
This paper  describes  an  operating system model  that is based 
mainly on the DOSIVS supervisor  but  also  reflects various design 
alternatives,  providing  a  flexible tool for operating  system  design 
and tuning.  The  model is characterized by the  subdivision  of 110 
activity  into normal 110, page 110, and fetch 110, corresponding to 
the di’erent supervisor services  involved.  The  model  has  been 
evaluated by analytical  queuing methods in a  set of APL functions 
that allow ajexible specijication of the  supervisor,  the  conjigura- 
tion, and  the  workload.  Validation  has  been  done by simulation 
and by benchmarking of a real system. 

The main  features of this  performance  tool are described,  and  its 
capabilities are illustrated by performance  results  that  show  the 
impact of workload and various supervisor  changes on  system 
performance. 

Performance  investigations  with  a  DOS/VS-based  operating 
system model 

- 

by W. Kraemer 

Predicting the  overall  performance of computer  systems is a  very 
complex problem and is influenced by many parameters  between 
which arbitrarily close  interrelationships  exist.  Performance  pre- 
diction is met by modeling and measurement  techniques.  In mod- 
eling it is  often  necessary  to  restrict  attention to  those parameters 
that  act  as the main influences on a system in order to make  the 
abstraction  reasonable  and  accessible  to simulation or analytical 
techniques. Both methods-simulation and analytical tech- 
niques-have specific advantages  and  disadvantages,  but  they 
both can  contribute  to  a  better  understanding of system  behavior 
if properly  used.  The  system  behavior,  obviously, is also influ- 
enced by the  operating  system itself, i.e.,  the path  lengths,  sched- 
uling, structure,  etc. 

This paper  describes  the modeling Of DOS/VS (Disk Operating  Sys- 
tem, Virtual Storage)  for  the  purpose of determining its influence 
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on system performance.’ DOS/VS was developed for the low end of 
the Systed370 line2 and  was  extrapolated from Systed360 DOS 
by introducing virtual storage  concepts.  Its design was influenced 
especially by small real  storage size requirements.  Performance 
was  improved in subsequent  releases.  The  functional  structure of 
DOS/VS has been  described in a  general  survey by  Birch: specific 
details  can be obtained from the DOS/VS Supervisor Program 
Logic ManuaL4 Within the context of the  paper, DOS/VS is de- 
scribed only to  the  extent  necessary  to  develop  and  understand 
the queuing model. 

In this paper,  the model is described first. Then  the queuing anal- 
ysis and  the APL program are discussed thus leading to  the valida- 
tion and the  performance  results. 

DOS/VS-based  supervisor  and  system model 

modeling Modeling computer  systems  consists of a  careful  deduction of a 
highlights system model, hopefully being neither  too  gross  nor  too  detailed. 

Generally speaking,  a model can be considered as a sound ab- 
straction of reality if all parameters  are included that may have  a 
noticeable influence on  the investigated performance  values. For 
the  sake of brevity, only some highlights are given within this 
section  to illuminate the  important  procedure of modeling. 

TheJirst modeling step is a reduction of the detailed flowcharts in 
the Program Logic These  flowcharts  are vast, reflecting 
the complexity of an  operating  system  that is further  increased 
by: 

0 The variety of devices  supported. 
0 The need for compatibility with former  systems. 
0 The  demands  for high reliability, availability, and  service- 

0 The different access  methods. 
ability. 

Simplification of the flowcharts was done  for  various  “requests” 
that call for  supervisor  code  to be processed. In DOS/VS, these 
requests  can be subdivided into  interrupt  requests and so-called 
“requests for  system tasks.”  Interrupt  requests  have  the highest 
priority and  are subdivided into: 

0 MC -machine checks  (equipment malfunction) 
0 PC -program checks (improper use of instructions or  data, 

addressing  exception, page fault) 
0 svc -supervisor calls (calls for  special  supervisor  services, 

approximately 80 different svcs used) 
0 I/O -input/output interrupts  (channel  end,  device  end) 



The  system  tasks  represent different supervisor  services, which 
also  have different dispatching priorities. They  are listed below 
with their  abbreviations: 

0 RAS is the reliability, availability, and serviceability sys- 
tem task. 

0 PMGR is the page manager system  task (page fault handling 
with selection of page frames, page idout of pages). 

0 SUPVR is the supervisor  system  task  or  fetch  task (fetching 
of user  phases  and nonresident parts of the  super- 
visor). 

0 CRT (cathode ray tube) is the  screen manager console 
support. 

0 ERP is the  error  recovery  procedure  system  task (I/o 
malfunction). 

0 PAGElN is the special service  to page in several  pages. 
0 ATTN is the attention  system  task. 

The flowcharts associated with these  requests  have been system- 
atically reduced to slimmer charts  that  contain  branches  to 
different paths,  but in most cases wind up  at  the general exit 
routine EXIT, the  dispatcher. 

To perform an I/O operation, many of these different levels are 
needed. For example, during a page I/O the program check, SVC, 
uo interrupt, and the page manager levels are involved. At the 
end of the first modeling step, all  of these different levels have 
been represented by their  essential  parts. 

The second modeling step led from representation by level to  the 
final supervisor model by 

0 Omission of parts  that  are uncritical with respect  to  perfor- 
mance (machine checks, external  interrupts, and program 
checks  except page faults) 

0 Reduction of the  number of system tasks (RAS, CRT, ERP, and 
ATTN all use the  supervisor  fetch  task to fetch transient 
parts  or phases of the  supervisor,  whereas PAGEIN is using the 
page manager) 

0 Consideration of (synchronous) svc interrupts  either  as calls 
for  supervisor  subroutines or (when issued by user  tasks) as 
switches  into  the  supervisor  state. 

Furthermore,  according  to the various needs  for  supervisor sup- 
port,  three  types of I/O operations  have been distinguished: 

1. Normal I/O} user-specified 1/0 
2. Page I/O (using the page manager system 

3.  Fetch I/O (using the  supervisor  fetch  task) 
task)  “supervisor I/O” 



Figure 1 DOSiVS supervisor model 
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The final important step was to introduce  the  channel  device 
system  and  to  close  the  loops  for normal U O ,  page VO,  and  fetch 
YO, thus obtaining a  system model that is described in the follow- 
ing sections. 

global Figure 1 shows  the resulting model for the DOS/VS supervisor.  The 
description different boxes within the CPU can be described by path  lengths 
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’ that lead to varying service times with the mean depending on the 
appropriate MIPS (million instructions  per  second) value. The CPU 
has  four  supervisor  queues and one  queue  for problem process- 
ing. The  queues are arranged  according to their  priorities, the 
highest one being formed by I/O interrupt  requests, followed by 
requests  for the page manager (PMGR) and  supervisor  fetch  task 
(SUPVR). The  lowest-priority  supervisor  queue  (transient  queue) 
consists of requests  for  the  processing of transient  phases  that 
have  already been fetched  into  real  storage. 

If no supervisor  work  can be done,  the CPU tries  to  do problem 
processing,  i.e.,  to  serve  a  user  task in the  user  queue(s). Within 
the  context of this paper,  “user  task” may denote  a  batch  job  or a 
data  base  transaction. Note that  the  entire  processing of a single 
user  task is cut by its own 110 operations  into  several  compute 
intervals of user  code  processing,  here called user tusk phases. 
Therefore,  the  user  queue is formed by all active  user  tasks  that 
are selectable  either  for  the beginning of the  next  user  task  phase 
or  the continuation of the  currently  interrupted  one. 

In DOS/VS (Release 32) up  to five different batch  partitions with 
dzflerent so-called dispatching priorities may be  active. For such 
a case of multiple batch  partitions,  the  user  queue may be consid- 
ered  to  consist .of several  subqueues  arranged in priority order 
(sublevels).  The  case  where all tasks in the  user  queue  have  the 
surne dispatching  priority (multitasking within a single partition) 
has  also been considered and is discussed  later. 

A  user  task  that may be in different states-waiting or being 
served-(problem state, supervisor  state  for normal/page/fetch 
V O ,  or performing V O )  is said to  “walk  through  the  model,”  where 
the  present location indicates its momentary status. Please note 
in Figure 1 that all boxes within the CPU except  the  user  task 
phase box are processed in the  supervisor state. 

Consider  a single user  task  that goes through  a  user  task  phase. 
This  phase of user  code  processing  can be terminated  because of 
four  possible  reasons:  (a)  a  request leading to normal I/O (svCO), 
(b) a request leading to page I/O (page fault program check),  (c) a 
request leading to  fetch I/O (svcl . . .), or  (d) a task  end. 

In  the  case of normal 1/0, after  the ccw (channel command word) 
translation,  the SIO (start I/O) command is given. An I/O interrupt 
signals the completion of the I/O transfer, making the correspond- 
ing partition or task  dispatchable again. 

In the  case of a page fault,  the page manager is needed to select 
the page frame and determine  whether  the  contents of the  frame 
have  to be transferred  out in advance,  thus possibly being needed 
twice (page  out  and page in). 
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Figure 2 Normal I/O cycle 
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In the  case  of  a  request  to  fetch  a  transient  phase,  a  request  for 
the  supervisor  fetch  task is initiated. When the  transient is in real 
storage, it has  to be processed before the  appropriate  user  task is 
dispatchable again. 

Note  that  the  last  parts of the page manager and  supervisor  fetch 
task  here  have been appended to the UO interrupt  handler.  In 
DOS/VS these  two  system  tasks  are only serially reusable in order 
to serialize  processes and to  obtain smaller control  tables within 
the  supervisor.  Therefore,  the model also  contains  two possible 
gates P and F, which are explained later. 

For a  better  understanding of the  function  and application of the 
model,  the  different  supervisor  components will be treated  sepa- 
rately in the  subsequent  discussion.  This  treatment  serves  to cali- 
brate  the model. It is very helpful that,  apart from paging activity, 
such models can be calibrated  to  a wide extent by supervisor and 
problem state  measurements in a single-thread environment. 

normal Normal I/O has been defined as being all vo operations  not  need- 
I/Ocycle ing the page manager or supervisor  fetch  task  service. Figure 2 

shows  both  the time diagram for  a normal VO cycle  and  the  asso- 
ciated  schematic flow through  the model. 

The  total number of supervisor  instructions being processed  from 
an SVCO (supervisor call 0-execute channel program) until the 
next  task is selected by the  dispatcher is 
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~ 'no = ZGENENT + ZSVCTr\B + ZENQUEUE + Zccw 

+ + ZS1oH + Zsvc7 + 'EXIT 

where 
ZGENEN, is the number of instructions required to proceed 

through  the  general  entry  subroutine GENENT. 
ZsVcTAB is the  number of instructions required to  analyze  the 

type of SVC. 

ZENQUEUE 
is the  number of instructions from the channel  sched- 
uler to  the label GIOADR (mainline, excluding CCW trans- 
lation for normal V O ) .  

Z,,, is the  number of instructions  necessary  to  translate  one 
channel program for one physical normal UO request. 
is the  number of instructions from GIOADR to SI0 
(proper  channel  queue scheduling). 

Zsl0, is the number of instructions  for  start 1/0 issue  and han- 
dling. 
is the  number of instructions  for  the WAIT macro  (pro- 
cessed if no uo compute  overlap  for  the  same job fol- 
lows, including additional GENENT and SVCTAB part). 

Z,,,, is the  number of instructions in the general exit  routine 
for  task selection (the  dispatcher). 

zsvc7 

The  completion of the  transfer is signaled by an I/O interrupt.  Let 
Znlbe  the (mean)  total  path length from a normal I/O interrupt until 
this I/O action is fully completed.  Then 

Z n 1  = ZloIH + ZCsWTRANs + &,IT 

where 

zIOIH is the  number of instructions  for  the I/O interrupt  han- 
dler (from label ENTlO over GENENT, INTRTN, 
CHNDRT, TRNOFF to EXIT; excluding CSWTRANS) 

ZcswTRA,s is the  number of instructions  necessary  for normal I/O 
retranslation in CSWTRANS. 

In the  case of multiprogramming, a SIO command  cannot  always 
be issued directly after  the ccw translation  because  the  channel 
or device may  be busy. At such times,  the SIO command actually 
is issued  later  as  a  consequence of an vo interrupt  caused by an 
VO completion of another  task.  It is of little importance  whether 
the  corresponding  path length ZCHQ + ZsIo is said to be included 
in Zn,, as used here,  or in Z,,. 

Note  that,  as indicated in the time diagram, I/O activity and super- 
visor processing  due  to  the  same  task  are overlapping each  other. 
This overlapping means,  for  example,  that  a  seek, beginning after 
the SIO, runs in parallel with svc7 and  the  processing of EXIT. 

A page 1/0 cycle  includes all actions  to  fetch  a page into  real  stor- page 
age (page  in).  The  cycle begins with a page fault program check 110cycle 
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Figure 3 Page fault  cycle 
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and ends when the  requested page has  been  transferred from sec- 
ondary  storage  to  real  storage. Most of these  actions are per- 
formed by the page manager  system  task (PMGR) as denoted in 
Figure 3 .  

Each page fault program check first is handled within the page 
fault first-level interrupt  handler (PFFLIH), from which a request 
for  the page manager is set  up (path length Z,J. When control is 
passed to  the page manager,  a  frame  for  the  requested page has  to 
be selected with the help of the page replacement algorithm. In 
DOS/VS the so-called Q-class algorithm (see Reference 4) sub- 
divides all frames  into five queues.  One of them is the hold queue, 
consisting of  all newly occupied  frames,  the  other  four being 
characterized by  all combinations of reference bit and change bit 
values.  The  associated  path length for  frame  selection  can be as- 
sumed to  increase linearly with the size of the selection pool con- 
taining all selectable  pages.  Then, it has  to  be indicated whether  a 
preceding page out i s  necessary,  i.e.,  whether  the  selected  frame 
contains  a changed page. In  this  case,  two  separate  accesses  to 
the page data  set  are  necessary, also using the page manager and 
the  scheduler  twice. 

After the I/O interrupt of the page in has  been handled by the I/O 
interrupt  handler, this page is protected momentarily by append- 
ing the  associated  frame to  the hold queue. When the  request  for 
the page manager is dequeued,  the  next  work  to  be  done by the 
CPU is determined by the  dispatcher EXIT. 
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Table 1 Transients in DOS/VS 

Name  Purpose  Remarks 

Logical transients Attention  routines Transients for normal 
(B transients) Terminator  routines operating conditions 

Special service 
routines 

Operator  console 
support (CRT 
transients) 

Physical transients Error  recovery Transients for special 
(A transients) Error recording conditions 

RAS transients Reliability Transients  for special 
(R transients) Availability conditions 

Serviceability 

As previously mentioned,  the model contains  a  gate  P  for serial- 
ization purposes  (Figure 1). It is closed when a  request has passed 
it ((close-gate-)P  circle)  and  opened when the  transfer of the page 
has  been  completed  and  the  control  table has been  updated.  This 
is done  after  the page manager part 2 in the  (open-gate-)P  circle. 
Naturally, by omitting gate P,  the design alternative of a  reentrant 
page manager is included in the model. 

Fetch 110 in the DOS/VS model is that I/O activity using the  fetch 
macro  and,  therefore,  the  supervisor  fetch  task (SUPVR). This 
task is a serially reusable  software  resource  for DOS/VS, i.e.,  non- 
reentrant. Primarily this  task  serves  to  fetch  nonresident  parts of 
the  operating  system  (transient  phases) initiated by supervisor 
calls which here  are  interpreted as being in the  user  program. 
Table 1 shows  such  transients as they relate in DOS/VS. 

For the DOS/VS model, the  transients  for normal operating  condi- 
tions (logical or B transients) are especially of interest.  A  certain 
fraction of these B transients  are  fetched  into  the so-called Logi- 
cal Transient Area (LTA) with fixed location in real storage. 

In Figure 4 a  fetch uo cycle begins with a fetch-svc instruction 
and ends when the  transient is processed.  Such  a cycle may con- 
sist of two physical I/O accesses, including a previous access  to 
the  appropriate  directory.  In  addition,  the model contains  a  path 
directly from the uo interrupt  handler  to  the  user  queue in order 
to reflect the possibility that  fetched  code  runs in the problem 
state with partition priority. 

Furthermore, it should be noted that in DOS/VS an  entire  sequence 
of transients may be fetched piecemeal. This fact is not explicitly 
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Figure 4 Fetch I/O cycle 
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represented in the  current  status of the  model, but can be consid- 
ered globally by increasing the  number of transients  fetched by a 
user  partition. 

To reflect the serial reusability of the fetch mechanism in DOS/VS, 
a  gate F has been introduced in the model (Figure 1). This  gate is 
closed in the F circle when a  request  has  passed it. As previously 
indicated,  a  certain  fraction of the  transients  must be loaded  into 
the (single) Logical Transient Area which is then  occupied until 
the  transient is processed  completely.  Therefore, this transient 
area  can be used only after  the  processing of the previously 
fetched  transient.  This  potential  bottleneck is reflected in the 
model by providing the  means  to  open  the F gate not in the F, 
circle but in the F, circle after  the  transient  has  been  processed. 

Note  that  for page I/O and  fetch I/O no ccw translation is neces- 
sary  and  that  these  two  types of "supervisor I/O" are  preferred in 
DOS/VS within the  device  queues by the so-called head queue su- 
pervisor call svcl5 instead of using an svc0 as  for normal I/O. 

priority The CPU allocation problem is solved by the  dispatcher which is 
considerations now discussed.  The  dispatcher  (or  general  exit  routine EXIT) is 

called when an interrupt  request,  a  request  for  system  task,  or  a 
user  task  request  has  been  processed  and  the decision has to  be 
made as  to which task will be activated  next. 

Apart from I/O interrupt  requests, coming "asynchronously" 
from outside  the CPU, the  interrupts  taken  into  account by the 
model (SVCS, page fault program checks)  are  "synchronous" be- 
cause  they  are  switches  into  the  supervisor state, originated by 
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user  tasks,  or calls for special supervisor  services, originated by 
the  supervisor itself, which are reflected in the different supervi- 
sor path lengths. 

These svc and program check  routines  have highest priority for 
the allocation of the CPU. Therefore, some of these  routines 
(the  ones  that  are  directly originated by user  tasks via syn- 
chronous program checks or SVCS) have  'been  quasi-attached 
to  the  user  task  phases.  These  routines  are  processed with highest 
priority and normally would only be interrupted by machine 
checks, which are ignored here  because  they  are  exceptional  con- 
ditions.  Therefore,  requests  are  never waiting for  this  level. 

For the remaining levels in the model, priority is given in the fol- 
lowing order (Figure 1): 

1. 110 interrupt  queue I I 
2. Page queue 
3.  Supervisor  fetch  task  queue supervisor  queues 

4. Transient  queue 
5. User  queue 

J 

Within the page queue and the  supervisor  fetch  task  queue  a 
request may have head-of-the-line priority.  To use an  example, in 
the  case of a serially reusable page manager,  a  request  to  fetch  a 
page into  a page frame  that was freed by a  previous page out will 
be handled before a page manager request  for  another  task. 

The  user  queue is last  and  consists of  all dispatchable  user  tasks, 
which in addition may have different partition  dispatching prior- 
ities. 

Two  possible  cases  have  been  considered: (1) a multitask case 
with one partition and (2) a multipartition case with one  task (job) 
per  partition. 

I 

The first case  assumes m tasks with the  same dispatching priority, 
e.g.,  on  a FIFO base  (first-in, first-out). When a  user task i is inter- 
rupted by an I/O interrupt  request  that belongs to  another taskj, 
then  the  interrupted  task i is resumed after  the I/O request  has 
been handled, resulting in multitasking within one  partition.  This 
mode of operation is valid  in such  cases  as  a  pure  teleprocessing 
application  (transactions);  therefore,  the model includes a termi- 
nal subsystem  for  this  case. 

The  second  case is normal multiprogramming with several  active 
batch  partitions  that are interrupted by vo interrupt  requests.  If, 
for  example, such an  interrupt belongs to  an I/O request of a  task 
that  resides in the  partition with the highest dispatching  priority,  a 
lower-priority  task is further  delayed. 
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Figure 5 Simple multiprogramming These dispatching priorities will be further clarified in the  next 
model section. 

The  code  that  can be interrupted by I/O interrupt  requests  must  be 
specified. There is no  question  that it  is useful and  even  necessary 
to let these  interrupt  requests immediately interrupt  user code 
(being processed in the problem state).  Naturally,  this is reflected 
in the model. 

m REQUESTS 

For lower-priority  supervisor  code it might be useful to allow in- 
terruptions only at  certain  points, in order  to  preserve  the integ- 
rity of control  tables. If I/O interruptions  are  not  admitted,  this 
supervisor  code is said to  run  disabled.  The  degree of inter- 
ruptibility depends  on design objectives  and may be large for  very 
sophisticated  operating  systems with fast  response times for  ex- 
tremely urgent tasks,  or may be significantly limited as is the  case 
with DOS/VS, an operating  system  for  the low end of a  computer 
line. 

Therefore,  two different borderline cases of interruptibility have 
been implemented in the  model, namely (1) I/O interrupt  requests 
intercept all lower-priority  supervisor code, and (2) all supervisor 
code  runs  disabled. For DOSIVS the  second  case is more appropri- 
ate  than  the first one. 

Queuing  analysis 

general Queuing models can be analyzed by analytical queuing methods 
remarks as well as by simulation. Both methods  have  their specific advan- 

tages  and  disadvantages,  and  both  methods  can  enhance perform- 
ance  prediction. 

Normally,  the first step in making a queuing model manageable 
by analytical methods is to randomize the  processes,  i.e., 

0 To describe  service  times by independent  random  variables 
0 To describe  the  routing  strategy by independent  branching 

0 To homogenize task  behavior by assuming fixed mean values 

0 To  base  the investigation upon the  assumption of steady  state. 

probabilities 

of service times and  branching probabilities 

The method developed  for  the DOS/VS model is based  on  the  de- 
composition of a queuing network  into  quasi-independent  parts, 
such as so-called machine-repair  models, as was  done by Flor- 
kowski in the XMODEL tool.5 This highly efficient network  decom- 
position principle, which is summarized shortly,  has been applied 
in a similar way to  the  Dos/vs-based  system model, which in addi- 
tion is characterized by priorities,  gates,  etc.  Actually,  the main 
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Figure 6 Machine-repair model and principal result for flow time 

T O  

"ELSEWHERE 

I I 

problem was to  calculate  the complex CPU part  that differs re- 
markably from a simple machine-repair single server.  For  this 
reason efficient procedures and iterative  approximation  methods 
have  been  developed. 

The  decomposition  method developed by Florkowski is basic to 
the queuing analysis  employed  for  the model and is therefore 
briefly summarized.  The decomposition principle is further  de- 
scribed in Reference 5. Consider  a simple multiprogramming 
model of a system with one CPU and a single disk, which is char- 
acterized by m programs or requests cycling around  as  depicted 
in Figure 5 .  

Let T, be the mean time a program is  in a CPU phase, and let T, be 
the mean time the disk is busy.  Each  node (CPU, disk) of this 
queuing network is modeled as a machine-repair single server 
with m sources.  The mean idle time of each  source is set  equal  to 
a so-called "elsewhere time" To related to  the  node  under  investi- 
gation (Figure 6 ) .  For  the CPU the  elsewhere time corresponds  to 
the flow time of the  disk,  whereas  the  elsewhere time for the disk 
is the flow time of the CPU node. 

Figure 6 also shows the mean flow time T, of a single node as a 
function of the mean elsewhere time To. The  throughput  rate A for 
a single node  turns  out  to be 

A =  
m 

T F  + T o  

To obtain  a  certain  throughput  rate  for  a single node,  the mean 
elsewhere time To must be changed iteratively.  The  machine-re- 
pair procedure used performs  this  iteration  internally.  The solu- 
tion of the whole network is achieved as follows.  Starting with an 
assumed initial value A. for  the  throughput  rate h in the whole 
network, we calculate  each  node  separately with the machine- 
repair  procedure.  The result of this first step is a throughput rate 
value 

network 
decomposition 
principle 

Ao* = 
m 

TFCPU + TFDISK 
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Based on  this resulting value ho*, the  assumed  throughput  rate is 
changed in subsequent  iteration  steps until the  assumed  rate  and 
the resulting rate  are nearly identical. This solution point is graph- 
ically demonstrated in Figure 7. 

The solution point is generally found in a few numerical iteration 
steps.  In  the APL program for evaluating the  model,  less  than 10 
iteration  steps are necessary  for  a  relative  error of less  than lo-* 
in the  throughput  rates. 

CPU To  determine  the different waiting times within the CPU queues it 
queuing is not sufficient to  separate  the CPU from  the residual queuing net 

model (the  channel  device  system),  since  the CPU server is governed by 
priorities  and  feedbacks  that  are not included in normal machine- 
repair models. 

Figure 8 shows  the queuing model of the CPU, which is an off- 
spring of the  supervisor model obtained by calculating resulting 
service times and  branching  probabilities.  Essentially  there are 
five queues,  four  supervisor  queues  (priority  levels 1 to 4) and one 
user  task  queue (priority level 5 )  for all dispatchable  user  tasks. 
This lowest-priority level can be further subdivided into different 
priorities (partitions) 5 ,  . . . 5m. Note  that  due  to  the  present 
status of the APL program,  directory  accesses  are  not  directly in- 
cluded (PI, = 0). But they  can  nevertheless be considered  to be 
globally included by way of the  fetch  path  taken with probability 

Figure 7 Common  solution  point P,. fCK The mean service times h (holding time) are indicated in Figure 8 
and  can be determined by the different supervisor  path  lengths, 
specified earlier in the  paper, and in the  associated MIPS values. If 
a  service time has been  completed in the model, the  dispatcher 

BOLUT'ON selects  the  next  request having highest priority, if any.  The  super- 
TC - I - - - - - - visor  service at level 0 has  the highest dispatching priority and is 

never  interruptible.  Since all user  task  phases  are fully inter- 
TFDISK ruptible, no queue  for level 0 is necessary.  Therefore, level 0 need 

not be considered in the  dispatching  scheme  for  the  queues as 
shown below. 

TO ~ T D  

I/O interrupt 

1 

Supervisor  queues 

Supervisor User  task 

5,  5, * * 5m 

increasing dispatching  priority 

*For  the multitask case with one  partition,  tasks 5 ,  . . . 5m have 
the  same  priority. 

a J 
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Figure 8 Queuing  model of the CPU 
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The  dispatching priorities shown are also valid if a  request  has 
been  interrupted. For  example,  the  fact  that in DOS/VS an  "inter- 
rupted"  supervisor  fetch  task  has higher dispatching priority than 
a new request  for  the page manager is taken  into  account by at- 
taching the  supervisor  portion  after SIO of the  supervisor  system 
task  to  the I/O interrupt  service in the model (level 1). 

It is obvious  that  a page manager request in the  case of a serially 
reusable page manager can only be dispatched if the  associated P 
gate is open.  It  must be further  observed  that page manager 
requests coming directly  from  queue 1 (rate A21) have higher pri- 
ority  than page manager requests coming directly from level 0 
(rate k22).  For this reason, in the  case of a combined page-out/ 
page-in,  the serially reusable page manager is effectively locked 
until the page has been brought into  real  storage. 

The  only  requests  arriving  asynchronously  at  the CPU are  the I/O 
interrupt  requests;  therefore,  service  interruptions can only be 
caused by uo interrupt  requests. 

The queuing analysis allows two different borderline  cases of in- 
terruptibility.  They are indicated by a logical variable NI: 

NZ = [ and  supervisor  system  tasks as well as  transients 
0 if yo-interrupt  requests may interrupt page manager 

1 else (not interruptible) 
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Table 2 Interrupt  scheme 

I10 interrupt  requests  interrupt class i service? 
~ 

I 0 1  2 3 4 5 ,  5, . . . 5, 

NI = 0 no no yes yes yes yes yes . . . Yes 
NI = 1 no no no no no yes yes . . . Yes 

Table 2 shows  the  interrupt  scheme with NZ. For DOS/VS the  sec- 
ond case NZ = 1 is most  appropriate. 

As shown  earlier,  for  the  dispatching of user  tasks  two  possible 
cases  have been assumed: (1) a multitask case with one  partition 
and (2) a multipartition case with one job per  partition. 

At the  end of each  user  task phase (having mean for  task i )  
each  task  branches in different directions  according  to  calculated 
branching  probabilities. If a task  takes  the end branch, it is as- 
sumed for  the queuing model that  the  next  task with the  same 
characteristics  runs in the  same  partition. 

The queuing model for  the CPU is very  complex  and  has  been 
further split up  for  the  calculation of the waiting times into  quasi- 
independent  servers, in which all effects causing waiting times in 
a certain  queue  are  reflected.  This splitting was  done by (a) defin- 
ing resulting service  times  (increased by I/o interruptions  or 
closed  gates) and (b) splitting up waiting times  into different com- 
ponents  such  that  the  total queuing structure of the CPU model is 
reflected in the  approximations. 

CPU As a major part of the  work,  the CPU model will  now be sketched. 
waiting Only the  most significant points of the queuing approximations 

times method are  sketched in the  sequel. 

The time a request  spends in a queue  up  to  the beginning of its 
service will be referred to as initial waiting time. If the  service is 
allowed to be interrupted  (once  or  several  times),  an  additional 
subsequent waiting time occurs. 

In principle each waiting time in a  queue is subdivided (approxi- 
mately) into  four partial waiting times: 

a. Initial waiting time due  to an  uninterruptible lower-priority 
service  (greater  than  zero only for  requests coming from  out- 
side  the CPU). 

b. Initial waiting time due  to higher-priority requests  already 
present  at  the CPU and arriving during the following time, 
which is necessary  to  serve  these  requests. 
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c. Initial waiting time due  to  requests of the same priority already 
present, taking into  account  that  their  service may be delayed 
by interruptions. 

d.  Subsequent waiting time  due  to  service  interruptions by I/O 
interrupt  requests, possibly increased by higher-priority non- 
interrupting  requests being dispatched  subsequently  (greater 
than  zero only if service is interruptible). 

The subdivision into  these  four  parts allows the  determination of 
the mean waiting times in the different queues. Depending on 
what  the  queue index i is and  on what the  supervisor specification 
(gating and  interrupt  scheme)  is, some of the  partial waiting times 
may become  zero. 

These  partial waiting times  are  shown in the Appendix for CPU 
levels 1,  2, and 5 ,  including the  complex  queuing  considerations. 
A simplified similar model with Poisson input is calculated ex- 
actly in Reference 6 .  

A  very large influence on system  performance is imposed by the channel 
configuration of a  computer  system,  i.e.,  the  number,  arrange- device 
ment,  and  types of vo devices. Within the  scope of this paper, system 
attention  has been focused upon DASDS (direct  access  storage  de- 
vices) because  disks or drums  are normally of major interest. 
Nevertheless,  tapes  can  also be modeled, provided that  proper 
input service-times are selected. 

The  three different types of I/O traffic (normal I/O, page I/O, and 
fetch I/O) are distributed  according  to  arbitrary branching proba- 
bilities among the  devices.  Thus,  the  associated files  may reside 
on  arbitrary  devices,  e.g.,  the page data  set is either only on  one 
device or resides  on  several  devices (split page data  set).  It is 
generally assumed  that  the  devices  are DASDS using the RPS (rota- 
tional position sensing) f e a t ~ r e , ~  which is not  further  discussed 
here. The channels  must  therefore be of the block multiplexer 
type- 

Figure 9 shows  the principal occupation  scheme  assumed  to cal- 
culate  the waiting times in the  channel  device  system.  The  fact 
that  the  channel  must  be available for  seek initiation is ignored in 
the  calculation  and so is the  existence of a  control  unit.  Such 
simplifications are  common  and  have little impact on the queuing 
results. 

For  each  device  attached  to a certain  channel,  the following input 
data  are needed individually: 

TSK mean seek time (equals 0 for fixed head devices,  e.g., 
drums) 

TROT rotation time 
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The probability of an RPS miss for  device i attached to channel j 
can be determined  approximately by the probability that channelj 
is occupied by another  device  at  an  arbitrary  instant: 

m -  1 
PRPSi 7 . PCHJ, u 

The  ratio (rn - l) /m takes into  account  that the partial  channel 
utilizations come only from  other  partitiondtasks,  such  that,  for 
a single batch, (rn - 1) pRps = 0. 

The mean channel waiting time for  device i turns  out  to be 

PRPSi ~ . 
TROTi ’ - P R P S i  

which is the  expected  number of RPS misses times the  rotation 
time of the  device. 
To  calculate  the waiting time T,, in the  device  queue, it is neces- 
sary  to apply a  machine-repair model. The influence of the  chan- 
nel waiting times then is taken  into  account by using the  device 
occupation time as  “service  time” in the  machine-repair model. 
The  associated  number of sources  depends  on  the  degree of  mul- 
tiprogramming, the specification of the  system  tasks,  and  the lo- 
cation of the files. 

This principle is also applied in the (normal) case  where  the head 
queue feature (svcl5) for supervisor I/O (page/fetch I/O) is used. To 
apply machine-repair models for this head queue  case, page/fetch 
and normal 110 operations  have  to be specified separately  (popu- 
lation,  rates) taking into  account  that  page/fetch I/O has  additional 
waits caused by normal 110 operations  already occupying the  de- 
vice. This is the principal way to  obtain  device  response  times. 

Together with the  arbitrary splitting of normal/page/fetch I/O 
across  several  devices,  the mean response  times of the  total  chan- 
nel device  system  for  the  three different types of I/O operations 
can be deduced in a simple way. 

Program features 

In  this  section  the APL program DOSDP (DOS Design Program), 
which implements the  operating  system model with the help of 
the queuing analysis  previously  discussed, is described.  The  pro- 
gram consists of numerous APL functions, which also  support  the 
self-prompting input  facility. 

The  run  time  requirement of the program is very  low,  since the 
effective decomposition method used and  the additional approxi- 
mation principles developed only require a small number of itera- 
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Table 3 Input data  for APL program 

Program  division Input parameters 

Supervisor  path lengths  (total of 12) 
Supervisor instruction  execution rate 

Supervisor fetch task  gatedheentrant 
Interruptible/nonintermptible system  tasks 

Supervisor Page manager gatedheentrant 

Multipartition/multitasking case 
Number of active  tasks 
User  task  times  per partition 
Time in terminal subsystem 
Fraction of page  faults  causing  page out 
Fraction of transients running in LTA 
Fraction of phases  fetched running in user partition 
Normal,  fetch,  and page I/O activity per partition 
Percentage of I/O-compute overlap of same  task 

Workload 

Number of DASDs 
Channel device  DASD timings (seek,  rotation,  sector  lead,  transfer) 
system Number  and arrangement of channels 

Distribution of disk accesses  for  normal,  fetch, 
and page I/O 

tion steps  (say,  less  than or equal  to 10). When the input parame- 
ters  were specified, the  output of the final results  started in most 
cases within less  than  one minute on  the Boeblingen interactive 
APL system  (then  a System/360 Model 65). For each  run,  an  aver- 
age of 30 seconds of CPU time was necessary. 

main  input The input  data  for  the APL program can be subdivided as shown in 
parameters Table 3. For  ease of input  control, all these  data  are compiled in 

an input summary (Figure 10) together with some calculated val- 
ues  (service  times,  branching probabilities). 

main  output The  output  results of the program comprise  the  cpu-related data, 
parameters channel  device  system-related  data,  and  workload-related  data. 

For the CPU the utilizations are  determined (problem state,  super- 
visor  state)  as well as their subdivision into different partitions 
and  supervisor  services. For each CPU queue, mean waiting times 
and  queue lengths are calculated. 

The channel device system results  comprise  the  access rate, utili- 
zation, RPS miss probability, mean waiting time,  and mean queue 
length for  each RPS device.  For  each  channel  the  access  rate, 
mean  channel waiting time,  and utilization are given. Channel  de- 
vice system  response  times  for normal/page/fetch I/O accesses  are 
also  provided. 

The workload results  are mainly characterized by partial CPU uti- 
lizations in the problem state  and  the  job run times or the  tele- 
processing  transaction  response  times,  respectively. 
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The full scope of the  output  results is shown in Figure 11, all 
times specified in milliseconds. 

Program  and  model  validation 

Prior to making comparisons with measurements,  the APL pro- validity 
gram had to  be  checked  for logical consistency with respect  to  the check of 
waiting times in context with the queuing approximations. The queuing 
check  was  done by investigating many special  cases,  some of approximations 
them having degenerated to queuing systems with known exact 
solutions.  These  degenerated  systems  turned  out  to be single- 
server  systems with feedback or normal closed  networks  (without 
priorities).  For  such  systems  the remaining errors in waiting times 
have  been identified as being due  to  the  decomposition pr in~iple .~ 

The only possibility for  checking  the quality of the queuing ap- 
proximations  for  the more complex  structures  discussed  here was 
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Figure 11 Output of results 

an  extra simulation program.  This program was written using the 
SIMPL/l simulation language. 

Numerous  cases  have  been  simulated, beginning with queuing 
models having only one  type of YO and ending with systems with 
all three  types of I/O. For  four of these  general cases, Tables 4 and 
5 show  comparisons  between calculation and simulation results. 
All four  cases  have a multiprogramming degree of five and  three 
disks in the  channel  device  system.  They differ in gated or reen- 
trant  system  tasks  and disabled or enabled  supervisor  services 
(levels 2, 3,  and 4). 

Table 4 shows  the  total CPU utilization, the maximum error  for all 
four  cases being only 1.6 percent.  This  percentage is also a con- 
sequence of the  careful  channel  device  calculation,  the  results of 
which are omitted here. Queuing analysts know that  total CPU 
utilization is relatively uncritical with respect  to  approximations 
of waiting times.  Table 5 shows  the CPU user utilizations for  the 
five different partitions, having different dispatching  priority. As 
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Table 4 Four calculation-simulation comparisons (total CPU utilizations and waiting times) 

Case  Mean  waiting  times  (milliseconds) 

Total  CPU I lo Page Supervisor Transienl User 
utilization interrupt manager fetch task queue queue 

queue  queue  queue 

Calc Sirn Calc Sim Calc Sim Calc Sirn Calc Sirn Calc  Sim 

Gated/Disabled 0.775 0.776 1.56 1.62 42.1 35.4 30.5 26.0 4.30 3.0 30.0 25.7 
Gated/Enabled 0.777 0.790 0.91 1.03 42.4 39.5 30.8 29.7 5.35 4.94 30.1 28.1 
Reentrant/ 0.811 0.800 1.63 1.78 0.44 0.40 0.44 0.60 1.80 1.7 27.2 27.8 

Reentrant/ 0.812 0.805 0.95 1.09  1.32  1.50 1.18 1.25 2.93 3.5 27.3 28.3 
Disabled 

Enabled 

Table 5 Four calculation-simulation comparisons (partition utilizations) 

Case  CPU  utilizations in problem  state 

Partition I Partition 2 Parfition 3 Partition 4 Partition 5 All partitions 

Calc Sim Calc Sim Calc Sirn Calc Sirn Calc Sirn Calc Sim 

GatedlDisabled 0.093 0.108 0.087 0.095 0.079 0.079 0.068 0.064 0.055 0.047 0.383 0.393 
GatediEnabled 0.093 0.106 0.087 0.093 0.079 0.078 0.068 0.063 0.055 0.051 0.384 0.391 
Reentrant/ 0.098 0.109 0.092 0.094 0.083 0.078 0.071 0.063 0.056 0.050 0.411 0.395 

Reentrant/ 0.098 0.109 0.092 0.095 0.083  0.078 0.071 0.063 0.056 0.050 0.411 0.385 
Disabled 

Enabled 

can be seen, the  error is typically less than 10 percent  for  the 
individual utilization. Many other comparisons confirm the  error 
ranges indicated above. 

Because of the  variety of input data  for  the  program,  a  complete 
and profound  comparison with DOS/VS measurements  needs many 
input parameters, which are normally not available for  one 
sample measurement  run.  However, to make statements  about 
the applicability of the model, existing measurements  have been 
taken. 

The  measurements  were  taken in August 1975 on a Systed370 
Model 125 with DOS/VS Release 32.' They include single and 
double  batch  runs  for so-called VSAM (Virtual Storage  Access 
Method) macro sequences (F1 and F2) which are not reproduced 
here in detail.  The  same  applies  to  the APL program results. 

IBM SYST J VOL 17 NO 4 1978 KRAEMER 

~ ~ 

comparisons 
with 
measurements 

43 1 



remarks 

43 2 

Table 6 Comparisons of Measurements and Program Results 

F l  in foreground F2 in foreground 
F2 in background F1 in background 

measured  calculated measured  calculated 

Total CPU 0.92  0.91 0.92  0.926 

Supervisor  state n.a. 0.38 0.44  0.412 
User  state n.a. 0.53 0.48  0.514 

utilization 

Throughput 
F1 cycles/second 4.4  4.11 2.62  2.61 
F2 cyclesisecond 1.4  0.92 2.60  1.96 

Single batch  measurements  can  serve as additional help for cali- 
bration  and verification of path  lengths  and of device  service 
times. All data  obtained  from  the single batch  measurements  have 
been  consistent  and confirmed the  assumed  Release 32 path 
lengths. Also, the difference in the MIPS values  for  supervisor  and 
VSAM processing  has  been confirmed. 

By using these  calibrated values of the single-batch case  for 
double-batch  runs of the  program, we obtained  the  results in 
Table 6. As can be seen in the  table,  the  error in the  partial CPU 
utilizations is less than  seven  percent. 

The throughput  results, from which the  response times can  be 
directly  calculated,  are fairly good for  the Fl sequence,  whereas 
the F2 throughput  is lower in the  calculation  (irrespective of the 
partition  used).  The  cause is the different locations of the files for 
F1 and F2 during the  measurements, which is not reflected in the 
present version of the  program. 

Performance  results 

In order  to  show  the  application of the  program,  two  examples 
have  been  selected,  one  for batch,  the  other for a pure tele- 
processing  workload.  These  examples  have  been  extracted  from 
numerous  runs. 

It was also demonstrated  elsewhere how the  calibration of the 
model can be done, including paging behavior. Please note  that 
the aim  of this section is to  show only the application of the  pro- 
gram and not to claim that  each input value is realistic in every 
case. 
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Let a batch  job be characterized by triple 
batch 

0 The  total CPU time in user  state ETUS 
0 The  fraction of ETUS that  overlaps with I/o activity for  the 

0 The  three-component  vector ZIO indicating the  number of nor- 
same job, FOL 

mal I/OS, page faults, and transients  fetched. 

In order  to  cover  a wide workload spectrum, 12 different sample 
jobs have been adopted.  Each is characterized by three million 
user  instructions, and runs  on  a CPu with 0.1 MIPS and  a value of 
ETUS = 30 seconds. For  reasons of simplicity, FOL = 0 has  been 
adopted  here. 

By means of ZIO, different I/O intensities  can be achieved.  This 
has  been  done by varying the  number ZIO (1) of normal I/OS: 

ZIO (1) = 500, 1000, 2000 normal vo accesses. 

The  number of page faults ZIO (2) has been selected  to  cover  usual 
paging rates: 

ZIO (2) = 0, 300, 600, 1200 page faults. 

The third component ZIO (3) is the  number of transients  fetched, 
which has been fixed: 

ZIO (3) = 200 

For  the resulting 12 sample jobs, 12 runs  have  been performed for 
a  system with three  active  partitions  (triple  batch) with the  same 
job in each  partition.  Furthermore, it was assumed  that 50 per- 
cent of the page faults  required  a previous page out. The supervi- 
sor  path lengths have  been  selected  according  to  experience val- 
ues,  and  the  system  tasks were specified as being gated. 

Out of the  vast  variety of channel  device  systems,  two identical 
disks  have been chosen with a mean seek time of 20 milliseconds, 
a  rotation time of 16.7 milliseconds, and a sector lead time of 
0.874 millisecond. Both disks  have been attached  to  the  same 
block multiplexer channel,  the  transfer  times being 2.48 millisec- 
onds.  The  data  sets  have  been located such that  the page data  set 
was fully on disk 2, all transients  on disk 1 ,  and  the  user  (normal 
Yo) files split equally on  both  devices. Figure 12 shows the  result- 
ing CPU utilizations for  the 12 runs  (total  and problem state  part) 
as a  function of the  number of page faults of a job in one  partition. 

For  the different types of I/O traffic, Figure 13 shows  the  cycle 
times, which have  been defined as being the time a job is not in 
the  dispatchable  user  task  queue  since it performed a normal I/O, 
or  has  produced a page fault,  or initiated the  fetching of a  tran- 
sient  phase. 
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Figure 14 Triple-batch prolongation factors for partition 1 and 3 (assimilation with increasing 
110 activity) 
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Figure 14 shows  triple-batch prolongation factors  for  the job run Figure 15 Configuration  scheme 

times. With increasing I/O activity  the effect of the  preference for teleprocessing 

priorities  are  not  considered  for scheduling purposes in the  chan- FFvdrc] given to  the first partition diminishes remarkably  since  partition 
oo-.o 

ne1 device  system. SYSTEM SUBSYSTEM 

In the  case of a  pure  teleprocessing  application, it  is often useful pure 
to assign the  same  priority  to  each  user  transaction (multitasking teleprocessing 
within one  teleprocessing  partition). Figure 15 schematically workload 
shows  the  teleprocessing configuration, paging paths being omit- 
ted. 

TERMINAL 
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Figure 16 Pure teleprocessing CPU utilizations for  four different paging cases 
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Figure 18 Resultant teleprocessing throughput rates 
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d is the mean time the  request waits because it  is interrupted 
by uo interrupt  requests  (subsequent waiting time). 

2. Requests coming from queue 5 (queue 2J are specified as fol- 
lows: 

P* E(TW2,) = 0 + ~ * h, + 0 + (1 - NZ) * 
P1* 

1 - p* 1 - P ,  * * h2 

V” J 

a  b C d 

where 

b is the initial wait caused by requests  that  arrived in queue 1 
while the  request  was in the  noninterruptible  service at level 0. 
This  expression  can be deduced from the  fact  that during the 
mean time h,, X, h, class 1 requests  arrive.  Each of these 
arriving requests  requires  service by level 1 and possibly level 
2,; therefore, p* = pl* + p2,*. When these  requests  have  been 
served,  further  class 1 requests may be present,  and so forth, 
resulting in this sum of a geometric series. 

c is zero.  There  are  never  several  requests waiting, since the 
page manager is reentrant in this  case. 

Page  Manager  Gated: 
The main differences in the calculation of the waiting time com- 
ponents  for  the gated case  versus  the  reentrant  case  consist  of 
two  points: 

1. The population in a  queue may degenerate  to one  due  to  the 
gating mechanism. Here, part  c  for  queue 2, will become zero. 

2. The  gates  are  taken  into  account by replacing the service times 
in the machine-repair model by the times the  gates  are  closed. 
These times are  also  the result of the  iterative  calculations. 

There are  two  cases  handled by the program: 

1. Multitask case within one  partition. 
2. Multipartition case with one  task (job) per partition. 

Since user  tasks only are dispatchable as a consequence of I/O 
interruptions  and, in addition,  are running with lowest dis- 
patching  priority,  part  a of the waiting time is always  zero. 

The multitask case is characterized by rn user  tasks of the  same 
dispatching priority. 
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\ 1-p* I 

b 

C d 

where 

b is a  term in which the  numerator is the  total  amount of higher- 
priority work to be done by the CPU at  an  arbitrary  instant. During 
this time for  the  “initial  amount of work,”  further  requests may 
arrive from outside  the CPU. This is taken  into  account by 

P* = FAC . (P, + PZl + P,) 

c  represents the initial waiting time due  to the  same  class of 
requests and is determined via machine repair with 

“0 ’ I - p *  

as an effective service  time. 

In the multipartition case  the waiting time calculation is influ- 
enced by the  fact  that  dispatchable higher-priority user  tasks may 
increase  the waiting time of a job in partition i and in an  extreme 
case  increase it even  to  an infinite value.  The  increase  depends  on 
the partition index i. This  leads  to  a more complex calculation for 
part b, whereas  part  c will become  zero. In the  section on valida- 
tion,  these  approximations  are  compared with simulation results. 
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