
Using  a  programming  discipline  called  the  Data  Stream  Linkage 
Mechanism (DSLM),  a  program  can  be  built  by  linking  program 
modules  to  form  a  network  through  which  data  passes.  The  net- 
work is  speciJed  by  the  program  designer  using  a  mixture of pre- 
coded  and  custom  coded  modules.  This  linkage  technique  and  the 
capabilities  that  result  from  it  constitute  an  approach  to  pro- 
gramming  that  is  radically  diferent  from  conventional  tech- 
niques.  It  can  increase  the  productivity of programmers  and  can 
result  in  programs  that  are  easier  to  understand  and  to  maintain. 

This  paper  gives  examples  based on a  specijic  implementation of 
‘ DSLM and  describes  some of the  experience  gained  from  the im- 

plementation  over  the  last six years. 

Data  Stream  Linkage  Mechanism 
by J. P. Morrison 

Symptoms of a problem in conventional application development 
have been evident for  a long time. Almost every programmer has 
experienced  cost and schedule  overruns, long debugging times, 
and difficult  and costly  maintenance of programs. Solutions  that 
have  been tried include various clerical and management dis- 
ciplines and  a number of novel programming languages and  pro- 
gramming techniques, with varying degrees of success. 

‘ It has been proposed that  the problem could be addressed by ap- 
plying engineering disciplines to application development.” A 
key concept referred to  as design  modularity was identified by R. 
B. Miller of IBM as early as 1966.3 It provided principles on which 
systems could be designed in terms of modules with well-defined 
functions.  The  intent was to allow easier  construction of new sys- 
tems  and modification of existing ones. 

While there  are  doubtless many reasons  for  our inability to 
achieve this modularity in programming, a major factor identified 
by a  number of writers is the control-flow orientation of conven- 
tional pr~gramming.~’ This  orientation is related  to  the  fact  that 
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conventional  computers are of the von Neumann  type, with a 
single instruction counter  and a uniform array of memory cells. 
This  structure is reproduced in the languages that  have  been  de- 
veloped to simplify the programming of these  computers. While 
this  structure is well adapted  for mathematical computation, it is 
less suitable for  the  non-numeric applications that  are  the  concern 
of the majority of programmers. 

The major concern of the programmer in this  environment is de- 
termining the  exact  sequence of the  various atomic operations 
that make up the application (mostly arithmetic  and  data-moving 
operations  and  decisions). What the programmer should be con- 
centrating  on is the flow  of data through functions  that  corre- 
spond more closely to familiar “real  world”  functions. He would 
like to  be able  to easily convert  those  functions  into working pro- 
grams. As long as  data flow is only a design tool,  there inevitably 
will be a  chasm  between the program design and  the  actual  pro- 
gram.  The  chasm, which must be bridged at  great  cost by the 
programmer, gets progressively wider as  the program is modified 
to  meet changing requirements. 

In 1971, the  author  described  the  essential  features of DSLM in an 
IBM Technical Disclosure Bulletin.‘ The  concepts  were  at  that 
time embodied in a prototype known as  the Advanced  Modular 
Processing  System, or AMPS, on which the experience  described 
in this  paper is based. 

Perhaps because AMPS was developed independently from other 
work in the field, its terminology is often different from terms 
used elsewhere in the  literature. A glossary appended  to  this pa- 
per gives informal definitions of key DSLM (AMPS) terms. 

During the  last few years,  the  author  has  been  attempting  to  relate 
DSLM to  other work described in the  literature, and to determine 
its similarities to,  and differences from,  this  other  work. Clearly 
one of the seminal papers in this area is the discussion by Con- 
way7 of programs that  run in an  interleaved  mode,  the relation- 
ship  between  the  programs being cooperative  rather  than  hier- 
archic. Conway called such programs coroutines (co- meaning 
with) as opposed  to subroutines (sub- meaning under). 

In 1967, Morenoff and  McLean8  described programs (essentially 
particular  types of coroutines)  that  communicate by means of a 
one-way flow  of data  through buffers referred to  as buffer files. 

Somewhat  later, Bakers described  a  system called PORTS, in 
which an  attachment  point,  or port, on one program could be 
linked to a port  on  another in such  a way that when one program 
sends data  to its  output port, the  data  becomes  accessible  to  the 
other  program. 
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Weinberg" describes  a  port as ". . . a special place on  the  bound- 
ary through which input  and  output flow. . . . Only within the 
location of the  port can the  dangerous  processes of input  and  out- 
put take  place, and by so localizing these  processes, special 
mechanisms may be brought to bear on the  special problems of 
input and  output." 

In DSLM, two or more communicating ports  are  connected by a 
buffer called a queue. These  connections are defined in a network 
dejinition, a diagram that uses a fairly standard  notation which 
can easily be converted  into  a  series of macroinstruction  state- 
ments,  one  statement  per diagram block. 

In none of these  systems  does  a  process need information about 
the  identity of its  successors  or  predecessors in the  network. 
Processes,  or modules, as they  are called in DSLM, are  thus  com- 
pletely portable.  They  can be connected  into  a  network  any- 
where, provided that  modules sending data  to them  can  provide 
the right kind of input,  and  that modules to which they  send data 
can  handle  their  output.  A module can be used for many different 
applications, with no need  for internal code  changes. 

DSLM, PORTS, and the  system described by Morenoff and McLean 
all achieve portability in different ways,  but common to all of 
them is an underlying principle which Edwards""  refers to  as 
conjigurable modularity. Edwards  describes  the  characteristics 
of systems with this  property and shows how it allows engineer- 
ing disciplines to be applied to program development. 

Interest in this kind of system has grown in recent  years  to  the 
point where  a number of papers presented  at IFIP Congress 
'77 in Toronto  addressed  this general area. Most of these  papers 
dealt with communicating coroutines  as  an  architecture  for im- 
proving the reliability of system  software. DSLM is unusual in that 
its main orientation is toward improving programmer productiv- 
ity.  This  orientation is shared by Boukens and Deckers' CHIEF," 
which is remarkably similar to DSLM in its architecture,  and 
MORAL, which is described by Jack~0n . l~  

An essential difference between DSLM'S data concept  and  that 
used in most other  studies is that DSLM uses  objects known as 
data entities, which correspond  to messages in some other  sys- 
tems.  The  data  they  carry is formatted,  however, so they  more 
closely resemble the file records in conventional  systems,  except 
that  they  are not simply areas  into which data is read,  as in con- 
ventional programs, but actively travel through  the  network, ini- 
tiating processing. They are discussed in more detail under Basic 
concepts, below. 

12, 13, 14 
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This  concept, while unusual in programming methodologies, is 
common in discrete simulation systems  such as GPSS," in which a 
data  entity is referred to  as a transaction. DSLM may therefore be 
thought of as a fusion of discrete simulation concepts with a  pro- 
gram development methodology.  It is not surprising that DSLM 
has proved to be an effective simulation tool. 

The  data entities passing across  a  particular  queue  constitute 
what is often referred to  as  a stream, a sequential file  of data 
continuously produced by one  coroutine  and  consumed by an- 
other. Burge17 discusses  streams in the  context of a functional 
notation related to LISP," and  shows how the  stream  concept al- 
lows a program to be designed as if it were  a multipass program, 
with the simplification of logic that  this design provides.  The 
passes  are  interleaved,  however, since they are coroutines. 

This  paper  describes  two  examples (implementation of which is 
discussed  under Implementing  an  application  program, below), 
which are drawn  from  a  paper by Petersen  on  data  state design 
(DSD)lS and a  paper by Leavenworth  on  the Business Definition 
Language (BDL).*O BDL originally was defined by Hammer et a1.21 

DSD is a  data-oriented  system design tool, in which is developed a 
graphic  representation of a  system  that  shows  close affinities with 
a DSLM network. DSD concentrates  on  the  transformations ap- 
plied to  the  data in a  system, viewing the  system as a multipass 
operation.  Each  intermediate  data file is seen as existing  at a 
single moment.  This is indeed  a  natural way of describing a sys- 
tem.  The problems arise in converting a DSD design to  a  conven- 
tional programming language. Without software  for handling 
streams,  either  an  extremely inefficient design will result,  or  the 
program will have no structural  relationship  to  the DSD design. 

The DSLM approach  seems to offer a way out of this dilemma, 
since the  stream  concept allows a  programmer  to  develop  a run- 
ning system from a DSD design or network  without  a  drastic 
change of viewpoint. Although the  stream  concept in DSLM can 
be regarded as  just  one of a number of synchronization  tech- 
niques  that can be applied to  the DSD data  state  dependency net- 
work, in practice  the program designer starts thinking in terms of 
the  stream  concept  very early on, and  for many simple appli- 
cations he probably will bypass  the DSD design phase  entirely. 

Leavenworth2O describes  a high-level nonprocedural language 
(BDL) which is suitable  for describing business  applications. A 
goal of this  approach is to eliminate arbitrary sequencing, defined 
as "any sequencing not  dictated by the  data  dependencies of the 
application." It is eliminated by ". . . representing  an application 
by a data flow network. By decomposing the application into a 
set of steps which communicate with one  another  only  across 



linking paths,  the  sequencing is governed  strictly by data  de- 
pendencies,  i.e.,  one  step  cannot  consume  data until it has 
been  produced by its  predecessor  steps.”  The  data flow concept 
described by Leavenworth is similar to  that of DSLM, and  prelimi- 
nary  work  (not  described  here)  suggests  that, in a DSLM environ- 
ment, BDL with  minor  modifications can  be a good  notation  for 
describing  modules,  and  perhaps  even  for  automatic  module  gen- 
eration. 

Kay4  describes  three  stages in the  evolution of programming  lan- 
guages: 

0 Conventional  languages  with  “passive”  building  blocks  (data 
structures  and  procedures). 

0 “Message-activity’’  systems in which  many  parallel  activities 
communicate via messages  (examples  are DSLM and SMALL- 
TALK, the  system  described by Kay, as well as most of the 
systems  cited in the  references in this  paper). 

0 “Observer”  languages,  just being developed, which consti- 
tute a more  powerful  programming approach  than  even  the 
message-activity  systems. 

Kay feels  that  a  programmer’s  concepts of  programming  are 
strongly  influenced by the first programming  language  he  encoun- 
ters.  Thus SMALLTALK was  developed  to  introduce  message-ac- 
tivity  systems  to  children  before  they  have  much  exposure  to 
conventional  programming  languages.  According to  Kay, chil- 
dren find the  system  natural  and  easy  to  learn  because  the  modu- 
lar  structure of SMALLTALK is analogous to  the highly parallel 
environment of the real world.  It is the  rigorous  sequentiality  of 
conventional  programming,  he  maintains,  that is unnatural in the 
real world. 

This  observation  has  been  borne  out by our  experience in the  use 
of AMPS (the DSLM prototype). While almost all users  experienced 
some  productivity  gains,  new  programmers  tended  to  adapt  to it 
more  readily  than  more  experienced  programmers,  and  they 
showed  more  pronounced  improvements in productivity.  More 
important,  they  learned  to think in terms of the  concept,  instead 
of treating it as just  another programming  language. The individ- 
ual who  became  most proficient at AMPS had  been a machine op- 
erator  and had had  only  two  weeks of formal  programming  train- 
ing-one week using assembler language  and one  week using 
AMPS. A typical  programming job  comprised a network  that  con- 
tained 16 precoded  modules  and  two  programmer-coded  mod- 
ules.  The job took  four  hours  to  design,  four  hours  to  code  and 
keypunch,  and  two  hours  to  test, in a conventional  key-punch, 
batch  environment.  The  ease  with which  programmers  with  little 
experience  were  able  to  develop nontrivial  programs in this  envi- 
ronment is an indication of the  potential of AMPS for  productivity 
enhancement in a suitable  interactive  environment. 
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Figure 1 Module linkage notation 
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Our  success with new programmers  points  up  the  fact  that DSLM 
is not  a complex concept or system.  The  amount of software  re- 
quired to  support it is small,  and it is very  easy  to install (pro- 
grammers at one  location  took four days from the time they 
started working with the  system  to  the time they  wrote  their first 
working program, with minimal involvement on  the  part of the 
author). DSLM does  require  a change in the way we look at  the 
programming process,  however, and it is perhaps  an  advantage 
not to have  too many preconceptions in this  area. 

Basic concepts 

Consider  two  processes, or modules,  that  communicate by means 
of a  buffer,  or  queue,  over which passes  a  one-way  stream of data 
entities carrying formatted  data.  (Data  entities are referred to 
simply as entities in what follows.) The  two modules run con- 
currently,  one sending and  one receiving entities. 

It is necessary  that  the  queue  have  a finite capacity so that  entities 
will not  accumulate in  it indefinitely if the receiving module is 
running slower than  the sending module. Thus if the  queue fills 
up,  the sending module stops temporarily and becomes sus- 
pended. The receiving module may also  be  suspended if the 
queue is temporarily empty.  Data passing through  the  queue is 
handled one  entity  at  a time by the sending and receiving modules 
respectively, forming a stream of data entities. This linkage is 
represented by the  notation shown in Figure 1. 

The  last  entity in a  stream is a special end-of-stream entity which 
indicates  to  the receiving module that no more  data follows. From 
time to time the  queue may become empty,  but this in itself does 
not indicate the  end of the  stream,  as  the  situation may  well be 
temporary. 

The  capacity of the  queue is usually of interest only in tuning an 
operating program for optimal performance.  Therefore it  is not 
usually shown in the  diagrams  that  accompany  this  paper. 

A number of queues  can be attached  to  a module for input or 
output,  or else as generator  queues (sources of “empty”  data 
entities), which are  required  for introducing new entities  into  the 
system.  See Figure 2. 

A number of modules can be connected by queues  to  form a net- 
work  for  the program as a  whole.  The primary representation of 
this  network is the network  diagram, orflow specijication, which 
can be converted easily to a running program by coding one mac- 
roinstruction  statement  for  each diagram block, plus a  few  addi- 
tional statements  for  related  information.22 
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I Figure 3 Independent  subnets  within a network 

Figure 4 Multiple  occurrences of a module 

R 

R SEQUENTIAL READ module 
M  MERGE module - cornblnes two streams 

The network  shown in the flow specification need not be com- 
pletely connected.  Several  discrete  sections may run asynchro- 
nously with each other.  For an  example,  see Figure 3.  

Portability of modules is achieved by having modules refer  to in- 
ternal  port  numbers  (for  example, send entity X to port  number 
2).  It i s  the  network definition that  associates the port  number 
with an  actual  queue.  Port  numbers  are  represented in the dia- 
grams by numbers inside the  process  block, or, for modules with 
few input or output  queues,  the position of attachment of the di- 
rected lines to  the module block. 

A module can be attached  at  several places in the same network, 
if desired,  and will then multithread with itself, provided it is 
coded in a  re-entrant  manner.  Thus  separate  processes  can use 
the  same piece of code.  For  example, if several  streams must be 
merged,  the program designer may choose  to use a  “two-into- 
one” merge module to progressively merge streams until a single 
stream  results.  Input  and  output modules are frequently multi- 
threaded with themselves, but usually will be working with dif- 
ferent files. Figure 4 shows  the  output of a merge module, M, 
being used as input to  another instance of the same module. A 
generalized READ module occurs  three times in the diagram. 
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0 The viewpoint of an entity  as it passes from one module to 
another,  starting with its entry into the  system  and ending 
with its exit from the  system. 

These viewpoints seem  natural  to  the program designer, paral- 
leling habits of thinking that  are  taken  for  granted in the world of 
material objects,  as in factories,  cafeterias,  and  supermarkets. 

At any given moment,  an  entity is either  owned by a module or 
queued  between  modules.  It can be owned by only one module at 
a time,  and all entities  owned by a module must be positively 
disposed of before  the module returns  to its caller (the scheduler). 
A module can  dispose of the  entity in various  ways, just  as a 
person  disposes of a letter-he  may destroy  it,  forward it to 
someone  else, clip it to  another  letter,  or file it.  Corresponding 
DSLM actions  are destroying, putting, and chaining. In chaining, 
an  entity is attached  to  another  entity,  the resulting structure 
traveling  through  the  system as  one  entity. Filing corresponds  to 
sending an  entity to an  input/output module. 

I Many DSLM functions parallel unit-record functions  such  as COL- DSLM functions 
LATE, SORT, SELECT, and MERGE. These  functions  are as natural 

~ to data  processing as multiplication and division are  to  arithmetic. 
, However,  they seldom appear  as primitives in high-level lan- 
~ guages (with the possible exception of SORT), and  their  function is 

usually distributed  across  the  entire program in conventional  pro- 
gramming languages. 

SORT, for  example, is a  natural  stream  operation.  The ability to 
select  and  transform  entities  that  pass  into or  out Of SORT modules 
allows the program designer much greater  freedom in his design, 
and also in his record  layouts,  since SORT tags can be created 
dynamically and  then  thrown away (not  stored).  A  section of such 
a network might look like Figure 6 .  

SORT differs from other  stream  functions in that no entities  can be 
produced  as  output until all entities  have  been  processed. The 
entities  have to be stored on an  external  storage  device, unless 
their  number is small. 

In this  implementation, we discovered  that  since  the SORT “con- 
trol cards”  are held in memory,  rather  than  on a file, they  can be 
generated by macroinstructions, using the symbolic names of the 
fields involved. If the  format of the  record being processed 
changes,  the SORT control cards can be changed automatically by 
recompiling. 

When more than  one module depends  on a particular  record lay- 
out, program modification can be reduced by describing  record 
layouts by means of macroinstructions.  Thus only one  code  com- 

Figure 6 A SORT module in a net- 
work 
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are to bypass SORT 
T .  TRANSFORM module 
M. MERGE module - merges  sorted and un- 
sorted entitles 
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ponent  (the  macroinstruction)  has  to be changed  manually. A 
cross-refereme program can  then be run periodically to  deter- 
mine which programs  use which macroinstructions,  and  the  out- 
put of this run can be used to determine which routines should be 
recompiled when a given macroinstruction is changed. 

DSLM provides  a  convenient  tool  for working with files of various 
structures. A READ module can  convert  data from a format  appro- 
priate  for  tape or disk to a  format  that is appropriate  for  internal 
processing. A matching WRITE module can  then  recreate  the  data 
on tape  or disk after  any  desired  changes  have been made.  Thus 
each matching REAWWRITE pair can be considered  an implemen- 
tation of a different data  organization. DSLM allows the program- 
mer to  concentrate  on  the  data  structure he wants  to work  with. It 
is well adapted  for building interfaces  between  systems and for 
many programming tasks in which the prime concern is the man- 
agement of data. 

Control flow and data flow 

Conventional programming concentrates  on  the flow of control, 
rather  than  the flow  of data. A conventional program specifies the 
exact  sequence of actions  and  decisions  to be followed while 
processing  one or more pieces of data. A data-flow approach  con- 
centrates  on  the flow  of data  through a system and the  transfor- 
mations  that apply to  them. 

The module of the control-flow approach is the  subroutine, which 
is an  excellent  structure  for generalized computation  and logic 
functions,  but it does  not yield useful generalized functions  for 
data handling. The module of the data-flow approach is the  data- 
linked coroutine, which yields many useful generalized functions 
for  data handling and  non-numeric  uses.  These  two module types 
are  complementary,  and  judicious combining of the  two  enables 
the  programmer  to  create highly modular systems. 

One way of visualizing the problem with control-flow,  subrou- 
tine-oriented programming is  to realize that  the programmer is 
required  to specify the  precise timing relationship of every  pro- 
gram event  to every other. The  subroutine  technique, while al- 
lowing specification of program logic at  a higher level, still re- 
quires  a rigid do  this then do that structure. 

Table 2 Data dependence in code The timing of events in programming depends almost entirely on 
- the use and availability of data. Consider  the  two  pairs of state- 

Program I Progrum2 ments in Table 2. Clearly,  the  sequence of the  two  statements in 
Program 1 is significant for  the functioning of the  program,  but if 

the  sequence of the  statements  becomes  irrelevant  because  they 

MOVE A TO B 

MOVE B TO C MOVE .ro the  second  statement is changed to MOVE c TO D,  as in Program 2, 
MOVE A TO B 
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share no data. Compiler optinlizers  devote a lot of logic to  deter- 
mining which  statements  share  data (have timing constraints  rela- 
tive to  each  other)  and which do not. When loops  and  branches 
are  introduced into the logic of a  program,  the programmer is 
fa.ced with the  task of finding a  sequence of instructions  that fits a 
large number of timing constraints. 

The DSLM module structure, on the  other  hand, is simple in terms 
of its data-use  patterns. It splits a conventional monolithic pro- 
gram into a number of pieces related by two simple and  natural 
data-use  constraints: 

0 If a  data  entity  passes  from module A to module B, I3 proc- 
esses it after A does  (the flow constraint). 

0 If a  stream of data  passes from A to B, I3 processes  the  entities 
in the  stream in the  same  order in which A sent  them  (the 
order-preserving  constraint). 

There  are no other  constraints  between  modules.  It is the DSLM 
scheduler  software that determines  the  sequence of operations 
that  conforms  to  the  above  constraints. In a  conventional  pro- 
gram,  on  the  other  hand,  the programmer has  to find a  sequence 
of operations  that  conforms  to his given constraints  and  performs 
the  desired  function. 

A common problem in program design is the difficulty of deciding 
which subroutine is to call which. Often it is an  arbitrary  yet 
highly constraining  decision as  to which program becomes  the 
driver.  Since a subroutine  cannot  preserve information from one 
invocation  to  the  next, higher-level subroutines have to  set  up 
storage  for  use by lower-level subroutines, and it becomes impos- 
sible to  change  this  relationship  later. In DSLM, a module main- 
tains  its  own internal environment; it controls  what it  will accept 
as input and  what  its  output will be, so that  the form of the  routine 
is far  more  independent of its external  environment. Of course, a 
module can call subroutines  as in conventional programming, so 
that  the  total  system  consists of many subroutine  tree  structures 
communicating via data  streams. A conventional program is 
therefore  a special case of a DSLM network-one with only one 
module. 

Programming productivity is enhanced with DSLM by the  ease 
with which modules can be linked. DSLM enables programming to 
become  a  process of assembly in which the  programmer  assem- 
bles a program mostly out of precoded modules, using some new 
modules when required.  Trial modules can be constructed  and 
evaluated  for  ease of use and performance.  New modules can be 
more or less  general,  depending  on  economic  factors  such as po- 
tential use compared to development cost.  The more general 
modules become part of a  “mental  tool  kit” which programmers 
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Figure 7 Testing  the  module SUMM 

R READ module - generates test data 
SUMM- the module to  be tested 
P1. slmple PRINT module 

and program designers can use to  speed design and  development. 
It should be stressed  that  there is no “perfect” module”on1y 
modules that  have been built by programmers with an ability to 
generalize,  and  that  have  then proved useful. Other  modules may 
not  have gained wide acceptance and will be used infrequently. 

With DSLM, a programmer’s knowledge and  experience  can be 
preserved  and  disseminated more widely because it can be em- 
bodied in a self-contained module which others  can  use in com- 
plete ignorance of its  internal  structure.  Examples might be mod- 
ules designed to handle special  hardware,  interpreters of special- 
ized languages, and modules  that use special  system facilities. 
The  programmer  learns to think in terms of the available mod- 
ules. He has a reference manual to help him with details of param- 
eters, queue  numbers,  etc., but it helps if a module’s function  can 
be expressed in a few sentences.  The more complex  a module is, 
the  less  portable it is. Our  experience  has  been  that  some of the 
most useful modules  are also the simplest: one heavily used mod- 
ule consisted of only a  dozen  statements  (assembler  and macroin- 
structions). 

Testing 

Testing is facilitated by the  fact  that  the  modules are  pretested, 
and  also by the  ease with which  they  can be assembled  into  work- 
ing programs. A given module is designed to receive a stream of 
entities of a certain  form,  regardless of  how the  entities  were  gen- 
erated.  It  can  therefore  be  tested with manufactured information 
read by a simple reader or test-data  generator.  Output  can  be  han- 
dled by a simple PRINT module, or even by a module that simply 
dumps  each  entity. 
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As an illustration of this  approach,  suppose  a programmer has 
coded  a summation module with one input queue and two  output 
queues.  The simplest way to  test it probably would be to set  up  a 
“scaffolding” network as shown in Figure 7. The input files can 

1 be on  cards  or, in an  interactive  test  environment,  they  can be 
I edited  data sets. PI is a  deliberately simple PRINT module which 

displays  each  entity  sent  to  it,  without any editing. P1 is used 
when it is desirable  to  see  entities  unchanged.  Alternatively,  a 
DUMP module could be used to  dump  each  entity in hexadecimal 
and  character  formats. 

Conversely, if a  programmer  wants  to display the  entities  that Figure 8 Displaying the flow be- 

pass between any two  modules, all he has to  do is insert a PRINT tween two modules 

or DUMP module between  them, as shown in Figure 8 .  

Multithreading 

A DSLM network naturally multithreads with itself, each module X, Y arbitrary ciodules 

constituting  a  thread. Along with DSLM’S implications for improv- 
ing programmer  productivity, multithreading can improve per- 
formance when peripheral  devices  are  involved, since such  de- 
vices usually run more slowly than  the  central processing unit 
(CPU). Note  that, since modules are  re-entrant, any number of 
modules in a  network  can use the same code. 

”7 
U 

P the Inserted PRINT or DUMP module 

In a  paper  on AMPS, BallowZ3 describes  a heavily input/output- 
bound job whose  elapsed time was reduced significantly (from 
two  hours  to 18 minutes) by changing from a serial network  to  a 
parallel one, replacing a READ module by a  faster  (but still fairly 
general) one, and adding a module to balance the loading. 

The solution chosen in this  example  illustrates  two principles for 
reducing elapsed time by multithreading: 

Assign a module to  control  an  independent  device. 
Replicate modules where unduly long sequential  processes 
occur. 

For  the first principle, suppose  that  a program needs to read a 
number of disk data  sets residing on  separate disk packs, and that 
the  records  are not required in any particular  order by the  next 
module in the  network.  There  are  two ways of handling this: by 
defining one READ module to read concatenated  data  sets, or by 
specifying several READ modules,  each reading one  data  set and 
feeding entities  into  the  same  queue  asynchronously.  The  output 
of the READ modules will  be received in random  sequence, but in 
this case this is quite  acceptable. 

In general, it  is often  convenient to have  one module control  a 
single serially reusable resource, and local optimization can  often 
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Figure 9 Single-threading  version of scanning  program 

%-q+T+F+g 

A ERRORS 

RS. SEQUENTIAL READ module - reads concatenated dlsk data sets 
CF. chaln-followlng module - follows chalns of records across several dsk packs, verlfylng valldlty of the chalns 
ERRORS. report of dlscrepancles sorted by record ldentlflcatlon 

Figure  10  Multithreading  version of scanning  program 

PRINT 

CF 

RT. full-track R E A 0  module (five occurrences, one per dlsk pack) 
L Q A  load-balancing module 
CF. chaln-following module - follows chains of records across several dlsk packs, verlfylng valldlty of chalns 
X, Y' queues fed by RT and CF, respectwely 
ERRORS report of dlscrepancjes sorted by record ldentlfmtmn 

be applied to get further  improvements  because  the module is in 
complete control of the  state of the  resource. 

The second principle can be applied where  a module performs  a 
sequential process  that  takes  a long elapsed time relative to  the 
amount of CPU time used.  The  elapsed time required  for  the  pro- 
cess  often  cannot be reduced,  but  system  throughput may  be in- 
creased by replicating the  process. Of course  the  above require- 
ment for logical independence of the threads still holds. 

In the application described,  the  requirement  for logical inde- 
pendence of processes  was satisfied because  the  purpose of the 
program was to  scan  a  data  base  and  prepare  a  report on any 
discrepancies found in the  record  chaining, which was needed in 
a  sequence different from that in which the  data  was  stored.  This 
freed  the scan from the  requirement of keeping discrepancy infor- 
mation in master  record  sequence. 
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Figure 9 shows  the program as it was first coded. Figure 10 shows 
it after  the improved READ module (full-track) had been written 
and  the  network  converted  to  a highly parallel ~ t r u c t u r e . ~ ~  The 
chain-following module (CF) was characterized by long elapsed 
time  and low CPU time, so in the redesigned network it was multi- 
threaded with itself 18 times (large enough to be effective, but  not 
so large that  contention would start to be significant). To  balance 
the  load,  one additional module (LQA) was  written which allo- 
cated work to  the  downstream module with the smallest backlog 
of work. 

As the demand grows  for real-time response  on  the  part of data 
processing  systems, it becomes more and more important in 
many environments  to minimize total  elapsed  time,  as  compared 
with CPU time, and this is much easier to control using DSLM. An 
alternative  approach to reducing  elapsed time is  to  distribute 
function among different machines. This approach  leads naturally 
to  hardware  architectures  that parallel DSLM’S software  archi- 
tecture. 

Practical  details 

It is outside  the  scope of this  paper  to  describe in detail the  work- 
ings of the AMPS prototype,  but some implementation information 
is given here to aid  in visualizing the working of a program con- 
structed using AMPS. 

All modules and routines in an AMPS environment  are  made  re- 
entrant,  as is the  scheduler  software, by avoiding the use  of self- 
modifying code  and by ensuring  that all storage  that can be modi- 
fied  by a module is unique to  that process  (occurrence  of  the mod- 
ule in the  network). 

All routines have a single entry point and a single exit (although a 
module can branch to  the  exit from any point in the  code),  for 
which standard entry and exit macroinstructions  are  used.  The 
entry macroinstruction  causes  storage  to be allocated,  for  that 
invocation of the  routine,  for  a register  save area and for  a 
“scratchpad” (used for  temporary  results of calculations  and  the 
like). The  macroinstruction  determines how much storage  space 
is required and  allocates it from a module  control block that is 
unique to  that process. When the routine terminates  (returns to 
its  caller), it uses the exit macroinstruction to make that storage 
space available for  use by other  routines.  Since no routine can 
terminate  after its invoking routine  terminates (within a given 
process),  the  space in the module control block can be used as a 
stack (“pushed  down”  when  a routine is invoked, and “popped 
up”  when it terminates). 
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Other AMPS services,  such as GET,  PUT, and CREATE, are also 
requested by means of macroinstructions. 

Although a module  may have multiple  input queues,  only  one  is 
allowed to trigger  module execution.  This is the  queue  attached  to 
port  number 0 of the  module  and is called  the triggering queue. 
Data  entities  that  arrive  along  other  input  queues (if any)  are  ob- 
tained by means of a GET request. 

At the beginning  of a job  step, an AMPS module is in what is re- 
ferred  to as the dormant state.  When an entity  arrives  along  the 
triggering queue,  the  module  is  invoked  by  the  scheduler  and  is 
passed  the  addresses of the incoming entity  and of a parameter 
block-a storage  area  included in the  network  description  where 
the  parameters  for  that  particular use  of the  module  are specified. 

When  the  module  has finished  processing  the  current  entity,  it 
may  terminate,  returning  control  to  the  scheduler, in which  case 
it again  becomes  dormant.  Or it may  not  terminate,  but  rather 
issue a GET request  for  another  entity  from  the triggering queue 
(processing may be suspended if no  entity  has  arrived  yet). 

The  last  entity in any  stream  is  always an end-of-stream  entity, 
which  signals the  receiving  module  that no more  data  should  be 
expected.  The  scheduler will not  re-invoke a module  when it  ter- 
minates  after end of streum is presented  at  its triggering queue 
(port  number 0), so the  module  must  send  the  end-of-stream  en- 
tity on to all downstream  modules  prior  to  terminating.  The  mod- 
ule is  then effectively  removed  from the  network  and no longer 
takes  part in the  scheduling  process. 

When all modules  have  closed  down in this  way,  the  scheduler 
determines  whether all queues  are  empty,  and, if so, terminates 
the  job  step. If not, an abnormal  termination  occurs. 

Absence of a triggering queue  indicates  that  the  module is to be 
started  at  the beginning  of the  job  step.  This  is  the  way READ 
modules  are normally started in batch jobs, but it also provides a 
way  to  defer  a READ module  for  a  time: a module  with a triggering 
queue specified cannot  start until the first entity  arrives  along  this 
queue, so a  triggering queue is specified for  the READ module,  and 
a signal entity is sent  along  this  queue  to  indicate  that  the  module 
is to  start  execution. 

In  the DSLM prototype (AMPS), only  the  entity’s  address is moved 
as the  entity  passes  through  the  network, so it is quite  reasonable 
to  conceive of large tables  passing  through  the  network.  Only  the 
owning  module  normally will be  able  to  address  the  entity, so no 
other  module  can modify that  entity  at  that  time. In fact,  the  total 
amount of storage  that a module or program  can affect is quite 
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limited. Since all programs  are  re-entrant,  they  can  never modify 
themselves.  The only storage  a program is allowed to modify is its 
scratchpad  and  those  entities  that it currently  owns (has responsi- 
bility for). 

There are two kinds of entity in an AMPS system: dynamic and 
static. Dynamic entities are the normal entities  described  above. 
They  are used for transporting dynamic data  through  the  system. 
Since  dynamic  entities are not necessarily freed in the  sequence 
in which they were created, a facility is required for  storage allo- 
cation and de-allocation. In AMPS, all entities of a given type,  or 
class,  are  the same length, so the first time a routine requests  the 
scheduler  to  allocate  an  entity of a given class,  a subpool of some 
(user-specified) number of entities of that  class is allocated with 
the available entities  chained  together.  Thereafter, when a  rou- 
tine requires  an  entity, it is taken from the head of the  chain. 
When an  entity is freed  (destroyed), it is  added  to  the head of the 
chain. If  all entities in the subpool are in use, additional CREATE 
requests are satisfied by using the GETMAIN macroinstruction. 

Static  entities, on the  other  hand,  are unmodifiable, so it does not 
matter  what program owns  them. In fact,  since only addresses 
physically move through the  network,  a  static  entity  can  be 
treated  as though it were in many places at the  same  time. For  the 
same  reason,  static  entities do not have to be positively disposed 
of,  as  do dynamic entities.  Examples of static  entities  are  the  end- 
of-stream and signal entities referred to  above. 

AMPS provides  two basic language levels-the network definition 
language and  the language used to  construct new modules. As- 
sembler language with many macroinstructions is the  basis  for 
both of these  languages,  but  the  macroinstruction families in- 
volved can be thought of as forming special-purpose languages. 
For example,  the  network definition is normally all macroinstruc- 
tions, plus DEFINE CONSTANT (DC) statements  to define parame- 
ters, but  assembler language can, if necessary, be intermixed with 
the  macroinstructions. 

An experimental version of AMPS has been developed  that allows 
modules to be coded in PL/I and that  uses Os/vS2 Release 2 multi- 
tasking to provide the multithreading capability, but it  is still too 
new for any report  on  experience in its use.  The following sec- 
tion,  therefore, is based only on the existing version of AMPS, the 
DSLM prototype. 

Implementing  an  application  program 

Discussed below are  two example application programs  as  they 
would be implemented using AMPS, including the module library 
that is presently  available.  The  examples are key matching and 
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Figure 11 Network for key-matching example 

LIST 
PRINT 

REPORT 

R E Q U E S T E  

RS SEQUENTIAL  READ module 

R D  DATA-BASE  READ module --- accepts a file requrst a rd  puts out a  stream of data-base records 

COL: generalzed COLLATE module - mergestwo or mow streams on bass of specified control fields. Insef!s break 
entlties between entltles wlth dlfferent control fleld values 

entlt~es  can slrnply be destroyed at this point) 
M. module that sends key-matchmg indlcabons out at one port and nonmatching enblles outat the other(matchmg 

T: modulethataccePtskeymatchlnglndtcationsandsendsthemoutatoneport,andsendssummaryllnesoutatthe 
other 

sales  statistics,  both  based  on applications discussed in recent 
literat~re. '~' 2o Note  that  both  are  batch  programs, reflecting the 
fact that all of our  experience so far with AMPS has been in batch 
processing; hardly any  work has been  done on the implications of 
the DSLM concept  for real-time application development.  How- 
ever,  the internal  architectures of many real-time systems  bear  a 
strong  resemblance  to the DSLM architecture, suggesting that 
DSLM will prove to  be applicable in a real-time environment. 

key matching Pe te r~en '~  illustrates  a DSD data  state  dependency  network which 
performs the following function: On receipt of a$le request (the 
file name) it obtains  the specified file from the  data  base,  passes 
it against  a list of keys,  and  produces detail and summary reports 
for matching keys,  as well as an  error log for  mismatches.  The 
DSLM notation  for  this  network  is  shown in Figure 11. A KEY+ 
FILE module in the DSD data state  dependency  network is re- 
placed in Figure 1 1  by two  modules,  COL  and M, because in the 
AMPS library there is a generalized COLLATE module (COL) which 
has proved useful for applications that require one file to be passed 
against  another.  It merges two  streams  into one, and  also  inserts 
break entities  at  control  breaks, simplifying the logic  of down- 
stream modules. An AMPS user would be aware of this  function 
and use it for  most  such  applications.  The  function of the 
KEY+FILE node in Petersen's  example,  therefore, is performed in 
DSLM by having COL  send  data  to  another more specialized 
module. 

400 MORRISON IBM SYST J VOL 17 NO 4 1978 



The  network definition is first laid out graphically on paper, with 
comments  added freely to  show suggested SORT parameters, DD 
(data definition statement)  names,  stream descriptions, etc. These 
stream  descriptions  correspond  to  the FILE nodes in a DSD data 
state  dependency  network.  Such  an  annotated  network is the 
main working document  and is a good communication  vehicle, 
while containing sufficient detail so that it can  easily be converted 
to a running program. 

The  next  step is to  consider which data  structures  to use and  to 
determine which standard modules can be used from the AMPS 
library. For each module in the library there is a brief functional 
description, together with parameters  and any other  external in- 
terface information. The program design logic might be as fol- 
lows: 

0 There is a  standard READ module (RI) which takes  a  sequen- 
tial blocked or unblocked file from tape,  disk,  or  cards  and 
puts  out fixed-length record  entities.  The  designer  decides  this 
module is appropriate  for  both  the key list and file request 
files. 

0 The key list,  therefore, is a  sequential, fixed-length record file, 
which R1  will convert  into a stream of entities followed by end 
of stream. 

0 If the  same module is used for  the file request file, the R1 
module for file requests will read a single record and generate 
one  entity followed by end of stream. 

The  designer can proceed in this way across  the  network,  decid- 
ing which standard  modules  and  corresponding  data  structures to 
use. At this point he will start  to  annotate  the  diagram, assigning 
names to modules and  queues  (any mnemonic will do), DD names 
to input and  output  modules, and report  titles  to PRINT modules. 

Assuming that no suitable  standard modules exist  for RD, M, and 
T,  the next stage is to design,  code, and test  these modules. RD 
can use any os access  method  down to the ExCP level,  but will 
most likely use a basic access method (BSAM, BDAM, BPAM), since 
using one of these  (or EXCP) allows other modules to  continue 
execution while RD is waiting for  completion of an input request. 
AMPS provides  a module wair facility which will suspend  only 
the module requesting  the  wait. 

Module M is essentially  a  pattern-matching  function which re- 
peatedly  looks  for  this  sequence of entities: 

key (from  the key list); record (from RD); break. 

Any other  sequence causes an  error. 

While the programmer charged with designing and coding M may 
make it specific to this application, he may be able to generalize 



the  function so that  its applicability is broader  than  the specific 
need.  Thus he may  be able to reduce  the  cost of the  next appli- 
cation  that  requires a similar function.  Alternatively, its function 
can be broadened  later,  provided  that  the  parameters of the origi- 
nal function  were designed for possible future  expansion.  The 
same is true  for  the module T. 

The  last  stage is coding and  testing  the  network. All new modules 
can be tested initially in parallel, and,  as  a new module is de- 
bugged, it can be used in testing  other  modules.  Thus several pro- 
grammers may be working on different parts of the  same  system 
in parallel, creating special networks of “scaffolding” (as  de- 
scribed above). Gradually they will start  to need each  other’s 
modules,  and  the  dependencies  between  them will start  to in- 
crease,  but  at  the  same time the reliability of the modules will be 
increasing. Modules can  easily be integrated into larger and larger 
networks until eventually  the  network is  in its final running form. 

It is recommended  that during testing only  one  unknown be 
introduced  at  a time. For this  reason, during much of the  testing, 
printing will be done by a simple PRINT module (Pl), which puts 
out  one  entity per line with minimal modification. This allows the 
programmers to inspect  the  entities  put  out by a module in as 
close to their original form as possible. 

In the final form of the  program, more sophisticated PRINT mod- 
ules will normally be used. One such module (P2) performs a 
number of formatting and  output control functions,  but,  since it 
displays  the  data being sent  to it  in a different form from the way 
it received it,  the  programmer will want to add  these modules to 
the  network  after much of the  other  testing is complete.  How- 
ever, this is simply an incremental  effort, involving no change  to 
the  rest of the  network,  or  to upstream modules. 

salesstatistics The  second example is based on the  example used by Leaven- 
worth2’ in his paper on BDL (the Business Definition Language), 
in which he describes  a  set of programs that generate  sales  statis- 
tics  reports.  This  application is used to  update  a  master file  of 
products on a regular basis given a  sorted  detail file  of product 
sales,  and  to  produce  two  reports:  a summary by product  and  a 
summary by district  and  salesman. 

While the first report is  in product  sequence,  as is the  master file, 
the second is ordered  by salesman within district,  independently 
of the  product. Explicit sequencing is expressed in BDL by the 
WITH COMMON operator,  and although this is more general than 
specifying a SORT, the AMPS program designer will already be de- 
ciding if he wishes to  use  a SORT or  some  other  mechanism, and 
SORT is in fact  a  natural  data  stream  operator  (see  under Appli- 
cation  independent  modules in Reference 1). 
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Figure 12 Network  for  sales-statistics  example 
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DESIGN IN FIGURE 13 -! I 
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COL generalized COLLATE module - merges two of more  streams on basis of specifled  control  flelds.  lnserts break 
entlties between entltles  wlth  dlfferent  control-fleld values (If used wlth only one stream,  thls  module  slmply Inserts 
break entitles, as ~n the  second  occurrence  of COL) 
T R 1  module  that  corresponds to Leavenworth's Tran- l .Zo It  accepts  a  merged  stream of product masters and 

(detalis wlth quanhty x umtpnce  calculated  and  lnserted Into the  entlty) 
details and generates a stream of new masters. a Stream of product summary llnes, and a stream of extended details 

SORT genefallzed  module  that sorts extendeddetals from  TRI by salesman w thm dlstrlct 
TR2 module  that  corresponds to Leavenworth's Tran 2 It accepts  a sorted stream of extended details and  puts 
out  report Ihnes for REPORT 2 

Assume that SORT is chosen  to  do  the  resequencing  desired. Re- 
membering that AMPS has  a COLLATE module which merges two 
sorted  streams  and  inserts break entities  whenever  the  control 
field changes,  the  example in Reference 20 can be represented as 
shown in Figure 12. The second occurrence of COL is used to 
insert  breaks into the  sorted extended  details stream coming out 
of SORT, in order  to simplify the logic of TR2 in Figure 12. 

Figure 12 assumes  that  the incoming details  are  sorted by product 
number. Although this SORT could be included as  part of the  net- 
work, it was  not,  for purely pragmatic reasons which are  outside 
the  scope of this paper. 

A valid objection can be raised that  sorting is just one way of 
arranging information into  a desired sequence, and that  the  deci- 
sion as  to  the  exact  technique should not be made too  early.  The 
point is that DSLM allows the designer to  concentrate on the flow 
of data and in fact makes  the available options more visible and 
more controllable. For  instance, in the  above example the de- 
signer may indeed decide that, for  various  reasons, he prefers  to 
construct a table of district and salesman codes and totals, which 
will be updated randomly as  the  extended  details come out of 
TRl. 
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Figure 13 Alternate  design  for  part In that  case, a separate module will be needed to go through  the 
of Figure 12 table  afterwards,  preparing  report lines. This module can  be  des- 

- ~ I G R ~ ~ ~ ~ ~  ignated GR (GENERATE REPORT). The  part of the  network within 
the  broken lines can  then be replaced by the  subnet  illustrated in 

 REPORT^ Figure 13. The  queue  marked X in the diagram could simply pass 
a signal indicating SUM’S final termination to GR, which would 

SUM modulethatupdatesdlstrlctandsalesman then  start working on  the  totals  table,  to which it has  also  been 
GR GENERATEREPORTmodule-stepsthraugh given addressability. A cleaner  solution,  however, is for SUM to 

send the  entire  table in an  entity to GR immediately prior to termi- 
nation.  This will be GR’s  only input data  entity  and will start  the 
GR function going. (Since only the  address of the  table is actually 
moved, in DSLM it  is possible  to  conceive of sending large tables 
from module to module.) 

B 
totals ~n random sequence 

the totals, formattmg report Ihes 

Conclusions 

DSLM, as exemplified by the AMPS prototype, has measurably  en- 
hanced programmer productivity and program maintainability in 
everyday application programming by replacing the  conventional 
programming technique with the more  natural  process of plugging 
together  data-driven  functional  modules. 

Although the original motivation behind the  search  for something 
like DSLM was to improve programming productivity, many other 
advantages,  such  as  improved  control of performance,  were  dis- 
covered  later  as valuable side-effects. 

Ballow’s summationz3 covers many of the  basic  concepts  and ad- 
vantages of DSLM. The main points given there  can be restated  as 
follows: 

0 Separately compiled and debugged portable  modules  can eas- 
ily be assembled to  do a specific job and  can be rearranged  and 
replaced as testing proceeds or as  maintenance  requirements 
change . 

0 Subnets in the  network  can be consolidated by replacing them 
with fewer  (but  less generalized) modules. Time-space  trade- 
offs can be made simply by selecting modules or changing net- 
works. 

0 Functional modules can be stored in program libraries,  to be 
used whenever  required. 

0 While the  programmer  can  derive many benefits from using 
precoded  and  pretested  modules, he still needs  the  capability 
of coding his own modules if he decides it is best  to do so. This 
is  straightforward in DSLM (AMPS) using the macroinstructions 
provided.  A new module is easy  to build and  test,  and  once it 
is finished and  working, it can be added  to  one of the module 
libraries,  where it  will be available to  anyone  who  needs  it. 

404 MORRISON IBM SYST 1 VOL 17 NO 4 1978 



L 

d’AgapeyeffZ5  eloquently  describes  the programmer as  a  “pave- 
ment artist,”  constantly investing effort and  creativity in essen- 
tially transient  constructions. DSLM points to a  future program- 
ming environment in which programmers, in creating  more  last- 
ing constructions, may experience  the  satisfactions of authorship 
and greater  recognition. They can  become more productive,  and 
applications  can be designed and brought on line faster  and more 
reliably, providing improved  service  and  responsiveness  to  users. 
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Appendix: Glossary 

AMPs-prototype system  that  embodies  the DSLM concepts. 

Break-static entity (q.v.) used to indicate a  control  break in the 
output  stream of a COLLATE module. 

Capacity-the maximum number of entities  a given queue  can 
hold; specified in theflow speciJication (q.v.) if different from the 
default value. 

Chaining-attaching one  entity  to  another so that  the resulting 
structure  can be moved through  the  network as a single entity. 
Complex structures can be built up in this  way. 

Class-type  of entity. 

Coroutine-a routine or program that  runs interleaved with,  but 
in constant  communication  with,  one or more other  routines, in a 
cooperative  rather  than  a  hierarchic  relationship. 

Create-allocate space  for  an  entity and initialize a control block 
that defines it. 

Destroy-return an entity  control block to the pool of available 
space. 

Dormant-the state of a module that  either  has  not  been invoked 
by the scheduler, or has been invoked but has  returned  control to 
the scheduler  after having processed  one or more entities. 

Entity-a carrier of formatted  data.  There  are  two main types: 
dynamic  entities, which are modifiable and can be owned by only 
one module at  a  time;  and  static  entities, which are read-only en- 
tities that may appear  to be in several  places  at  the  same  time 
(examples  are  breaks, signal entities,  and end of stream). 

Flow specification-diagram showing the  modules  that  constitute 
an  application,  the  queues relating the modules to  each  other,  and 
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other  explanatory  information;  also,  the  macroinstruction  state- 
ments  that implement the diagram. 

Generator queue-a queue (q.v.) specified in the flow specifica- 
tion,  not  as  a  communication link between  modules,  but  as  a 
source of unused entities of a  particular  class. 

Module-a routine  that  runs  asynchronously with other modules 
in the flow specification (that  is,  a  coroutine); it can be the root of 
a  tree of subroutines. 

Module control block-a control block used by the AMPS sched- 
uler to  control the operation of a single process.  It is used also for 
allocating register  save  areas and  scratchpads  for  routines  as  they 
are invoked during process  execution. 

Multithreading-interleaved running of sections of code in a 
single CPU. The  sections of code  compete  for  control of the CPU, 
and  control is switched  among them by a piece of software called 
a scheduler (q.v.). 

Network  description-same as flow specijication. 

Ownership-a module owns  a dynamic entity if the entity has ar- 
rived on a queue and caused triggering (q.v.)  or  has been ob- 
tained with a GET, if it has been unchained from another  entity, or 
if it has been created  or obtained from a generator  queue.  The 
module owns  the  entity until it positively disposes of it (puts  it, 
chains  it, or  destroys it). 

Parameter block-a block of read-only data  coded with the flow 
specification, to specify application-dependent  parameters  for 
generalized modules. 

Port-point  of attachment of queue  to  module, specific to  the 
function of that  queue  for  that module (for  example,  port  number 
1 is the  output port for  the majority of READ modules). 

Process-same as module. 

Queue-a buffer that acts  as the communication path between 
two or more modules; it has a capacity of some number of en- 
tities. 

Scheduler-software that  controls  the flow of control between 
modules and the flow  of entities from one module to  the  next. 

Scratchpad-temporary storage allocated to any program or  sub- 
routine in the AMPS environment; it can hold temporary  results 
that  are  not  required  across more than  one  invocation. 
Stream-a set of entities  that  pass  across a given queue. 

Subnet-a section of the flow specification. 
Subroutine-a routine invoked by, and subordinate to,  another 
program or  subroutine;  the invoker is suspended until the subrou- 
tine terminates. 
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Triggering  queue-a  queue  that contains the only entities that can 
trigger invocation of the module; the  queue is attached to port 
number 0 of the module. 
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