
A procedure of observation and correction is presented for the
coarse tuning of an MVS system by analyzing it into its software
and hardware components and increasing their eficiency succes-
sively. The method involves adjustments to swapping, the input-
output load, the CPU load, main storage, and the system re-
sources manager. Also discussed are performance measures nec-
essary to characterize a system, tools to tune a system, and vari-
ous aspects of data gathering and the eflects of adjustments on
system parameters. Two illustrative case histories are also given.

Performance tuning in OS/VS2 MVS
by T. Beretvas

Probably as technologically and practically significant as bringing
virtual storage into the world of commerce and industry has been
the introduction of Multiple Virtual Storage (MvS). The earlier
virtual storage systems are often termed “single virtual storage”
systems because a number of users share concurrently the total
available virtual storage. Single virtual system products are ex-
emplified by the IBM Disk Operating System (DOS/vS) and o S / v S l
and OS/VSZ Release 1. Later releases of o s / v s 2 (i.e., Releases 2
and 3 and enhancements thereof) are known as Multiple Virtual
Storage or simply MVS. In MVS, each user has all the virtual stor-
age (16 megabytes) permitted by the addressing structure avail-
able to him. The design enforces complete separation of one
user’s programs and data from those of another.

MVS i? an operating system that is significantly more complex
than its predecessors, and requires a large share of the com-
puter’s resources (particularly in terms of main storage). This fact
and the cost-conscibusness of computer users necessitate the tun-
ing of the $$mputer system to exploit its resources to the greatest
possible &$tent. Often tuning is a cost-effective alternative to the
acquisition of additional hardware. MVS lends itself to system tun-
ing much more efficiently than previous operating systems, since

Copyright 1978 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

290 BERETVAS IBM SYST J 0 VOL 17 NO 3 1978

BERETVAS 291

load, main storage, SRM).
0 Evaluation of a tuning effort.

Installation control consideration.
0 Case histories.

history The IBM operating system that is now known as OS has three ma-
jor versions, MVT, SVS (os/Vs2-1), and MVS (OS/vS2-2 and os/vS2-3).
(The two operating systems with more limited functional capabili-
ties, MFT and OS/VSl, are not discussed in this paper.) MVT repre-
sents a sophisticated enhancement of computer usability by al-
lowing the concurrent executions of multiple jobs, and is limited
primarily by the capability of fitting jobs into main storage. svs
removed a significant part of the main storage restriction by al-
lowing that during job execution at any given time only portions
of a job region size need reside in main storage. Other parts of a
job region not needed at a given period need not reside in main
storage, but rather in virtual storage. Thus main storage page
frames are freed by page stealing.

Because of main storage limitations on many MVT systems, CPU
utilization has typically been in the thirty to fifty percent range. In
contrast, svs (and MVS) systems often run with eighty to one hun-
dred percent CPu utilization. The main storage limitation in MVT
exists in part because of the cost of main storage and in part be-
cause often uniform job sizes of 100 K to 250 K bytes are used in
many installations, even though the effective main storage utiliza-
tion of a job step at any given time may be only 30 K-50 K bytes.
SVS and MVS have eliminated the main storage constraint by the
use of virtual storage; i.e., only the main storage actually required
in a particular job step is occupied, often with the result that the
multiprogramming factor has increased. Another new consid-
eration has been the increased functional capability provided in
SVS and MVS, often leading to heavier CPU utilization by the sys-
tem as opposed to the user’s program‘. In MVT, therefore, the key
constraint on a system’s ability to perform work has been main
storage. In SVS and MVS, CPU utilization also becomes a signifi-
cant factor. In SVS, main storage contention between competing
users is resolved by page stealing, that is, the freeing up of unused
page frames.

An independent development was the introduction of a Time
Sharing Option (TSO) into MVT. Initially, MVT had been essentially
a batch-oriented system in which most jobs competed for CPU
availability except when waiting for completion of an I/O opera-
tion. The TSO user at a terminal has a different utilization pattern.
His function usually requires minimum CPU use followed by long
delays consisting of transmission time and terminal use time
lumped together as “think time.” Given this pattern of computer
utilization, it is natural that a swapping philosophy was in-

I 292 BERETVAS IBM SYST J 0 VOL 17 NO 3 0 1978

troduced for TSO, both in MVT and SVS. Thus a TSO region has
been defined so that each TSO user operating in a region is
swapped into main storage and allowed to execute for a period of
time. This is often the execution time required by the TSO com-
mand. Then the main storage region is often swapped out to free
up the region for another TSO user. As an example, an average
main storage occupancy of three seconds and a think time of 27
seconds allows ten TSO users to share the same main storage re-
gion provided there are no delays. With the advent of MVS (OS/
vs2-2), TSO ceased to be an option and became an integral part of
the operating system. Furthermore, TSO swapping was extended
to most users. Thus most address spaces (i.e. users) can be (and
are) swapped. This swapping philosophy was very useful in TSO,
and it was expected that it would be heavily used in the tele-
processing (TP) and data communications MVS environments.
Thus many short TP transactions would compete and be swapped
in and out as required. Furthermore, swapping was to be used in
MVS to relieve main storage contention in lieu of page stealing as
in SVS.

MVS has also removed many serializing bottlenecks that have ex-
isted in MVT and s v s , but performance problems still remain. This
paper discusses MVS tuning procedures that eliminate or diminish
the effects of some common performance inhibitors encountered
in MVS systems. We begin with a discussion of system perform-
ance measures.

System performance measures

Each installation defines its performance objectives differently.
The objectives reflect habit as well as experience, and primary
importance is placed on different types of work by the computer
installation. Most installations agree, however, on the following
key performance measures:

0 Batch job elapsed time: the time elapsed from job entry into
the computer system until the job leaves the computer sys-
tem.

0 Batch job turnaround time: the elapsed time from job delivery
to the computer room until the job output is delivered.

0 Throughput: the number of jobs completed during a certain
period of time.

0 Response time: the time from the entry of a transaction at a
terminal until a response is obtained from the system.

0 Transaction rate: the number of transactions completed dur-
ing a certain period of time.

Often performance evaluation is done on a benchmark basis. A
batch job stream is constructed and held in a queue. An internal

IBM SYST J 0 VOL 17 0 NO 3 0 1978 BERETVAS 293

reader program reads the preloaded jobstream from a direct ac-
cess device. Then the queue is released, and elapsed time is mea-
sured from the time the queue is released until the last job is fin-
ished. These measurements are usually fifteen to thirty minutes in
length for practical reasons, and are not very useful unless the
initiators become associated with the jobs quickly (i.e., no start-
ing delay) or if a trail-off period occurs (i.e., the initiators do not
become inactive in quick succession, say less than a minute). The
system log or the System Measurement Facility (SMF) can be
used for this measurement.

Another way of evaluating performance is to select the most
heavily used half-hour period in the test environment, when per-
formance problems are most clearly manifested, and measure and
evaluate performance measures during that period.

Response time in a teleprocessing or a TSO environment can be
measured with a stopwatch. A shortened version of the real TSO
response time is, in fact, measured by Measurement Facility/l
(MF/I) or its enhanced successor, Resource Measurement Facil-
ity (RMF) in an MVS environment. MF/I distinguishes among very
short, moderately short, and long TSO transactions. MF/I mea-
surements represent internal system response times, whereas real
TSO response times also include such additional external delays
as line delays. The TSO transaction rate is also measured by MF/l.

performance MVS is a more advanced operating system than SVS and MVT and
tools and provides the following facilities and tools for performance tuning
facilities that have previously been unavailable:

0 The system measurement facilities MF/ll and RMF,2 which
give the user of the system the capability of monitoring and
assessing system performance.

0 The System Resources Manager (SRM), a component explic-
itly designed to provide the capability of resource allocation
and contr01.~

0 Various special programs4 that provide a detailed perform-
ance analysis capability.

0 Accumulated documented operational performance experi-
ence such as is shown in Reference 5 .

Other conventional performance tools, such as a System Mea-
surement Facility (SMF), Generalized Trace Facility (GTF), and a
system log are also available.

performance If the system performance measures seem to indicate inadequate
parameters performance, these performance parameters are used to identify

performance bottlenecks. The computer system has three major
resources, the central processing unit, input/output facilities, and
main storage. MF/I provides the means of measuring the use of
these three resources via key performance parameters.

294 BERETVAS IBM SYST J 0 VOL 17 NO 3 1978

Table 1 Typical system resource utilization parameter values

CPU utilization
Main storage utilization
(available frame count)
I/O utilization
(channel and device utilization)

Block multiplexer channel utilization
Selector channel utilization
Seek direct access device utilization
Nonseek (IBM 2305) direct access
device utilization (for one exposure)

Maximum paging rate for IBM 3330-1
(pages/s)
Maximum paging rate for IBM 2305-2
(pages/s)

Swap ratio

70%

90

98%

10

10%
10%
10%

10%

5

10

30%
60%
40%

30%

15

30
(50 in OS/VS2-3)

1.2

It has been observed that if any one of the three system resources
is used beyond a certain limit, the system is faced with a perform-
ance bottleneck that must be removed before the system perform-
ance measures can be improved. On the other hand, low utiliza-
tion of a system resource may indicate a bad balance of hardware
resources. For example, low CPU utilization may be due to in-
sufficient main storage or 110 resources. The author’s experience
indicates typical system resource utilization in the MVS environ-
ment as given in Table 1. In a well-balanced system, utilization
data are between the low and high figures. Note that these data
represent only general guidelines based on 0S/VS2-3.6, and may
differ from those that characterize optimum conditions under spe-

-.. cific types of workloads. Performance parameter values were col-
lected by MF/l over a test interval of about fifteen minutes.

--

As mentioned previously in this paper, MVS has been designed MVS
with address space swapping as its primary control mechanism. performance
The System Resources Manager (SRM) uses swapping primarily control
to overcome main storage shortages. The SRM is also designed to philosophy

, swap address spaces that are using an excessive amount of 1/0
and CPU resources, or to replace an address space in main storage I
that is ahead of its performance objective with an address space
that is behind its performance objective.

The original MVS philosophy, therefore, called for over-initiation,
by which more batch initiators are started than can be accommo-
dated in main storage at one time. Thus SRM can-in theory-
balance the system resources and the use of these resources
among the many users.

IBM SYST J VOL 17 NO 3 1978 BERETVAS 295

In practice it has been found that the over-initiation philosophy is
misconstrued primarily because swapping is a heavy consumer of
system resources, in terms of CPU cycles and I/O device utiliza-
tion. Accordingly, it has been found more productive to modify
the swapping philosophy by minimizing swapping, especially
batch swapping.

A modified corollary objective is to limit swapping to TSO address
spaces, preferably at transaction termination time. This corollary
objective can be accomplished only for short TSO transactions.
Sometimes most of the MVS tuning effort has to be concentrated
on minimizing swapping.

In os /vs2-3 .7 , swapping is not used directly to alleviate main
storage shortages. The same effect, however, is accomplished
indirectly. If paging is excessive, the SRM resorts to swapping to
reduce the paging bottleneck.

A secondary control mechanism acts on dispatching priorities.
Within the Automatic Priority Group (APG), heavy CPU users
(i.e., those with infrequent I/O waits) receive low priority,
whereas heavy I/O users receive high priority. If there are enough
users in the system main storage, low-priority address spaces
may not be dispatched at all. Thus dispatching priority has to be
judiciously manipulated to give good response time to tele-
processing applications and to TSO transactions to reflect the pri-
orities of the installation.

A third major control mechanism acts on page stealing. In this
mode, page frames that have been unused for a period of time are
stolen; i.e., they are placed in the list of available frames. In
OS/VS2-3.6, pages in address spaces with low priority are stolen if
the CPU use of the address space exceeds a given limit. Pages in
the System Paging Area (SPA) and high-priority (system) address
spaces are stolen on a real-time basis. In O S / V S ~ - ~ . ~ , page stealing
takes place across all address spaces whenever a page frame
shortage occurs. In both VS2-3.6 and -3.7, pages are also stolen
from address spaces prior to swapout, to minimize the paging
load due to swapping by reducing swap sizes. In some cases,
the page-stealing algorithms may have to be manipulated by local
modifications so that excessive page use (or stealing) in the
System Paging Area (SPA) and in key address spaces is avoided.

Performance tuning

The tuning principles of MVS are essentially an extension of tun-
ing principles in MVT and s v s . Tuning in all three operating sys-
tems is basically the repetitive application of the simple operation
of identifying and removing major bottlenecks in the system.
Upon the successful removal of a system bottleneck, another bot-

296 BERETVAS IBM SYST J VOL 17 NO 3 1978

tleneck is often identifiable. The successive removal of bot-
tlenecks, however, can be a never-ending operation. This is par-
ticularly so because the load presented to the computing system
is not a constant, but rather time variant.6 Thus, a bottleneck may
persist for a period of time, then be removed, and then another
bottleneck may appear in its place.

Tuning normally begins by selecting perhaps a fifteen-minute pe-
riod during which the system is heavily used. During the selected
period, MF/l is used to obtain data about the system. The MF/l
report is then examined to identify system bottlenecks. After this
initial tuning analysis, other tools used in conjunction with MF/l
for more detailed tuning include the System Information Routine

tion programs. The most detailed tuning makes use of the Gener-
alized Trace Facility (GTF) data and analysis.

Then, using the normal methodology of scientists, the perform-
ance analyst makes a hypothesis about the cause of the bot-
tleneck. While doing this, he may find that more data are needed.
With sufficient facts, the analyst decides on corrective action.
The next step is to perform an experiment and make another mea-
surement after the corrective action to prove or disprove the hy-
pothesis.

The unfortunate part of this procedure is that often, for several
reasons, the experiments may not lead to a clear conclusion as to
whether the performance bottleneck has been eliminated. The
measurements, which must be of short duration for practical rea-
sons, take place on a production system, and thus may not be
repeatable. The change in measured results may be within the
bounds of the measurement error. Also, the elimination of one
bottleneck may lead to the emergence of another bottleneck, ne-
cessitating the repetition of the whole process. Nonetheless,
through this iterative process, dramatic performance improve-
ments are often possible.

The first important system bottleneck usually encountered is ex- swapping
cessive swapping. Therefore, the performance analyst must first considerations
minimize swapping in order to reduce both CPU and I/O loads that
result from swapping. The performance analyst should aim for
correct main storage use because excessive swapping often in-

~ dicates excessive use of main storage.

Teleprocessing (TP) applications often require consistent and rea-
sonably fast response time (perhaps one to ten seconds). In most
such cases, the TP application programs should be set to non-
swappable status by specifying this constraint in the program prop-
erty table or in the programs themselves by issuing DON’T SWAP
SYSEVENT. If consistent response time is not an important crite-

I IBM SYST 1 VOL 17 NO 3 1978 BERETVAS 291

rion, if-in other words-an occasional long response time (per-
haps thirty seconds) is acceptable, then the nonswappability of TP
applications can be avoided. The penalty paid for non-
swappability of an application is an effective loss of main storage
for other processes.

The most frequently encountered TP application is the IBM pro-
gram product Information Management System (I M S) . ~ It is
strongly recommended that both IMS control and message re-
gions be set nonswappable.

Nonswappability is necessary in part because IMS is a TP system.
In addition, IMS 1.1.1 introduced means called ‘‘latches’’ to allow
concurrent processing in two parts of a multiprocessing (MP) sys-
tem. If an IMS region holds a latch and is swapped out, another
IMS region that requires the latch cannot execute. Non-
swappability avoids this deadlock.

Batch swapping can and should be avoided by controlling the
number of initiators started. A good strategy is to classify the
initiator structure by region sizes used, and to start a sufficient
number of initiators to saturate the available main storage that is
not needed by the system. As a first approximation, when the
maximum region sizes are added, their sum should not exceed
two times the available main storage. Such a strategy can be veri-
fied by ascertaining that batch jobs are not swapped extensively
and no excessive paging takes place.

Page frame shortage conditions signaled by the AVQLO SYSEVENT
cause swapping directly in OSlvS2-3.6 and indirectly in os/vs2-3.7.
If too many initiators are started, exchange swapping can occur;
i.e., an incomplete batch job is swapped out and replaced by an-
other batch job in main storage. Thus, if extensive batch swap-
ping occurs, a reduction in the number of initiators started is of-
ten an appropriate remedy.

It may be necessary to set jobs that must be completed by a cer-
tain time and long-running batch jobs to an effectively non-
swappable status. This can be accomplished by placing the batch
application in a separate performance group and by setting its
Interval Service Value (ISV) high (e.g., to a value of 10 000) or by
making it nonswappable. Swapping these jobs may lead to unpre-
dictable termination times and may be an unnecessary additional
load on the system.

Swapping of TSO users is a design feature of MVS. The perform-
ance analyst should attempt to provide that trivial TSO transac-
tions, such as simple data set editing operations that consume a
minimal amount of system resources, are not swapped during
their execution. Experience shows that in many well-balanced

I 298 BERETVAS IBM SYST J VOL 17 NO 3 1978

systems eighty to ninety percent of all TSO transactions are trivial
ones. If multiple swaps are necessary for the completion of the
trivial TSO operation, the swapping load becomes very heavy, and
both TSO response time and batch throughput deteriorate rapidly.
One may assume that trivial TSO transactions must be completed
in less than five seconds. For this to happen, sufficient system
resources must be provided. In practice, sufficient main storage
frames must be available to swap in ready TSO users. Access to
the CPU is to be provided for the swapped-in transactions, and
swapping itself should not be a bottleneck through a dearth of
paging devices. The performance analyst may perform a quick
calculation to assure the availability of sufficient main storage for
TSO users. The number of main storage frames N required for TSO
use is given approximately as follows:

where

A = number of active TSO users in the system.
RT = system residence time of a TSO user.
TT = user think time.
MS = number of frames required for each TSO user.

Typical values of these parameters are the following:

RT = desired TSO trivial response time plus 1 second.

Desired TSO trivial internal or system response time (as reported
by MF/I) can be set, for example, to 1 second for System/370 Mod-
el 168 installations, and 3 seconds for Systed370 Model 158 in-
stallations. Accordingly,

RT,,, = 4 seconds and RT,,, = 2 seconds.
TT = 18 seconds.
M S = 20 frames.

In this example, the numbers of main storage frames are the fol-
lowing:

Thus, for Systed370 Model 158 with A = 20 active users, N = 80
frames, and for Systed370 Model 168 with A = 100 active users,
N = 200 frames.

The number of main storage frames required for TSO use is addi-
tional to the operating system and batch requirements. Access to
the CPU must be provided for the TSO user while his address space
is swapped in. This may have to be accomplished through the
manipulation of dispatching priorities, a function that is discussed
later in this paper in the section on CPU load considerations.

I IBM SYST J 0 VOL 17 NO 3 1978 BERETVAS 299

A measure of swapping is the swap ratio, which is defined as the
number of swaps divided by the number of terminated TSO trans-
actions, the data for which are reported in MF/l. Ideally, this ratio
should approach 1 .O. Since terminated TSO transactions are auto-
matically swapped out, a ratio of 1.0 means that only terminated
TSO transactions are swapped.

The performance analyst may estimate the TSO transaction rate T
in the system, which, in turn, gives an estimate of the paging rate
SPR due to swapping.

A
R T + TT

T =

SPR = F x T x MS

The factor F reflects the fact that whereas both swap-in and swap-
out take place, a swapped-out working set may be reduced
through page stealing at swap-out time. Experience shows that
the value of F is in the range 1.7 to 2.0.

A typical value for the quantity RT + TT is 20 seconds; thus,

and
SPR = 1.7 x A

assuming that most transactions are trivial. Thus, for a System/
370 Model 158 with A = 20 users, T = 1 transaction per second,
and SPR = 34 pages per second; for a Systeml370 Model 168 with
A = 50 users, T = 2.5 transactions per second and SPR = 85
pages per second. The calculations just given represent a first
approximation. Congestion, particularly in the I/O area, intro-
duces nonlinearities and increases response time.

Paging not due to swapping should be small in a well-balanced
system. In such a system, the Nonswappable Paging Rate (NPR)
includes the System Pageable Area (SPA) paging, Virtual Input/Out-
put (VIO) paging, and the recovery of address space pages lost
through stealing. As a rough guideline, NPR in paging should
rarely exceed five pages per second on a Systed370 Model 158
in a nOn-TSO environment, and ten pages per second in a TSO
environment. NPR for Systed370 Model 168 is about 15 pages
per second in a non-Tso environment, and 25 pages per second in
a TSO environment.

Whenever the swapping frequency is reduced in a system (usually
by minimizing batch swapping), considerable CPU and I/O savings
can be obtained, since the swapping function requires the execu-
tion of many instructions and the transmission of all the swapped
pages.

300 BERETVAS IBM SYST 1 VOL 17 NO 3 1978

After a swapping problem has been relieved, the performance an- inputloutput
alyst can address the next bottleneck, which is usually in the uo load
area. The I/o resource use can be excessive and can consequently considerations
be reduced. The use of I/O resources may also be incorrectly dis-
tributed, and may therefore require load balancing, which begins
with the very old and honored task of data set placement. Data
set placement is distribution of data sets such that no channels,
control units, and I/O devices are excessively used. Furthermore,
on devices with multiple data sets, seek distances between data
sets should be minimized. Bad data set placement in any oper-
ating system makes it impossible for the system to achieve its full
potential. In MVS initial tuning of I/O configurations can be done
to a large extent by the channel and device use reports of MF/I,
which can be used to identify channel and device bottlenecks.

Channel bottlenecks may be deduced from unevenly distributed
channel utilization data, or from channel-busy and mu-wait data
in excess of ten to fifteen percent. Excessive channel utilization
data (i.e., higher than thirty percent utilization on a block multi-
plexer channel with seek devices) can be another indicator of
channel bottlenecks. Direct Access Device (DASD) bottlenecks
can be suspected if average queue length is higher than 0.05 (as
reported by MF/1 on the basis of sampling) or if DASD utilization
data are above forty percent. A DASD bottleneck may also be
present if the device activity count is higher than fifteen accesses
per second.

The first problem in data set placement is that of paging data sets.
The performance analyst, therefore, should evaluate the paging
rate required in the system to make sure that an adequate number
of paging data sets are defined to handle the paging load and that
the paging devices are spread across channels and control units
so as to reduce contention. Paging data sets should not be placed
on channels with heavy tape use. In a heavily loaded TSO system
(where there are 1.5 or more TSO transactions per second), the
use of an IBM 2305-2 storage system as a paging device is desirable
for fast response time.

The Auxiliary Storage Manager (ASM) paging algorithm maintains
the (assumed) position of the seek arm for each paging data set
and, when next using that data set, it selects the nearest cylinder
beyond the one last processed regardless of the actual physical
position of the seek arm. The ASM does not recognize inter-
ference on the seek arm position caused by another data set. Ac-
cordingly, two paging data sets should not be placed on the same
seek device, and only low-activity nonpaging data sets (if any)
should be placed on the device. Otherwise, serious performance
degradation may result.

IBM SYST J VOL 17 NO 3 1978 BERETVAS 301

mize seek distances (to a few cylinders) among the most fre-
quently used data sets. Such performance tuning requires use of
the Generalized Trace Facility (GTF) and .appropriate reduction
programs to identify the most frequently used physical cylinders,
in order to give guidance to the most frequently used data sets,
which are to be placed on adjacent cylinders.

Another very important facet of I/O load reduction is the consid-
eration of module utilization. Modules are fetched from libraries,
particularly the LINKLIB and the TSO command library, and vari-
ous local libraries. Many reentrant modules that are frequently
used in various installations do not normally appear in the page-
able Link Pack Area (LPA). The performance analyst can reduce
the number of fetch I/O operations required if he carefully exam-
ines reentrant module use with the aid of GTF and reduction pro-
grams, and places frequently used reentrant modules in LPA. Sim-
ilarly, frequently used nonreentrant modules (e.g. compilers)
should be identified and a fixed BLDL list set up for them. Often
the packaging of modules does not take the paging factor into
consideration. Modules should be packaged on page boundaries
and should use a large percentage (over ninety per cent) of stor-
age bytes available within a page. When a whole or part of a mod-
ule is smaller than 4 K bytes, the same page should be shared by
another module(s) with affinity to the first module. “Module affin-
ity” implies that when a certain module A is called, another mod-
ule B is also called, whether directly by module A or indirectly.
Usually, modules A and B are associated with the same function.

Another strategy is to package frequently used modules together,
regardless of their &nity. This strategy has been found very use-
ful and practical since it can easily be tailored to the requirements
of each installation.

The performance analyst should consider the use of page fixing
(i.e., making certain pages permanently resident in main storage)
for particular Link Pack Area (LPA) modules. It is true that fre-
quent reference to a page results in the functional fixing of these
pages. However, there are modules such as the STIMER that are
used only about every half second, which is not frequent enough
to result in functional fixing, but is frequent enough to represent a
real reduction in paging when these pages are fixed. Naturally,
fixed pages mean an effective loss of main storage frames and
should not be used indiscriminately.

There are some modules that require fixed status during part of
their execution (because of locking), and, consequently, they are
constructed to make use Of PGFIWPGFREE services. Some of these
modules have been changed to be sensitive to whether they have
been fixed by the installation, and thereby avoid issuing the

IBM SYST J 0 VOL 17 0 NO 3 0 1978 BERETVAS 303

PGFIX/PGFREE S v c s if not needed. Fixing such modules, even if
they are used frequently enough to remain in storage without fix-
ing, reduces the system overhead. Modules such as FETCH are
not fix sensitive. A local performance fix for these modules may
be useful.

One way to reduce the 110 load is to eliminate unnecessary 1/0
operations. Savings can be achieved by not writing unnecessary
or unusual SMF records and in some cases suppressing JES2 jour-
naling. The reduction in I/O operations may lead to other savings,
such as the avoidance of main storage or CPU interference by the
channels. The most important gain is through a reduction in con-
tention for the hardware in the 110 path, such as channels and
control units, and the avoidance of unnecessary instructions in
the CPU for the I/O transaction.

CPU load The Central Processing Unit load in the MVS system has become a
considerations more important consideration than it is in MVT. In MVT, system

performance is often constrained by the availability of real stor-
age. Thus only a few initiators can be started. Initiator bot-
tlenecks have been largely removed in MVS. However, the use of
virtual storage has introduced paging and swapping overhead,
and many of the supervisory functions, such as EXCP, have in-
creased in length because of the overhead associated with virtual
storage operations such as the relocate function. MVS has in-
troduced system recovery and MP capabilities that also increase
the number of instructions required for the execution of supervi-
sory functions. It is clear, therefore, that one appropriate action
for reducing the CPU load, which has the effect of redpcing a CPU
bottleneck, is to reduce the number of supervisory services in-
voked.

Many of the tuning actions discussed earlier in this paper result in
reducing the number of supervisory services used. Thus the use
of increased block sizes not only reduces the load, but also re-
duces the number of EXCPS required, which in turn reduces the
number of CPU cycles used. The use of VIO often has a similar
effect. Also, reduction of paging and swapping means a signifi-
cant reduction in CPU cycles used for paging. User programs
should be reviewed to reduce use of such SVC instructions as
GETMAIN, XCTL and LINK. For example, the repeated use of
GETMAIN can be avoided by the use of a single large GETMAIN.

Another consideration in a heavily cpu-loaded system is the dis-
tribution of dispatching priorities. All jobs without explicitly de-
fined dispatching priority are classified into the Automatic Prior-
ity Group (APG). In OS/VS2-3.6, priorities within the APG are re-
arranged by the System Resources Manager (SRM). As a con-
sequence, fast response requirements (such as TP applications

304 BERETVAS IBM SYST J VOL 17 NO 3 1978

and to a certain extent TSO) may fall into the APG. TP applications
should, therefore, often be assigned priorities above APG so that
response time is adequate, in spite of a heavy batch load. The
Telecommunications Access Method (TCAM) and IMS should have
very high priority.

Response time for trivial TSO transactions merits the same con-
sideration. It is possible to set TSO priority altogether above APG
to improve TSO response time. This approach is somewhat dan-
gerous, however, since it enables nontrivial TSO transactions (in-
cluding those with extensive error loops) to monopolize the sys-
tem. Thus in oS/vSZ-3.6 systems with many TSO users it is advis-
able to leave TSO in the APG, or to use a nonstandard-performance
ZAP. (ZAP is the capability to change an assembled program in
object form.) This starts out TSO transactions above APG, but, in
the last period of the TSO transaction, it drops into the Automatic
Priority Group.

In os/vs2-3.7, the APG functions have been extended. The SRM
rearranges priorities only within the mean-time-to-wait portion of
the APG. All considerations mentioned in connections with
0sm2-3.6 just described also apply to os/vs2-3.7 if the term “APG”
is replaced by the term “mean-time-to-wait portion of APG.” In
os/vs2-3.7, a TSO period can be explicitly set above the mean-time-
to-wait portion without the necessity for a ZAP.

In systems with small main storage capacity (two to three rnega-
bytes) the utilization of main storage has to be carefully consid-
ered. Difficulties may arise because the main storage require-
ments of MVS are around one megabyte and possibly more; the
main storage available for user address space is thereby limited.
Special attention must be paid to fixed storage requirements such
as TCAM buffer spaces and Job Entry Subsystem 2 (JESZ) buffer
sizes. The analyst asks such questions as: Should buffer size be
4 K bytes or less? Are all buffers really needed? Similarly the
packaging of TCAM, other TP applications, Link Pack Area (LPA)
modules, and user programs should be carefully reviewed. Is it
possible that part of a page frame is wasted either by being
unused or by containing modules that are not related to (i.e., not
called by) the other modules that reside in the same page frame?
GTF reduction programs and the Linkage Editor can be used for
this purpose. Every page frame saved (not used) represents clear
CPU and I/O saving through reduced paginglswapping.

MVS establishes the working sets of user address spaces and Sys-
tem Pageable Area (SPA) through page stealing. The rate of page
stealing is regulated by constants in the SRM. In some instances,
the rate of page stealing (especially in the SPA) has to be adjusted
for best performance. Nonstandard local modifications (perform-
ance ZAPS) may have to be used for this adjustment.

IBM SYST J VOL 17 NO 3 1978 BERETVAS

SRM
considerations

306

OSlvs2-3.6 provides page stealing on a real-time basis from the SPA
and nonswappable address spaces with priority above a given
level. Below that priority page stealing occurs from user address
spaces only after the address space has used a certain amount of
CPU time. This distinction between the two kinds of stealing can
be advantageously used. To provide page stealing from an ad-
dress space with low use of CPU time, the priority can be raised.
In contrast, page stealing can be decreased for an address space
with low CPU use by lowering the priority below the cutoff point.

In O S I V S ~ - 3 . 7 , page stealing takes place uniformly across all ad-
dress spaces. In some situations, it may be desirable to reintro-
duce page-stealing discrimination similar to that available in
OSNS2-3.6. For example, in an IMS environment, SPA and IMS ad-
dress spaces may have to be favored over other user address
spaces. Nonstandard performance ZAPS may have to be used for
this purpose.

In general, tuning of page stealing often involves the compromise
of selective increase or reduction in page stealing, with the objec-
tive of gaining available main storage for the favored address
spaces, at the expense of other parts of the system.

The System Resources Manager (SRM) controls the distribution of
system resources, primarily by swapping. The Installation Per-
formance Specifications (IPS) represent the guidelines that the
SRM attempts to follow. Tuning with the SRM often requires an IPS
with a more suitable distribution of system resources among com-
peting job categories. Performance improvement for one category
of jobs often leads to performance degradation for another cate-
gory

The IPS supplied with the OSlvS2-3.6 system shown in Figure 1
provides a reasonably good balance. The balance provides for
adequate batch throughput and adequate TSO response time. (It is,
however, somewhat batch oriented.) Therefore, tempting though
it may be to experiment with the SRM and adjustments to the IPS,
such temptations should be resisted initially. Many other tuning
adjustments can constructively be made prior to IPS adjustments.
Ill-considered and incompletely understood IPS changes lead to
increased swapping. It must be remembered that the modified
MVS control philosophy calls for minimal swapping; in fact, the
objective of the performance analyst is often to limit swapping to
completed TSO transactions. Nonetheless a modified IPS can often
improve TSO response time, perhaps at the expense of batch
throughput, and can be used to reduce-or increase-swapping
for a particular kind of job or for the whole system.

The IPS supplied by the system can be changed to reduce the
swapping of batch jobs. The SRM tends to keep a job in its Interval

BERETVAS IBM SYST J VOL 17 NO 3 1978

Figure 1 Example installation performance specifications for OS/VS for OSiVS2-3.6
p 400
a
c
z
3
w
0
>
w
Ln

-

-

300

200

100

0
20 40 60 80

WORKLOAD LEVEL

Service Value (ISV) period until it uses up its service-unit quota in
main storage. Hence a selective increase in the ISV values of
batch jobs probably results in reduced swapping for the favored
jobs. Perhaps one way of accomplishing this is to provide sepa-
rate performance groups with high ISV values for batch jobs of
great importance.

Yet another way is to increase the initial ISV value for all batch
jobs (where PGN = 1); currently ISV = 1 K when the Perform-
ance Group Objective OBJ = 3, and I S v = 2 K for OBJ = 4. An
adjustment of I s v = 2 K for OBJ = 3 and I s v = 10 K for OBJ = 4
might reduce batch exchange swapping.

Another consideration in the IPS is the Main Storage Occupancy
(MSO) factor. In the IBM-supplied IPS, MSO is set to 0, which can
be interpreted as meaning that main storage use is unimportant.
In fact, in environments where TSO and batch users all use only
10-30 frames of main storage, and there is no shortage of main
storage, MSO can be set to 0 because at least it allows a measure
of repeatability that is reduced if MSO becomes nonzero. (Work-
ing-set size depends on system load.) However, in environments
where main storage is critical (two- and three-megabyte configu-
rations), a nonzero MSO factor should be used. Using an MSO fac-
tor results in rapid service unit accumulation by users with large
main storage requirements. Rapid service unit accumulation ulti-
mately results in faster swapping out of these jobs, which in turn
means longer elapsed time. This is a desired goal, however, since
users with excessive main storage should be penalized.

IBM SYST J VOL 17 NO 3 1978 BERETVAS 307

In os1vs2-3.7, SRM has been completely redesigned in such a way
that its control mechanisms are simpler and easier to understand
and manipulate. SRM still controls the system resources and its
main method of control is still swapping. Additional parameters
for the IPS are provided to control the system. For each user do-
main (grouping of competing jobs and transactions), Minimum
and Maximum Multiprogramming Levels (MPLS) and weights can
be defined. SRM keeps the multiprogramming level (i.e., the num-
ber of jobs and transactions) of a domain within the limits de-
fined. If system contention arises (for example, by excessive pag-
ing or page stealing), SRM decreases the MPL target of the least
favored domain. The MPL target adjustment often leads to swap-
ping out an address space from the affected domain.

In OS/VS~-3.7 systems with heavy batch and TSO loads, the IPS de-
sign becomes very important. The performance analyst must
carefully consider the domains to be defined, the minimum and
maximum MPLS to be defined for each, and the relative impor-
tance of the domains as identified by the weights. Bad IPS design
usually leads to poor system performance. The extended parame-
ters in the IPS can be readily used to prevent extensive main stor-
age contention by limiting multiprogramming levels in all do-
mains.

TSO response time can be readily improved by assuring fast swap-
ins for ready TSO users. This can be accomplished by setting a
high minimum MPL for the TSO domain. TSO can be favored over
batch by giving higher weight to a TSO domain than to a batch
domain, with the attendant result that a batch MPL target is re-
duced in system contention situations. CPU and main storage re-
sources can be reserved for TSO use by setting low maximum MPL
limits on batch domains. In contrast, TSO resource consumption
can be limited in the system by setting a low maximum MPL for
the TSO domain, with an almost inevitable response-time degrada-
tion due to transactions that are waiting for main storage during
periods of heavy use. Swapping frequency can be still further re-
duced by the use of high ISV values.

Evaluation of a tuning effort

The performance analyst is often called upon to perform the sys-
tem tuning because of the deterioration of system performance
measures. The ultimate check on such work, therefore, is the im-
provement in system performance measures. The analyst’s work,
however, cannot take into account long-term batch throughput or
real (user) response time, since normally he is not operating with
those factors because of time constraints in his tuning effort. In-
stead, system evaluation (for the short-term measurement inter-
val) can usually be accomplished only with the aid of the system
log and MF/l.

308 BERETVAS IBM SYST I VOL 17 NO 3 1978

~ ~~~ ~~~ ~~ ~~ ~ ~

The analyst assumes that his tuning work has been successful if
one or more (preferably all) of the following conditions have been
met, compared to previously obtained results:

0 The number of service units delivered has increased.
0 The transaction rate has increased.
0 The reported system response time has been reduced.
0 The throughput has increased.

A subsequent check on the work of the analyst must be made,
however, by comparing measurement trends over longer periods.

Sometimes, of course, one performance measure shows improve-
ment, whereas another measure shows deterioration. The objec-
tives of the installation then determine whether the tuning has
resulted in performance improvement. Naturally, the perform-
ance analyst must also verify whether the bottleneck that he
wants to eliminate has been reduced. To do this, he checks the
performance parameters (CPU, channel and device utilization,
swap ratio, etc.). The performance analyst can call a halt to his
effort if most of these parameters are neither underutilized nor
overutilized, as is discussed previously in this paper in the section
on performance parameters, without any obvious bottlenecks
present.

It is necessary to use direct performance tuning, but this is not
enough by itself. The installation has to orient its total system
operations to ward good performance. Performance analysis has
been discussed up to this point, but in many installations there is
no one specifically assigned to perform such analyses. In such a
case, it is advisable in fact to assign a well-trained system pro-
grammer to become a performance analyst. His job is to monitor
system performance, tune the system, and act as advisor to users
of the system. He should also become an advisor on operational
procedures. It is suggested that in an operational MVS environ-
ment MF/l data be collected throughout the day on the SMF data
set and the MF/l analyzer program be used to reduce the data on a
daily basis, for use by the installation manager and his perform-
ance analyst.

It is desirable to have a well-established system of job classes and
to give priority to jobs that use only a small portion of the system
resources (CPU, I/O, and main storage) over long-running and ex-
pensive jobs. Priority of small resource users can be enforced by
a judicious selection of initiator classes and by the IPS.

For example, class A might be defined as that of jobs that use less
than a 100-K region size for less than five seconds of CPU time.
Class B might be defined to include jobs that use less than a 150-K
region size for less than ten seconds of CPU time. (A direct correla-

IBM SYST J VOL 17 NO 3 1978 BERETVAS

More class A initiators are started than class B initiators, and
class A jobs may have their own performance groups (or do-
mains) with better performance objectives and/or constraints
than class B jobs.

SMF and JES2 exits should be used to enforce the CPU time esti-
mates by abnormally terminating jobs that exceed their limit.
Also, exits can be used to catch those who use an improper class
for a long job. Inactive TSO terminals should be logged off by SMF
exits. Another important consideration is to limit the size of VIO
data sets used by a JES2 exit or by other methods, such as use of
the IBM 2305-1 storage system as a virtual storage device for VIO.

In spite of vigorous testing, performance problems sometimes oc-
cur in the operating system because of incorrect coding. Such
code sometimes manifests itself only in poor performance as op-
posed to ABENDs. Therefore, it is important to apply Program
Temporary Fix (PTF) tapes soon after they become available, and
not to be reluctant to apply so-called performance ZAPS. This
way, the user incorporates the latest performance improvements
into his system.

Case histories

case The system installed is a two-megabyte System/370 Model 158
history1 that is configured for TP applications, IMS data communications

applications, and 15 batch initiators running OS/VS2-3.6. Initial tun-
ing resulted in the following performance:

0 Service definition coefficients: CPU = 12, IOC = 3.7, MSO = 3.0.
Interval Service Value of TP application set to 15 000 (high) to
reduce swapping.

The problem experienced is erratic TP response time and low
batch throughput. Performance analysis, using SIR, reveals that
the TP application swaps once per minute. It further reveals that
only three batch initiators are in main storage in addition to TCAM
and two TP applications. Further, both TCAM and the TP applica-
tions use an excessive amount of main storage.

On the basis of the initial analysis the following actions are taken:

Make TP applications nonswappable; set dispatching priority
to 255 (to enable stealing, which does not take place because
of low CPU use).
Reduce the number of TCAM buffers. Out of 150 buffers allo-
cated, only 50 are being used.
Reduce the number of initiators from 15 to 4.

3 10 BERETVAS IBM SYST J VOL 17 NO 3 1978

0 Make the IMS application privileged, so that it is swapped only
if in a long-wait status. Set the IMS priority above the real-time
page-stealing limit to 253. (Later it was found that the privi-
leged setting for IMS was not sufficient. IMS had to be made
nonswappable.)

The actions taken have had the following results:

0 TP application main storage use has been reduced from 73

0 TCAM use has been reduced from 55 to 40 frames.
0 TP response time has stabilized.

The installation has two Systed370 4-million-byte Model 168 case
systems configured in a loosely coupled multiprocessing environ- history 2
ment, using J E S ~ . The system under investigation is the CPU that
runs the controlling (global) side of JES3, using MVS 3.7. The sys-
tem exhibits the following symptoms of unsatisfactory perform-
ance: low batch throughput and hesitating printers.

Initial performance measurements reveal the following condi-
tions:

0 Heavy utilization of the Pageable Link Pack Area (PLPA). Pag-
ing data set as measured by RMF is 48 percent; queue length is
0.09; and the SPA page-in rate is 17 per second.

0 Paging in the JES3 address space, as measured by SIR, is 25
plus per second, which is considered to be heavy.

0 The JES3 working storage varies rapidly between 180 and 360
frames.

0 Number of initiators started is 13.
CPU utilization is between 60 and 85 percent, as measured by

frames to 35 frames.

the RMF.

Analysis:

0 Paging is excessive, especially for PLPA and JES3.
0 Storage overcommitment is too high.

Tuning actions taken:

0 Paging configuration is changed so as to obtain dedicated pag-

0 Batch ISV values are increased in order to reduce exchange

0 The batch minimum MPL value is reduced so as to allow batch

0 Some unnecessary modules from the fix list are removed, in

0 Batch default region size is reduced from 800 K bytes to

ing devices and thereby reduce the delay in paging.

swapping in batch domain.

swapouts.

order to reduce serious storage overcommitment.

IBM SYST J VOL 17 0 NO 3 1978 BERETVAS 3 11

312

256 K bytes in order to reduce the main storage requirement
of some jobs.

0 A local performance fix (ZAP) is used to guarantee a certain
number (250) of real storage frames for JES3. This operation is
called “fencing.”

0 A local performance fix is used to favor PLPA over other areas
of the system regarding page stealing (i.e., less page stealing in
PLPA, and more elsewhere).

0 Number of initiators is reduced to 1 1 .

Results of the tuning action:

0 JES3 paging is reduced from 25 pages per second to 8-15 pages
per second with the JES3 working set range between 250 and
360 frames.
PLPA working set size is increased to 175 from 110 frames,
with PLPA paging reduced to 12 pages per second from 17
pages per second. There is no more queuing on the PLPA data
set.

0 Utilization of the PLPA data set is reduced to 30 percent.

The batch throughput measurement taken over a one-day period
also reveals an improvement of 10 percent in the number of jobs
processed, as compared with previous results. Following this tun-
ing action, attempts are being made to further reduce paging.
When this is done, throughput is correspondingly reduced. Thus
in the present storage-constrained environment, the paging level
attained is necessary for adequate throughput, although the pre-
vailing situation would be too high for many installations. The
balance between paging and throughput in this installation can be
further improved only by the addition of more storage.

Concluding remarks

This paper has presented a practical initial approach to perform-
ance tuning; detailed tuning must be tailored to each specific in-
stallation. Performance tuning in MVS has become easier through
the wider availability of performance tools and the use of an ana-
lytical approach to performance evaluation and improvement.
Performance tuning has also become much more important be-
cause of the cost-consciousness of customers and the heavy re-
source use of MVS. As a further result of improved analytical ca-
pabilities, user expectations are also higher. Thus the con-
scientious user of MVS has to devote trained analysts to
performance monitoring, analysis, and tuning. Such efforts tend
to pay for themselves in cost reductions and user satisfaction be-
cause of better performance. Although the illustrations provided
are mostly for OSlvS2-3.6, the methodology is generally applicable.

BERETVAS IBM SYST J VOL 17 NO 3 1978

Tuning involves the minimizing or elimination of unnecessary
CPU, 110, and main storage use, the elimination of system bot-
tlenecks, and the possible balancing of the system by favoring
one job category at the expense of another, if necessary. Often
savings in one resource means additional expenditure in another.
Just as often, however, savings in one resource means savings in
all. The art and science of performance tuning lie in finding the
suitable mix of system adjustments that provides the best avail-
able system performance to meet the installation requirements.

~ CITED REFERENCES
1. OSlVS2 System Programming Library Initialization and Tuning Guide, Order

No. GC28-0681, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

2. OSIVS2 MVS Resource Measurement Facility (RMFJ Reference and User’s
Guide, Order No. SC28-0922, IBM Corporation, Data Processing Division,
White Plains, New York 10604.

3 . H. W. Lynch and J. B. Page, “The OS/VS2 Release 2 System Resources Man-
ager,” IBM Systems Journal 13, No. 4, 274-291 (1974).

4. MVS System Information Routines (SIR) DescriptionlOperutions, Order No.
SH20-1813, IBM Corporation, Data Processing Division, White Plains, New
York 10604.

5 . K. Soper, Editor, MVS Tuning Report by the MVS Tuning Committee, SSD
No. 277, SHARE, Inc., New York, New York (July 15, 1977).

6. H. Hill, “Data base system evaluation,” Data Systems Proceedings, 5th Infor-
mation Symposium Proceedings, September 1975, Springer-Verlag, Berlin
(1975).

7. W. C. McGee, “The information management system IMSIVS,” IBM Systems
Journal 16, No. 2, 84-168 (1977).

Reprint Order No. G321-5077.

BERETVAS 3 13

