Capacity planning, a major function of computer installation
management, has the objective of determining cost-effective con-
figurations to provide acceptable user service and system per-
formance levels according to workload changes. The use of a per-
formance predictive model is essential in the capacity planning
process. This paper presents a research case study of the devel-
opment of a performance model called PMOD, for the IBM OSIMVS
operating system. The goal of the model is to predict user re-
sponse times and system performance for different scheduling
parameters, workloads, and configurations, with reasonably
simple input requirements and fast run times. Both the validation
and usage of the model for capacity planning and system tuning
are discussed.

A performance model of MVS
by Willy W. Chiu and We-Min Chow

Capacity planning is an important function of computer installa-
tion management. The goal of capacity planning is to maintain
acceptable user service and system performance levels with the
most cost effective configuration. As new applications are added
or increases in the number of users are anticipated, the installa-
tion management is most concerned with how the system should
be reconfigured to meet the demand effectively.

The use of a performance model to predict user service is essen-
tial, since decisions on computer reconfigurations must be made
ahead, due to the lead time required for equipment upgrading. An
alternative is to perform experiments on similar configurations
with benchmark workloads. This, however, can become ex-
tremely expensive. The growth in the workload may be estimated
by employing statistical techniques on current or past measure-
ments and a priori knowledge of increased load. Once workload
characterization parameters are obtained, the best new configura-
tion can be determined from exercising the computer perform-
ance model. The model should be capable of predicting accu-
rately user response times and system performance for different
scheduling parameters, workloads, and configurations. It is im-
portant that the input requirements are reasonably simple and
model run times are fast.
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Figure 1 MVS work flow
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As computer systems become increasingly complex, developing a
model to satisfy those requirements is more and more difficult.
The main thrust of the paper is to present a case study of research
into the development of a performance model that we call PMOD,
for the IBM 08/VS2 Release 3.7 MVs (Multiple Virtual Storage) op-
erating system and to discuss the model usage in capacity plan-
ning and system tuning. The model has a hybrid hierarchical
structure that exploits the advantages of simulation and queuing
theoretic and statistical techniques. The model is not designed for
general use at the present time. Rather, it is intended to be a re-
search vehicle and to demonstrate applications of modeling tech-
niques to real-world problems.

A brief overview of how work flows through MVS is given in the
next section, and then the model structure and validation results
are described. 05/vS2 MVS is termed simply MVS throughout this
paper. Finally applications of the model in the capacity planning
and system tuning areas are discussed.

System description

Figure 1 is a simplified view of work flows through major com-
ponents of MVS. For more detailed description of the Mvs virtual
storage paged operating system see References 1, 2, and 3. In the
model development process, we have been particularly interested
in factors that delay the progress of work units through the sys-
tem. There are in general three types of work units, namely,
batch jobs, TSO commands, and data base applications. The term
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transaction is used in this paper to refer to any of these work
units. The term users refers to those who generate transactions.
We now describe how transactions are treated as they arrive at
the system.

A batch transaction enters the JES component (Job Entry Sub-
system) either from local or remote stations, and is queued by its
job class parameters. The JES function is to accept batch jobs and
to prepare and schedule their execution. When sufficient re-
sources are available (such as tape drives, data sets, disk packs,
etc.) to this transaction and its priority becomes the highest, a
free initiator is assigned to direct the execution of this batch
transaction. The total number of initiators at any given time is
usually fixed. They are either assigned to batch jobs or they are
idle. Each transaction, when in execution, occupies its own vir-
tual storage Address Space (AS) and is under the control of the
System Resources Manager (SRM). The terms users, transactions
and ASs are sometimes used interchangeably when referring to
work units.

A TSO command (transaction), when entered by a user from a
terminal into the system, is first received by the telecommunica-
tions component of MvS. Delays are normally caused by buffer
space unavailability and message transmission time. The message
is in turn passed to the TSO user’s AS that is created when the user
is logged on. The processing of this message in the AS is under the
control of the SRM. Any outputs are also passed to the telecom-
munications component for transmission back to the user’s termi-
nal.

On-line data base application transactions (e.g., IMS) are handled

similarly except that there is an extra layer, namely, the data base
control. All transactions must pass through the data base control,
which may have several priority queues. The data base control
schedules an application AS (analogous to initiators) to process
the transaction, based on its own priority scheduling. The appli-
cation AS processes one transaction at a time, although there may
be several application ASs. These types of transactions have not
been modeled in the current version of PMOD.

The SRM is one of the more visible internal components of MVs.
The reason is that many of the parameters that affect its operation
are externally specifiable in the Installation Performance Specifi-
cation (IPS). Its main task is to schedule the workload for execu-
tion according to the IPS and, in addition, to maintain resource
utilizations within desired levels. The mechanism that the SRM
uses to achieve this goal is that of swapping address spaces in and
out of main storage, i.e., control of the multiprogramming set,
since transactions can make progress only when they are execut-
ing on the CPU.
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Figure 2 Relationship between workload level and service rate for three performance
objectives
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The purpose of the IPS is to divide the workload into classes,
called Performance Groups (PG), as shown in Figure 2. Usually
TSO users and batch users are assigned to different PGs in order to
give them separate treatment. A PG contains a number of periods.
There is a set of parameters for each PG period that regulates
service received by each transaction. A transaction starts off with
the first period of its PG. If it does not complete in a specified
period duration, it is demoted to the next period. The period dura-
tion is expressed in terms of either real time or attained service,
such that short transactions may be favored over long transac-
tions by giving different treatments to different periods.

The in-store multiprogramming mix is further classified into so-
called domains. Each domain is specified by a PG period parame-
ter. Separating the multiprogramming mix into domains is quite a
useful concept, since it allows the installation to relate logical
workload classes to physical storage allocation groups. For ex-
ample, TSO transactions may be controlled as a class if they fall
into the same domains. It is, therefore, possible to allocate a fixed
portion of processing capacity to any logical workload class. The
ASs in the same domain compete with each other for a limited
number of slots in the multiprogramming set. These limits are
called domain target MPLs (Multiprogramming Levels), which can
only be changed by the SRM. The total MPL is equal to the sum of
the MPLs in each domain. Other domain parameters are the mini-
mum and the maximum target values and the weights used by
SRM to determine the importance of each domain. The reason for
these parameters will become apparent after we discuss the pag-
ing storage allocation algorithm. The combination of aging trans-
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actions through periods and assigning domains allows the installa-
tion to control effectively the level of service given to transac-
tions of different resource demands.

The ASs in the same domain compete for a fixed number of MPL
slots. When the number of ASs is greater than the number of slots
in a given domain, some ASs are queued outside main storage
(out-queue). When the priority of an AS on the out-queue is high
enough, it can cause an in-queue AS to be swapped out and the
high-priority AS to be swapped in to take its place. Priorities are
calculated dynamically for each of the Ass, based on their per-
formance objectives. The performance objectives are specified as
a period parameter in the IPS, an example of which is shown in
Figure 2. It is a mapping of service rate received to workload
levels (a priority number). Service rate is calculated as the num-
ber of service units per second; service unit is a weighted sum of
CPU time, number of /O operations, and number of page-seconds
(space-time product). In essence, priorities of in-queue ASs de-
crease with time, whereas those on the out-queue increase with
time. The mechanism allows the installation to effect a variety of
algorithms for sharing, such as round-robin and first-in-first-out.

In addition to using service rates for priority calculation, the in-
stallation may also specify other factors to be taken into account.
Since keeping resource utilizations within acceptable levels is an
objective of the SRM, the SRM monitors those users who have
caused an imbalance and those who may help balance resource
usage. A composite priority is calculated to include the degree to
which a particular AS influences resource utilization.

The cpU dispatching priorities of transactions are also specified as
a period parameter. The period parameter is divided into the fol-
lowing groups: (1) fixed, (2) round-robin, and (3) mean-time-to-
wait (shortest CPU burst time first). Such groups are arranged in
order on the CPU dispatching queue, and the algorithm is preemp-
tive resume.

One of the important system components is the Real Storage
Manager, which allocates real storage page frames on demand in
the MVS virtual storage environment. The Real Storage Manager,
under the direction of the SRM, attempts to utilize real storage
efficiently by keeping only those recently used program pages in
storage. This capitalizes on the fact that programs are known to
exhibit locality of storage references, and therefore more pro-
grams may be allowed to be resident. The mechanism has sup-
ported both a global Least Recently Used (LRU) algorithm and the
Processing Time Window (PTW) algorithm, which is an approxi-
mation of the working-set algorithm in the various releases of
MVS.

The storage management mechanism works in the following way,
and is further discussed in Reference 2. Associated with each real
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page frame are a page AS identification number (has no meaning
for shared pages), a Reference Bit (RB), and an Unreferenced In-
terval Counter (UIC). The RB is turned on by hardware when the
page contents are referenced. At periodic intervals, the status of
each page’s RB is examined by software. If RB = 1, both RB and
UIC are reset to zero. If RB = 0, UIC is incremented by one. An
inventory of free pages is kept. When it falls below some thresh-
old because of a page request, the global LRU strategy requires a
fixed number of pages with the largest UIC values to be deal-
located from their ASs. In the case of the pTW, the free-page pool
is replenished with pages having UICs greater than some criterion
number (the window size). The periodic update interval for the
case of global LRU is in real time; no distinctions are made among
ASs. The pTw algorithm updates according to the elapsed virtual
processing time (in units of CPU time) of each individual AS.
Shared pages are processed differently, where there is a minimum
number of allocated pages. The most recent release of MVS em-
ploys the global LRU strategy.

Since program behavior is dynamic in nature, the same MPL
sometimes may cause unacceptably high page fault rates that re-
duce actual throughput. To prevent overcommitment of main
storage, the SRM monitors the paging rates among main storage
and secondary paging devices (such as drums or disks), and, in
addition, the number of unprocessed page transfer requests and
the average value of the highest overall UIC. If any one of these
factors is not satisfactory, the target MPL of some domain is de-
creased by one. The actual domain MPL is then lowered to reflect
this change. The domain parameters, the average number of
ready users in each domain and the current domain MPLs are used
to select the lowest priority domain for MPL reduction. On the
other hand, if resources are under-utilized the reverse happens;
the domain with the highest computed priority has an increase in
its target MPL.

The MVS performance model

The first step of model development requires not only studying
the system logic, but also performing experimentation and ex-
ploratory data analysis, such that important system components
and parameters can be identified. The next important step is
workload characterization, i.e., determining which workload pa-
rameters are needed as input to the model. As a result of these
steps, we have arrived at a research model that captures the
salient features of 0S/vS2 MvS and its workload. (Details of these
steps are the subject of a paper to be published elsewhere.)

Queuing theoretic models have been quite successfully applied to
study computer system performance. There are, however, at
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workloads

least the following three difficulties: (1) the need to analyze com-
plex workload scheduling algorithms; (2) the problems of mod-
eling storage contention (swapping); and (3) the inability to ac-
count for the effects of different page allocation algorithms in a
total system model. Although some progress has been made re-
cently in this area, adequate general results are still unavailable.

To overcome these difficulties, practitioners have frequently
turned to detailed simulation models. Due to the level of detail
modeled, simulation development and running costs are often rel-
atively high. Measurements from MVS have indicated that fre-
quencies of dispatches, /O interruptions, and page exception
events are of the order of several hundreds per second. Events
that cause multiprogramming level changes, however, are usually
much less frequent. A simulator usually runs very slowly if the
high-frequency events are explicitly modeled. The approach we
take is to subsume those high-frequency events in a computation-
ally efficient analytic part and to simulate the relatively infrequent
but complicated workload scheduling events. Thus the total
model run time can be shortened and benefits of both techniques
can be exploited.

Figure 4 illustrates the major PMOD components. The model has a
hybrid hierarchical structure that combines simulation, queuing
theoretic, and statistical techniques. The simulation part includes
workload generation, Job Entry Subsystem (JES), System Re-
sources Manager (SRM), and the interface to the analytic part.
The analytic part consists of a multiclass Central Server queuing
network Model (CSM) and a Renewal Paging Model (RPM). Param-

eter values are supplied by the simulation part to the analytic
part, which returns processing rates of each storage resident Ad-
dress Space (AS) and resource utilizations. To further simplify the
model, statistical techniques (such as regression analysis) are
used to estimate system parameters for swapping, paging, 1O, ter-
minal communications, and job spooling overheads.

The current version of the MvS performance model allows two
types of users, batch and TS0, and a number of system jobs, e.g.,
JES and TCAM/VTAM. Each user type may have several classes,
and these classes are used to specify resource requirements, e.g.,
long and short, /O or CPU bound, etc. The system jobs are never
swappable and each occupies a permanent AS. Their resource re-
quirements, estimated from regression techniques, reflect the
current estimation of activity. The JES requirements depend on
the batch arrival rate and the amount of spooling required. The
TCAM/VTAM requirements are functions of TSO transaction arrival
rates. Owing to a lack of efficient solutions, the contention of soft-
ware locks is not considered in this model.
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Figure 4 Components of PMOD
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For each type of transaction the following attributes are needed:

Class selection probability.
Performance group number.
Interarrival time distribution (think time for TSO).
Unreferenced Interval Counter (UIC) distribution or inter-
reference time distribution (for program page fault rate
estimation).
CPU time distribution.
Number of /0 operations to each data set and number of bytes
per transfer.

e Number of terminal /Os per TSO transaction.

e Number of job steps and spool data sets for batch.

For each performance group the following parameters are speci- installation

fied: performance
specifications

e Number of periods.

e Domain number of each period.

e CPU dispatching priority for each period.
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system
parameters

simulation
component

e Performance objective number of each period.
o Duration in service units for each period.
e Interval Service Value (1sv) for each period.

The interval service value is the number of service units that must
be accumulated by a transaction before its swap-out is allowed.
The duration parameter is in service units only. The CPU dis-
patching priority is given as a number up to 255.

The number of domains, maximum and minimum Multiprogram-
ming Levels (MPLs), and the weights for domain priority calcu-
lation are also required as input. A swap threshold parameter is
used to prevent unnecessary swaps when the differential of prior-
ity between in-queue AS and out-queue AS is not large enough.
The time interval between invocations of an MPL adjusting al-
gorithm is to be specified in time units of the model.

The JES queuing discipline is First-In-First-Out (FIFO), but it may
easily be changed to any complex structure necessary.

The system functions such as dispatching, V0 interruption han-
dling, page fault processing, and swapping are modeled as addi-
tional CPU times to the transactions and are specified externally.
The following are the parameters of the particular system config-
uration:

® CPU model (or speed if all CPU values are in times).
Main storage size available for user allocation (in pages), ex-
cluding nucleus and long-term fixed pages.
Number of channels.
Number and speed of direct access devices (disks and drums).
Designation of devices for paging and for swapping.
User data set locations.
Number of TSO terminals and batch initiators to be started.

The simulation language used with the simulation component of
Figure 4 is SIMPL/1.* The workload generator introduces TSO and
batch transactions into the system, according to the interarrival
time distributions. Each transaction is assigned attributes as dis-
cussed. The batch transactions join the JES queues and wait for
the assignment of available initiators. Next the batch transaction
joins one of the domain out-queues as depicted by its perform-
ance group. The JES processing time requirements are not re-
flected on a per-job basis.

TSO transactions join the designated domain out-queues directly.
Transmission delays are modeled as part of the think time, and
should be taken into account when the think time parameter is
specified. The SRM is invoked at the transaction arrival time. The
SRM consists of two main modules, swap analysis and resource
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monitor. The swap analysis module is invoked by arrivals, com-
pletions, or by the resource monitor, and performs the following

functions:

e Updates attained service of each user, based on current pro-
cessing rates (as supplied by the interface).
Computes each user’s priority, based on attained service and
time in the system (using the performance objectives).
Checks for period change and enters the change into a new
domain if necessary.
Swaps users into and out of main storage because of one of the
following conditions: (1) a transaction completes with another
out-queue user of the same domain taking its place; or (2) a
user on the out-queue is to replace an in-queue user due to
priority difference; or (3) target MPL is different from the cur-
rent domain MPL.
Adds cPU time and /O required for swapping to every swap-in
candidate’s total resource requirements.

The resource monitor is invoked at regular time intervals (of the
order of tens of seconds). It performs the following operations:

e Computes a Contention Index (CI) of each domain using the
formula

(in-queue length + out-queue length) X weight

Cl =

max (1, current MPL)

Increases domain target MPL with the highest contention index
by 1 if cpu utilization < v, and paging device utilization
< vy, where v; and v, are threshold values.

Decreases domain target MPL with the lowest contention in-
dex by 1 if CPU utilization > v, or paging device utilization
> v,

If resource utilizations do not cause target MPL changes, then
the resources monitor equalizes the highest and lowest con-
tention index domains by changing their target MPLs each by
1, but in the opposite direction.

Invokes Swap Analysis Module to swap users.

Collects statistics on workload arrival characteristic for the
regression submodels.

Note that the model uses paging device utilization instead of pag-
ing rates and unprocessed page-in request queue lengths, since
this is simpler and has been found to have the same effect. When
a target MPL is changed, the minimum and maximum MPL param-
eters that are associated with the domain are checked and viola-
tions are avoided by choosing the next domain.

The interface module is the link between the simulation com-
ponent and the analytic part, and has the purpose of building pa-
rameters to drive the analytic part. In return, the interface mod-
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Figure 5 Central server queuing
network modet
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ule obtains the effective execution rates, R,, for the ith resident
user, and hardware utilizations. Each user has the following at-
tributes:

e Total CPU time including time for swapping, CP, + SWCP,
where CP, is the transaction CPU time requirement and SWCP
is CPU time for swapping, which is added to CP, each time
there is a swap.

Total vOs, including data set accesses (FIO,) and swapping
1/0s (SWIO), as well as the distribution of these 1/0s to de-
vices, expressed as IO device branching probabilities. These
probabilities are estimated from data set placements.

CPU dispatching priority.

Unreferenced Interval Count (UIC) distributions expressed as
hyperexponential parameters.

System users are characterized by linear regression techniques.
The JES CPU and /0 usage rates are functions of job arrivals per
second, spool data sets per job, and average size of spool data
sets. TCAM and VTAM resource usages are obtained in a similar
fashion, as a function of TS0 traffic rates. These values are period-
ically supplied by the resource monitor module.

Based upon the progress rates of each resident user, completion
times are estimated. Let Q(s) be the remaining CPU time re-
quested by transaction i at time 7, and R, be its present progress
rate. Then the expected completion time will be the following:

Q,(0)
R,

When the completion time is reached a swap analysis module is

invoked. Each time there is a change in the mix because of

swapping or completion, the Interface part is called, which then
recomputes the next nearest completion time.

C,=1t+

The analytic part of the performance model of MVvs—which we
call PMOD—is a multiclass Central Server queuing network Model
(csM) of CPU and /0 contention coupled with a Renewal Paging
Model (RPM) of program behavior and page allocation. The rela-
tion among paging, workload characteristics, and system configu-
ration can, therefore, be accounted for in the total system model.
The CSM results are obtained using QNET4’ for processor sharing
CPU dispatching discipline, and using an iterative technique® for
priority preemptive resume discipline.

A typical queuing network model is shown in Figure 5. The CPU
time between I/Os (the execution interval E)) is defined as the in-
verse of the sum of file VO and page fault /O rates. The former is
given as an attribute of transactions and the latter is computed by
employing the Renewal Paging Model (RPM). The 10 server dis-
cipline is FIFO. Service times include time spent through the chan-
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nels, control units, and devices. The technique described in Ref-
erence 7 can be used to estimate the effects of channel con-
tention.

The RPM is a program behavior model in a periodic aging environ-
ment. The global LRU case only is discussed in this paper. [The
processing Time Window (PTW) algorithm case is presented in
Reference 8.] The RPM accepts as input for each user its Unrefer-
enced Interval Counter (UIC) distribution of hyperexponential
form, its program size, and its execution rate. The output is each
user’s page fault rate, for a given total allocatable real storage size
m. The RPM models the program pages as distributed among dif-
ferent discretized age groups (i.e., the UIC values). A program
page then makes transitions from one age group to another. If, in
a discretized interval h, a page is referenced, its UIC is reset to
zero (as mentioned in the system description section), i.e., the
page returns to the zero age group. Otherwise, its UIC is increased
by one and demoted to the next older age group. For the sum of
all user programs, size requirements may exceed the m allocat-
able real pages. However, those m pages that have youngest ages
are allowed to remain in real storage. These m pages are a mix-
ture of all those programs resident in real storage. Consequently,
the intensity of references to the m + 1, m + 2, m + 3, etc.
youngest pages outside m is the page fault rate. The references
made to the same page are assumed to form a renewal process.
Average page fault counts per 4 interval can be estimated. For the
global LRU case, programs with the same intrinsic page referenc-
ing behavior could execute at uneven rates, because of dif-
ferences either in priority or VO delays. Their program pages,
therefore, distribute differently among the UIC age groups and
may result in differing page fault rates. The differing page fault
rates, however, do, in turn, affect the execution rates. Iteration
schemes have been tried, but to shorten computation we find the
following procedure to be quite acceptable:

e Compute the initial user execution rates, R;, by running the
Central Server Model (CSM) under the assumption that the
users’ page fault rates, G,, remain the same as those obtained
at the last time the RPM was invoked. If a user’s program is
just swapped in, however, its page fault rate is set equal to
zero. The execution interval is given by

CP, + SWCP
PIO; + FIO, + SWIO
PIO,
PIO; + FIO, + SWIO )’
where IOSYS is the system time required per Vo, PIO,; is the

number of page VOs based on G;, and PFSYS is the system
time required per page V0.

E, = IOSYS +

+ PFS YS(
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Normalize intrinsic UIC distributions to the real-time domain.
An age of T real-time units is approximately equal to R, T CPU
time units. For a given intrinsic age distribution F(f) in CPU
time units, the age distribution in the real time domain is given
by H(t) = F(R}).

Compute the page fault rate G, by RPM. The procedure is simi-
lar to that of Reference 8, where the RPM addresses the single
program case. In the present instance, however, there are sev-
eral programs. It is required to obtain the age distribution of
those pages outside main storage and their distribution among
the programs. Consequently, G,, given by the reference prob-
abilities of those pages outside main storage, can be obtained.
An overview of the RPM is provided in the Appendix.

Run csM with G, to obtain the final R,.

The R, are then converted to effective execution rates of user
CPU times by removing the system times

10SYS + (PF, X PFSYS) + SW,
E,

1

R, =R|1 -

where

PIO,

PF, =

" PIO, + FIO, + SWIO ’

and

W
SW, = Swep .
“~ PIO, + FIO, + SWIO

PMOD can be executed in two modes, a distribution-driven mode
or a trace-driven mode. The distribution-driven mode has work-
load attributes that have been generated randomly from specified
distributions. The trace-driven mode allows these workload at-
tributes and their arrival times to be supplied from an external
workload fite. The workload file may be created from measure-
ments such that actual peculiar arrival patterns can be used. Im-
portant run-time statistics are also provided at the end of each
run, including response-time distributions and throughput by
workload class or domains, various resource utilizations, queue
lengths, time spent on queues, and the number of swaps by type.

Typical examples show that PMOD execution time to simulated
time ratios are about one, which is thirty to one hundred times
better than for purely simulation models. The execution time goes
up with increasing load, but is still within our requirements for a
practical model.

Model validation

To thoroughly validate such a model requires tests in a large num-
ber of environments. In this section we report the results of com-
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paring three sets of measurements against model prediction, al-
though more tests are underway. Benchmark experiments have
been conducted on a System/370 Model 158 with three megabytes
of storage under three different loads. The experiments do not
show the highest possible stresses on the system, especially that
of the paging subsystem, but they should be adequate for an ini-
tial test of the model accuracy. The workload of the first two ex-
periments consists of TSO users only, with fifteen and thirty users
logged on. The third experiment has thirty TSO users and five
batch initiators active. The TSO transactions are mainly COBOL
compiles, editing, and data set manipulation loads. The batch
jobs are a mix of commercial and scientific loads. Measurement
intervals are approximately half an hour each.

The performance model, PMOD, is validated in a completely de-
terministic trace-driven mode, so that we do not need to replicate
model executions with several random number seeds. Thus un-
certainties of empirical distributions estimations can also be
avoided. A software monitor that is both event- and timer-driven
has been developed for the modeling project. It is capable of cap-
turing detailed transaction characteristics and system perform-
ance variables. A transaction trace file is produced from reduc-
tion of the measurement data. Each entry of the file contains the
transaction’s arrival time, CPU time, /O counts per data set, and
number of terminal V0s. The Unreferenced Interval Counter
(UIC) distributions are obtained for all transactions instead of for
each transaction, since these transactions are usually short and
do not have enough samples to estimate the distribution.

Measurements have shown that some of the CPU time consumed
is not charged to any address space and that it can be more than
five percent in many cases. Correlation studies have shown this
uncharged CPU time to be related to system activities such as page
fault rates, 1O rates, dispatching, and swapping rates. Uncharged
CPU time used per system function is estimated by linear regres-
sion techniques. Stepwise regression techniques have also been
used to characterize JES and TCAM/VTAM resource usage rates
from a number of input variables. A detailed description will be
the subject of a forthcoming paper.

The system parameter values such as the ones discussed in the
last paragraph are estimated from a fourth experiment, so that the
model predictions will not be biased by the input. The Installation
Performance Specifications (1pS) specify three domains. Domain
1 is for first period TSO (short transactions). Domain 2 is for the
second and last TSO period. Domain 3 is the only domain for
batch. The TSO response time values do not include time spent in
transmission or in TCAM processing, but rather the interval from
the time the transaction enters the System Resource Manager
(SRM) to the time when it completes and is swapped out of main

IBM SYST J @ VOL 17 @ NO 4 o 1978 CHIU AND CHOW




Table 1

Comparison of measurement and model output

BATCH TSO

Total CPU
utilization
(percentage)

(percentage)

CPU time
per TSO
transaction
inseconds

750
trans-
actions

User CPU
utilization

Response time in seconds
(mean/standard deviation)

Domain 1 Domain 2 Domain 3

Mea- Mod-
sured eled

per
second

Mea- Mod-
sured eled

(mean/
standard
deviation)

Mod-
eled

Mea- Mod-
sured eled

Mea- Mod-
sured eled

Mea-
sured

1.32
1.42
1.12
1.22
1.14
0.95

18.00
20.36
12.30
14.24
46.29
89.40

19.46
21.42
14.38
16.52
51.56
80.78

0.30
0.93
0.15
0.45
0.08
0.44

28.08 28.16
79.05 81.55
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storage. Batch response times do not include time spent in JES;
they include the time from job selection of an initiator to job ter-
mination.

Comparisons of the measurements with the model predictions are
shown in Table 1. The user CPU utilization column indicates CPU
times consumed by TSO and batch only, and excludes times taken
up by system functions. The reason for the rather low user CPU
utilizations compared to the total is that the total includes the
measured CPU overhead, which is explicitly taken into account in
the model (over ten percent). Both the mean and the standard
deviation of response times are given in the table. In the fifteen-
TSO case, for example, the mean and the standard deviation of the
measurement from Domain 1 are respectively 1.31 and 1.36 sec-
onds. The model predictions have about five to fifteen percent
error in all categories. Figures 6 to 8 show comparisons of TSO
response time distributions. The model’s prediction curves in
general follow the measurement curves closely, except for the
first few points on Figure 8 (30 TSO and 5 batch case). The inter-
ference of batch jobs on TSO response is overestimated, since this
particular model run employs QNET4 for the Central Server Model
(csM) where equal CPU dispatching priority is assumed (i.e., pro-
cessor sharing CPU dispatching). To address this problem, an itera-
tive queuing analysis technique discussed in Reference 6 is being
implemented for the case of priority CPU dispatching. Further
testing is underway. The average CPU times per transaction were
found to vary from experiment to experiment, since different seg-
ments of the TSO script were exercised in different experiments.
This has caused Domain-2 response time for the thirty-TSO case
to be lower than that of the fifteen-TSO case. Longer measure-
ment runs probably result in a more even overall workload char-
acteristic. However, we do not need the same precise loads in
each case to test the effectiveness of the model.
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Validation for the distribution-driven mode requires more effort.
Empirical workload data must be analyzed and fitted with theo-
retical distributions, such as TSO think time, batch interarrival
time, CPU time, number of 1/0s, etc. The next problem is to deter-
mine appropriate model run lengths and the number of replica-
tions with different random number seeds, so that statistical
stability of the model results can be achieved. Usually statistical
stability is quantified by confidence interval at a given level.
Confidence interval estimation methods can be found in simula-
tion textbooks, such as Reference 9.

Capacity planning

Capacity planning is a key step of computer resources manage-
ment. The goal of capacity planning is to define and maintain ac-
ceptable user service and system performance levels with the
most cost-effective configuration and equitable scheduling policy.
Since the future workload is usually not deterministic at the ca-
pacity planning stage, the distribution-driven model is essential
for this purpose. The process involves the following steps:

® Measure and analyze workload resource usage patterns and
current service levels (response time and throughput).
Measure and analyze system performance, i.e., the overheads
incurred in supporting the service levels.
Project future workload levels and requirements.
Use the projected workload parameters as input to the model
to obtain predicted performance. If the performance is not
adequate, try several configurations with the model and select
the best one.
Use the model experiment with scheduling policies, data set
placements, and hardware rearrangements for performance
optimization.

The model plays an important role in increasing the understand-
ing of the interrelationships and interactions among the various
workload types. From that understanding one can make in-
telligent tradeoffs. It is necessary to make projections on work-
load increases and plan computer reconfigurations, since long
lead times may be required for equipment upgrading. After a
change in the configuration is made, performance optimization is
required. For example, when a workload increase causes an up-
grading in main storage size, the JPS must be changed accord-
ingly to allow a higher multiprogramming level.

Figures 9 and 10 delineate a family of performance curves for
different configurations over a range of workload levels. Figure 9
shows average TSO response times for all transactions and for
Domain 1 completions (short transactions) over 40-, 60-, and 80-
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terminal loads. This example is for the case of a one-million-in-
structions-per-second CPU, one million bytes of user pages (i.e.,
total storage from which has been subtracted those pages that are
required by the system and common areas), and 13 disk drives
spread over 2 channels. The workload is similar to that used in
the validation experiments, except that distributions are assumed
(average 270 000 instructions per transaction, exponentially dis-
tributed). No batch loads are included in the example.

Suppose that the current load is at 40 terminals and is expected to
increase to 80 terminals of the same workload characteristics. For
the heavier load, even short transactions have over 5 seconds
response time, and 17.5 seconds overall response. If this is not
acceptable, one may increase storage size or the CPU speed. Fig-
ure 10 shows the results of running the model for different storage
sizes (1, 2, and 3 million bytes) and CcPU speeds (1, 1.7, and 2.5
million instructions per second). These CPU speeds are approxi-
mately equivalent to some System/370 CPUs.

Suppose we are required to have the same response character-
istics as the 40-terminal case. Clearly the one-million-byte, 1.7-
million-instruction-per-second configuration satisfies the require-
ment. We also see that increasing storage size for a one-million-
instruction-per-second CPU yields little improvement. This con-
trived example demonstrates the use of the model for capacity
planning. In a real application, equipment costs must be taken
into consideration.

Concluding remarks

In this paper we have presented a case study of the development
of a performance model for the IBM 0S/VS2 MVS operating system.
The purpose of the case study is to demonstrate applications of
modeling techniques to real-world problems such as capacity
planning and system tuning. The model is also to be used as a
research vehicle for studying advanced architectural enhance-
ments. Although further tests are being conducted with actual
workloads, the initial validation results have been encouraging.

The running time of the model is intermediate between purely
simulation and totally analytic models. The input requirements
are closer to those of analytic models, but gross and distorting
assumptions often used need not be made here with simulation
models. Key internal system features are represented without the
high cost of running detailed simulation models. The high cost of
the data processing installation and the gravity of capacity plan-
ning and design decisions often justify the use of a more accurate
model.
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Measurements obtained via System Management Facilities
(SMF)" and the Resource Measurement Facility (RME)'' can be
used as input to the present model. These tools provide workload
resource use parameters as well as VO service times and probabil-
ities, with the exception of storage reference behavior parame-
ters.

Despite the level of detail of PMOD, some of the performance bot-
tlenecks in real situations are not predicted, e.g., the SMF data set
enqueue problem. To handle this type of performance prediction,
the model will have to include the contention of software locks,
which may cause the model to be overly cumbersome. A more
efficient method of treating such lock contentions is under investi-
gation. Other extensions to the model are expected to include
data base applications (IMS and CICS) and channel/control-unit
contention modeling.
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Appendix: Page fault rate calculation in the global LRU case
In the global LRU case, the age of page j, X;, of program i is a
random variable subject to the distribution H,(z). Arrange the X
in an ascending order and call the nth smallest random variable
Y,. Then these pages with their X, less than or equal to Y, are
considered to be residing in main storage of size m. In other
words, a page fault occurs whenever a reference is made to a page
with its X, greater than Y, . The computation procedure is given
as follows:

From H () obtain discretized UIC density A (y), for program i
(of program size N)), wherey =0, 1,2, - - -.

Compute B,(y), the probability density of Y, for all ~.
Compute the conditional probability C(n, y) that a page with
the nth smallest UIC, Y, is in program i, given that Y, = y.
This probability is proportional to N, and A(y).

Compute the conditional probability that a page of UIC X, is
referenced, given that X, = Y, and Y, = y. Denote this proba-
bility by D(y).

The page fault rate of program i is obtained by summing the
product of D(y), C,(n, y) and B,(y) over all possible y and n
such that n > m,
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