Display terminals, although faster than typewriter devices, do
not implicitly create records of the user’s interactive sessions.
Based on the premise that a display terminal session facility that
also has the record-keeping functions of typewriter terminals
would increase productivity, a research project was undertaken
that has resulted in the session manager discussed. Experience
with the system is summarized.

A time-sharing display terminal session manager
by J. M. McCrossin, R. P. O’Hara, and L. R. Koster

Display terminals are tending to supplant typewriter terminals as
the interactive computing terminal of choice. To many interactive
users, display terminals offer special features that increase pro-
ductivity, especially for programmers. Part of the increased pro-
ductivity comes from the display terminal itself (e.g., the capabil-
ity of on-screen editing). To take full advantage of display termi-
nals, however, the time-sharing system must provide support of a
very different sort than that needed for typewriter terminals.

Most time-sharing systems are line oriented because they have
been designed to be accessed from typewriter terminals. In a line-
oriented system, the user accomplishes work by typing command
statements one line at a time on a keyboard. The system responds
with one or more lines of messages or other output. Thus a termi-
nal session is a conversation between the user and the system,
and is recorded on the typewriter terminal sheet, which serves as
a hard copy record. If a user wants to review a command or out-
put from earlier in a session, he merely looks back on the terminal
sheet.

Although display terminals offer many advantages over type-
writers, such as high-speed data display and quietness of opera-

Copyright 1978 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J e VOL 17 ¢ NO 3 e 1978

tion, they also bring certain difficulties with them. Time-sharing
terminal users who are familiar with the above-described type-
writer support find their data vanishing each time the screen is
erased (as though the terminal sheet had disappeared). Hard copy
of program and session output becomes difficult to produce; for
although data sets can be printed at local or system printers, the
records of a terminal session usually cannot be produced. The
screen of a display terminal often allows fewer characters than a
typewriter’s platen. Thus, output that contains more than eighty
characters per line (such as compiler listings) overflows to the
next line, and the screen becomes less intelligible.

Application programs, for example, can be specially coded to run
on display terminals, and display terminal limitations, such as de-
scribed above, can be avoided. Through the program, output can
be formatted to fit the display screen and be retained in a buffer
for redisplay upon request. Such full-screen programs have disad-
vantages in that they rarely support typewriter terminals, and
they usually depend on the features and programming protocols
of the display terminals they support. If a new, incompatible ter-
minal is introduced, programs coded to run on the earlier display
terminal must be recoded if they are to support the new terminal.

The typical approach to enhancing display terminal usage by
time-sharing systems has been to treat each command or program
separately; i.e., a line-oriented command is replaced by a full-
screen command. After invoking such a command or program,
the user is presented with one or more screens for data input and
program output. When the command has finished, a blank screen

or a main menu is typically redisplayed. Thus, a line-oriented
time-sharing system has been replaced (at least partially) by a set
of menus for command input and formatted command and pro-
gram output. The display terminal session manager experiment
discussed in this paper, in contrast, provides display support for
the entire time-sharing session, not for the individual commands
and programs that comprise it. This design philosophy springs
from the fact that, to the time-sharing user, the relationships
among commands that are entered during a terminal session are
often as important as the commands themselves; there is continu-
ity to the user/system conversation.

Now termed the ‘‘TSO session manager,”’ the terminal display
system that is the subject of this paper is based on an experimen-
tal system known as the Research Display Facility. The experi-
mental system was developed at the IBM Thomas J. Watson Re-
search Center in Yorktown Heights, New York, to provide com-
prehensive display support for the scientists and programmers
who share the MVS/TSO system, that is, a Multiple Virtual Storage
system with the Time Sharing Option.

IBM SYST J » VOL 17 @ NO 3 e 1978 MCCROSSIN, O'HARA, AND KOSTER

Design objectives

As in most time-sharing systems, the TSO commands, editor, de-
bugging facilities, and user programs are line oriented. The TSO
user enters commands to the system in a string syntax, and the
output that results from these commands is recorded on succeed-
ing lines of a typewriter terminal paper or on a terminal screen.
The TSO system resolves the differing programming requirements
of the various terminals that can be used for a TSO session. Al-
though these line-oriented programs and commands operate
properly on both typewriter and display terminals, they do not
utilize most of the features offered by display terminals.

The principal goal of the session manager is to provide support
that can extend all facilities of the 1BM 3270 Display Terminal to
these programs, and eliminate the operational problems com-
monly associated with display terminals on time-sharing systems.
One objective of this support is to increase the productivity of the
TSO user. The session manager exploits the facilities of the dis-
play terminal to save time for the TSO user. Many features of the
session manager work together to achieve this objective, includ-
ing the following:

The user controls the data to be displayed or not displayed at
the terminal.

Unnecessary keystrokes are avoided by allowing the user to
form new input from data displayed on the screen. The pro-
gram function Keys of the 3270 may be defined to represent
often-used TSO commands, input sequences, commands to ap-
plication programs, or session manager commands.

The keyboard can be set to remain unlocked, so as to allow
data entry at all times.

Multitasking by the session manager allows the user to exe-
cute session manager commands while TSO commands are
being processed.

A journal of the entire TSO session allows the user to review
previous command input and output. Without the session
manager, a TSO user must often re-execute TSO commands just
to have the output redisplayed, when this is possible, and it is
often not possible.

Multiple windows for viewing different data reduce the need
for printing data on system or local printers. For example, a
session manager user may view compiler messages and source
listings, and edit a data set at the same time.

Another objective has been to provide display support while al-
lowing all TSO commands and user-written programs to run un-
changed. TSO comprises so many commands and programs that
changing all of them to conform to a new display support facility

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J « VOL 17 « NO 3 & 1978

is not a practical alternative. For this reason, the session manager
provides display support to these line-oriented commands and
programs in a transparent manner.

It was also intended that the session manager functionally en-
hance TSO by fully utilizing the facilities of the 3270 display termi-
nal. Thus, a user would perceive an enhanced TSO that makes full
use of the 3270 display terminal, through the following control
features:

User-entered commands and other TSO inputs are highlighted,
whereas system outputs are of normal intensity. The bright
and normal intensities distinguish the two sides of the inter-
active conversation. When a session journal is copied to a sys-
tem printer, the highlighted lines are overprinted to appear
darker.

The TSO command or program that is currently executing is
similarly highlighted in the input-only journal. This is to en-
able the user to keep track of the currently executing com-
mand if he has typed in several commands at a time.

An audible alarm indicates errors in session manager com-
mands or messages from other TSO users or background job.
The program function keys of the 3270 may be defined as TSO
input or session manager commands.

The session manager provides session-wide system-level sup-
port. The session manager display support is available to the TSO
user from log-on to log-off. All line-oriented TSO commands and
modes, including EDIT, EDIT Input Mode, and TEST are covered
together with any programs that are running under TSO. At the
same time, the session manager allows the retaining of all capabil-
ities the TSO user has on a typewriter terminal. The session man-
ager provides the 3270 display user with the same kind of function
provided to the typewriter user, such as an unlocked keyboard
and full-width nonwrapping output review of an entire TSO ses-
sion.

Some TSO commands and programs are written to run specifically
on the 3270 display terminal. The session manager is designed to
coexist with these full-screen programs. The Structured Pro-
gramming Facility—a TSO program product—is an example of
such a command in which the session manager steps aside when
these display-oriented programs are executing. Thus full-screen
programs are not affected by the presence of the session manager
on the system.

As a final design objective, the session manager should give the
TSO user control of the display terminal. The session manager
command language should allow the TSO user to dynamically
redefine part or all of his display environment at any time during a

IBM SYST J @ VOL 17 @ NO 3 e 1978 MCCROSSIN, O’HARA, AND KOSTER

streams

Figure 1 User/system data flows

for TSO

WITHOUT THE SESSION MANAGER

@{g}b o0 | B D

KEYBOARD SCREEN

WITH THE SESSION MANAGER

» (=)
TSOIN

TSO INPUT STREAM

TSO TS0
COMMANDS OUTPUT

TSO QUTPUT STREAM

TSO session. None of the features of the display terminal (certain
lines on the screen, certain program function keys, etc.) is to be
reserved for use by the session manager. Thus, the TSO user can
tailor the operation of the terminal to his personal needs and
tastes, which may change from day to day or even during a single
session.

System concepts

The session manager incorporates several new concepts for the
time-sharing user, which, together with some operational charac-
teristics of the session manager, are described now. Views of the
TSO user/system data flow with and without the session manager
are shown in Figure 1. TSO receives its input from the terminal
keyboard and sends its output to the 3270 display screen. With
the session manager, TSO receives its input from and places its
output in session manager streams. These streams reside in vir-
tual storage in the TSO user’s address space. A stream can be
thought of as a ‘*virtual sheet of paper’’ that can be read from and
written upon.

Streams have a “‘top’’ and ‘‘bottom.’’ Each line of data that en-
ters a stream is placed in the next available line, starting at the
top—just as lines of copy are typed on paper. The most recent
line to be placed in the stream is considered to be the bottom of
the stream. Streams, whose capacities are fixed when they are
defined, gradually fill up with data. When a stream’s capacity is
exceeded, the stream ‘‘wraps around,’’ and new data entering the
stream replace the data at the top of the stream. The top of the
stream now moves as new data enter, and thus contains the oldest
data in the stream. Conceptually, there is no limit to the number
of streams that each user may have. Among the streams given to
session manager users as a default are the following:

TSOIN This stream serves as the input source for TSO (com-
mands, input data to application programs, etc.). Any data
placed in this stream are read by TSO as though they had been
typed at the terminal keyboard.

TSOOUT Any output from TSO (READY prompts, messages,
commands, or application output, etc.) is placed in this stream,
as though it were the paper of a typewriter terminal. In addi-
tion, user input to TSO (copied from the TSOIN stream) is
placed here to give a complete record of the terminal session.
Thus, the TSOOUT stream looks identical to the terminal sheet
produced by a TSO user at a typewriter terminal.

SMIN This stream is used by the session manager in the same
manner as the TSOIN stream is used by TSO. Any data placed
here are interpreted as session manager commands.

MCCROSSIN, O’'HARA, AND KOSTER IBM SYST J @ VOL 17 @ NO 3 @ 1978

Figure 2 Relationships between windows and streams
PHYSICAL POSITION OF WINDOW A
ON THE DISPLAY SCREEN
LOGICAL POSITION OF WINDOW A

/ON THE STREAM

WINDOW B
WINDOW C
.4

TSOOUT

—]

SESSION
MANAGER

e SMOUT The session manager places error messages in this
stream. Most session manager commands produce no output
messages unless an error occurs.

The TSOOUT stream, as just described, contains a complete jour-
nal of the user’s session. There is a command called SMCOPY. The
SMCOPY TSO command processor allows the user to print on a
system printer or copy to a data set all or part of any stream. In
addition, this command can copy data sets into streams. The hard
copy facility is especially useful in documenting program execu-
tion errors and program testing sessions under the TSO interactive
debugging programs.

As session manager streams can be thought of as virtual sheets of windows
paper, so session manager windows can be thought of as *‘virtual and
window panes’’ through which data in the stream can be viewed. scrolling
The windows the user defines on the display screen are viewports

on the data created and manipulated during a TSO session. Con-

ceptually, the user may define as many windows as fit on the

screen of the display. Each window is associated with a stream.

Figure 2 shows a sample screen composed of four windows, each

one for viewing a different stream. Note that two windows (C and

D) view stream TSOOUT and that no window views stream

SMOUT. There are no restrictions on the number of windows that

may view a particular stream or whether a particular stream is

viewed by a window. The presence of a window on a stream does

not affect the data flow to and from that stream.

The process of moving a window over a stream is called scrolling .
Each window may be moved left or right over the stream it is
viewing, backward (up) toward the top of the stream, and forward
(down) toward the bottom of the stream.

IBM SYST J @ VOL 17 @ NO 3 e 1978 MCCROSSIN, O'HARA, AND KOSTER

command
and
data entry

Windows operate inlocked and unlocked modes. Just as the paper
in a typewriter terminal moves to allow each new line to be typed,
so an unlocked window moves to constantly display the newest
data in the stream it is viewing. When a session manager scrolling
command (listed, later in this paper) is issued, the window is
locked (frozen) in position over the stream, and no longer moves
to display new data. A locked window may be unlocked via the
session manager UNLOCK command.

Windows serve the second function of command or data entry
area on the display screen. In this mode, a cursor may be moved
anywhere on the display screen, and new data may be entered.
The entire screen may be made available as an input area. When
the ENTER key or program function key is used to enter data, each
modified line on the 3270 screen is transmitted to the system. The
incoming data are then routed to one of the streams, based upon
the window in which the data were entered. For example, a certain
window on the screen may be defined as an input area for session
manager commands, another window (or windows) may be de-
fined as an input area for TSO commands, and still another win-
dow may be used to send comment lines to the session journal.

Multiple lines of input may be entered at one time; this is espe-
cially useful under EDIT in the input mode, or when logically re-
lated sequences of commands are to be entered to perform such
functions as compile, link edit, and call. Previous command in-
puts or outputs can be used to form new command entries. Data
displayed in a window may be modified and overtyped through
the use of the terminal editing keys. For example, if a user wants
to delete several data sets, he might list his catalog, then move the
cursor on the screen to the displayed listing and insert ‘‘delete’” in
front of each data set to be deleted. The ENTER key sends the
several commands thus created to TSO for execution. In a similar
manner, mistakes in a command entry can be corrected simply by
correcting the erroneous characters, rather than retyping the en-
tire command.

Without the session manager, when a display terminal user enters
a TSO command, the terminal keyboard remains locked until the
command completes execution, which forces the user to wait.
With the session manager, the user can set the keyboard to re-
main unlocked, thereby causing the terminal to be always avail-
able for new command entry. The TSO user can enter new com-
mands while previous commands are being processed. The addi-
tional commands are stacked in the TSOIN stream. Thus, the TSO
user perceives a faster-running TSO system than before, and he is
no longer required to remain idle while waiting for a command to
execute. In addition, while TSO commands are being processed,
the user may enter session manager commands. These commands
execute immediately (in parallel with TSO), so that the user may

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J ¢ VOL 17 « NO 3 ® 1978

scroll back to view previous output, redefine the screen layout or
program function keys, etc., while waiting for TSO commands to
execute.

System software restrictions prevent the session manager from
updating the display screen while the keyboard is unlocked. In an
attempt to overcome this, the session manager provides a timer
that controls the unlocking of the keyboard. By setting the timer
to a value of ten seconds or so, it is possible to strike a workable
compromise between an unlocked keyboard and an up-to-date
screen. Many TSO commands can execute within ten seconds and
have their output displayed. At the same time, longer running
commands do not lock up the keyboard.

The 3270 display terminal offers as a feature a keyboard with
twelve program function keys. For those terminals, the sesston
manager allows the user to define each key as a character string
that is to be sent to a specified stream by the action of the key.
For example, a given program function key might be defined as
the TSO command LISTCAT to be sent to the TSOIN stream. By the
action of that key, LISTCAT is sent to the specified stream, where
it is interpreted as a TSO command, and subsequently executed by
TS0, just as though it had been entered from the keyboard. In a
similar manner, program function keys can be defined as session
manager commands. This is done in the default session manager
screen layout. The program function keys issue scrolling com-
mands, for example. Optionally, symbolic arguments can be
specified in program function key definitions. These arguments
are then replaced by data from the screen when a key is pressed.
For example, a certain program function key could be specified as
‘‘change /&1/&2/”’ to be sent to the TSOIN stream. If the user then

types
abc xyz

and presses that key, the following EDIT subcommand is exe-
cuted:

CHANGE /abc¢/xyz/

All the facilities of the session manager are made available to the
TSO user through the session manager command language, which
gives the user complete control over the terminal. Actions pos-
sible under the TSO session manager range from scrolling a win-
dow to redefining the entire screen layout.

To aid in the dynamic redefinition of the display terminal environ-
ment, the session manager provides push-down stacks (last-in-
first-out) where various portions of the current display environ-
ment may be pushed and later popped. For example, a user might
push the existing program function key definitions onto a stack,

IBM SYST J & VOL 17 &« NO 3 & 1978 MCCROSSIN, O’HARA, AND KOSTER

program
function
keys

dynamic
display
support

session
manager
commands

then redefine one or more such keys for some temporary task (re-
petitive command entry, a find/change sequence under TSO EDIT,
etc.), then restore the previous program function key definitions
by popping them off the stack.

The following session manager commands are presently imple-
mented:

Environment definition commands

CHANGE CURSOR Change the screen location of the cursor.

CHANGE FUNCTION Change input and output streams for TSO,
the session manager, and cross-memory
messages from background jobs and other
TSO users.

CHANGE PFK Change the meaning of a program function
key.

CHANGE STREAM Change stream attributes.

CHANGE TERMINAL Change terminal attributes.

CHANGE WINDOW Change window attributes.

DEFINE WINDOW Define new windows on the display screen.

DELETE WINDOW Remove a window from the display screen.

Screen control commands

FIND Find a text string in a stream and scroll a
window to display it.

SCROLL Scroll (move) a window over the stream it
is viewing and then lock it in place.

UNLOCK Unlock a window that has been locked in
place.

Session control commands

END Terminate session manager display support
and continue the TSO session.

PUT Place a character string in a stream.

QUERY Display status information.

RESET Reset the screen and program function keys
to the default settings.

RESTORE Pop an element off one of the stacks.

SAVE Push an element onto a stack.

SNAPSHOT Take a ‘‘snapshot’ of the display screen
and place it in one of the streams for later
printing.

TSO command Pprocessors

SMCOPY Copy a stream to a TSO data set or vice
versa. Print a data set or stream on a sys-
tem printer.

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J e VOL 17 @ NO 3 e 1978

Figure 3 System task structure

WITHOUT THE SESSION MANAGER WITH THE SESSION MANAGER

INITIATOR INITIATOR

[EXEC PGM = IKJEFTOL EXEC PGM = ADFMDFO3
SESSION MANAGER
TMP INITIATOR

TMP

l

COMMAND SESSION
PROCESSORS MANAGER

COMMAND
PROCESSCRS

SMFIND Search for a character string in a stream.
SMPUT Place a character string in a stream.

The SMPUT command, given in the preceding list, allows the
placement of session manager commands in TSO command proce-
dures (CLISTs). Through such CLISTs, the user can build a reper-
toire of screen layouts and program function key definitions.
These screen layouts are created by executing a CLIST that con-
tains the session manager commands that define a given layout.
For example, a user might build a CLIST with session manager
commands that create a split screen and—as the last command in
the CLIST—invoke TSO EDIT. Executing the CLIST then saves the
current screen environment on one of the stacks, creates the
split-screen layout and associated program function definitions,
and starts the EDIT session. When the user leaves EDIT, the pre-
vious environment is restored. Similar CLISTs could be created to
redefine the screen and program function keys for application
program execution, TSO TEST sessions, etc.

System implementation

When the session manager is not active, an initiator starts the
Terminal Monitor Program (TMP) which controls the TSO user/
system conversation. The TMP scans input lines from the terminal
and attaches the appropriate command processors for inter-
pretation and execution of the user’s commands. The ICL of the
log-on procedure specifies the name of the TMP to be started.

Figure 3 illustrates the location of the session manager in the MVS
system task structure. The session manager log-on procedure
specifies the name of a session manager module instead of the
name of the TMP. When this module is executed, a new task—
called the session manager/TMP initiator—is created. This task
then starts the TMP and the session manager tasks, which run as
sister tasks. The session manager intercepts all TGET/TPUT mes-

IBM SYST J ¢ VOL 17 « NO 3 e 1978 MCCROSSIN, O'HARA, AND KOSTER

TSO
command
procedures

MVS/TSO
interface

Figure 4 Data flow through TGET/TPUT (SVC 93)

TS0
FULL SCREEN
PROGRAMS

TGET/TPUT

(SVC 93)
DISPLAY <7 SESSION
TERMINAL MANAGER

TS0
o TMP
VANAGER * COMMAND
INTERGEPT PROCESSORS
CODE ® APPLICATION
y PROGRAMS

/
$
/
SESSION MANAGE

TGET/TPUT
SIMULATION

R

SESSION
MANAGER
STREAMS

sages issued by the TMP or command processor and directs them
to or from the appropriate session manager stream. This inter-
ception takes place in a session manager routine that receives
control from exits in the TGET/TPUT routine (SvC 93).

Figure 4 shows the Input/Output (1/0) data paths to and from the
terminal. Each time a TGET or TPUT is issued, the session man-
ager intercept code (in the branch from SVC 93) determines
whether the session manager task is active. If so, the intercept
code determines whether the 1/0 request has been made on behalf
of the session manager. I/O from the session manager and full-
screen applications are not intercepted, but return to SvcC 93 for
normal processing.

The session manager maintains a device-independent display rep-
resentation, termed the Display Description Buffer (DDB). The
DDB contains sufficient information to partially or completely re-
generate the display screen image when required. The device-in-
dependent routines of the session manager manipulate this data
structure.

On input from the terminal, the input data are mapped into the
DDB. On output to the terminal, the device output data string is
generated from the internal representation in the DDB. The DDB
describes the status of the display screen and the current environ-
ment as defined by the user and includes such things as the num-
ber of windows, program function key definitions, and cursor

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J @ VOL 17 @ NO 3 e 1978

Figure 5 Session manager display input operation

DEVICE SPECIFIC CODE ‘ ‘

(DDB)

“%0 3270 DATA STRING DISPLAY
\@% | READ3270 REPRESENTATION

KEYBOARD

\i

e

SESSION
MANAGER
STREAMS

UPDATE STREAM

DEVICE INDEPENDENT CODE

position. Pointed to by the DDB are the Window Description
Blocks (WINBLOCKS), one for each window defined on the screen,
which include descriptions of the placement and size of the win-
dow, the lines currently displayed in it, and the attributes of each
line (is the line nondisplayable, highlighted, etc.) as well as attri-
butes of the window itself (alarm, mode, overlap count, locked/
unlocked state, etc.)

The pDB and WINBLOCKS provide the input information to the 1/o
modules (READ/WRITE3270) to build the proper 3270 data string
when an update of the screen is required. The session manager
does not rewrite the entire display screen each time a screen write
is done; only those lines that need updating are rewritten.

When the user types input data on the 3270 screen and presses the
ENTER key, the terminal transmits to the system a character
string that contains device control information as well as the ac-
tual characters that have been typed. Each modified line of data
on the screen causes a separate field to be created in the input
data. The session manager 1/0 module (READ3270) determines (for
each of these fields) into which window the data have been en-
tered. Each input field is pointed to by its containing WINBLOCK.
Figure § illustrates the control flow of the session manager mod-
ules during a display input cycle.

Later in the cycle, the input data—now stripped of control char-
acters—are placed in the appropriate session manager stream by
UPDATESTREAM. Each window definition specifies a stream to re-
ceive input data. The data are placed in this indicated stream for
each input field. Data placed in the TSOIN stream are sent later to
TSO where they are interpreted as command or other input. In the
same manner, data sent to the SMIN stream are interpreted as
session manager commands. Data sent to other streams are dis-
played but do not cause any program action.

IBM SYST J ¢ VOL 17 ® NO 3 ¢ 1978 MCCROSSIN, O'HARA, AND KOSTER

Figure 6 Session manager display output operation

DEVICE INDEPENDENT CODE

I > DISPLAY

UPDATEDDB REPRESENTATION
(DDB)

SESSION
MANAGER
STREAMS

—

SESSION
MANAGER WRITE3270
COMMANDS

D 3270 DATA STRING
-t

DISPLAY SCREEN

DEVICE SPECIFIC CODE

Movement of data into the streams and the execution of session
manager commands cause the DDB to be updated. During an out-
put operation, the session manager module WRITE3270 translates
display requirements from the internal form stored in the DDB to
3270 device protocol. Figure 6 illustrates this translation. The
data string generated is written to the 3270 display, thereby caus-
ing the screen to reflect the internal representation in the DDB.

Figure 7 The session manager The session manager routines perform the program loop illus-
trated in Figure 7. At the top of the loop, there is a wait for input

from the display terminal. When the user presses the ENTER key
and the data are transmitted to the system, module READ3270 is

task program loop

called to map the input into the DDB/WINBLOCK structure.

DATA FROM TERMINAL
Module UPDATESTREAM is then called to distribute the data to the
DATA TO STREAMS proper streams. Module COMMANDS is called to execute any
pending session manager commands that may have been queued
from the previous UPDATESTREAM call. Module UPDATEDDB is
called to bring the display representation up to date. The changes
DATA FROM STREAMS reflected have been caused by the previous session manager com-
mand execution, new data in a given stream as viewed by a win-
DATATO TERMINAL dow, or by the automatic movement of a window over the stream
it is viewing. Module WRITE3270 is called to output the new screen
image (via the TPUT SVC with the FULLSCREEN option).

The session manager routines just described are designed to exe-
cute under both the session manager and TSO tasks. They receive
control under the TSO task each time a TGET or TPUT is issued and
intercepted. The simulation of the TGET/TPUT is also performed
at this time by directing the necessary data to/from the session
manager streams. The existence of the session manager task that
is running in parallel with the TSO task provides for data entry and
display while TSO commands are being processed.

MCCROSSIN, O’'HARA, AND KOSTER IBM SYST J e VOL 17 @ NO 3 o 1978

Experience and concluding remarks

The TSO session manager is based on an experimental display fa-
cility designed for the 1BM Thomas J. Watson Research Center in
Yorktown Heights, New York, where a substantial amount of ex-
perience has been gained by using the experimental system. Mea-
surements were made by executing a number of typical TSO
scripted sessions with and without the session manager. Results
have shown that resource consumption in terms of MVS service
units necessary to perform a script is slightly less when the ses-
sion manager is active. In addition, a given script can be per-
formed in an average of thirty percent less elapsed time. The ses-
sion manager does not cause any additional resource consump-
tion and it avoids calls to the terminal access method because
multiple lines of output are written as a single screen write opera-
tion. Without the session manager, the TSO address space is
swapped on each input request. The session manager allows the
user to enter multiple input lines at a time, thus avoiding swaps,
and a user can consume more resources per minute because he
can be more productive than can a TSO user without the session
manager. Typically, a session manager user has a larger paging
demand due to the additional code, control blocks, and streams of
the session manager. Although the working set is only slightly
larger, the total virtual storage requirement is significantly larger,
because the session manager streams reside in virtual storage.
TSOOUT is typically the largest stream because it has been defined
as 200 K bytes in the experimental system.

A survey of the experimental system reveals the following as the
most practical features:

Scrolling via program function keys.
Session manager command invocation from TSO CLISTs.
Multiple window definitions.
User-defined screen layouts and program function key defini-
tions.

e Hard copy of terminal session.

e Retention of messages from other users and background jobs.

The following are features with which users of the experimental
session manager experienced difficulty:

e The session manager’s wealth of function makes it somewhat
complex and, therefore, confusing to the first-time user.
The screen cannot be updated when the keyboard is unlocked.
Confusion sometimes occurs when certain full-screen TSO
programs temporarily leave the full-screen mode.

Given here is a close-up view of several typical example appli-
cations of the session manager. Consider first the personalizing of
the screen layout.

IBM SYST J VOL 17 e NO 3 e 1978 MCCROSSIN, O’'HARA, AND KOSTER

examples
of use

Figure 8 Example of personalizing As illustrated in Figure 8, the user has written a TSO CLIST that re-
the screen layout defines the default session manager screen layout. The CLIST con-
sists of a number of SMPUT commands that place session manager

commands that are needed to create the personalized screen lay-
WINDOW VIEWING TSOOUT o
out in the SMIN stream. (Refer to the previously given description

of the SMPUT TSO command in this paper.) Here the user has allo-
WINDOW WiNDOW cated most of the screen to a window for viewing the TSOOUT
VIEWING VIEWING
TSOIN SMIN stream (which contains the complete TSO session journal), and
has placed this window at the top of the screen. Two other win-
dows at the screen bottom are used to view the TSOIN stream
(which contains all TSO commands) and the SMIN. stream (which
contains all session manager commands). Program function keys

have been defined to'issue session manager scrolling commands.

Figure 9 Example of corracting er- In Figure 9 is shown an example of the use of the session manager

rors in a PL/I program for correcting errors in a PL/I program. Here, a PL/I compiler list-
ing is viewed in the upper part of the screen simultaneously with a
TSO EDIT session in the central portion of the screen. The user has
written a TSO-CLIST that does the following things:

WINDOW VIEWING
PL/1 LISTING.

WINDOW VIEWING
TSO EDIT SESSION

e Copies the compiler listing to the TSOOUT stream by using the
TSO LIST command.
Splits the window for viewing the TSOOUT stream into two
windows-that show TSOOUT stream. ’
Locks the top window over the beginning of the PL/1 listing.
Unlocks the center window to follow the TSO session.
Defines program function keys to scroll over the listing.
Calls TSO EDIT to modify the PL/I source program. ‘

lINPUT WINDOW

While one is editing the PL/A source program, the compiler output
that contains the error messages and source listing is readily
available for review via session manager scrolling commands.
The need to copy information from the screen with pencil and
paper has been eliminated, and the need to print the listing at a
system or local printer has also been greatly reduced. The user
scrolls through the listing, using TSO EDIT to correct errors in the
source data set as required. Corrections appear in the input win-
dow at the bottom of the screen. After editing has been com-
pleted, the screen returns to its original format via the session
manager RESTORE command (described earlier in this paper).

The improving of programmer productivity was the principal de-
sign goal of the experiment that resulted in the session manager.
Through direct measurements and informal surveys we have
found that the session manager has contributed greatly to in-
creased user productivity on TSO. As another objective, the ses-
sion manager experiment was also designed to explore display
support for a range of TSO users, from scientists to system pro-
grammers. This objective has also been shown to have been met
through the wide acceptance of the system.

MCCROSSIN, O'HARA, AND KOSTER IBM SYST J e VOL 17 @ NO 3 e 1978

GENERAL REFERENCES

1. IBM OS/VS2 MVS TSO 3270 Extended Display Support-Session Manager,
SC28-0912 (Program Product 5740-XE2), IBM Corporation, Data Processing
Division, White Plains, New York 10604 (1977).

. IBM TSO Display Support and Structured Programming Facility, SH20-1975
(Program Product 5740-XT8), IBM Corporation, Data Processing Division,
White Plains, New York 10604 (1976).

. J. Martin, Design of Man-Computer Dialogues, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey (1973).

. W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graph-
ics, McGraw-Hill Book Co., New York, New York (1973).

Reprint Order No. G321-5074.

IBM SYST J ® VOL 17 # NO 3 e 1978 MCCROSSIN, O'HARA, AND KOSTER 275

