This paper describes an operating system model that is based
mainly on the DOS/VS supervisor but also reflects various design
alternatives, providing a flexible tool for operating system design
and tuning. The model is characterized by the subdivision of 1/0
activity into normal /0, page 10, and fetch 110, corresponding to
the different supervisor services involved. The model has been
evaluated by analytical queuing methods in a set of APL functions
that allow a flexible specification of the supervisor, the configura-
tion, and the workload. Validation has been done by simulation
and by benchmarking of a real system.

The main features of this performance tool are described, and its
capabilities are illustrated by performance results that show the
impact of workload and various supervisor changes on system
performance.

Performance investigations with a DOS/VS-based operating
system model

by W. Kraemer

Predicting the overall performance of computer systems is a very
complex problem and is influenced by many parameters between
which arbitrarily close interrelationships exist. Performance pre-
diction is met by modeling and measurement techniques. In mod-
eling it is often necessary to restrict attention to those parameters
that act as the main influences on a system in order to make the
abstraction reasonable and accessible to simulation or analytical
techniques. Both methods—simulation and analytical tech-
niques—have specific advantages and disadvantages, but they
both can contribute to a better understanding of system behavior
if properly used. The system behavior, obviously, is also influ-
enced by the operating system itself, i.e., the path lengths, sched-
uling, structure, etc.

This paper describes the modeling of DOS/Vs (Disk Operating Sys-
tem, Virtual Storage) for the purpose of determining its influence
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on system performance.' DOS/VS was developed for the low end of
the System/370 line’ and was extrapolated from System/360 DOS
by introducing virtual storage concepts. Its design was influenced
especially by small real storage size requirements. Performance
was improved in subsequent releases. The functional structure of
DOS/VS has been described in a general survey by Birch;’ specific
details can be obtained from the DOS/VS Supervisor Program
Logic Manual.* Within the context of the paper, DOS/VS is de-
scribed only to the extent necessary to develop and understand
the queuing model.

In this paper, the model is described first. Then the queuing anal-
ysis and the APL program are discussed thus leading to the valida-
tion and the performance results.

DOS/VS-based supervisor and system model

Modeling computer systems consists of a careful deduction of a
system model, hopefully being neither too gross nor too detailed.
Generally speaking, a model can be considered as a sound ab-
straction of reality if all parameters are included that may have a
noticeable influence on the investigated performance values. For
the sake of brevity, only some highlights are given within this
section to illuminate the important procedure of modeling.

The first modeling step is a reduction of the detailed flowcharts in
the Program Logic Manual.* These flowcharts are vast, reflecting
the complexity of an operating system that is further increased
by:

e The variety of devices supported.

e The need for compatibility with former systems.

e The demands for high reliability, availability, and service-
ability.

e The different access methods.

Simplification of the flowcharts was done for various ‘‘requests’’
that call for supervisor code to be processed. In DOS/VS, these
requests can be subdivided into interrupt requests and so-called
“requests for system tasks.”” Interrupt requests have the highest
priority and are subdivided into:

e MC -—machine checks (equipment malfunction)
e pC —program checks (improper use of instructions or data,
addressing exception, page fault)
—supervisor calls (calls for special supervisor services,
approximately 80 different SvCs used)
—input/output interrupts (channel end, device end)
—external interrupts (timer, attention)
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The system tasks represent different supervisor services, which
also have different dispatching priorities. They are listed below
with their abbreviations:

® RAS is the reliability, availability, and serviceability sys-

tem task.

PMGR is the page manager system task (page fault handling
with selection of page frames, page in/out of pages).

SUPVR is the supervisor system task or fetch task (fetching
of user phases and nonresident parts of the super-
visor).

CRT (cathode ray tube) is the screen manager console
support.

ERP is the error recovery procedure system task (/O
malfunction).

PAGEIN is the special service to page in several pages.

ATTN is the attention system task.

The flowcharts associated with these requests have been system-
atically reduced to slimmer charts that contain branches to
different paths, but in most cases wind up at the general exit
routine EXIT, the dispatcher.

To perform an 1/0 operation, many of these different levels are
needed. For example, during a page 1/0 the program check, SvVC,
10 interrupt, and the page manager levels are involved. At the
end of the first modeling step, all of these different levels have
been represented by their essential parts.

The second modeling step led from representation by level to the
final supervisor model by

e Omission of parts that are uncritical with respect to perfor-
mance (machine checks, external interrupts, and program
checks except page faults)

Reduction of the number of system tasks (RAS, CRT, ERP, and
ATTN all use the supervisor fetch task to fetch transient
parts or phases of the supervisor, whereas PAGEIN is using the
page manager)

Consideration of (synchronous) SVC interrupts either as calls
for supervisor subroutines or (when issued by user tasks) as
switches into the supervisor state.

Furthermore, according to the various needs for supervisor sup-
port, three types of /O operations have been distinguished:

1. Normal 1/0} user-specified 1/0
2. Page 1/0 (using the page manager system
task) “‘supervisor /0"’

3. Fetch 10 (using the supervisor fetch task)
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Figure 1 DOS/VS supervisor model
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The final important step was to introduce the channel device
system and to close the loops for normal /0, page 1O, and fetch
/0, thus obtaining a system model that is described in the follow-
ing sections.

global  Figure 1 shows the resulting model for the DOS/VS supervisor. The

description different boxes within the CPU can be described by path lengths
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that lead to varying service times with the mean depending on the
appropriate MIPS (million instructions per second) value. The CPU
has four supervisor queues and one queue for problem process-
ing. The queues are arranged according to their priorities, the
highest one being formed by 1/0 interrupt requests, followed by
requests for the page manager (PMGR) and supervisor fetch task
(SUPVR). The lowest-priority supervisor queue (transient queue)
consists of requests for the processing of transient phases that
have already been fetched into real storage.

If no supervisor work can be done, the CPU tries to do problem
processing, i.e., to serve a user task in the user queue(s). Within
the context of this paper, ‘‘user task’ may denote a batch job or a
data base transaction. Note that the entire processing of a single
user task is cut by its own /O operations into several compute
intervals of user code processing, here called user task phases.
Therefore, the user queue is formed by all active user tasks that
are selectable either for the beginning of the next user task phase
or the continuation of the currently interrupted one.

In DOs/VS (Release 32) up to five different batch partitions with
different so-called dispatching priorities may be active. For such
a case of multiple batch partitions, the user queue may be consid-
ered to consist -of several subqueues arranged in priority order
(sublevels). The case where all tasks in the user queue have the
same dispatching priority (multitasking within a single partition)
has also been considered and is discussed later.

A user task that may be in different states—waiting or being
served—(problem state, supervisor state for normal/page/fetch
/0, or performing 1/0) is said to ‘‘walk through the model,”” where
the present location indicates its momentary status. Please note
in Figure 1 that all boxes within the CPU except the user task
phase box are processed in the supervisor state.

Consider a single user task that goes through a user task phase.
This phase of user code processing can be terminated because of
four possible reasons: (a) a request leading to normal 170 (SVCO0),
(b) a request leading to page 1/0 (page fault program check), (c) a
request leading to fetch 10 (svCl . . .), or (d) a task end.

In the case of normal 1/0, after the cCw (channel command word)
translation, the SIO (start ¥O) command is given. An I/O interrupt
signals the completion of the /O transfer, making the correspond-
ing partition or task dispatchable again.

In the case of a page fault, the page manager is needed to select
the page frame and determine whether the contents of the frame
have to be transferred out in advance, thus possibly being needed
twice (page out and page in).
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Figure 2 Normal |/O cycle
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In the case of a request to fetch a transient phase, a request for
the supervisor fetch task is initiated. When the transient is in real
storage, it has to be processed before the appropriate user task is
dispatchable again.

Note that the last parts of the page manager and supervisor fetch
task here have been appended to the /O interrupt handler. In
DOS/VS these two system tasks are only serially reusable in order
to serialize processes and to obtain smaller control tables within
the supervisor. Therefore, the model also contains two possible
gates P and F, which are explained later.

For a better understanding of the function and application of the
model, the different supervisor components will be treated sepa-
rately in the subsequent discussion. This treatment serves to cali-
brate the model. It is very helpful that, apart from paging activity,
such models can be calibrated to a wide extent by supervisor and
problem state measurements in a single-thread environment.

Normal 10 has been defined as being all /O operations not need-
ing the page manager or supervisor fetch task service. Figure 2
shows both the time diagram for a normal /O cycle and the asso-
ciated schematic flow through the model.

The total number of supervisor instructions being processed from

an SVCO (supervisor call 0—execute channel program) until the
next task is selected by the dispatcher is
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zZ =27 +Z + Z +Z

no GENENT SVCTAB ENQUEUE ccw

+ ZCHQ + ZSIOH + ZSVC7 + ZEXIT

where

Z .weny 18 the number of instructions required to proceed
through the general entry subroutine GENENT.

Z cran 18 the number of instructions required to analyze the
type of SVC.

Z o NQUEUE is the number of instructions from the channel sched-
uler to the label GIOADR (mainline, excluding CCW trans-
lation for normal 10).

Z.. is the number of instructions necessary to translate one
channel program for one physical normal /O request.

Z o is the number of instructions from GIOADR to SIO
(proper channel queue scheduling).
is the number of instructions for start O issue and han-
dling.
is the number of instructions for the WAIT macro (pro-
cessed if no VO compute overlap for the same job fol-
lows, including additional GENENT and SVCTAB part).

Z is the number of instructions in the general exit routine
for task selection (the dispatcher).

w

The completion of the transfer is signaled by an 1/0 interrupt. Let
Z , be the (mean) total path length from a normal 1/0 interrupt until
this 1/0 action is fully completed. Then

zZ =7Z . +Z + Z

n1 10IH CSWTRANS EXIT

where

Z o is the number of instructions for the /0 interrupt han-
dler (from label ENTIO over GENENT, INTRTN,
CHNDRT, TRNOFF to EXIT; excluding CSWTRANS)

y4 is the number of instructions necessary for normal 1/0

CSWTRANS X .
retranslation in CSWTRANS.

In the case of multiprogramming, a SI0O command cannot always
be issued directly after the CCW translation because the channel
or device may be busy. At such times, the SI0 command actually
is issued later as a consequence of an L/O interrupt caused by an
IO completion of another task. It is of little importance whether
the corresponding path length Z,,,  + Z,, is said to be included
inZ, , as used here, orin Z .

Note that, as indicated in the time diagram, 1/O activity and super-
visor processing due to the same task are overlapping each other.
This overlapping means, for example, that a seek, beginning after
the SI0, runs in parallel with SvC7 and the processing of EXIT.

A page 1/0 cycle includes all actions to fetch a page into real stor-
age (page in). The cycle begins with a page fault program check
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Figure 3 Page fault cycle
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and ends when the requested page has been transferred from sec-
ondary storage to real storage. Most of these actions are per-
formed by the page manager system task (PMGR) as denoted in
Figure 3.

Each page fault program check first is handled within the page
fault first-level interrupt handler (PFFLIH), from which a request
for the page manager is set up (path length Z ). When control is
passed to the page manager, a frame for the requested page has to
be selected with the help of the page replacement algorithm. In
DOS/VS the so-called Q-class algorithm (see Reference 4) sub-
divides all frames into five queues. One of them is the hold queue,
consisting of all newly occupied frames, the other four being
characterized by all combinations of reference bit and change bit
values. The associated path length for frame selection can be as-
sumed to increase linearly with the size of the selection pool con-
taining all selectable pages. Then, it has to be indicated whether a
preceding page out is necessary, i.e., whether the selected frame
contains a changed page. In this case, two separate accesses to
the page data set are necessary, also using the page manager and
the scheduler twice.

After the I/O interrupt of the page in has been handled by the 1/0
interrupt handler, this page is protected momentarily by append-
ing the associated frame to the hold queue. When the request for
the page manager is dequeued, the next work to be done by the
CPU is determined by the dispatcher EXIT.

KRAEMER IBM SYST J @ VOL 17  NO 4 & 1978




Table 1 Transients in DOS/VS

Name

Purpose

Remarks

Logical transients
(B transients)

Attention routines
Terminator routines
Special service
routines
Operator console
support (CRT
transients)

Transients for normal
operating conditions

Physical transients
(A transients)

Error recovery
Error recording

Transients for special
conditions

RAS transients
(R transients)

Reliability
Availability

Transients for special
conditions

Serviceability

As previously mentioned, the model contains a gate P for serial-
ization purposes (Figure 1). It is closed when a request has passed
it ((close-gate-)P circle) and opened when the transfer of the page
has been completed and the control table has been updated. This
is done after the page manager part 2 in the (open-gate-)P circle.
Naturally, by omitting gate P, the design alternative of a reentrant
page manager is included in the model.

Fetch 10 in the DOS/VS model is that 1/0 activity using the fetch
macro and, therefore, the supervisor fetch task (SUPVR). This
task is a serially reusable software resource for DOS/VS, i.e., non-
reentrant. Primarily this task serves to fetch nonresident parts of
the operating system (transient phases) initiated by supervisor
calls which here are interpreted as being in the user program.
Table 1 shows such transients as they relate in DOS/VS.

For the DOS/VS model, the transients for normal operating condi-
tions (logical or B transients) are especially of interest. A certain
fraction of these B transients are fetched into the so-called Logi-
cal Transient Area (LTA) with fixed location in real storage.

In Figure 4 a fetch 10 cycle begins with a fetch-SVC instruction
and ends when the transient is processed. Such a cycle may con-
sist of two physical /0 accesses, including a previous access to
the appropriate directory. In addition, the model contains a path
directly from the /0 interrupt handler to the user queue in order
to reflect the possibility that fetched code runs in the problem
state with partition priority.

Furthermore, it should be noted that in DOS/VS an entire sequence
of transients may be fetched piecemeal. This fact is not explicitly
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Figure 4 Fetch |/O cycle
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represented in the current status of the model, but can be consid-
ered globally by increasing the number of transients fetched by a
user partition.

To reflect the serial reusability of the fetch mechanism in DOS/VS,
a gate F has been introduced in the model (Figure 1). This gate is
closed in the F circle when a request has passed it. As previously
indicated, a certain fraction of the transients must be loaded into
the (single) Logical Transient Area which is then occupied until
the transient is processed completely. Therefore, this transient
area can be used only after the processing of the previously
fetched transient. This potential bottleneck is reflected in the
model by providing the means to open the F gate not in the F,
circle but in the F, circle after the transient has been processed.

Note that for page 1/0 and fetch 10 no CCW translation is neces-
sary and that these two types of ‘‘supervisor /0"’ are preferred in
DOS/vs within the device queues by the so-called head queue su-
pervisor call svC15 instead of using an SvC0 as for normal 1/0.

priority  The CPU allocation problem is solved by the dispatcher which is
considerations  now discussed. The dispatcher (or general exit routine EXIT) is
called when an interrupt request, a request for system task, or a
user task request has been processed and the decision has to be

made as to which task will be activated next.

Apart from 1/0 interrupt requests, coming ‘‘asynchronously”
from outside the CPU, the interrupts taken into account by the
model (SVCs, page fault program checks) are ‘‘synchronous’’ be-
cause they are switches into the supervisor state, originated by
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user tasks, or calls for special supervisor services, originated by
the supervisor itself, which are reflected in the different supervi-
sor path lengths.

These svC and program check routines have highest priority for
the allocation of the CPU. Therefore, some of these routines
(the ones that are directly originated by user tasks via syn-
chronous program checks or SvCs) have been quasi-attached
to the user task phases. These routines are processed with highest
priority and normally would only be interrupted by machine
checks, which are ignored here because they are exceptional con-
ditions. Therefore, requests are never waiting for this level.

For the remaining levels in the model, priority is given in the fol-
lowing order (Figure 1):

. /0 interrupt queue

. Page queue

. Supervisor fetch task queue
. Transient queue

. User queue

supervisor queues

Within the page queue and the supervisor fetch task queue a
request may have head-of-the-line priority. To use an example, in
the case of a serially reusable page manager, a request to fetch a
page into a page frame that was freed by a previous page out will
be handled before a page manager request for another task.

The user queue is last and consists of all dispatchable user tasks,
which in addition may have different partition dispatching prior-
ities.

Two possible cases have been considered: (1) a multitask case
with one partition and (2) a multipartition case with one task (job)
. per partition.

The first case assumes m tasks with the same dispatching priority,
e.g., on a FIFO base (first-in, first-out). When a user task / is inter-
rupted by an 1/0 interrupt request that belongs to another task j,
then the interrupted task / is resumed after the 1/0 request has
been handled, resulting in multitasking within one partition. This
mode of operation is valid in such cases as a pure teleprocessing
application (transactions); therefore, the model includes a termi-
nal subsystem for this case.

The second case is normal multiprogramming with several active
batch partitions that are interrupted by 10 interrupt requests. If,
for example, such an interrupt belongs to an I/0 request of a task
that resides in the partition with the highest dispatching priority, a
lower-priority task is further delayed.
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Figure 5 Simple multiprogramming
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These dispatching priorities will be further clarified in the next
section.

The code that can be interrupted by 1O interrupt requests must be
specified. There is no question that it is useful and even necessary
to let these interrupt requests immediately interrupt user code
(being processed in the problem state). Naturally, this is reflected
in the model.

For lower-priority supervisor code it might be useful to allow in-
terruptions only at certain points, in order to preserve the integ-
rity of control tables. If 1/0 interruptions are not admitted, this
supervisor code is said to run disabled. The degree of inter-
ruptibility depends on design objectives and may be large for very
sophisticated operating systems with fast response times for ex-
tremely urgent tasks, or may be significantly limited as is the case
with DOS/VS, an operating system for the low end of a computer
line.

Therefore, two different borderline cases of interruptibility have
been implemented in the model, namely (1) /O interrupt requests
intercept all lower-priority supervisor code, and (2) all supervisor
code runs disabled. For DOS/VS the second case is more appropri-
ate than the first one.

Queuing analysis

Queuing models can be analyzed by analytical queuing methods
as well as by simulation. Both methods have their specific advan-
tages and disadvantages, and both methods can enhance perform-
ance prediction.

Normally, the first step in making a queuing model manageable
by analytical methods is to randomize the processes, i.e.,

e To describe service times by independent random variables
e To describe the routing strategy by independent branching
probabilities
To homogenize task behavior by assuming fixed mean values
of service times and branching probabilities
To base the investigation upon the assumption of steady state.

The method developed for the DOS/VS model is based on the de-
composition of a queuing network into quasi-independent parts,
such as so-called machine-repair models, as was done by Flor-
kowski in the XMODEL tool.® This highly efficient network decom-
position principle, which is summarized shortly, has been applied
in a similar way to the DOS/Vs-based system model, which in addi-
tion is characterized by priorities, gates, etc. Actually, the main
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Figure 6 Machine-repair model and principal result for flow time

w
[y

To

“ELSEWHERE"

problem was to calculate the complex CPU part that differs re-
markably from a simple machine-repair single server. For this
reason efficient procedures and iterative approximation methods
have been developed.

The decomposition method developed by Florkowski is basic to
the queuing analysis employed for the model and is therefore
briefly summarized. The decomposition principle is further de-
scribed in Reference 5. Consider a simple multiprogramming
model of a system with one CPU and a single disk, which is char-
acterized by m programs or requests cycling around as depicted
in Figure 5.

Let T, be the mean time a program is in a CPU phase, and let T, be
the mean time the disk is busy. Each node (CPu, disk) of this
queuing network is modeled as a machine-repair single server
with m sources. The mean idle time of each source is set equal to
a so-called ‘‘elsewhere time’’ T related to the node under investi-
gation (Figure 6). For the CPU the elsewhere time corresponds to
the flow time of the disk, whereas the elsewhere time for the disk
is the flow time of the CPU node.

Figure 6 also shows the mean flow time T of a single node as a
function of the mean elsewhere time T,. The throughput rate A for
a single node turns out to be

m
T, + T,

To obtain a certain throughput rate for a single node, the mean
elsewhere time T, must be changed iteratively. The machine-re-
pair procedure used performs this iteration internally. The solu-
tion of the whole network is achieved as follows. Starting with an
assumed initial value A for the throughput rate A in the whole
network, we calculate each node separately with the machine-
repair procedure. The result of this first step is a throughput rate
value

m
T + T

FCPU FDISK
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Based on this resulting value )\0*, the assumed throughput rate is
changed in subsequent iteration steps until the assumed rate and
the resulting rate are nearly identical. This solution point is graph-
ically demonstrated in Figure 7.

The solution point is generally found in a few numerical iteration
steps. In the APL program for evaluating the model, less than 10
iteration steps are necessary for a relative error of less than 107*
in the throughput rates.

CcPU  To determine the different waiting times within the CPU queues it
queuing is not sufficient to separate the CPU from the residual queuing net
model  (the channel device system), since the CPU server is governed by
priorities and feedbacks that are not included in normal machine-

repair models.

Figure 8 shows the queuing model of the CPU, which is an off-
spring of the supervisor model obtained by calculating resulting
service times and branching probabilities. Essentially there are
five queues, four supervisor queues (priority levels 1 to 4) and one
user task queue (priority level 5) for all dispatchable user tasks.
This lowest-priority level can be further subdivided into different
priorities (partitions) 5, - - - 5. Note that due to the present
status of the APL program, directory accesses are not directly in-
cluded (P, = 0). But they can nevertheless be considered to be
globally included by way of the fetch path taken with probability

Figure 7 Common solution point Pu.

The mean service times /4 (holding time) are indicated in Figure 8
and can be determined by the different supervisor path lengths,
specified earlier in the paper, and in the associated MIPS values. If

a service time has been completed in the model, the dispatcher
s selects the next request having highest priority, if any. The super-
visor service at level 0 has the highest dispatching priority and is
never interruptible. Since all user task phases are fully inter-
ruptible, no queue for level 0 is necessary. Therefore, level 0 need
not be considered in the dispatching scheme for the queues as
shown below.

Supervisor queues

Supervisor User task
/O interrupt| Page manager fetch task | Transient queue*

1 2 3 4 555

m

increasing dispatching priority
1 J

*For the multitask case with one partition, tasks 5 - - - 5 have
the same priority.
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Figure 8 Queuing model of the CPU
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The dispatching priorities shown are also valid if a request has
been interrupted. For example, the fact that in DOS/VS an ‘‘inter-
rupted’’ supervisor fetch task has higher dispatching priority than
a new request for the page manager is taken into account by at-
taching the supervisor portion after SIO of the supervisor system
task to the /O interrupt service in the model (level 1).

1t is obvious that a page manager request in the case of a serially
reusable page manager can only be dispatched if the associated P
gate is open. It must be further observed that page manager
requests coming directly from queue 1 (rate A,,) have higher pri-
ority than page manager requests coming directly from level 0
(rate A,,). For this reason, in the case of a combined page-out/
page-in, the serially reusable page manager is effectively locked
until the page has been brought into real storage.

The only requests arriving asynchronously at the CPU are the 1/0
interrupt requests; therefore, service interruptions can only be
caused by 1/0 interrupt requests.

The queuing analysis allows two different borderline cases of in-
terruptibility. They are indicated by a logical variable NI:

0 if vo-interrupt requests may interrupt page manager
and supervisor system tasks as well as transients
1 else (not interruptible)
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Table 2 Interrupt scheme

110 interrupt requests interrupt class i service?

1 2 3 4 5 b

1 2

yes yes yes yes yes
no no no yes yes

Table 2 shows the interrupt scheme with NI. For DOS/VS the sec-
ond case NI = 1 is most appropriate.

As shown earlier, for the dispatching of user tasks two possible
cases have been assumed: (1) a multitask case with one partition
and (2) a multipartition case with one job per partition.

At the end of each user task phase (having mean h,; for task i)
each task branches in different directions according to calculated
branching probabilities. If a task takes the end branch, it is as-
sumed for the queuing model that the next task with the same
characteristics runs in the same partition.

The queuing model for the CPU is very complex and has been
further split up for the calculation of the waiting times into quasi-
independent servers, in which all effects causing waiting times in
a certain queue are reflected. This splitting was done by (a) defin-
ing resulting service times (increased by I/O interruptions or
closed gates) and (b) splitting up waiting times into different com-
ponents such that the total queuing structure of the CPU model is
reflected in the approximations.

As a major part of the work, the CPU model will now be sketched.
Only the most significant points of the queuing approximations
method are sketched in the sequel.

The time a request spends in a queue up to the beginning of its
service will be referred to as initial waiting time. If the service is
allowed to be interrupted (once or several times), an additional
subsequent waiting time occurs.

In principle each waiting time in a queue is subdivided (approxi-
mately) into four partial waiting times:

a. Initial waiting time due to an uninterruptible lower-priority
service (greater than zero only for requests coming from out-
side the CPU).

. Initial waiting time due to higher-priority requests already
present at the CPU and arriving during the following time,
which is necessary to serve these requests.
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c¢. Initial waiting time due to requests of the same priority already
present, taking into account that their service may be delayed
by interruptions.

. Subsequent waiting time due to service interruptions by 1/O
interrupt requests, possibly increased by higher-priority non-
interrupting requests being dispatched subsequently (greater
than zero only if service is interruptible).

The subdivision into these four parts allows the determination of
the mean waiting times in the different queues. Depending on
what the queue index i is and on what the supervisor specification
(gating and interrupt scheme) is, some of the partial waiting times
may become zero.

These partial waiting times are shown in the Appendix for CPU
levels 1, 2, and S, including the complex queuing considerations.
A simplified similar model with Poisson input is calculated ex-
actly in Reference 6.

A very large influence on system performance is imposed by the
configuration of a computer system, i.e., the number, arrange-
ment, and types of /O devices. Within the scope of this paper,
attention has been focused upon DASDs (direct access storage de-
vices) because disks or drums are normally of major interest.
Nevertheless, tapes can also be modeled, provided that proper
input service-times are selected.

The three different types of /0 traffic (normal /O, page /0, and
fetch 1/0) are distributed according to arbitrary branching proba-
bilities among the devices. Thus, the associated files may reside
on arbitrary devices, e.g., the page data set is either only on one
device or resides on several devices (split page data set). It is
generally assumed that the devices are DASDs using the RPS (rota-
tional position sensing) feature,” which is not further discussed
here. The channels must therefore be of the block multiplexer
type.

Figure 9 shows the principal occupation scheme assumed to cal-
culate the waiting times in the channel device system. The fact
that the channel must be available for seek initiation is ignored in
the calculation and so is the existence of a control unit. Such
simplifications are common and have little impact on the queuing
results.

For each device attached to a certain channel, the following input
data are needed individually:

T, mean seek time (equals 0 for fixed head devices, e.g.,
drums)

TROT rotation time
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Figure 9 Principal occupation scheme
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sector lead time (time during which device is ready for
transfer)

transfer time (equals block size/transfer rate, possibly in-
cluding control overhead)

Note that it is possible to adjust T, and T to the individual work-
load, thus taking into account the specific cylinder locations and
block sizes.

To calculate the response times of each device, their waiting
times for channel service must be determined first. During this
waiting time for its ‘‘secondary resource’’ (channel waiting time),
the device is not available for other requests, which not only in-
creases the device busy time but also the waiting time of the
requests for the device in the device queue (device waiting time).

To calculate channel waiting times let p,,,; ; be the partial channel
utilization for channel j induced by device i, which is zero if de-
vice i is attached to another channel. It is obvious that

Penj; = Z Penji
i

is the total channel utilization of channel j. Since the device is a
rotating one, transfers can start only when the desired sector is
located below the read/write heads. The connection with the
channel is attempted during the sector lead time. If it failed to
seize the channel, it is said that an RPS miss occurred, and the
same procedure is repeated after one revolution. Therefore, the
channel waiting times are integer numbers of revolutions

T =KT K=0’152".~

WCHi ROTi
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The probability of an RPS miss for device i attached to channel j
can be determined approximately by the probability that channel j
is occupied by another device at an arbitrary instant:

m—1
m

) z Pcuj, v
v#i

Presi =

The ratio (m — 1)/m takes into account that the partial channel
utilizations come only from other partitions/tasks, such that, for
a single batch, (m — 1) pg,s = 0.

The mean channel waiting time for device i turns out to be

Prpsi
E(Twen) = '1—REL‘ - Trori

~ Prpsi

which is the expected number of RPS misses times the rotation
time of the device.

To calculate the waiting time T, in the device queue, it Is neces-
sary to apply a machine-repair model. The influence of the chan-
nel waiting times then is taken into account by using the device
occupation time as ‘‘service time’’ in the machine-repair model.
The associated number of sources depends on the degree of mul-
tiprogramming, the specification of the system tasks, and the lo-
cation of the files.

This principie is also applied in the (normal) case where the head
queue feature (SVC135) for supervisor I/O (page/fetch 1/0) is used. To
apply machine-repair models for this head queue case, page/fetch
and normal /O operations have to be specified separately (popu-
lation, rates) taking into account that page/fetch 1/0 has additional
waits caused by normal /0 operations already occupying the de-
vice. This is the principal way to obtain device response times.

Together with the arbitrary splitting of normal/page/fetch 10
across several devices, the mean response times of the total chan-
nel device system for the three different types of /O operations
can be deduced in a simple way.

Program features

In this section the APL program DOSDP (DOS Design Program),
which implements the operating system model with the help of
the queuing analysis previously discussed, is described. The pro-
gram consists of numerous APL functions, which also support the
self-prompting input facility.

The run time requirement of the program is very low, since the

effective decomposition method used and the additional approxi-
mation principles developed only require a small number of itera-
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Table 3 Input data for APL program

Program division Input parameters

Supervisor path lengths (total of 12)

Supervisor instruction execution rate
Supervisor Page manager gated/reentrant

Supervisor fetch task gated/reentrant

Interruptible/noninterruptible system tasks

Multipartition/multitasking case
Number of active tasks
User task times per partition
Workload Time in terminal subsystem
Fraction of page faults causing page out
Fraction of transients running in LTA
Fraction of phases fetched running in user partition
Normal, fetch, and page I/O activity per partition
Percentage of I/O-compute overlap of same task

Number of DASDs
Channel device DASD timings (seek, rotation, sector lead, transfer)
system Number and arrangement of channels
Distribution of disk accesses for normal, fetch,
and page I/O

tion steps (say, less than or equal to 10). When the input parame-
ters were specified, the output of the final results started in most
cases within less than one minute on the Boeblingen interactive
APL system (then a System/360 Model 65). For each run, an aver-
age of 30 seconds of CPU time was necessary.

The input data for the APL program can be subdivided as shown in
Table 3. For ease of input control, all these data are compiled in
an input summary (Figure 10) together with some calculated val-
ues (service times, branching probabilities).

The output results of the program comprise the CPU-related data,
channel device system-related data, and workload-related data.

For the cPU the utilizations are determined (problem state, super-
visor state) as well as their subdivision into different partitions
and supervisor services. For each CPU queue, mean waiting times
and queue lengths are calculated.

The channel device system results comprise the access rate, utili-
zation, RPS miss probability, mean waiting time, and mean queue
length for each RPS device. For each channel the access rate,
mean channel waiting time, and utilization are given. Channel de-
vice system response times for normal/page/fetch /0 accesses are
also provided.

The workload results are mainly characterized by partial CPU uti-
lizations in the problem state and the job run times or the tele-
processing transaction response times, respectively.
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Figure 10 Input summary
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The full scope of the output results is shown in Figure 11, all
times specified in milliseconds.

Program and model validation

Prior to making comparisons with measurements, the APL pro-
gram had to be checked for logical consistency with respect to the
waiting times in context with the queuing approximations. The
check was done by investigating many special cases, some of
them having degenerated to queuing systems with known exact
solutions. These degenerated systems turned out to be single-
server systems with feedback or normal closed networks (without
priorities). For such systems the remaining errors in waiting times
have been identified as being due to the decomposition principle.’

The only possibility for checking the quality of the queuing ap-
proximations for the more complex structures discussed here was
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Figure 11 Output of results
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an extra simulation program. This program was written using the
SIMPL/1 simulation language.

Numerous cases have been simulated, beginning with queuing
models having only one type of 1/0 and ending with systems with
all three types of 1/0. For four of these general cases, Tables 4 and
S show comparisons between calculation and simulation results.
All four cases have a multiprogramming degree of five and three
disks in the channel device system. They differ in gated or reen-
trant system tasks and disabled or enabled supervisor services
(levels 2, 3, and 4).

Table 4 shows the total CPU utilization, the maximum error for all
four cases being only 1.6 percent. This percentage is also a con-
sequence of the careful channel device calculation, the results of
which are omitted here. Queuing analysts know that total CPU
utilization is relatively uncritical with respect to approximations
of waiting times. Table 5 shows the CPU user utilizations for the
five different partitions, having different dispatching priority. As
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Table 4 Four calculation-simulation comparisons (total CPU utilizations and waiting times)

Case Mean waiting times (milliseconds)

Total CPU 10 Page Supervisor Transient
utilization interrupt manager fetch rask queue
queue queue queue

Calc Sim Calc i Calc Sim Calc Sim Calc

Gated/Disabled 0.775 0.776  1.56 62 421 354 30.5 26.0 4.30

Gated/Enabled 0.777 0790  0.91 . 42.4 39.5 30.8 5.35

Reentrant/ 0.811 0.800 1.63 1. 0.44 0.40 0.44 1.80
Disabled

Reentrant/ 0.812 0.805 0.95 . 1.32 1.50 1.18 . 2.93
Enabled

Table 5 Four calculation-simulation comparisons (partition utilizations)

Case CPU utilizations in problem state

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 All partitions

Calc Sim Calc Sim Calc Sim Calc Sim Calc Sim Calc Sim

Gated/Disabled 0.093 0.108 0.087 0.095 0.079 0.079 (.068 0.064 0.055 0.047 0.383 0.393

Gated/Enabled  0.093 0.106 0.087 0.093 0.079 0.078 0.068 0.063 0.055 0.051 0.384 0.391

Reentrant/ 0.098 0.109 0.092 0.094 0.083 0.078 0.071 0.063 0.056 0.050 0.411 0.395
Disabled

Reentrant/ 0.098 0.109 0.092 0.095 0.083 0.078 0.071 0.063 0.056 0.050 0.411 0.385
Enabled

can be seen, the error is typically less than 10 percent for the
individual utilization. Many other comparisons confirm the error
ranges indicated above.

Because of the variety of input data for the program, a complete comparisons
and profound comparison with DOS/VS measurements needs many with

input parameters, which are normally not available for one measurements
sample measurement run. However, to make statements about

the applicability of the model, existing measurements have been

taken.

The measurements were taken in August 1975 on a System/370
Model 125 with DOs/vs Release 32.° They include single and
double batch runs for so-called VSAM (Virtual Storage Access
Method) macro sequences (F1 and F2) which are not reproduced
here in detail. The same applies to the APL program results.
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Table 6 Comparisons of Measurements and Program Results

Fl1 in foreground F2 in foreground
F2 in background F1 in background

measured calculated measured calculated

Total CPU 0.92 0.91 0.92 0.926
utilization

Supervisor state n.a. 0.38 0.44 0.412

User state .a. 0.53 0.48 0.514

Throughput
Fl1 cycles/second . 4.77 2.62 2.61
F2 cycles/second . 0.92 2.60 1.96

Single batch measurements can serve as additional help for cali-
bration and verification of path lengths and of device service
times. All data obtained from the single batch measurements have
been consistent and confirmed the assumed Release 32 path
lengths. Also, the difference in the MIPS values for supervisor and
VSAM processing has been confirmed.

By using these calibrated values of the single-batch case for
double-batch runs of the program, we obtained the results in
Table 6. As can be seen in the table, the error in the partial CPU
utilizations is less than seven percent.

The throughput resuits, from which the response times can be
directly calculated, are fairly good for the F1 sequence, whereas
the F2 throughput is lower in the calculation (irrespective of the
partition used). The cause is the different locations of the files for
F1 and F2 during the measurements, which is not reflected in the
present version of the program.

Performance resuits

In order to show the application of the program, two examples
have been selected, one for batch, the other for a pure tele-
processing workload. These examples have been extracted from
numerous runs.

It was also demonstrated elsewhere how the calibration of the
model can be done, including paging behavior. Please note that
the aim of this section is to show only the application of the pro-
gram and not to claim that each input value is realistic in every
case.
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Let a batch job be characterized by

The total CPU time in user state ETUS

The fraction of ETUS that overlaps with 1/0 activity for the
same job, FOL

The three-component vector ZIO indicating the number of nor-
mal 1/0s, page faults, and transients fetched.

In order to cover a wide workload spectrum, 12 different sample
jobs have been adopted. Each is characterized by three million
user instructions, and runs on a CPU with 0.1 MIPS and a value of
ETUS = 30 seconds. For reasons of simplicity, FOL = 0 has been
adopted here.

By means of z10, different /0 intensities can be achieved. This
has been done by varying the number ZIO (1) of normal 1/0s:
Z10 (1) = 500, 1000, 2000 normal /O accesses.

The number of page faults Z10 (2) has been selected to cover usual
paging rates:

710 (2) = 0, 300, 600, 1200 page faults.

The third component Z10 (3) is the number of transients fetched,
which has been fixed:

z10 (3) = 200

For the resulting 12 sample jobs, 12 runs have been performed for
a system with three active partitions (triple batch) with the same
job in each partition. Furthermore, it was assumed that 50 per-

cent of the page faults required a previous page out. The supervi-
sor path lengths have been selected according to experience val-
ues, and the system tasks were specified as being gated.

Out of the vast variety of channel device systems, two identical
disks have been chosen with a mean seek time of 20 milliseconds,
a rotation time of 16.7 milliseconds, and a sector lead time of
0.874 millisecond. Both disks have been attached to the same
block multiplexer channel, the transfer times being 2.48 millisec-
onds. The data sets have been located such that the page data set
was fully on disk 2, all transients on disk 1, and the user (normal
10) files split equally on both devices. Figure 12 shows the result-
ing CPU utilizations for the 12 runs (total and problem state part)
as a function of the number of page faults of a job in one partition.

For the different types of 1/0 traffic, Figure 13 shows the cycle
times, which have been defined as being the time a job is not in
the dispatchable user task queue since it performed a normal 1/0,
or has produced a page fauit, or initiated the fetching of a tran-
sient phase.
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Figure 12 Triple-batch CPU utilizations (12 runs each with the same three jobs)
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Figure 13 Normal I/O and page fault cycle times for triple-batch runs
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Because of the head queue priority of page /0 accesses in the
channel device system, the page fault cycle times do not depend
so much on the number of normal 1/0 operations of the jobs. Note
that for jobs with 1200 page faults the page fault cycle times de-
crease with an increasing number of normal I/0 operations. This
decrease is due to the decreasing paging rate which then relieves
the page manager. The normal /O cycle times remain nearly con-
stant, though the normal 1/0 access rates to the disks are decreas-
ing (due to the increasing page /0 having head queue priority).
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Figure 14 Triple-batch prolongation factors for partition 1 and 3 (assimilation with increasing
1/O activity)
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Figure 14 shows triple-batch prolongation factors for the job run
times. With increasing 1O activity the effect of the preference
given to the first partition diminishes remarkably since partition
priorities are not considered for scheduling purposes in the chan-
nel device system.

In the case of a pure teleprocessing application, it is often useful
to assign the same priority to each user transaction (multitasking
within one teleprocessing partition). Figure 15 schematically
shows the teleprocessing configuration, paging paths being omit-
ted.
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To define a user transaction, a mean number of, say, 70 000 in-
structions in the user state has been chosen. This value is arbi-
trarily chosen; real values would have to consider such items as
VTAM, CICS, VSAM, and user code.

Let us assume that each transaction consists of six disk accesses
(normal 1/0), thus rendering a mean user task phase path length of
10 000 instructions, corresponding to 92.6 milliseconds on a 0.108
MIPS CPU. The supervisor path lengths have been chosen as in the
previous example.

The channel device system consisted of three identical RPS disks
(e.g., IBM 3330s) with a mean seek time of 30 milliseconds. It was
assumed that the page data set is located on one disk, the normal
/O accesses again being split equally across all three disks (all of
them attached to one common channel). Fetch 10 has not been
considered in this example. Throughout all runs a terminal sub-
system time of 15 seconds (user think time plus time for transfer)
has been assumed.

The number of active users or terminals has been varied from five
up to 30, with four different cases:

No paging

With paging and gated page manager

With paging and reentrant page manager

With paging and gated page manager as above but without
head queue priority for page 0.

In the paging case, the mean number of page faults per transac-
tion had to be determined as a function of the number of active
users. This determination has been done with the help of (normal-
ized) parachor curves, indicating the probability of a page fault as
a function of the available real storage size.” Only the paging cali-
bration result is shown here:

number of active users s 10 15 20 25 30

mean number of page faults 0.5 1 2 4 8 16

Figure 16 shows the resulting CPU utilization (total and supervisor
state) for these four different cases. For the same paging behavior
of the transactions, the differences are obvious. The nonhead-
queue case (no HQ) has been included only for comparison rea-
sons.

Figure 17 shows the associated mean response times for the four
different cases as a function of the number of terminals. These
curves could be used to select the maximum number of terminals
for prescribed response time requirements.
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Figure 20 Fraction of time the gate
of the serially reusable
page manager is closed
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Figure 19 Mean number of transactions in CPU and channel device system
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Figure 18 demonstrates the system throughput expressed as the
number of transactions per second, growing linearly in the begin-
ning and either tending to an upper value in the cases of no paging
or eventually decreasing because of thrashing.

Figure 19 contains the mean number of transactions in the CPU
and channel device system. This number corresponds to a me-
dium degree of multiprogramming, which, apart from the number
of terminals, has not been restricted further in the queuing calcu-
lations.

For the two cases where a gated page manager is used, Figure 20
shows the fraction of time with the gate of the page manager
closed. This value indicates to what degree the paging capacity of
a system is utilized.

Finally, Figure 21 depicts the page fault rate managed by the dif-
ferent page managers.

Summary

In this paper the development of a DOS/VS-based operating system
model that serves as a basis for performance predictions has been

demonstrated. The model has been developed on a level that is
neither too gross nor too detailed with respect to the desired per-
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formance results. Nevertheless, it reflects those hardware and
software components that may have a significant influence on
system performance.

The approximate and iterative queuing analysis, on which the
model implementation in APL is based, has been sketched. This
APL program can be characterized by a flexible description of the
supervisor, the workload, and the channel device system and
gives quick and detailed answers to performance questions,
although the-analytic model only applies to stationary and ran-
domized processes.

Nevertheless, the model in Figure 1 can be used as a basis for an
even more detailed simulation program in which inhomogeneous
task behavior (e.g., different job steps, or job control) can also be
considered explicitly.
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Appendix: CPU waiting times

Before describing the partial CPU waiting times (defined in the
section on CPU waiting times) let us summarize some notations
used:

= mean service time for queue i(i =0- - - 5)

total expected waiting time of a request in queue
i (E(T,) = 0)

P; A, - h, = cpu utilization of level i

MR(m, A, h) mean waiting time in a single-server machine-re-
pair model with m sources, throughput rate A,
and mean service time 4

FAC =(m-—1)/m

pi* FAC - p, = effective (reduced) utilization of
level i

The mean waiting time for the VO interrupts in queue 1 is /O interrupts
1
ET,,) = po* “hy + Nl(pz* “h, + pa* Chy + P4* “h,) (queue 1)

a
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page manager
requests
(queue 2)
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+ 0+ MRMI A\, k) + 0
-~ e

b C d

where the designated groups of terms mean the following:

a is the expected rest-service time of a noninterruptible supervi-
sor service. The weighting factors of this sum are the effective
utilizations. The individual rest-service times here are set to the
mean service times, since negative exponentially distributed
service times are assumed.

b is zero since there is no higher-priority queue.

¢ is the mean waiting time in an equivalent machine-repair model
with MI sources. MI depends on supervisor specification and the
channel device system.

d is zero since level 1 service is never interrupted.

For queues 2, 3, and 4 the calculation must consider the reentrant
and the gated case. As an example, the page manager waiting
times are demonstrated.

For queue 2, there are the following page manager requests:

Page Manager Reentrant:
1. Requests coming from queue 1 (queue 2)) are specified as fol-
lows:
Py

H%J=O+“_ND”;@+1—p*
1

NN . ;
a b

*

- h

1

J .

h
+MR(m,)\21,ﬁ)+(l“NI).
1
p

where

a is zero, since these requests are created by the CPU itself,
and therefore the CPU cannot be occupied otherwise at this
moment.

b is the initial wait due to an interrupted page manager request
being dispatched first and due to other /O interrupt requests
left behind in queue 1 which are also selected first.

¢ is the mean waiting time in an equivalent machine-repair
model, where 4, /(1 - pl*) is an extended service time seen by
a request that only sees the same priority predecessors. It
does not necessarily mean that interruptions are allowed.
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d is the mean time the request waits because it is interrupted
by /0 interrupt requests (subsequent waiting time).

. Requests coming from queue 5 (queue 2,) are specified as fol-
lows:

E(T,

* *®

p
=0+ —— -h +0+(1-NI) - ——
22) l—p* 0 ( 1) l_Pl*
— —— N

- h

2

a b c d

where

b is the initial wait caused by requests that arrived in queue 1
while the request was in the noninterruptible service at level 0.
This expression can be deduced from the fact that during the
mean time A, A, - h, class 1 requests arrive. Each of these
arriving requests requires service by level 1 and possibly level
2; therefore, p* = p,* + p, *. When these requests have been
served, further class 1 requests may be present, and so forth,
resulting in this sum of a geometric series.

¢ is zero. There are never several requests waiting, since the
page manager is reentrant in this case.

Page Manager Gated:

The main differences in the calculation of the waiting time com-
ponents for the gated case versus the reentrant case consist of
two points:

. The population in a queue may degenerate to one due to the
gating mechanism. Here, part ¢ for queue 2, will become zero.

. The gates are taken into account by replacing the service times
in the machine-repair model by the times the gates are closed.
These times are also the result of the iterative calculations.

There are two cases handled by the program:

1. Multitask case within one partition.
2. Multipartition case with one task (job) per partition.

Since user tasks only are dispatchable as a consequence of /O
interruptions and, in addition, are running with lowest dis-
patching priority, part a of the waiting time is always zero.

The multitask case is characterized by m user tasks of the same

dispatching priority.
ET,,) =
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4
FAC - | > N, - [E(T,) + h]- h,+p, - (hy+ p, - h, + p. -
i=1

1_ *

-

b
p*
+ MR(m, )\5, h*) + ﬁ h
\ v . e
c d

5

J

where

b is a term in which the numerator is the total amount of higher-
priority work to be done by the CPU at an arbitrary instant. During
this time for the ‘‘initial amount of work,”” further requests may
arrive from outside the cPU. This is taken into account by

1/(1 = p%)
where essentially
p* = FAC - (p, + p,, + p,)

¢ represents the initial waiting time due to the same class of
requests and is determined via machine repair with

h5+pp‘h2+pf-h
1 - p*
as an effective service time.

3

W =h +

0

In the multipartition case the waiting time calculation is influ-
enced by the fact that dispatchable higher-priority user tasks may
increase the waiting time of a job in partition { and in an extreme
case increase it even to an infinite value. The increase depends on
the partition index i. This leads to a more complex calculation for
part b, whereas part ¢ will become zero. In the section on valida-
tion, these approximations are compared with simulation results.
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