New York, New York, 1978. 314 pp. (ISBN
0-471-03475-4, $21.00).

Has the logical organization of the computer CPU changed very
much in the last fifteen years? Not much, the author of this book
suggests. If a first course in computer organization concen-
trates on the design ideas of fifteen years ago it will also be de-
scribing the workings of most contemporary machines. If a text-
book for a second course, such as this one, presents more ad-
vanced ideas, it will be presenting concepts that have not yet
gained acceptance in the current computer market.

About half of the book is devoted to a case-history approach that
describes in some detail the organization of four machines that
contain the ideas of interest. The first part of the book introduces
the main ideas, such as machine implementation of expression-
evaluation stacks, self-defining data and higher-level addressing,
and argues their importance. These techniques are needed to
close the ‘‘semantic gap’’ between many of the notions of high-
level languages and the concepts of most languages. For example,
PL/I has a variable-length string, and System/370 does not. Also,
System/370 has general registers, but PL/I gives no way to manip-
ulate them. At present, compilers and interpreters must bridge
the gap, at a significant cost in computer performance and in pro-
gram development effort.

Two of the machines described exist on paper only. The first,
Student PL. Machine (SPLM), serves very well as a tutorial de-
vice to tie the concepts together. The other ‘‘paper’” machine—

the subject of the author’s Ph.D. thesis—is a design whose prima-
ry objective is to improve the reliability of programs. This is ac-
complished by providing more hardware checks, fewer opportu-
nities for program ambiguity, and better testing facilities.

Another machine, termed the SYMBOL processor, is a one-of-a-
kind machine and an excellent study of the hardware implementa-
tion of a rather high-level-language computer. The only descrip-
tion of a machine in widespread use is that of the Burroughs
B1700. This system is capable of providing several different user
interfaces by changing the microcode of this versatile underlying
machine. Unfortunately, the details provided on the B1700 are
skimpy.

All the descriptions are very well done. First, the highlights are
presented; then an example activity is sketched to show how the
pieces function together; and, finally, the details are supplied.
(Why aren’t manufacturers’ manuals written like this?) The book
closes with a discussion of the main objectives of a computer ar-

IBM SYST J @ VOL 17 ¢ NO 4 e 1978

chitectural design. The author shows how studies of various sys-
tems and encoding methods might be used to refine a system ar-
chitecture.

This book will make a good advanced textbook. Although the
concepts are not brand new (three of the described machines pre-
date 1974), they are clearly defined and motivated. Perhaps the
best influence this book might have would be to encourage read-
ers to elaborate and extend the key ideas of the book: to discover
how data and algorithms can be more effectively represented; to
find better mechanisms underlying program structures; and to
gain a clearer understanding of the tradeoff between hardware
and software.

L. Haibt

The editors assign reviews of books that might interest our
readers. Reviews are signed, and opinions expressed are those of
the reviewers.

IBM SYST J @ VOL 17 ¢ NO 4 e 1978

