
A key controlled cryptographic system requires a mechanism for
the safe and secure generation, distribution, and installation of
its cryptographic keys. This paper discusses possible key genera-
tion, distribution, and installation procedures for the key man-
agement scheme presented in the preceding paper.

Generation, distribution, and installation
of cryptographic keys

by S. M. Matyas and C. H. Meyer

Key generation is the process that provides the cryptographic
keys required by a cryptosystem. Key distribution is the trans-
porting or routing of cryptographic keys through the cryptosys-
tem for subsequent installation. Key installation is the entering of
cryptographic keys into designated cryptographic devices. The
protocols presented here for the generation, distribution, and in-
stallation of cryptographic keys are based on the key manage-
ment scheme presented by Ehrsam et al. in the preceding paper.'

The key management scheme discussed by Ehrsam et al. distin-
guishes between key-encrypting keys and data-encrypting keys.
The former are used to encipher other keys and are defined ahead
of time as part of the process of initializing the cryptographic
system, or cryptosystem. They remain constant for relatively
long periods-they may be changed perhaps once a year. Data-
encrypting keys, on the other hand, are generated dynamically
during regular system operations, hence special precautions must
be taken to protect them. Data-encrypting keys remain in exist-
ence as long as the data exists that they protect. That period,
for communication security, is determined by the length of time
the user is signed on to the system. Usually it is relatively short.
For file security, when data is stored in enciphered form, data-
encrypting keys may exist for a relatively long time.

Copyright 1978 by International Business Machines Corporation. Copying is permit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) theJournal reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in com-
puter-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

I 126 MATYAS AND MEYER IBM SYST 1 VOL 17 NO 2 1978

One special key-encrypting key, the host master key, is generated
by some random process such as tossing a coin or throwing dice.
All other key-encrypting keys are produced by using the Data
Encryption Standard DES)^ as a pseudorandom-number gener-
ator, a procedure that can be performed under secure conditions
on the computer. Data-encrypting keys are generated dynamical-
ly, as needed, at the host processor by exploiting the random-
ness associated with the many different users and processes that
normally are active on the system at any given time.

With the DES, each 64-bit cryptographic key consists of 56 inde-
pendent key bits and eight bits that can be used for parity check-
ing. There are 256 different possible keys. Since the DES is a pub-
licly known algorithm, cryptographic strength must be based on
the secrecy of its cryptographic keys. For that reason, great care
must be exercised in selecting keys. They should be as nearly
random as possible, so that an organized search for them would
not be likely to meet with early success. If there were a known
bias in the selection of keys, for example, an opponent could
search the more likely candidates first.

The distribution of cryptographic keys can be accomplished in a
variety of ways, as by courier, registered mail, or telephone, as
long as the likelihood of compromising the key is within accept-
able limits. Key installation can be accomplished by activating
hardware switches or dials or by reading the key into main mem-
ory and then exercising an appropriate operation to set the key
into the cryptographic facility. A number of techniques can be
used to minimize the risk of entering an incorrect key into the
system. They include multiple entry, validation patterns, and
exercising the cryptographic system. In the present discussion,
it is assumed that host and terminal master keys are entered in
the form of 16 parity-adjusted hexadecimal digits.

Generation of the host master key

Regardless of the selection procedure used for the specification of
keys, organized and predictable methods should be avoided for
choosing key bits. Any selection procedure based on one’s tele-

~ phone number, name and address, date of birth, or the like, is so
~ frail that no real protection is provided. Also, the pseudorandom-

number generator programs available on many computer systems
are far too predictable to be used for this purpose and should be
avoided.

Since the master key, either directly or through one of its derived
variants, provides protection (through encipherment) for all
other keys stored in the system, and since the master key will
in all probability remain unchanged within the system for long

IBM SYST I VOL 17 NO 2 1978 MATYAS AND MEYER 127

periods, great care must be taken to select this key in a ran-
dom manner. The method recommended here is to use a random
process performed by the user of the system.

Assume that a 64-bit parity-adjusted key is required for the selec-
tion process, and that odd parity is used; that is, every eighth bit
is adjusted so that the number of bits in the eight-bit group is odd.
With a parity-adjusted key in the system, a consistency check can
be made to ensure that the proper key has been entered.

tossing Let the bit values 0 and 1 in the cryptographic key be determined
coins by the occurrence of heads and tails, respectively. Then toss 56

coins in eight groups of seven coins each, and record the results.
Each group is then converted to its corresponding parity-adjusted
hexadecimal digits as shown in Table 1.

Each group of seven bits in the 56-bit key is expanded to eight bits
by appending an additional parity bit (odd parity is maintained).
This process can be performed with the aid of a table, if desired.
Using Table 2, for example, the first four bits index the table row
and the last three bits the table column. Since every entry in the
table has correct parity, a parity-adjusted key will be formed even
if there should be an error in indexing. The cryptographic key (the
value entered into the system and saved in a secure repository for
backup purposes) is defined as that string of hexadecimal digits
produced by the table lookup process. The values used in in-
dexing the table are ignored (discarded).

throwing The method described above can also be used with dice. Instead
dice of tossing seven coins, the user rolls seven dice. The binary digits

can be obtained by considering an even roll (2, 4, or 6) to repre-
sent a 0 bit and an odd roll (1, 3 , or 5) to represent a 1 bit.

Generation of key-encrypting keys

The potentially large number of key-encrypting keys that might
be used in a cryptosystem increases the likelihood that at least
one of them may become known to an opponent. Therefore the
key generating procedure must, as an absolute minimum, be de-
signed so that if one or more keys become compromised, the
work factor will remain high enough to provide sufficient pro-
tection for the remaining keys.

It is recommended that the key generating procedure involve or
make use of the host master key, or one of its variants, by execut-
ing one or more of the cryptographic key management opera-
tions. Not only will an opponent be forced to carry out part of his
attack on the same host system, but because the operations them-
selves must be executed as part of the attack, the opponent is

128 MATYAS AND MEYER IBM SYST J VOL 17 NO 2 1978

Table 1 Results of coin tossing converted to binary and hexadecimal digits (heads H =
binary 0, tails T = 1)

Trial Result Binary Hex

HHHTHTH
THTHHHT
TTHTHHH
THHHTTT
HHTTTTH
TTHHHHH
HHHTTHT
HHTHTHH

o001010
1010 001
1101 000
lo00 1 1 1
0011 110
1 1 0 0 000
0001 101
0010 100

15
A2
DO
8F
3D
c1
1A
29

Parity adjusted key = hex 15A2D08F3DCllA29

Table 2 Parity adjusted hexadecimal digits (odd parity)

DECIMAL 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

31NARY 000 001 010 011 100 101 110 111

0000 01 02 04 07 08 OB OD OE

0001 10 13 15 16 19 1A I C 1F

0010 20 23 25 26 29 2A 2C 2F

0011 31 32 34 37 38 38 3D 3E

0100 40 43 45 46 49 4A 4C 4F

0101 51 52 54 57 58 5B 5D 5E

0110 6 1 62 64 67 68 68 6D 6E

0111 70 73 75 76 79 7A 7C 7F

1000 80 83 85 86 89 8A 8C 8F

1001 91 92 94 97 98 96 9D 9E

1010 A1 A2 A4 A7 A8 AB AD AE

1011 BO 83 B5 86 B9 BA BC BF

1100 CI c 2 c 4 c7 c 8 CB CD cr
1101 DO 03 D5 D6 09 DA DC DF

1110 EO E 3 E5 E6 E9 EA EC EF

1111 F 1 F2 F4 17 F8 FB FD FE

constrained by the particular operational characteristics of the
host machine itself. Since the time it takes to encipher and
decipher is known for a given system, the minimum required
computation time can be determined.

The present implementation3, uses a method employing the DES
as a pseudorandom-number generator. The basic idea is that a 64-
bit random number RN can be used in conjunction with the DES
algorithm to produce the entire set of key-encrypting keys (except
the host master key). RN, in this case, is generated externally by
a random process like that used in generating the host master key,
such as coin tossing or dice throwing. Let Yi equal the ith pseudo-
random number generated, and let Ki equal the ith cryptographic
key (i = 1, 2 . * n) , which is obtained from yi by adjusting each
byte for odd parity.

IBM SYST J VOL 17 NO 2 1978 MATYAS AND MEYER

Figure 1 Using the reencipher
from master key (RFMK)
operation to make Yi a
function of both the host
master key KMO and a
64-bit pseudorandom
number RN

RFMK: 1 RN, TOD + I _t A,

RFMK 1 RN, A, &y I - Y, adlust)
K,

Note that:
TOD = tlme of day

I = the numberof pseudorandom numbers

A = a 64-blt lnterrnedlate result
y, = E, (DKMO (Ea (DKMO (0)))

KMO = host master hey
(I = DKMI (RN)

KM1 = first vanant of KMO
E = enopherment of
D = decipherment of

generated

130

The approach described here is to use one of the host processor's
cryptographic operations so that the Yi values are functions of the
host master key as well as functions of R N . This approach makes
use of the reencipher from master key (RFMK) operation' as
shown in Figure 1. Since RN is a random number, so is the inter-
mediate quantity D,,,(RN) in Figure 1 (provided, as assumed
here, that the DES does not introduce any bias). Therefore Yi is a
function of two secret, independent cryptographic keys: one
(R N) supplied by the user, the other (KMO) supplied by the sys-
tem.

Because the DES algorithm is irreversible, knowledge of several
clear keys K,,, Ki, . . Kt, or, in fact, even knowledge of the cor-
responding values Y,, , Yi, . . * Yij would not permit R N or KMO to
be deduced. Therefore, knowledge of one or more of the gener-
ated keys would not allow any of the remaining keys to be de-
duced.

It should be pointed out that the procedure described above does
not depend on the randomness provided by the time-of-day clock.
A clock value is introduced, in this case, to reduce the likelihood
that the user will inadvertently generate a duplicate list of keys by
accidentally entering the same RN value into the procedure. A
duplicate RN could be entered, for example, if a new R N were
punched into a data card which was accidentally replaced with a
card containing an old value.

Generation of data-encrypting keys

A data-encrypting key is produced by generating a 64-bit number
R N , and defining it to be the desired key already enciphered un-
der a key-encrypting key known to the system. For example, in
communication security, R N is defined as the session key, K S ,
enciphered under the host master key, as follows:

RN = E,,,(KS).

In file security, on the other hand, RN is defined as the file key,
KF, enciphered under a secondary file key KNF, as follows:

RN = E,,,(KF)

With this strategy, it is not necessary to generate the data-en-
crypting key in clear form and then encipher it under the appro-
priate key-encrypting key-that is, the data-encrypting key is
never exposed in clear form.

Basically, a pseudorandom number R N is generated within the
host processor as a result of the dynamically changing and unpre-
dictable nature of the resource demands placed upon the system
by its users.

MATYAS AND MEYER IBM SYST J VOL 17 NO 2 1978

One approach to generating pseudorandom numbers makes use
of the reencipher to master key (RTMK) operation in conjunction
with two seed values, U and Z , which are derived internally
within the host processor. The seed values are used as input pa-
rameters to the RTMK operation, which, in turn, is used in deriv-
ing RN. Two independent seed values are used to give the proce-
dure added strength, since both values must be compromised be-
fore a successful attack is possible. Figure 2 illustrates the basic
idea behind this pseudorandom-number generating procedure.

Consecutive seed values-Z(l), Z(2) . . Z(i) , for example-
could be generated by combining two or more independent time-
of-day clock readings. Independence, in this case, can be
achieved by interleaving an input-output operation of unpredict-
able length between successive clock readings. The seed value
U(0) could be derived from a combination of user-dependent and
process-dependent information stored in the volatile memory of
the host processor. Each value U(i), for values of i greater than
zero, is defined as the output of an RTMK operation whose input
consists of U(i - 1) and Z(i). Hence it follows that U(i) is a
function of U(0) and Z(1), Z(2) - Z(i) .

It should be noted that RN(i) is a function of two independent
seed values, U(i - 1) and Z(i) , each with enough combinations
to thwart exhaustive analysis. The U-values, U(1), U(2) .
U(i) are generated internally by feeding back the result from
the first RTMK operation. These values are protected by us-
ing a second RTMK operation. The RTMK operation ensures that it
is not possible to deduce U(i) from RN(i). Hence knowledge of
one or more of the generated values of RN will not permit other
values of R N , past or future, to be deduced.

To subvert this pseudorandom-number generating process, an
opponent must cope with the changing and unpredictable values
of Z(i) and the secret quantity U(i - l) , which itself is a function
of U(0) and Z(1), Z(2) . . . Z(i - 1). Even if one of the seed
values should become compromised, the other provides enough
cryptographic strength so that an exhaustive attack intended
to recover a set of eligible RN(i) would be computationally
infeasible.

Master key entry at the host processor

For reasons of security, the master key cannot be read once it i has been set into a cryptographic facility. The following pro-
cedure, however, will allow a system administrator to determine,
within certain limits, whether the master key stored in the cryp-
tographic facility is the one that was intended.

Figure 2 DES-based pseudoran-
dom-number generator
for data-encrypting keys

(protected area)

RTMK 1 U(i). U(I) I-+RN(O

U(O1 = arbitrarv value ~, I
20) = function of two or more tlme-of-day

clock readlngr
R N (!) = ith generated random number

IBM SYST J VOL 17 NO 2 1978 MATYAS AND MEYER 131

Some function, +(KMO), of the master key can be computed ex-
ternally to the system and compared with a similar quantity gen-
erated within the system. For example, with the aid of a pro-
grammed version of the DES, KMO could be used as a key to en-
crypt a 64-bit random number R N :

+(KMO) = E,,,(RN).

Once the master key has been set into the cryptographic facility,
the encipher under muster key (F ") operation could be used to
generate the same quantity, as follows:

EMK: {RN} + EKMO(RN).

Comparison of these two values can establish whether the keys
used in the two routines are identical. The comparison is only
relative, however, because the wrong, but identical, key could
have been entered in both routines. The challenge, therefore, is
to reduce the risk of this event as far as possible.

hard-wired The reading of temporarily stored keys into the main storage of a
entry system can be avoided by providing a direct wire connection be-

tween the key entry point and the nonvolatile key storage area of
the cryptographic facility. The key can then be entered by means
of toggle switches, dials, or the like. The direct wire connection
should be so constructed, as by shielding, that probing or the tap-
ping of transmitted information (the keys) is not possible.

Even with hard-wired key entry, there is still some chance that
the key entered into the cryptographic facility will be different
from the key that was intended. The following analysis provides
an estimate of the probability of an undetected error, ~ (u E) , in the
entered key-that is, the probability that a wrong key has been
installed in the nonvolatile storage of the cryptographic facility.

To simplify the calculation, let it be assumed that only one of the
16 hexadecimal digits entered into the cryptographic facility
might be in error (that is, that multiple errors, whose probability
of occurrence is small anyhow, will be ignored), and that the
probability of error, p, during key entry is much higher than the
probability of error between the key entry point and the non-
volatile storage area of the cryptographic facility. These assump-
tions are reasonable in view of the fact that machine error is much
less likely than is human error.

In the situation described above, an error in key entry will not be
detected if the parity of the incorrectly entered hexadecimal digit
is correct. Since there are 16 possible hexadecimal digits, of
which only eight have odd parity, eliminating the correct digit
leaves seven combinations that have correct parity out of 15 pos-
sible combinations. Therefore the probability of an undetected
error, p(UE), is given by

132 MATYAS AND MEYER IBM SYST J 8 VOL 17 NO 2 1978

The person who is authorized to enter KMT at the terminal is
given the quantity V,. As part of the entry procedure, the termi-
nal will cause the value V, to be generated and displayed. The
user can determine whether KMT has been entered correctly by
comparing V , with V,.

If V , is stored in nonvolatile storage at the terminal, frequent
checks can be made on the correctness of the master key. Alter-
nately, V , could be written down and posted in a conspicuous
location at the terminal. A keyboard entry command causing V ,
to be generated and displayed thus would allow V , and V, to be
compared periodically by the terminal operator.

Distribution of cryptographic keys

Whenever data-encrypting keys (session keys and file keys) occur
outside the cryptographic facility, they are maintained under the
eneipherment of some key-encrypting key. This protocol allows
data-encrypting keys to be routed through the system over paths
that are not secure. Recovery of the data-encrypting key in a us-
able form is possible only if the recipient possesses the appropri-
ate key-encrypting key.

Key-encrypting keys are distributed through the system in an al-
together different way. One cannot always rely on encryption as a
means of protecting the secrecy of these keys, since each node
must have at least one key that is installed initially in clear form.
That key must be sent to the node over a path whose risk of com-
promise is within acceptable limits; that is, the probability of in-
terception must be very low. One such method is to use a courier,
normally the safest and most secure means of transporting keys.
Security in this case, of course, depends on the reliability of the
courier.

Although not necessarily recommended, other means of trans-
mitting keys are by registered mail and by private telephone con-
versation. These methods are less secure than using a courier be-
cause there is a greater chance that an opponent could intercept
the key during transmission. The probability of compromise
could be reduced, however, by transmitting two or more bit pat-
terns over independent paths and combining them at the final des-
tination, for example by using an EXCLUSIVE-OR operation.

The same method could be applied to the key entry procedure
itself. For example, several different bit patterns could be entered
into the cryptographic facility by each of several persons. These
bits could then be combined within the cryptographic facility to
produce the desired key. For the key to be compromised, this
protocol would require the collusion of all persons involved in the
key entry process.

IBM SYST J VOL 17 NO 2 1978 MATYAS AND MEYER 135

Summary

In connection with the key management scheme discussed by
Ehrsam et al. in the preceding paper,' we have described two
kinds of keys:

Data-encrypting keys, which protect either data in transit (pri-
mary communication keys, or session keys) or stored data
(primary file keys, or file keys);

0 Key-encrypting keys, which encipher other keys-for ex-
ample, host master keys, secondary communication keys (of
which the terminal master key is a special case), and second-
ary file keys.

Generally speaking, the method of key generation that is best for
a given class of cryptographic keys is determined by the expected
number of each type of key that will be needed and the time when
the keys will be required by the cryptosystem. In many cases, the
keys can be created dynamically on demand, but sometimes they
are required ahead of time to initialize the system.

The host master key is generated by a random process such as
tossing coins or throwing dice. Human involvement to that extent
is reasonable in the key generation process because only one
master key is required for each host processor and the master key
is likely to remain unchanged for a relatively long time. Since the
master key protects all other keys stored at the host processor,
special care should be taken to ensure that it is generated and
installed in the cryptographic facility in a secure manner.

It is reasonable to anticipate that the total number of key-encrypt-
ing keys (excluding the host master key) may be large enough so
that they should be generated using mechanical (nonhuman) pro-
cedures. The desired keys can be produced using the DES al-
gorithm as a pseudorandom-number generator. The seed values
used in this procedure are generated by the user employing a
random process similar to that used in generating the host master
key. Since the key-encrypting keys are used in initializing the
cryptosystem, they must be generated ahead of time. This can be
accomplished under secure conditions on the computer.

Data-encrypting keys also are required in large numbers (one for
each session and file using encryption), but they need not be gen-
erated until specifically requested-that is, until they are needed
to protect a communications session or to protect stored data.
Hence data-encrypting keys either could be generated ahead of
time and stored in table form until needed, or they could be gener-
ated dynamically on demand. Disadvantages in generating them
ahead of time are that the keys would be exposed longer to pos-
sible compromise by an opponent, and they would require addi-

136 MATYAS AND MEYER IBM SYST J VOL 17 NO 2 1978

MATYAS AND MEYER 137

