Using a programming discipline called the Data Stream Linkage
Mechanism (DSLM), a program can be built by linking program
modiules to form a network through which data passes. The net-
work is specified by the program designer using a mixture of pre-
coded and custom coded modules. This linkage technique and the
capabilities that result from it constitute an approach to pro-
gramming that is radically different from conventional tech-
niques. It can increase the productivity of programmers and can
result in programs that are easier to understand and to maintain.

This paper gives examples based on a specific implementation of
DSLM and describes some of the experience gained from the im-
plementation over the last six years.

Data Stream Linkage Mechanism
by J. P. Morrison

Symptoms of a problem in conventional application development
have been evident for a long time. Almost every programmer has
experienced cost and schedule overruns, long debugging times,
and difficult and costly maintenance of programs. Solutions that
have been tried include various clerical and management dis-
ciplines and a number of novel programming languages and pro-
gramming techniques, with varying degrees of success.

It has been proposed that the problem could be addressed by ap-
plying engineering disciplines to application development.”* A
key concept referred to as design modularity was identified by R.
B. Miller of IBM as early as 1966.” It provided principles on which
systems could be designed in terms of modules with well-defined
functions. The intent was to allow easier construction of new sys-
tems and modification of existing ones.

While there are doubtless many reasons for our inability to
achieve this modularity in programming, a major factor identified
by a number of writers is the control-flow orientation of conven-
tional programming.* ® This orientation is related to the fact that
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conventional computers are of the von Neumann type, with a
single instruction counter and a uniform array of memory cells.
This structure is reproduced in the languages that have been de-
veloped to simplify the programming of these computers. While
this structure is well adapted for mathematical computation, it is
less suitable for the non-numeric applications that are the concern
of the majority of programmers.

The major concern of the programmer in this environment is de-
termining the exact sequence of the various atomic operations
that make up the application (mostly arithmetic and data-moving
operations and decisions). What the programmer should be con-
centrating on is the flow of data through functions that corre-
spond more closely to familiar ‘‘real world”’ functions. He would
like to be able to easily convert those functions into working pro-
grams. As long as data flow is only a design tool, there inevitably
will be a chasm between the program design and the actual pro-
gram. The chasm, which must be bridged at great cost by the
programmer, gets progressively wider as the program is modified
to meet changing requirements. :

In 1971, the author described the essential features of DSLM in an
1BM Technical Disclosure Bulletin.® The concepts were at that
time embodied in a prototype known as the Advanced Modular
Processing System, or AMPS, on which the experience described
in this paper is based.

Perhaps because AMPS was developed independently from other
work in the field, its terminology is often different from terms
used elsewhere in the literature. A glossary appended to this pa-
per gives informal definitions of key DSLM (AMPS) terms.

During the last few years, the author has been attempting to relate
DSLM to other work described in the literature, and to determine
its similarities to, and differences from, this other work. Clearly
one of the seminal papers in this area is the discussion by Con-
way’ of programs that run in an interleaved mode, the relation-
ship between the programs being cooperative rather than hier-
archic. Conway called such programs coroutines (co- meaning
with) as opposed to subroutines (sub- meaning under).

In 1967, Morenoff and McLean® described programs (essentially
particular types of coroutines) that communicate by means of a
one-way flow of data through buffers referred to as buffer files.

Somewhat later, Balzer® described a system called PORTS, in
which an attachment point, or port, on one program could be
linked to a port on another in such a way that when one program
sends data to its output port, the data becomes accessible to the
other program.
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Weinberg'® describes a port as **. . . a special place on the bound-
ary through which input and output flow. . . . Only within the
location of the port can the dangerous processes of input and out-
put take place, and by so localizing these processes, special
mechanisms may be brought to bear on the special problems of
input and output.”’

In DSLM, two or more communicating ports are connected by a
buffer called a queue. These connections are defined in a network
definition, a diagram that uses a fairly standard notation which
can easily be converted into a series of macroinstruction state-
ments, one statement per diagram block.

In none of these systems does a process need information about
the identity of its successors or predecessors in the network.
Processes, or modules, as they are called in DSL.M, are thus com-
pletely portable. They can be connected into a network any-
where, provided that modules sending data to them can provide
the right kind of input, and that modules to which they send data
can handle their output. A module can be used for many different
applications, with no need for internal code changes.

DSLM, PORTS, and the system described by Morenoff and McLean
all achieve portability in different ways, but common to all of
them is an underlying principle which Edwards" ' refers to as
configurable modularity. Edwards describes the characteristics
of systems with this property and shows how it allows engineer-
ing disciplines to be applied to program development.

Interest in this kind of system has grown in recent years to the

point where a number of papers'® ' ™ presented at IFIP Congress

77 in Toronto addressed this general area. Most of these papers
dealt with communicating coroutines as an architecture for im-
proving the reliability of system software. DSLM is unusual in that
its main orientation is toward improving programmer productiv-
ity. This orientation is shared by Boukens and Deckers’ CHIEF,"
which is remarkably similar to DSLM in its architecture, and
MORAL, which is described by Jackson.™

An essential difference between DSLM’s data concept and that
used in most other studies is that DSLM uses objects known as
data entities, which correspond to messages in some other sys-
tems. The data they carry is formatted, however, so they more
closely resembie the file records in conventional systems, except
that they are not simply areas into which data is read, as in con-
ventional programs, but actively travel through the network, ini-
tiating processing. They are discussed in more detail under Basic
concepts, below.
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This concept, while unusual in programming methodologies, is
common in discrete simulation systems such as GPss,' in which a
data entity is referred to as a transaction. DSLM may therefore be
thought of as a fusion of discrete simulation concepts with a pro-
gram development methodology. It is not surprising that DSLM
has proved to be an effective simulation tool.

The data entities passing across a particular queue constitute
what is often referred to as a stream, a sequential file of data
continuously produced by one coroutine and consumed by an-
other. Burge'” discusses streams in the context of a functional
notation related to LISP," and shows how the stream concept al-
lows a program to be designed as if it were a multipass program,
with the simplification of logic that this design provides. The
passes are interleaved, however, since they are coroutines.

This paper describes two examples (implementation of which is
discussed under Implementing an application program, below),
which are drawn from a paper by Petersen on data state design
(DSD)"® and a paper by Leavenworth on the Business Definition
Language (BDL).?° BDL originally was defined by Hammer et al.?!

DSD is a data-oriented system design tool, in which is developed a
graphic representation of a system that shows close affinities with
a DSLM network. DSD concentrates on the transformations ap-
plied to the data in a system, viewing the system as a multipass
operation. Each intermediate data file is seen as existing at a
single moment. This is indeed a natural way of describing a sys-
tem. The problems arise in converting a DSD design to a conven-
tional programming language. Without software for handling
streams, either an extremely inefficient design will result, or the
program will have no structural relationship to the DSD design.

The DSLM approach seems to offer a way out of this dilemma,
since the stream concept allows a programmer to develop a run-
ning system from a DSD design or network without a drastic
change of viewpoint. Although the stream concept in DSLM can
be regarded as just one of a number of synchronization tech-
niques that can be applied to the DSD data state dependency net-
work, in practice the program designer starts thinking in terms of
the stream concept very early on, and for many simple appli-
cations he probably will bypass the DSD design phase entirely.

Leavenworth® describes a high-level nonprocedural language
(BDL) which is suitable for describing business applications. A
goal of this approach is to eliminate arbitrary sequencing, defined
as ‘“‘any sequencing not dictated by the data dependencies of the
application.’’ It is eliminated by ‘. . . representing an application
by a data flow network. By decomposing the application into a
set of steps which communicate with one another only across
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linking paths, the sequencing is governed strictly by data de-
pendencies, i.e., one step cannot consume data until it has
been produced by its predecessor steps.”” The data flow concept
described by Leavenworth is similar to that of DSLM, and prelimi-
nary work (not described here) suggests that, in a DSLM environ-
ment, BDL with minor modifications can be a good notation for
describing modules, and perhaps even for automatic module gen-
eration.

Kay" describes three stages in the evolution of programming lan-
guages:

e Conventional languages with ‘‘passive’’ building blocks (data
structures and procedures).
““Message-activity’’ systems in which many parallel activities
communicate via messages (examples are DSLM and SMALL-
TALK, the system described by Kay, as well as most of the
systems cited in the references in this paper).
“Observer’’ languages, just being developed, which consti-
tute a more powerful programming approach than even the
message-activity systems.

Kay feels that a programmer’s concepts of programming are
strongly influenced by the first programming language he encoun-
ters. Thus SMALLTALK was developed to introduce message-ac-
tivity systems to children before they have much exposure to
conventional programming languages. According to Kay, chil-
dren find the system natural and easy to learn because the modu-
lar structure of SMALLTALK is analogous to the highly parallel
environment of the real world. It is the rigorous sequentiality of
conventional programming, he maintains, that is unnatural in the
real world.

This observation has been borne out by our experience in the use
of AMPS (the DSLM prototype). While almost all users experienced
some productivity gains, new programmers tended to adapt to it
more readily than more experienced programmers, and they
showed more pronounced improvements in productivity. More
important, they learned to think in terms of the concept, instead
of treating it as just another programming language. The individ-
ual who became most proficient at AMPS had been a machine op-
erator and had had only two weeks of formal programming train-
ing—one week using assembler language and one week using
AMPS. A typical programming job comprised a network that con-
tained 16 precoded modules and two programmer-coded mod-
ules. The job took four hours to design, four hours to code and
keypunch, and two hours to test, in a conventional key-punch,
batch environment. The ease with which programmers with little
experience were able to develop nontrivial programs in this envi-
ronment is an indication of the potential of AMPS for productivity
enhancement in a suitable interactive environment.
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Our success with new programmers points up the fact that DSLM
is not a complex concept or system. The amount of software re-
quired to support it is small, and it is very easy to install (pro-
grammers at one location took four days from the time they
started working with the system to the time they wrote their first
working program, with minimal involvement on the part of the
author). DSLM does require a change in the way we look at the
programming process, however, and it is perhaps an advantage
not to have t0o many preconceptions in this area.

Basic concepts

modules Consider two processes, or modules, that communicate by means
and queues of a buffer, or queue, over which passes a one-way stream of data
entities carrying formatted data. (Data entities are referred to
simply as entities in what follows.) The two modules run con-

currently, one sending and one receiving entities.

Figure 1 Module linkage notation It is necessary that the queue have a finite capacity so that entities

will not accumulate in it indefinitely if the receiving module is

< running slower than the sending module. Thus if the queue fills

s e up, the sending module stops temporarily and becomes sus-

B: receiving module pended. The receiving module may also be suspended if the

Gt ames Sy Soarebiectholdmeuototen - 0jene is temporarily empty. Data passing through the queue is
handled one entity at a time by the sending and receiving modules
respectively, forming a stream of data entities. This linkage is
represented by the notation shown in Figure 1.

The last entity in a stream is a special end-of-stream entity which
indicates to the receiving module that no more data follows. From
time to time the queue may become empty, but this in itself does
not indicate the end of the stream, as the situation may well be
temporary.

The capacity of the queue is usually of interest only in tuning an
operating program for optimal performance. Therefore it is not
usually shown in the diagrams that accompany this paper.

Figure 2 General module notation A number of queues can be attached to a module for input or
output, or else as generator queues (sources of ‘‘empty’ data

GENERATOR ., . . - . . e .
O QUEUE entities), which are required for introducing new entities into the

) system. See Figure 2.

iNeUT  4=[0 yosue 317 outpuT
QUEUES )_»|1 NAME 4}—»{ QUEUES

A number of modules can be connected by queues to form a net-
The numbers are port aumbers used by the work for the program as a whole. The primary representation of
module to refer to the queues internally . . . . . .

this network is the network diagram, or flow specification, which
can be converted easily to a running program by coding one mac-
roinstruction statement for each diagram block, plus a few addi-
tional statements for related information.”
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Figure 3 Independent subnets within a network
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Figure 4 Multiple occurrences of a module
E‘__R—J ll M JL |' M [l ILWRITil—i‘/

R: SEQUENTIAL READ module
M: MERGE module — combines two streams

The network shown in the flow specification need not be com-
pletely connected. Several discrete sections may run asynchro-
nously with each other. For an example, see Figure 3.

Portability of modules is achieved by having modules refer to in-
ternal port numbers (for example, send entity X to port number
2). It is the network definition that associates the port number
with an actual queue. Port numbers are represented in the dia-
grams by numbers inside the process block, or, for modules with
few input or output queues, the position of attachment of the di-
rected lines to the module block.

A module can be attached at several places in the same network,
if desired, and will then multithread with itself, provided it is
coded in a re-entrant manner. Thus separate processes can use
the same piece of code. For example, if several streams must be
merged, the program designer may choose to use a *‘two-into-
one’”’ merge module to progressively merge streams until a single
stream results. Input and output modules are frequently multi-
threaded with themselves, but usually will be working with dif-
ferent files. Figure 4 shows the output of a merge module, M,
being used as input to another instance of the same module. A
generalized READ module occurs three times in the diagram.
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data entities
and streams

Figure 5 Multiple modules
feed one queue

A, B, C. arbitrary moduies
Q: queue that connects modules

that

Table 1 Comparison of DSLM and unit-record concepts

DSILM Unit record

Modules (processes) Machines
Data entities Cards, card decks
Network definition Operator instructions
Scheduler (controlling Operator

software)

In DSLM, one queue is allowed to feed data to only one module,
but data can enter the queue from a number of modules, as shown
in Figure S. The entities from modules A and B will arrive at C on
a first-come-first-served basis. Both A and B will send end-of-
stream entities to Q, however, so in order to prevent C from being
terminated prematurely, only the last end-of-stream entity is pre-
sented to C by the system software (the scheduler).

A data entity is created (has space allocated for it) by one module,
is passed from module to module until it is no longer needed, and
is then destroyed (its space is returned to a pool of available
space). As stated above, the entity is thus analogous to a transac-
tion in GPSs'® and to a message in a message-oriented system. The
entities can be thought of as items to be worked on, and the mod-
ules as work stations, in a data processing ‘‘factory.”” Punched
card accounting systems exemplify this environment. The work
stations are the accounting machines—sorters, tabulators, calcu-
lators—between which flow punched cards. In fact there is a re-
markably close parallel between an accounting machine appli-
cation and a DSLM program, as can be seen in Table 1.

Just as most factories process different sizes or kinds of items,
DSLM entities may be of different types, or classes. Classes can be
mixed freely in any stream, and in general there is no direct corre-
lation between a given queue and the classes of the entities that
pass through it.

The streams of entities that pass through a network are them-
selves objects of interest to the programmer. A DSLM network can
thus be thought of as a system of streams which are constantly
being expanded, contracted, merged, sorted, split, or trans-
formed.

During the design process, the programmer will switch among the
following viewpoints:

® The overall data flow through the system.

e The viewpoint of one module as it handles a series of data
entities, one at a time.
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o The viewpoint of an entity as it passes from one module to
another, starting with its entry into the system and ending
with its exit from the system.

These viewpoints seem natural to the program designer, paral-
leling habits of thinking that are taken for granted in the world of
material objects, as in factories, cafeterias, and supermarkets.

At any given moment, an entity is either owned by a module or
queued between modules. It can be owned by only one module at
a time, and all entities owned by a module must be positively
disposed of before the module returns to its caller (the scheduler).
A module can dispose of the entity in various ways, just as a
person disposes of a letter—he may destroy it, forward it to
someone else, clip it to another letter, or file it. Corresponding
DSLM actions are destroying, putting, and chaining. In chaining,
an entity is attached to another entity, the resulting structure
traveling through the system as one entity. Filing corresponds to
sending an entity to an input/output module.

Many DSLM functions parallel unit-record functions such as COL-
LATE, SORT, SELECT, and MERGE. These functions are as natural
to data processing as multiplication and division are to arithmetic.
However, they seldom appear as primitives in high-level lan-
guages (with the possible exception of SORT), and their function is
usually distributed across the entire program in conventional pro-
gramming languages.

SORT, for example, is a natural stream operation. The ability to
select and transform entities that pass into or out of SORT modules
allows the program designer much greater freedom in his design,
and also in his record layouts, since SORT tags can be created
dynamically and then thrown away (not stored). A section of such
a network might look like Figure 6.

SORT differs from other stream functions in that no entities can be
produced as output until all entities have been processed. The
entities have to be stored on an external storage device, unless
their number is small.

In this implementation, we discovered that since the SORT *‘con-
trol cards’’ are held in memory, rather than on a file, they can be
generated by macroinstructions, using the symbolic names of the
fields involved. If the format of the record being processed
changes, the SORT control cards can be changed automatically by
recompiling.

When more than one module depends on a particular record lay-
out, program modification can be reduced by describing record
layouts by means of macroinstructions. Thus only one code com-
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S: SELECT module — determines which entities
are to bypass SORT

T: TRANSFORM module

M: MERGE module — merges sorted and un-
sorted entities




Table 2 Data dependence in code

Program 1

Program 2

MOVE A TO B
MOVE B TO C

MOVE A TO B
MOVE C TO D

ponent (the macroinstruction) has to be changed manually. A
cross-reference program can then be run periodically to deter-
mine which programs use which macroinstructions, and the out-
put of this run can be used to determine which routines should be
recompiled when a given macroinstruction is changed.

DSLM provides a convenient tool for working with files of various
structures. A READ module can convert data from a format appro-
priate for tape or disk to a format that is appropriate for internal
processing. A matching WRITE module can then recreate the data
on tape or disk after any desired changes have been made. Thus
each matching REAIYWRITE pair can be considered an implemen-
tation of a different data organization. DSLM allows the program-
mer to concentrate on the data structure he wants to work with. It
is well adapted for building interfaces between systems and for
many programming tasks in which the prime concern is the man-
agement of data.

Control flow and data flow

Conventional programming concentrates on the flow of control,
rather than the flow of data. A conventional program specifies the
exact sequence of actions and decisions to be followed while
processing one or more pieces of data. A data-flow approach con-
centrates on the flow of data through a system and the transfor-
mations that apply to them.

The module of the control-flow approach is the subroutine, which
is an excellent structure for generalized computation and logic

functions, but it does not yield useful generalized functions for
data handling. The module of the data-flow approach is the data-
linked coroutine, which yields many useful generalized functions
for data handling and non-numeric uses. These two module types
are complementary, and judicious combining of the two enables
the programmer to create highly modular systems.

One way of visualizing the problem with control-flow, subrou-
tine-oriented programming is to realize that the programmer is
required to specify the precise timing relationship of every pro-
gram event to every other. The subroutine technique, while al-
lowing specification of program logic at a higher level, still re-
quires a rigid do this then do that structure.

The timing of events in programming depends almost entirely on
the use and availability of data. Consider the two pairs of state-
ments in Table 2. Clearly, the sequence of the two statements in
Program 1 is significant for the functioning of the program, but if
the second statement is changed to MOVE C TO D, as in Program 2,
the sequence of the statements becomes irrelevant because they
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share no data. Compiler optimizers devote a lot of logic to deter-
mining which statements share data (have timing constraints rela-
tive to each other) and which do not. When loops and branches
are introduced into the logic of a program, the programmer is
faced with the task of finding a sequence of instructions that fits a
large number of timing constraints.

The DSLM module structure, on the other hand, is simple in terms
of its data-use patterns. It splits a conventional monolithic pro-
gram into a number of pieces related by two simple and natural
data-use constraints:

If a data entity passes from module A to module B, B proc-
esses it after A does (the flow constraint).

If a stream of data passes from A to B, B processes the entities
in the stream in the same order in which A sent them (the
order-preserving constraint).

There are no other constraints between modules. It is the DSLM
scheduler software that determines the sequence of operations
that conforms to the above constraints. In a conventional pro-
gram, on the other hand, the programmer has to find a sequence
of operations that conforms to his given constraints and performs
the desired function.

A common problem in program design is the difficulty of deciding
which subroutine is to call which. Often it is an arbitrary yet
highly constraining decision as to which program becomes the
driver. Since a subroutine cannot preserve information from one
invocation to the next, higher-level subroutines have to set up
storage for use by lower-level subroutines, and it becomes impos-
sible to change this relationship later. In DSLM, a module main-
tains its own internal environment; it controls what it will accept
as input and what its output will be, so that the form of the routine
is far more independent of its external environment. Of course, a
module can call subroutines as in conventional programming, so
that the total system consists of many subroutine tree structures
communicating via data streams. A conventional program is
therefore a special case of a DSLM network—one with only one
module.

Programming productivity is enhanced with DSLM by the ease
with which modules can be linked. DSLM enables programming to
become a process of assembly in which the programmer assem-
bles a program mostly out of precoded modules, using some new
modules when required. Trial modules can be constructed and
evaluated for ease of use and performance. New modules can be
more or less general, depending on economic factors such as po-
tential use compared to development cost. The more general
modules become part of a ‘‘mental tool kit which programmers
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Figure 7 Testing the module SUMM

[ S

R: READ module — generates test data
SUMM: the module to be tested
P1: simpie PRINT module

and program designers can use to speed design and development.
It should be stressed that there is no ‘‘perfect”” module—only
modules that have been built by programmers with an ability to
generalize, and that have then proved useful. Other modules may
not have gained wide acceptance and will be used infrequently.

With DSLM, a programmer’s knowledge and experience can be
preserved and disseminated more widely because it can be em-
bodied in a self-contained module which others can use in com-
plete ignorance of its internal structure. Examples might be mod-
ules designéd to handle special hardware, interpreters of special-
ized languages, and modules that use special system facilities.
The programmer learns to think in terms of the available mod-
ules. He has a reference manual to help him with details of param-
eters, queue numbers, etc., but it helps if a module’s function can
be expressed in a few sentences. The more complex a module is,
the less portable it is. Our experience has been that some of the
most useful modules are also the simplest: one heavily used mod-
ule consisted of only a dozen statements (assembler and macroin-
structions).

Testing

Testing is facilitated by the fact that the modules are pretested,
and also by the ease with which they can be assembled into work-
ing programs. A given module is designed to receive a stream of
entities of a certain form, regardless of how the entities were gen-
erated. It can therefore be tested with manufactured information
read by a simple reader or test-data generator. Output can be han-
dled by a simple PRINT module, or even by a module that simply
dumps each entity.
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As an illustration of this approach, suppose a programmer has
coded a summation module with one input queue and two output
queues. The simplest way to test it probably would be to set up a
“‘scaffolding’” network as shown in Figure 7. The input files can
be on cards or, in an interactive test environment, they can be
edited data sets. P1 is a deliberately simple PRINT module which
displays each entity sent to it, without any editing. P1 is used
when it is desirable to see entities unchanged. Alternatively, a
DUMP module could be used to dump each entity in hexadecimal
and character formats.

Conversely, if a programmer wants to display the entities that
pass between any two modules, all he has to do is insert a PRINT
or DUMP module between them, as shown in Figure 8.

Multithreading

A DSLM network naturally multithreads with itself, each module
constituting a thread. Along with DSLM’s implications for improv-
ing programmer productivity, multithreading can tmprove per-
formance when peripheral devices are involved, since such de-
vices usually run more slowly than the central processing unit
(cpu). Note that, since modules are re-entrant, any number of
modules in a network can use the same code.

In a paper on AMPS, Ballow® describes a heavily input/output-
bound job whose elapsed time was reduced significantly (from
two hours to 18 minutes) by changing from a serial network to a
parallel one, replacing a READ module by a faster (but still fairly
general) one, and adding a module to balance the loading.

The solution chosen in this example illustrates two principles for
reducing elapsed time by multithreading:

e Assign a module to control an independent device.
® Replicate modules where unduly long sequential processes
occur.

For the first principle, suppose that a program needs to read a
number of disk data sets residing on separate disk packs, and that
the records are not required in any particular order by the next
module in the network. There are two ways of handling this: by
defining one READ module to read concatenated data sets, or by
specifying several READ modules, each reading one data set and
feeding entities into the same queue asynchronously. The output
of the READ modules will be received in random sequence, but in
this case this is quite acceptable.

In general, it is often convenient to have one module control a
single serially reusable resource, and local optimization can often
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X, Y: arbitrary modules
P: the inserted PRINT or DUMP module
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Figure 9 Single-threading version of scanning program

ERRORS

RS: SEQUENTIAL READ module — reads concatenated disk data sets
CF: chain-following module — follows chains of records across several disk packs, verifying validity of the chains
ERRORS: report of discrepancies sorted by record identification

Figure 10 Multithreading version of scanning program

—‘>
J-CF
—Y—r SORT

. PRINT

ERRORS

RT: full-track READ module (five occurrences, one per disk pack)

LQA: load-balancing module

CF: chain-foltowing module — follows chains of records across several disk packs, verifying validity of chains
X, Y: queues fed by RT and CF, respectively

ERRORS: report of discrepancies sorted by record identification

be applied to get further improvements because the module is in
complete control of the state of the resource.

The second principle can be applied where a module performs a
sequential process that takes a long elapsed time relative to the
amount of CPU time used. The elapsed time required for the pro-
cess often cannot be reduced, but system throughput may be in-
creased by replicating the process. Of course the above require-
ment for logical independence of the threads still holds.

In the application described, the requirement for logical inde-
pendence of processes was satisfied because the purpose of the
program was to scan a data base and prepare a report on any
discrepancies found in the record chaining, which was needed in
a sequence different from that in which the data was stored. This
freed the scan from the requirement of keeping discrepancy infor-
mation in master record sequence. )
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Figure 9 shows the program as it was first coded. Figure 10 shows
it after the improved READ module (full-track) had been written
and the network converted to a highly parallel structure.?* The
chain-following module (CF) was characterized by long elapsed
time and low CPU time, so in the redesigned network it was multi-
threaded with itself 18 times (large enough to be effective, but not
so large that contention would start to be significant). To balance
the load, one additional module (LQA) was written which allo-
cated work to the downstream module with the smallest backlog
of work.

As the demand grows for real-time response on the part of data
processing systems, it becomes more and more important in
many environments to minimize total elapsed time, as compared
with CPU time, and this is much easier to control using DSLM. An
alternative approach to reducing elapsed time is to distribute
function among different machines. This approach leads naturally
to hardware architectures that parallel DSLM’s software archi-
tecture.

Practical details

It is outside the scope of this paper to describe in detail the work-
ings of the AMPS prototype, but some implementation information
is given here to aid in visualizing the working of a program con-
structed using AMPS.

All modules and routines in an AMPS environment are made re-
entrant, as is the scheduler software, by avoiding the use of self-
modifying code and by ensuring that all storage that can be modi-
fied by a module is unique to that process (occurrence of the mod-
ule in the network).

All routines have a single entry point and a single exit (although a
module can branch to the exit from any point in the code), for
which standard entry and exit macroinstructions are used. The
entry macroinstruction causes storage to be allocated, for that
invocation of the routine, for a register save area and for a
“‘scratchpad” (used for temporary results of calculations and the
like). The macroinstruction determines how much storage space
is required and allocates it from a module control block that is
unique to that process. When the routine terminates (returns to
its caller), it uses the exir macroinstruction to make that storage
space available for use by other routines. Since no routine can
terminate after its invoking routine terminates (within a given
process), the space in the module control block can be used as a
stack (‘‘pushed down’’ when a routine is invoked, and ‘‘popped
up’’ when it terminates).
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Other AMPS services, such as GET, PUT, and CREATE, are also
requested by means of macroinstructions.

Although a module may have multiple input queues, only one is
allowed to trigger module execution. This is the queue attached to
port number 0 of the module and is called the triggering queue.
Data entities that arrive along other input queues (if any) are ob-
tained by means of a GET request.

At the beginning of a job step, an AMPS module is in what is re-
ferred to as the dormant state. When an entity arrives along the
triggering queue, the module is invoked by the scheduler and is
passed the addresses of the incoming entity and of a parameter
block—a storage area included in the network description where
the parameters for that particular use of the module are specified.

When the module has finished processing the current entity, it
may terminate, returning control to the scheduler, in which case
it again becomes dormant. Or it may not terminate, but rather
issue a GET request for another entity from the triggering queue
(processing may be suspended if no entity has arrived yet).

The last entity in any stream is always an end-of-stream entity,
which signals the receiving module that no more data should be
expected. The scheduler will not re-invoke a module when it ter-
minates after end of stream is presented at its triggering queue
(port number 0), so the module must send the end-of-stream en-
tity on to all downstream modules prior to terminating. The mod-
ule is then effectively removed from the network and no longer
takes part in the scheduling process.

When all modules have closed down in this way, the scheduler
determines whether all queues are empty, and, if so, terminates
the job step. If not, an abnormal termination occurs.

Absence of a triggering queue indicates that the module is to be
started at the beginning of the job step. This is the way READ
modules are normally started in batch jobs, but it also provides a
way to defer a READ module for a time: a module with a triggering
queue specified cannot start until the first entity arrives along this
queue, so a triggering queue is specified for the READ module, and
a signal entity is sent along this queue to indicate that the module
is to start execution.

In the DSLM prototype (AMPS), only the entity’s address is moved
as the entity passes through the network, so it is quite reasonable
to conceive of large tables passing through the network. Only the
owning module normally will be able to address the entity, so no
other module can modify that entity at that time. In fact, the total
amount of storage that a module or program can affect is quite
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limited. Since all programs are re-entrant, they can never modify
themselves. The only storage a program is allowed to modify is its
scratchpad and those entities that it currently owns (has responsi-
bility for).

There are two kinds of entity in an AMPS system: dynamic and
static. Dynamic entities are the normal entities described above.
They are used for transporting dynamic data through the system.
Since dynamic entities are not necessarily freed in the sequence
in which they were created, a facility is required for storage allo-
cation and de-allocation. In AMPS, all entities of a given type, or
class, are the same length, so the first time a routine requests the
scheduler to allocate an entity of a given class, a subpool of some
(user-specified) number of entities of that class is allocated with
the available entities chained together. Thereafter, when a rou-
tine requires an entity, it is taken from the head of the chain.
When an entity is freed (destroyed), it is added to the head of the
chain. If all entities in the subpool are in use, additional CREATE
requests are satisfied by using the GETMAIN macroinstruction.

Static entities, on the other hand, are unmodifiable, so it does not
matter what program owns them. In fact, since only addresses
physically move through the network, a static entity can be
treated as though it were in many places at the same time. For the
same reason, static entities do not have to be positively disposed
of, as do dynamic entities. Examples of static entities are the end-
of-stream and signal entities referred to above.

AMPS provides two basic language levels—the network definition
language and the language used to construct new modules. As-
sembler language with many macroinstructions is the basis for
both of these languages, but the macroinstruction families in-
volved can be thought of as forming special-purpose languages.
For example, the network definition is normally all macroinstruc-
tions, plus DEFINE CONSTANT (DC) statements to define parame-
ters, but assembler language can, if necessary, be intermixed with
the macroinstructions.

An experimental version of AMPS has been developed that allows
modules to be coded in PL/ and that uses 0S/vS2 Release 2 multi-
tasking to provide the multithreading capability, but it is still too
new for any report on experience in its use. The following sec-
tion, therefore, is based only on the existing version of AMPS, the
DSLM prototype.

Implementing an application program

Discussed below are two example application programs as they
would be implemented using AMPS, including the module library
that is presently available. The examples are key matching and
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key matching

Figure 11 Network for key-matching example

A WY

/7 )

FILE
REQUEST(S)

SUMMARY
REPORT

RS: SEQUENTIAL READ module
RD: DATA-BASE READ moduie - accepts a file request and puts out a stream of data-base records

COL: generalized COLLATE module — merges two or more streams on basis of specified control fields; inserts break
entities between entities with different control-field values

M: module that sends key-matching indications out at one port and nonmatching entities out at the other (matching
entities can simply be destroyed at this point)

T: module that accepts key-matching indications and sends them out at one port, and sends summary fines out at the
other

sales statistics, both based on applications discussed in recent
literature.'” *° Note that both are batch programs, reflecting the
fact that all of our experience so far with AMPS has been in batch
processing; hardly any work has been done on the implications of
the DSLM concept for real-time application development. How-
ever, the internal architectures of many real-time systems bear a
strong resemblance to the DSLM architecture, suggesting that
DSLM will prove to be applicable in a real-time environment.

Petersen'’ illustrates a DSD data state dependency network which
performs the following function: On receipt of a file request (the
file name) it obtains the specified file from the data base, passes
it against a list of keys, and produces detail and summary reports
for matching keys, as well as an error log for mismatches. The
DSLM notation for this network is shown in Figure 11. A KEY+
FILE module in the DSD data state dependency network is re-
placed in Figure 11 by two modules, COL and M, because in the
AMPS library there is a generalized COLLATE module (COL) which
has proved useful for applications that require one file to be passed
against another. It merges two streams into one, and also inserts
break entities at control breaks, simplifying the logic of down-
stream modules. An AMPS user would be aware of this function
and use it for most such applications. The function of the
KEY+FILE node in Petersen’s example, therefore, is performed in
DSLM by having COL send data to another more specialized
module.
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The network definition is first laid out graphically on paper, with
comments added freely to show suggested SORT parameters, DD
(data definition statement) names, stream descriptions, etc. These
stream descriptions correspond to the FILE nodes in a DSp data
state dependency network. Such an annotated network is the
main working document and is a good communication vehicle,
while containing sufficient detail so that it can easily be converted
to a running program,

The next step is to consider which data structures to use and to
determine which standard modules can be used from the AMPS
library. For each module in the library there is a brief functional
description, together with parameters and any other external in-
terface information. The program design logic might be as fol-
lows:

e There is a standard READ module (R1) which takes a sequen-
tial blocked or unblocked file from tape, disk, or cards and
puts out fixed-length record entities. The designer decides this
module is appropriate for both the key list and file request
files.

The key list, therefore, is a sequential, fixed-length record file,
which R1 will convert into a stream of entities followed by end
of stream.

If the same module is used for the file request file, the R1
module for file requests will read a single record and generate
one entity followed by end of stream.

The designer can proceed in this way across the network, decid-
ing which standard modules and corresponding data structures to
use. At this point he will start to annotate the diagram, assigning
names to modules and queues (any mnemonic will do), DD names
to input and output modules, and report titles to PRINT modules.

Assuming that no suitable standard modules exist for RD, M, and
T, the next stage is to design, code, and test these modules. RD
can use any 0S8 access method down to the EXCP level, but will
most likely use a basic access method (BSAM, BDAM, BPAM), since
using one of these (or EXCP) allows other modules to continue
execution while RD is waiting for completion of an input request.
AMPS provides a module wait facility which will suspend only
the module requesting the wait.

Module M is essentially a pattern-matching function which re-
peatedly looks for this sequence of entities:

key (from the key list); record (from RD); break.

Any other sequence causes an error.

While the programmer charged with designing and coding M may
make it specific to this application, he may be able to generalize
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sales statistics

the function so that its applicability is broader than the specific
need. Thus he may be able to reduce the cost of the next appli-
cation that requires a similar function. Alternatively, its function
can be broadened later, provided that the parameters of the origi-
nal function were designed for possible future expansion. The
same is true for the module T.

The last stage is coding and testing the network. All new modules
can be tested initially in parallel, and, as a new module is de-
bugged, it can be used in testing other modules. Thus several pro-
grammers may be working on different parts of the same system
in parallel, creating special networks of ‘‘scaffolding’’ (as de-
scribed above). Gradually they will start to need each other’s
modules, and the dependencies between them will start to in-
crease, but at the same time the reliability of the modules will be
increasing. Modules can easily be integrated into larger and larger
networks until eventually the network is in its final running form.

It is recommended that during testing only one unknown be
introduced at a time. For this reason, during much of the testing,
printing will be done by a simple PRINT module (P1), which puts
out one entity per line with minimal modification. This allows the
programmers to inspect the entities put out by a module in as
close to their original form as possible.

In the final form of the program, more sophisticated PRINT mod-
ules will normally be used. One such module (P2) performs a
number of formatting and output control functions, but, since it
displays the data being sent to it in a different form from the way
it received it, the programmer will want to add these modules to
the network after much of the other testing is complete. How-
ever, this is simply an incremental effort, involving no change to
the rest of the network, or to upstream modules.

The second example is based on the example used by Leaven-
worth™ in his paper on BDL (the Business Definition Language),
in which he describes a set of programs that generate sales statis-
tics reports. This application is used to update a master file of
products on a regular basis given a sorted detail file of product
sales, and to produce two reports: a summary by product and a
summary by district and salesman.

While the first report is in product sequence, as is the master file,
the second is ordered by salesman within district, independently
of the product. Explicit sequencing is expressed in BDL by the
WITH COMMON operator, and although this is more general than
specifying a SORT, the AMPS program designer will already be de-
ciding if he wishes to use a SORT or some other mechanism, and
SORT is in fact a natural data stream operator (see under Appli-
cation independent modules in Reference 1).
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Figure 12 Network for sales-statistics example
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s
DESIGN IN FIGURE 13

REPORT 2

COL: generalized COLLATE module — merges two or more streams on basis of specified control fields; inserts break
entities between entities with different control-field values (if used with anly one stream, this module simply inserts
break entities, as in the second occurrence of COL)

2
TR1: module that corresponds to Leavenworth’s Tran-1: 0 it accepts a merged stream of product masters and
details and generates a stream of new masters, a stream of product summary lines, and a stream of extended details
(details with quantity x unit price calculated and inserted into the entity)

SORT: generalized module that sorts extended details from TR1 by salesman within district

TR2: module that corresponds to Leavenworth's Tran-2: it accepts a sorted stream of extended detaifs and puts
out report lines for REPORT-2

Assume that SORT is chosen to do the resequencing desired. Re-
membering that AMPS has a COLLATE module which merges two
sorted streams and inserts break entities whenever the control
field changes, the example in Reference 20 can be represented as
shown in Figure 12. The second occurrence of COL is used to
insert breaks into the sorted extended details stream coming out
of SORT, in order to simplify the logic of TR2 in Figure 12.

Figure 12 assumes that the incoming details are sorted by product
number. Although this SORT could be included as part of the net-
work, it was not, for purely pragmatic reasons which are outside
the scope of this paper.

A valid objection can be raised that sorting is just one way of
arranging information into a desired sequence, and that the deci-
ston as to the exact technique should not be made too early. The
point is that DSLM allows the designer to concentrate on the flow
of data and in fact makes the available options more visible and
more controllable. For instance, in the above example the de-
signer may indeed decide that, for various reasons, he prefers to
construct a table of district and salesman codes and totals, which
will be updated randomly as the extended details come out of
TRI1.
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Figure 13 Alternate design for part In that case, a separate module will be needed to go through the
of Figure 12 table afterwards, preparing report lines. This module can be des-
—[5] ignated GR (GENERATE REPORT). The part of the network within
ot the broken lines can then be replaced by the subnet illustrated in
Figure 13. The queue marked X in the diagram could simply pass
a signal indicating SUM’s final termination to GR, which would
SUM: madule that updates districtandsalesman then start working on the totals table, to which it has also been
GR: GENERATEREPORT module —stpsthrough given addre§sability. A cleaner solution, however, is for SUM to
send the entire table in an entity to GR immediately prior to termi-
nation. This will be GR’s only input data entity and will start the
GR function going. (Since only the address of the table is actually
moved, in DSLM it is possible to conceive of sending large tables

from module to module.)

Conclusions

DSLM, as exemplified by the AMPS prototype, has measurably en-
hanced programmer productivity and program maintainability in
everyday application programming by replacing the conventional
programming technique with the more natural process of plugging
together data-driven functional modules.

Although the original motivation behind the search for something
like DSLM was to improve programming productivity, many other
advantages, such as improved control of performance, were dis-
covered later as valuable side-effects.

Ballow’s summation® covers many of the basic concepts and ad-
vantages of DSLM. The main points given there can be restated as

follows:

e Separately compiled and debugged portable modules can eas-
ily be assembled to do a specific job and can be rearranged and
replaced as testing proceeds or as maintenance requirements
change.

Subnets in the network can be consolidated by replacing them
with fewer (but less generalized) modules. Time-space trade-
offs can be made simply by selecting modules or changing net-
works.

Functional modules can be stored in program libraries, to be
used whenever required.

While the programmer can derive many benefits from using
precoded and pretested modules, he still needs the capability
of coding his own modules if he decides it is best to do so. This
is straightforward in DSLM (AMPS) using the macroinstructions
provided. A new module is easy to build and test, and once it
is finished and working, it can be added to one of the module
libraries, where it will be available to anyone who needs it.
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d’Agapeyeff?> eloquently describes the programmer as a ‘‘pave-
ment artist,”” constantly investing effort and creativity in essen-
tially transient constructions. DSLM points to a future program-
ming environment in which programmers, in creating more last-
ing constructions, may experience the satisfactions of authorship
and greater recognition. They can become more productive, and
applications can be designed and brought on line faster and more
reliably, providing improved service and responsiveness to users.
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Appendix: Glossary

AMPS—prototype system that embodies the DSLM concepts.

Break—static entity (q.v.) used to indicate a control break in the
output stream of a COLLATE module.

Capacity—the maximum number of entities a given queue can
hold; specified in the flow specification (q.v.) if different from the
default value.

Chaining—attaching one entity to another so that the resulting
structure can be moved through the network as a single entity.
Complex structures can be built up in this way.

Class—type of entity.

Coroutine—a routine or program that runs interleaved with, but
in constant communication with, one or more other routines, in a
cooperative rather than a hierarchic relationship.

Create—allocate space for an entity and initialize a control block
that defines it.

Destroy—return an entity control block to the pool of available
space.

Dormant—the state of a module that either has not been invoked
by the scheduler, or has been invoked but has returned control to
the scheduler after having processed one or more entities.

Entity—a carrier of formatted data. There are two main types:
dynamic entities, which are modifiable and can be owned by only
one module at a time; and static entities, which are read-only en-
tities that may appear to be in several places at the same time
(examples are breaks, signal entities, and end of stream).

Flow specification—diagram showing the modules that constitute
an application, the queues relating the modules to each other, and
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other explanatory information; also, the macroinstruction state-
ments that implement the diagram.

Generator queue—a queue (q.v.) specified in the flow specifica-
tion, not as a communication link between modules, but as a
source of unused entities of a particular class.

Module—a routine that runs asynchronously with other modules
in the flow specification (that is, a coroutine); it can be the root of
a tree of subroutines.

Module control block—a control block used by the AMPS sched-
uler to control the operation of a single process. It is used also for
allocating register save areas and scratchpads for routines as they
are invoked during process execution.

Multithreading—interleaved running of sections of code in a
single CPU. The sections of code compete for control of the CPU,
and control is switched among them by a piece of software called
a scheduler (q.v.).

Network description—same as flow specification.

Ownership—a module owns a dynamic entity if the entity has ar-
rived on a queue and caused triggering (q.v.) or has been ob-
tained with a GET, if it has been unchained from another entity, or
if it has been created or obtained from a generator queue. The
module owns the entity until it positively disposes of it (puts it,
chains it, or destroys it).

Parameter block—a block of read-only data coded with the flow
specification, to specify application-dependent parameters for
generalized modules.

Port—point of attachment of queue to module, specific to the
function of that queue for that module (for example, port number
1 is the output port for the majority of READ modules).

Process—same as module.

Queue—a buffer that acts as the communication path between
two or more modules; it has a capacity of some number of en-
tities.

Scheduler—software that controls the flow of control between
modules and the flow of entities from one module to the next.

Scratchpad—temporary storage allocated to any program or sub-
routine in the AMPS environment; it can hold temporary results
that are not required across more than one invocation.

Stream—a set of entities that pass across a given queue.
Subnet—a section of the flow specification.

Subroutine—a routine invoked by, and subordinate to, another
program or subroutine; the invoker is suspended until the subrou-
tine terminates.
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Triggering queue—a queue that contains the only entities that can
trigger invocation of the module; the queue is attached to port
number 0 of the module.
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