


Figure 1 MVS work flow 
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As computer  systems  become increasingly complex, developing a 
model to satisfy those  requirements is more and more difficult. 
The main thrust of the  paper is to present  a case study of research 
into the development of a  performance model that we call €"OD, 
for  the IBM Os/vS2 Release 3.7 MVS (Multiple Virtual Storage)  op- 
erating  system and to discuss  the model usage in capacity plan- 
ning and  system tuning. The model has a hybrid hierarchical 
structure  that  exploits  the  advantages of simulation and queuing 
theoretic and statistical  techniques.  The model is not designed for 
general use at  the  present  time.  Rather, it is intended  to be a re- 
search vehicle and  to  demonstrate  applications of modeling tech- 
niques to real-world problems. 

A brief overview of how work flows through MVS is given in the 
next  section, and then the model structure  and validation results 
are  described. osIvs2 MVS is termed simply MVS throughout  this 
paper. Finally applications of the model in the capacity planning 
and system tuning areas  are  discussed. 

System  description 

Figure 1 is a simplified  view  of work flows through major com- 
ponents of MVS. For  more detailed description of the MVS virtual 
storage paged operating  system  see  References 1,2,  and 3.  In the 
model development  process, we have been particularly interested 
in factors  that delay the  progress of work units  through  the  sys- 
tem.  There  are in general  three  types of work  units,  namely, 
batch jobs, TSO commands,  and  data base applications.  The  term 
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transaction is used in this  paper  to  refer  to  any of these  work 
units.  The  term users refers  to  those  who  generate  transactions. 
We now describe how transactions  are  treated  as  they  arrive  at 
the  system. 

batch A  batch  transaction enters  the JES component  (Job  Entry  Sub- 
transactions system)  either from local or remote  stations,  and is queued by its 

job  class parameters.  The JES function is to  accept  batch  jobs  and 
to  prepare  and  schedule  their  execution. When sufficient re- 
sources  are available (such as tape  drives,  data  sets,  disk  packs, 
etc.)  to  this  transaction  and its priority becomes  the  highest, a 
free  initiator is assigned to direct  the  execution of this  batch 
transaction.  The  total  number of initiators at any given time is 
usually fixed. They are  either assigned to  batch  jobs  or  they  are 
idle. Each  transaction,  when in execution,  occupies  its  own vir- 
tual  storage  Address  Space (AS) and is under  the  control of the 
System  Resources Manager (SRM). The  terms  users,  transactions 
and ASS are  sometimes used interchangeably when referring to 
work  units. 

TSO A TSO command (transaction), when entered by a  user from a 
transactions terminal  into  the  system, is first received by the  telecommunica- 

tions  component of MVS. Delays  are normally caused by buffer 
space unavailability and message transmission  time.  The message 
is in turn  passed  to  the TSO user’s AS that is created  when  the  user 
is logged on.  The  processing of this message in the AS is under  the 
control of the SRM. Any outputs  are also passed  to  the  telecom- 
munications  component  for  transmission  back  to  the  user’s  termi- 
nal. 

data  base On-line data  base  application  transactions (e.g., IMS) are handled 
transactions similarly except  that  there is an  extra  layer,  namely,  the  data  base 

control. All transactions  must  pass  through  the  data  base  control, 
which may have  several  priority  queues. The  data  base  control 
schedules  an application AS (analogous to  initiators) to process 
the  transaction, based on its own priority scheduling. The appli- 
cation AS processes  one  transaction  at a time, although there may 
be several application ASS. These  types of transactions  have  not 
been modeled in the  current version of PMOD. 

The SRM is one of the more visible internal  components of MVS. 
The  reason is that many of the parameters that affect its operation 
are  externally specifiable in the  Installation  Performance Specifi- 
cation (IPS). Its main task is to schedule  the workload for  execu- 
tion according  to  the IPS and, in addition,  to maintain resource 
utilizations within desired  levels.  The mechanism that  the SRM 
uses  to  achieve  this goal is that of swapping address  spaces in and 
out of  main storage,  i.e.,  control of the multiprogramming set, 
since  transactions  can make progress  only  when  they  are  execut- 
ing on  the CPU. 
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Figure 2 Relationship between workload level and Service rate for three Performance 
objectives 
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~ The  purpose of the IPS is to divide the workload into  classes, performance 
called Performance  Groups  (PG), as shown in Figure 2. Usually groups 
TSO users  and  batch  users  are assigned to different PGS in order  to 
give them  separate  treatment. A PG contains  a  number of periods. 
There is a  set of parameters  for  each PG period that  regulates 
service  received by each  transaction. A transaction  starts off with 
the first period of its PG. If it does  not  complete in a specified 
period duration, it  is demoted  to  the  next  period.  The period dura- 
tion is expressed in terms of either real time or attained  service, 
such  that  short  transactions may be favored  over long transac- 
tions by  giving different treatments  to different periods. 

The  in-store multiprogramming mix  is further classified into so- domains 
called domains. Each domain is specified by a PG period parame- 
ter.  Separating  the multiprogramming mix into  domains is quite a 
useful concept,  since it allows the installation to  relate logical 
workload classes  to  physical  storage allocation groups.  For  ex- 
ample, TSO transactions may  be controlled as a  class if they fall 
into the same domains. It  is,  therefore, possible to  allocate  a fixed 
portion of processing  capacity  to  any logical workload class.  The 
ASS in the same domain compete with each  other  for a limited 
number  of  slots in the multiprogramming set. These limits are 
called domain target MPLS (Multiprogramming Levels), which can 
only be changed by the SRM. The  total MPL is equal  to  the  sum of 
the MPLS in each  domain.  Other domain parameters  are  the mini- 
mum and  the maximum target values and the weights used by 
SRM to  determine  the  importance of each  domain.  The  reason  for 
these  parameters will become  apparent  after  we  discuss  the pag- 
ing storage allocation algorithm.  The  combination of  aging trans- 
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Figure 3 Assignment of perfor- 
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actions  through  periods  and assigning domains allows the installa- 
tion to  control effectively the level of service given to  transac- 
tions of different resource  demands. 

The ASS in the  same  domain  compete  for  a fixed number of MPL 
slots. When the  number of ASS is greater  than  the  number of slots 
in a given domain,  some ASS are  queued  outside main storage 
(out-queue). When the  priority of an AS on  the  out-queue is high 
enough, it can  cause  an in-queue AS to  be swapped out and the 
high-priority AS to be swapped in to  take  its  place. Priorities are 
calculated dynamically for  each of the ASS, based  on  their  per- 
formance  objectives. The performance  objectives  are specified as 
a period parameter in the IPS, an example of which is shown in 
Figure 2. It is a mapping of service  rate  received  to workload 
levels (a priority number).  Service  rate is calculated  as  the num- 
ber of service units per  second;  service unit is a weighted sum of 
CPU time,  number of vo operations,  and  number of page-seconds 
(space-time  product).  In essence, priorities of in-queue ASS de- 
crease with time,  whereas  those  on  the  out-queue  increase with 
time. The mechanism allows the installation to effect a  variety of 
algorithms for  sharing,  such as round-robin  and first-in-first-out. 

In addition  to using service  rates  for priority calculation,  the in- 
stallation may also specify other  factors  to be taken  into  account. 
Since keeping resource utilizations within acceptable  levels is an 
objective of the SRM, the SRM monitors those  users  who  have 
caused  an imbalance and  those who may help balance resource 
usage. A  composite  priority is calculated  to include the  degree to 
which  a  particular AS influences resource utilization. 

The CPU dispatching priorities of transactions  are also specified as 
a period parameter.  The period parameter is divided into the fol- 
lowing groups: (1) fixed, (2) round-robin,  and (3) mean-time-to- 
wait (shortest CPU burst  time first). Such  groups  are  arranged in 
order  on  the CPU dispatching  queue, and the algorithm is preemp- 
tive resume. 

One of the  important  system  components is the  Real  Storage 
Manager, which allocates  real  storage page frames  on  demand in 
the MVS virtual storage  environment.  The  Real  Storage  Manager, 
under  the  direction of the SRM, attempts  to utilize real  storage 
efficiently by keeping only  those recently used program pages in 
storage. This capitalizes  on  the  fact  that  programs  are known to 
exhibit locality of storage  references,  and  therefore more pro- 
grams may be allowed to be resident.  The mechanism has  sup- 
ported  both a global Least Recently  Used (LRU) algorithm and the 
Processing  Time Window (PTW) algorithm, which is an approxi- 
mation of the working-set algorithm in the  various  releases of 
MVS . 

The  storage management mechanism works in the following way, 
and  is  further  discussed in Reference 2. Associated with each real 
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page frame  are  a page AS identification number  (has no meaning 
for  shared  pages),  a  Reference Bit (RB), and  an  Unreferenced In- 
terval  Counter (UIC). The RB is turned on by hardware  when  the 
page contents  are  referenced. At periodic intervals,  the  status of 
each page’s RB is examined by software. If RB = 1, both RB and 
UIC are  reset  to  zero. If RB = 0, UIC is incremented by one. An 
inventory of free pages is kept. When it falls below some thresh- 

I old because of a page request,  the global LRU strategy  requires a 
fixed number of pages with the largest UIC values to be deal- 
located from their ASS. In  the  case of the PTW, the  free-page pool 
is replenished with pages having UICS greater  than some criterion 
number  (the window size).  The periodic update interval for  the 
case  of global LRU is in real  time; no distinctions  are  made  among 
ASS. The PTW algorithm updates  according  to  the  elapsed virtual 
processing time (in units of CPU time) of each individual AS. 
Shared pages are  processed differently, where  there is a minimum 
number of allocated  pages.  The  most  recent  release of MVS em- 
ploys the global LRU strategy. 

Since program behavior is dynamic in nature, the  same MPL 
sometimes may cause  unacceptably high page fault  rates  that  re- 
duce  actual  throughput.  To  prevent  overcommitment of main 
storage,  the SRM monitors  the paging rates among main storage 
and secondary paging devices  (such  as  drums or  disks),  and, in 
addition,  the number of unprocessed page transfer  requests  and 
the  average value of the highest overall UIC. If any one of these 
factors is not  satisfactory,  the  target MPL of some domain is de- 
creased by one.  The  actual domain MPL is then lowered to reflect 
this change.  The  domain  parameters,  the  average  number of 
ready users in each  domain and the  current domain MPLS are used 
to  select  the  lowest priority domain for MPL reduction. On the 
other  hand, if resources  are under-utilized the reverse  happens; 
the  domain with the highest computed priority has  an  increase in 
its target MPL. 

The MVS performance  model 

The first step of model development  requires  not only studying 
the  system logic, but  also performing experimentation  and ex- 
ploratory data analysis,  such  that  important  system  components 
and parameters  can be identified. The  next  important step is 
workload characterization,  i.e., determining which workload pa- 
rameters  are needed as input  to  the model. As a result of these 
steps, we have arrived  at  a  research model that  captures  the 
salient features of OS/vSz MvS and its workload. (Details of these 
steps  are  the  subject of a  paper  to be published elsewhere.) 

Queuing theoretic models have been quite successfully applied to 
study  computer  system  performance.  There  are,  however,  at 
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least  the following three difficulties: (1) the need to  analyze  com- 
plex workload scheduling algorithms; (2) the problems of mod- 
eling storage  contention  (swapping);  and (3) the inability to  ac- 
count  for  the effects of different page allocation algorithms in a 
total  system model. Although some progress  has been made re- 
cently in this area,  adequate  general  results  are still unavailable. 

To  overcome  these difficulties, practitioners have frequently 
turned  to detailed simulation models. Due to  the  level of detail 
modeled, simulation development and running costs  are  often rel- 
atively high. Measurements from MVS have indicated that  fre- 
quencies of dispatches, VO interruptions,  and page exception 
events  are of the  order of several  hundreds  per  second.  Events 
that  cause multiprogramming level changes,  however, are usually 
much  less  frequent. A simulator usually runs very slowly if the 
high-frequency events  are explicitly modeled.  The  approach we 
take  is  to subsume  those high-frequency events in a  computation- 
ally efficient analytic  part  and  to simulate the relatively infrequent 
but  complicated  workload scheduling events.  Thus  the total 
model run time can be shortened  and benefits of both techniques 
can  be  exploited. 

Figure 4 illustrates  the major PMOD components.  The model has a 
hybrid hierarchical structure  that  combines  simulation,  queuing 
theoretic,  and  statistical  techniques.  The simulation part  includes 
workload  generation, Job  Entry  Subsystem (JES), System Re- 
sources Manager (SRM), and  the  interface  to  the  analytic  part. 
The  analytic  part  consists of a multiclass Central  Server queuing 
network Model (CSM) and  a Renewal Paging Model (RPM). Param- 
eter values are supplied by the simulation part  to  the  analytic 
part, which returns  processing  rates of each  storage  resident Ad- 
dress  Space (AS) and  resource utilizations. To  further simplify the 
model, statistical  techniques  (such as regression analysis) are 
used to  estimate  system  parameters  for  swapping, paging, VO, ter- 
minal communications,  and job spooling overheads. 

workloads The  current version of the MVS performance model allows two 
types of users,  batch  and TSO, and  a  number of system jobs,  e.g., 
JES and TCAWVTAM. Each user  type may have  several  classes, 
and these  classes  are used to specify resource  requirements,  e.g., 
long and  short, I/O or CPU bound, etc.  The system jobs  are never 
swappable  and  each  occupies  a  permanent AS. Their  resource  re- 
quirements,  estimated  from regression techniques, reflect the 
current  estimation of activity. The JES requirements  depend  on 
the  batch  arrival  rate  and  the  amount of spooling required.  The 
TCAM~VTAM requirements are functions of TSO transaction  arrival 
rates. Owing to a lack of efficient solutions,  the  contention of soft- 
ware  locks is not  considered in this model. 
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Figure 4 Components of PMOD 
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For  each  type of transaction the following attributes  are  needed: 

0 Class  selection  probability. 
0 Pe,rformance group  number. 
0 Interarrival time distribution  (think time for TSO). 
0 Unreferenced  Interval  Counter (uIC) distribution or inter- 

reference time distribution  (for program page fault  rate 
estimation). 

0 CPU time distribution. 
0 Number of uo operations  to  each  data  set  and  number of bytes 

0 Number of terminal YOs per TSO transaction. 
0 Number of job  steps and spool data  sets  for batch. 

per  transfer. 

For  each  performance  group  the following parameters are speci- 
fied: 

0 Number of periods. 
0 Domain number of each  period. 
0 CPU dispatching priority for  each  period. 

installation 
performance 
speciflcations 
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0 Performance  objective  number of each  period. 
0 Duration in service  units  for  each  period. 
0 Interval  Service Value (ISV) for  each  period. 

The interval  service  value is the  number of service units that must 
be  accumulated by a  transaction  before its swap-out is allowed. 
The  duration  parameter is  in service  units  only.  The CPU dis- 
patching priority is given as a number  up  to 255. 

The  number of domains, maximum and minimum Multiprogram- 
ming Levels (MPLS), and the weights for domain priority  calcu- 
lation are also required as input. A swap  threshold  parameter is 
used to  prevent  unnecessary  swaps when the differential of prior- 
ity between  in-queue AS and  out-queue AS is not large enough. 
The time interval between  invocations of an MPL adjusting al- 
gorithm is to be specified in time  units of the model. 

The JES queuing discipline is First-In-First-Out (FIFO), but it may 
easily be changed  to  any  complex  structure  necessary. 

system The  system  functions  such as dispatching, uo interruption han- 
parameters dling, page fault  processing, and swapping are modeled as addi- 

tional CPU times  to  the  transactions  and  are specified externally. 
The following are  the  parameters of the  particular  system config- 
uration: 

CPU model (or  speed if all CPU values are in times). 
Main storage size available for  user allocation (in pages),  ex- 

0 Number of channels. 
Number  and speed of direct  access  devices  (disks  and  drums). 
Designation of devices  for paging and for swapping. 
User  data  set  locations. 
Number of TSO terminals and batch  initiators to be started. 

cluding nucleus  and long-term fixed pages. 

simulation The simulation language used with the simulation component of 
component Figure 4 is S I M P L / I . ~  The workload generator  introduces TSO and 

batch  transactions  into  the  system,  according  to  the  interarrival 
time distributions.  Each  transaction is assigned attributes  as dis- 
cussed.  The  batch  transactions  join  the JES queues  and wait for 
the assignment of available initiators.  Next the batch  transaction 
joins  one of the domain out-queues  as  depicted by its perform- 
ance  group.  The JES processing time requirements  are  not  re- 
flected on a  per-job basis. 

TSO transactions  join  the designated domain out-queues  directly. 
Transmission  delays  are modeled as  part of the think time,  and 
should be taken  into  account when the think time parameter is 
specified. The sRM is invoked at  the  transaction  arrival  time.  The 
SRM consists of two main modules,  swap  analysis  and  resource 
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0 Updates  attained  service of each  user,  based  on  current  pro- 
cessing  rates  (as supplied by the  interface). 

0 Computes  each  user’s  priority,  based  on  attained  service  and 
time in the  system (using the  performance  objectives). 

0 Checks  for period change and enters  the  change  into a new 
domain if necessary. 

0 Swaps  users  into  and  out of main storage  because of one of the 
following conditions: (1) a  transaction  completes with another 
out-queue  user of the  same domain taking its place; or (2) a 
user  on  the out-queue is to replace an in-queue  user  due to 
priority difference; or (3) target MPL is different from the  cur- 
rent domain MPL. 

0 Adds CPU time and YO required  for swapping to  every swap-in 
candidate’s  total  resource  requirements. 

The  resource monitor is invoked at regular time intervals (of the 
order of tens of seconds). It performs the following operations: 

0 Computes  a Contention Index (CZ) of each domain using the 
formula 

cz = 
(in-queue length + out-queue length) x weight 

max ( I ,  current MPL) 

0 Increases domain target MPL with the highest contention index 
by 1 if CPU utilization < v 1  and paging device utilization 
< u2,  where v1 and u2 are threshold  values. 

0 Decreases domain target MPL with the  lowest  contention in- 
dex by 1 if CPU utilization > v1  or paging device utilization 

0 If resource utilizations do  not  cause  target MPL changes,  then 
the resources  monitor  equalizes  the highest and lowest  con- 
tention index domains by changing their  target MPLS each by 
1, but in the  opposite  direction. 

> v2 .  

0 Invokes  Swap Analysis Module to  swap  users. 
0 Collects  statistics  on workload arrival characteristic  for  the 

regression  submodels. 

Note  that  the model uses paging device utilization instead of pag- 
ing rates  and  unprocessed page-in request  queue  lengths,  since 
this is simpler and  has  been  found to have the  same effect. When 
a  target MPL is changed,  the minimum and maximum MPL param- 
eters  that  are  associated with the domain are  checked  and viola- 
tions are avoided by choosing  the  next  domain. 

The  interface module is the link between the simulation com- 
ponent  and  the  analytic  part,  and  has  the  purpose of building pa- 
rameters  to  drive  the  analytic  part. In return,  the  interface mod- 
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ule obtains  the effective execution  rates, Ri,  for  the ith resident 
user,  and  hardware utilizations. Each  user  has  the following at- 
tributes: 

Figure 5 Central sewer queuing Total CPU time including time for swapping, CP, + SWCP, 
network  model where CP, is the  transaction CPU time requirement  and S WCP 

is CPU time for  swapping, which is added  to CP, each time 
there is a swap. 
Total V O S ,  including data set  accesses (FZO,) and swapping 
V O S  (SWIO), as well as  the  distribution of these V O S  to  de- 
vices,  expressed as vo device branching probabilities.  These 
probabilities are estimated from data  set  placements. 

BRANCHING 
PROBABILITIES 

CPU dispatching  priority. 
Unreferenced  Interval  Count (UK) distributions  expressed as 

FIXED POPULATION SIZE 
hyperexponential  parameters. 

System  users  are  characterized by linear regression techniques. 
The JES CPU and Vo usage rates  are  functions of job arrivals  per 
second,  spool  data  sets  per job, and average size of spool data 
sets. TCAM and VTAM resource usages are  obtained in a similar 
fashion, as a  function Of TSO traffic rates.  These values are period- 
ically supplied by  the  resource monitor module. 

Based upon the progress  rates of each  resident  user,  completion 
times are  estimated.  Let Qi(t)  be the remaining CPU time re- 
quested by transaction i at time t ,  and Ri be  its  present  progress 
rate.  Then  the  expected  completion time will be the following: 

When the  completion time is reached a swap analysis module is 
invoked.  Each time there is a change in the mix because of 
swapping or completion,  the  Interface  part is called, which then 
recomputes the next  nearest  completion  time. 

analytic The  analytic  part of the  performance model of MVS-which we 
component call PMOD-is a multiclass Central  Server  queuing  network Model 

(CSM) of CPU and vo contention  coupled with a Renewal Paging 
Model (RPM) of program behavior  and page allocation.  The rela- 
tion among paging, workload characteristics,  and  system configu- 
ration can,  therefore, be accounted  for in the  total  system model. 
The CSM results  are  obtained using QNET45 for  processor  sharing 
CPU dispatching  discipline,  and using an  iterative  technique6  for 
priority preemptive  resume discipline. 

A typical queuing network model is shown in Figure 5. The CPU 
time between vos (the  execution interval Ei) is defined as the in- 
verse of the  sum of file vo and page fault vo rates.  The  former is 
given as an  attribute of transactions  and  the  latter is computed by 
employing the Renewal Paging Model (RPM). The VO server  dis- 
cipline is FIFO. Service  times include time spent through the  chan- 
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nels,  control  units,  and  devices.  The  technique  described in Ref- 
erence 7 can be used to  estimate  the effects of channel con- 
tention. 

The RPM is a program behavior model in a periodic aging environ- 
ment.  The global LRU case only is discussed in this  paper. [The 
processing Time Window (PTW) algorithm case is presented in 
Reference 8.1 The RPM accepts  as input for  each  user its Unrefer- 
enced  Interval  Counter (UIC) distribution of hyperexponential 
form,  its program size,  and  its  execution  rate.  The  output is each 
user’s page fault rate, for  a given total  allocatable real storage size 
m. The RPM models the program pages as distributed among dif- 
ferent  discretized age groups  (i.e.,  the UIC values). A program 
page then makes transitions from one age group  to  another.  If, in 
a  discretized  interval h,  a page is referenced,  its UIC is reset  to 
zero  (as mentioned in the system  description  section), i.e.,  the 
page returns  to  the zero age group.  Otherwise,  its UIC is increased 
by one and  demoted to  the next  older age group. For  the sum of 
all user  programs, size requirements may exceed  the m allocat- 
able real pages. However,  those m pages that  have  youngest ages 
are allowed to remain in real  storage.  These m pages are a mix- 
ture of all those  programs  resident in real storage.  Consequently, 
the  intensity of references to  the m + 1, m + 2 ,  m + 3 ,  etc. 
youngest pages outside m is the page fault rate.  The  references 
made to  the same page are  assumed to form a renewal process. 
Average page fault counts  per h interval can be estimated.  For  the 
global LRu case, programs with the same intrinsic page referenc- 
ing behavior could execute  at  uneven  rates,  because of  dif- 
ferences  either in priority or uo delays.  Their program pages, 
therefore,  distribute differently among the UIC age groups  and 
may result in differing page fault rates.  The differing page fault 
rates,  however,  do, in turn, affect the  execution  rates.  Iteration 
schemes  have been tried, but to  shorten  computation we  find the 
following procedure to be quite  acceptable: 

0 Compute  the initial user  execution  rates, R,, by running the 
Central  Server Model (cSM) under  the  assumption  that  the 
users’ page fault rates, Gi, remain the  same as those  obtained 
at  the  last time the RPM was  invoked. If a  user’s program is 
just swapped in,  however, its page fault rate is set  equal  to 
zero.  The  execution  interval is given by 

E, = ZOSYS + CP, + SWCP 
PIO, + FIO, + SWIO 

+ pFsys( PZO, 
PIO, + FZO, + SWIO 

where ZOSYS is the  system time required per Uo, PIOi is the 
number of  page uos based on G,, and PFSYS is the system 
time required per page UO. 
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Normalize intrinsic UIC distributions to  the real-time domain. 
An age of T real-time units is approximately  equal  to R,T CPU 
time units. For a given intrinsic age distribution F(t) in CPU 
time  units,  the age distribution in the  real time domain is given 
by H(t )  = F(Rit). 

0 Compute  the page fault rate G, by RPM. The  procedure is simi- 
lar  to  that of Reference 8, where the RPM addresses  the single 
program case. In the  present  instance,  however,  there  are  sev- 
eral programs. It is required to obtain the age distribution of 
those pages outside main storage  and  their  distribution  among 
the programs.  Consequently, G,, given by the  reference  prob- 
abilities of those pages outside main storage,  can be obtained. 
An overview of the RPM is provided in the  Appendix. 

0 Run CSM with Gi to  obtain  the final Ri.  
The R, are  then  converted  to effective execution  rates of user 
CPU times by removing the  system  times 

IOSYS + (PF, x PFSYS) + S W,  

Ei 
where 

PIO, 
PF, = 

PIO, + FIO, + SWIO ’ 
and 

s WCP 
PIO, + FIO, -k SWIO . 

SW, = 

run PMOD can be executed in two  modes,  a  distribution-driven  mode 
modes or a trace-driven  mode. The distribution-driven mode has  work- 

load attributes  that  have been generated  randomly from specified 
distributions.  The  trace-driven mode ailows these workload at- 
tributes and their  arrival  times  to be supplied from an  external 
workload file. The workload file  may be  created from measure- 
ments  such  that  actual  peculiar arrival patterns  can be used. Im- 
portant run-time statistics are also provided at  the  end of each 
run, including response-time  distributions  and  throughput by 
workload class or domains,  various  resource  utilizations,  queue 
lengths, time spent  on  queues,  and  the  number of swaps by type. 

Typical  examples  show  that PMOD execution time to simulated 
time ratios are about one, which is thirty  to  one  hundred times 
better  than  for purely simulation models. The execution time goes 
up with increasing load,  but is still within our requirements  for  a 
practical model. 

Model validation 

To thoroughly validate  such a model requires  tests in a large num- 
ber of environments. In this  section we report  the  results of com- 
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paring three  sets of measurements against model prediction, al- 
though more tests  are  underway.  Benchmark  experiments  have 
been conducted  on  a Systed370 Model 158 with three  megabytes 
of storage  under  three different loads.  The  experiments do  not 
show the highest possible stresses  on  the  system, especially that 
of the paging subsystem, but they should be adequate  for  an ini- 
tial test of the model accuracy.  The workload of the first two  ex- 
periments  consists of TsO users  only, with fifteen and thirty  users 
logged on.  The  third  experiment has thirty TSO users and five 
batch initiators active.  The TSO transactions are mainly COBOL 
compiles,  editing,  and data  set manipulation loads.  The  batch 
jobs  are a mix  of commercial and scientific loads.  Measurement 
intervals  are  approximately half an hour each. 

The  performance  model, PMOD, is validated in a completely de- 
terministic trace-driven  mode, so that we do not need to  replicate 
model executions with several  random  number  seeds.  Thus un- 
certainties of empirical distributions  estimations  can also be 
avoided. A software  monitor that is both  event- and timer-driven 
has been  developed  for  the modeling project. It is capable of cap- 
turing detailed transaction  characteristics  and  system perform- 
ance variables. A transaction  trace file is produced from reduc- 
tion of the  measurement data.  Each  entry of  the file contains  the 
transaction’s  arrival  time, CPU time, vo counts per data  set,  and 
number of terminal VOS. The  Unreferenced  Interval  Counter 
(UIC) distributions  are  obtained  for all transactions  instead of for 
each  transaction,  since  these  transactions  are usually short  and 
do not  have  enough  samples  to  estimate  the  distribution. 

Measurements  have  shown  that some of the CPU time consumed 
is not charged to any address  space and that it can be more than 
five percent in many cases. Correlation studies  have  shown  this 
uncharged CPU time  to be related  to  system  activities  such  as page 
fault rates, vo rates,  dispatching,  and swapping rates. Uncharged 
CPU time used per  system  function is estimated by linear regres- 
sion techniques.  Stepwise regression techniques  have also been 
used to characterize JES and TCAWVTAM resource usage rates 
from a number of input variables. A detailed  description will be 
the  subject of a  forthcoming  paper. 

The  system  parameter  values  such as  the  ones  discussed in the 
last  paragraph are estimated from a  fourth  experiment, so that  the 
model predictions will not be biased by the  input.  The  Installation 
Performance Specifications (IPS) specify three domains. Domain 
1 is for first period TSO (short  transactions). Domain 2 is for the 
second and last TSO period. Domain 3 is the only domain  for 
batch.  The TSO response time values do not include time spent in 
transmission or in TCAM processing,  but  rather  the  interval from 
the time the  transaction  enters  the  System  Resource Manager 
(SRM) to  the time when it completes  and is swapped out of main 
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Table 1 Comparison of measurement and model  output 

BATCH TSO Total CPU  User  CPU  Response  time in seconds CPU time  TSO 
utilization  utilization  (meanistundard  deviation)  per  TSO  trans- 

(percentage)  (percentage)  transaction  actions 

Mea-  Mod-  Mea-  Mod-  (meant  second 
____ Domain I Domain 2 Domain 3 inseconds  per 

sured  eled  sured  eled  Mea-  Mod-  Mea-  Mod-  Mea-  Mod-  standard 
sured  eled  sured  eled  sured  eled  deviation) 

0 15 43.0  42.9 17.6 20.0 20.36 21,42 - - 1.31 1.32 18.00 19.46 0.30 
0.93 0.59 

0 30 64.1  61.0  23.6 22.5 14,24 16.52 - - 1.28 1.12 12.30 14.38 0.15 
0.45 1.18 

5 1.00 1.14  46.29  51.56 28.08 28.16  0.08 
30 99’5 99.9 56’0 1.08 0.95  89.40  80.78  79.05  81.55  0.44 1.29 

Figure 6 TSO response  time  den- 
sity  function  for 15 TSO 
users  case 
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Figure 7 TSO response  time  den- 
sity  function  for 30 TSO 
users case 
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Figure 8 TSO response  density 
function  for 30 TSO users 
case  and 5 batch  initia- 
tors  case 
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storage.  Batch  response  times  do  not include time spent in JES; 
they include the time from job selection of an initiator to  job  ter- 
mination. 

Comparisons of the  measurements with the model predictions  are 
shown in Table 1. The  user CPU utilization column indicates CPU 
times  consumed by TSO and batch only,  and  excludes  times  taken 
up by system  functions.  The  reason  for  the  rather low user CPU 
utilizations compared  to  the  total is that the total  includes  the 
measured CPU overhead, which is explicitly taken  into  account in 
the model (over  ten  percent). Both the  mean and the  standard 
deviation of response  times are given in the  table. In the fifteen- 
TSO case, for  example,  the mean and  the  standard  deviation of the 
measurement from Domain 1 are  respectively 1.31 and 1.36 sec- 
onds.  The model predictions  have  about five to fifteen percent 
error in all categories. Figures 6  to 8 show  comparisons of TSO 
response  time  distributions.  The model’s prediction curves in 
general follow the  measurement  curves  closely,  except  for  the 
first few points on Figure 8 (30 TSO and 5 batch  case).  The  inter- 
ference of batch jobs  on TSO response is overestimated,  since  this 
particular model run  employs QNET4 for  the  Central  Server Model 
(CSM) where  equal CPU dispatching priority is assumed  (i.e.,  pro- 
cessor sharing CPU dispatching). To address  this problem, an itera- 
tive queuing analysis  technique  discussed in Reference 6 is being 
implemented for  the case of priority CPU dispatching.  Further 
testing is underway.  The  average CPU times  per  transaction  were 
found to vary from experiment  to  experiment,  since different seg- 
ments of the TSO script  were  exercised in different experiments. 
This  has  caused Domain-2 response time for  the  thirty-Tso  case 
to  be  lower  than  that of the fifteen-TSO case. Longer measure- 
ment runs probably result in a more even  overall workload char- 
acteristic.  However, we do  not need the  same precise loads in 
each  case  to  test  the  effectiveness of the model. 
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Validation for  the  distribution-driven mode requires more effort. 
Empirical workload data must be analyzed and fitted with theo- 
retical  distributions,  such as TSO think time,  batch  interarrival 
time, CPU time,  number of vos, etc.  The  next problem is to  deter- 
mine appropriate model run lengths and  the  number of replica- 
tions with different random  number  seeds, so that  statistical 
stability of the model results  can be achieved. Usually statistical 
stability is quantified by confidence interval  at a given level. 
Confidence interval  estimation  methods  can be found in simula- 
tion textbooks,  such  as  Reference 9. 

Capacity  planning 

Capacity planning is a key step of computer  resources manage- 
ment.  The goal of capacity planning is to define and maintain ac- 
ceptable  user  service  and  system  performance levels with the 
most cost-effective configuration and  equitable scheduling policy. 
Since the future  workload is usually not  deterministic  at  the ca- 
pacity planning stage,  the  distribution-driven model is essential 
for  this  purpose. The  process involves the following steps: 

0 Measure and analyze workload resource usage patterns  and 

Measure and analyze  system  performance, i.e., the  overheads 

0 Project  future workload levels and  requirements. 

current service levels (response time and  throughput). 

incurred in supporting  the  service  levels. 

Figure 9 Average  response  time 
under  different TSO work- 
loads 

OVERALL 

I I 
0 40 60 80 

NUMBER OF TSO TERMINALS 

Figure 10 Average TSO response 

0 Use  the  projected  workload  parameters as input to  the model time  for 80 terminals 
with  different  storage 
sizes  and CPU speeds to obtain  predicted  performance. If the  performance is not 

adequate,  try  several configurations with the model and  select 
the  best  one. 

placements,  and  hardware  rearrangements  for  performance 
optimization. 

Use  the model experiment with scheduling policies, data  set A 1.7 MIPS 
1 0  MIPS 

0 2.5 MIPS 
AVERAGE TSO 
RESPONSE TIME 

OVERALL 
DOMAIN 1 """ 

The model plays an  important role in increasing the  understand- 
ing  of the  interrelationships  and  interactions among the  various 
workload types.  From  that  understanding  one  can make in- 
telligent tradeoffs. It is necessary  to make projections  on  work- 
load increases  and plan computer reconfigurations, since long 
lead times may  be required  for  equipment upgrading. After  a 
change in the configuration is made,  performance optimization is 
required. For example, when a workload increase  causes  an up- 
grading in  main storage  size,  the IPS must be changed  accord- 
ingly to allow a higher multiprogramming level. 

Figures 9 and 10 delineate a family of performance  curves  for 
different configurations over  a range of workload levels. Figure 9 
shows  average TSO response  times  for all transactions  and  for 
Domain 1 completions  (short  transactions) over 40-, 60-, and 80- 

> 2 lot 
STORAGE SIZE (MEGABYTES) 
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terminal  loads.  This  example is for  the  case of a one-million-in- 
structions-per-second CPU, one million bytes of user  pages  (i.e., 
total  storage from which has  been  subtracted  those  pages  that  are 
required by the  system  and  common  areas),  and 13 disk  drives 
spread  over 2 channels.  The workload is similar to  that used in 
the validation experiments,  except  that  distributions  are  assumed 
(average 270 000 instructions per transaction,  exponentially  dis- 
tributed). No batch  loads are included in the  example. 

Suppose  that  the  current load is at 40 terminals  and is expected  to 
increase  to 80 terminals of the  same workload characteristics. For 
the  heavier  load,  even  short  transactions  have  over 5 seconds 
response  time,  and 17.5 seconds  overall  response. If this is not 
acceptable,  one may increase  storage size or the CPU speed. Fig- 
ure 10 shows  the  results of running the model for different storage 
sizes  (1, 2 ,  and 3 million bytes)  and CPU speeds (1, 1.7, and 2.5 
million instructions  per  second).  These CPU speeds  are  approxi- 
mately equivalent  to  some Systed370 CPUS. 

Suppose we are required  to  have  the  same  response  character- 
istics as the 40-terminal case. Clearly the one-million-byte, 1.7- 
million-instruction-per-second configuration satisfies the require- 
ment. We also see  that increasing storage size for  a one-million- 
instruction-per-second CPU yields little improvement.  This  con- 
trived  example  demonstrates  the use of the model for  capacity 
planning. In a real application,  equipment  costs  must be taken 
into  consideration. 

Concluding remarks 

In this  paper  we  have  presented  a  case  study of the  development 
of a performance model for  the IBM OS/vs2 MVS operating  system. 
The  purpose of the  case  study is to  demonstrate  applications of 
modeling techniques to real-world problems  such as capacity 
planning and system  tuning. The model is also to  be used as a 
research vehicle for  studying  advanced  architectural  enhance- 
ments. Although further  tests  are being conducted with actual 
workloads,  the initial validation results  have  been encouraging. 

The running time of the model is intermediate  between purely 
simulation and totally analytic models. The input requirements 
are  closer  to  those of analytic  models,  but  gross  and  distorting 
assumptions  often used need not be made here with simulation 
models. Key internal  system  features  are  represented  without  the 
high cost of running detailed simulation models.  The high cost of 
the  data processing installation and  the  gravity of capacity plan- 
ning and design decisions  often justify the use of a more  accurate 
model. 
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Measurements  obtained via System Management Facilities 
(SMF)" and  the  Resource  Measurement Facility (RME)" can be 
used as input to  the  present model. These  tools provide workload 
resource use parameters as well as vo service  times  and probabil- 
ities, with the  exception of storage  reference  behavior  parame- 
ters. 

Despite  the level of detail of PMOD, some of the  performance  bot- 
tlenecks in real  situations  are  not  predicted,  e.g.,  the SMF data  set 
enqueue  problem. To handle  this  type of performance  prediction, 
the model will have to include the  contention of software  locks, 
which may cause  the model to be overly cumbersome.  A more 
efficient method of treating  such lock contentions is under investi- 
gation. Other  extensions  to  the model are  expected  to include 
data  base  applications (IMS and crcs) and channeYcontro1-unit 
contention modeling. 
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Appendix:  Page  fault  rate  calculation  in  the  global LRU case 

In the global LRU case,  the age of  page j ,  X,, of program i is a 
random variable subject  to  the  distribution H,(t). Arrange the Xi j  
in an ascending order  and call the  nth smallest random variable 
Y,. Then  these pages with their Xi j  less  than or equal to Y,  are 
considered  to  be residing in main storage of size m. In  other 
words,  a page fault occurs  whenever a reference is made to  a page 
with its X u  greater  than Y,. The  computation  procedure is given 
as follows: 

0 From HJt )  obtain  discretized UIC density A, (y ) ,  for program i 

0 Compute B,(y), the probability density of Y,, for all n. 
0 Compute the conditional probability Ci(n, y )  that a page with 

the  nth smallest UIC, Y,, is in program i, given that Y,  = y .  
This probability is proportional  to Ni and A J y ) .  

0 Compute  the  conditional probability that a page of UIC X ,  is 
referenced, given that Xi j  = Y,  and Y, = y .  Denote  this  proba- 
bility by Di(y). 

0 The page fault rate of program i is obtained by summing the 
product of D,(y), Ci(n,  y )  and B,(y) over all possible y and n 
such  that n > m. 

(of program size N i ) ,  where y = 0, 1, 2, * . .. 
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