A key controlled cryptographic system requires a mechanism for
the safe and secure generation, distribution, and installation of
its cryptographic keys. This paper discusses possible key genera-
tion, distribution, and installation procedures for the key man-
agement scheme presented in the preceding paper.

Generation, distribution, and installation
of cryptographic keys

by S. M. Matyas and C. H. Meyer

Key generation is the process that provides the cryptographic
keys required by a cryptosystem. Key distribution is the trans-
porting or routing of cryptographic keys through the cryptosys-
tem for subsequent installation. Key installation is the entering of
cryptographic keys into designated cryptographic devices. The
protocols presented here for the generation, distribution, and in-
stallation of cryptographic keys are based on the key manage-
ment scheme presented by Ehrsam et al. in the preceding paper.”

The key management scheme discussed by Ehrsam et al. distin-
guishes between key-encrypting keys and data-encrypting keys.
The former are used to encipher other keys and are defined ahead
of time as part of the process of initializing the cryptographic
system, or cryptosystem. They remain constant for relatively
long periods—they may be changed perhaps once a year. Data-
encrypting keys, on the other hand, are generated dynamically
during regular system operations, hence special precautions must
be taken to protect them. Data-encrypting keys remain in exist-
ence as long as the data exists that they protect. That period,
for communication security, is determined by the length of time
the user is signed on to the system. Usually it is relatively short.
For file security, when data is stored in enciphered form, data-
encrypting keys may exist for a relatively long time.

Copyright 1978 by International Business Machines Corporation. Copying is permit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in com-
puter-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

MATYAS AND MEYER IBM SYST J @ VOL 17 ® NO 2 ® 1978

One special key-encrypting key, the host master key, is generated
by some random process such as tossing a coin or throwing dice.
All other key-encrypting keys are produced by using the Data
Encryption Standard (DES)? as a pseudorandom-number gener-
ator, a procedure that can be performed under secure conditions
on the computer. Data-encrypting keys are generated dynamical-
ly, as needed, at the host processor by exploiting the random-
ness associated with the many different users and processes that
normally are active on the system at any given time.

With the DES, each 64-bit cryptographic key consists of 56 inde-
pendent key bits and eight bits that can be used for parity check-
ing. There are 2° different possible keys. Since the DES is a pub-
licly known algorithm, cryptographic strength must be based on
the secrecy of its cryptographic keys. For that reason, great care
must be exercised in selecting keys. They should be as nearly
random as possible, so that an organized search for them would
not be likely to meet with early success. If there were a known
bias in the selection of keys, for example, an opponent could
search the more likely candidates first.

The distribution of cryptographic keys can be accomplished in a
variety of ways, as by courier, registered mail, or telephone, as
long as the likelihood of compromising the key is within accept-
able limits. Key installation can be accomplished by activating
hardware switches or dials or by reading the key into main mem-
ory and then exercising an appropriate operation to set the key
into the cryptographic facility. A number of techniques can be
used to minimize the risk of entering an incorrect key into the
system. They include multiple entry, validation patterns, and
exercising the cryptographic system. In the present discussion,
it is assumed that host and terminal master keys are entered in
the form of 16 parity-adjusted hexadecimal digits.

Generation of the host master key

Regardless of the selection procedure used for the specification of
keys, organized and predictable methods should be avoided for
choosing key bits. Any selection procedure based on one’s tele-
phone number, name and address, date of birth, or the like, is so
frail that no real protection is provided. Also, the pseudorandom-
number generator programs available on many computer systems
are far too predictable to be used for this purpose and should be
avoided.

Since the master key, either directly or through one of its derived
variants, provides protection (through encipherment) for all
other keys stored in the system, and since the master key will
in all probability remain unchanged within the system for long

IBM SYST J @ VOL 17 e NO 2 e 1978 MATYAS AND MEYER

tossing
coins

throwing
dice

periods, great care must be taken to select this key in a ran-
dom manner. The method recommended here is to use a random
process performed by the user of the system.

Assume that a 64-bit parity-adjusted key is required for the selec-
tion process, and that odd parity is used; that is, every eighth bit
is adjusted so that the number of bits in the eight-bit group is odd.
With a parity-adjusted key in the system, a consistency check can
be made to ensure that the proper key has been entered.

Let the bit values 0 and 1 in the cryptographic key be determined
by the occurrence of heads and tails, respectively. Then toss 56
coins in eight groups of seven coins each, and record the results.
Each group is then converted to its corresponding parity-adjusted
hexadecimal digits as shown in Table 1.

Each group of seven bits in the 56-bit key is expanded to eight bits
by appending an additional parity bit (odd parity is maintained).
This process can be performed with the aid of a table, if desired.
Using Table 2, for example, the first four bits index the table row
and the last three bits the table column. Since every entry in the
table has correct parity, a parity-adjusted key will be formed even
if there should be an error in indexing. The cryptographic key (the
value entered into the system and saved in a secure repository for
backup purposes) is defined as that string of hexadecimal digits
produced by the table lookup process. The values used in in-
dexing the table are ignored (discarded).

The method described above can also be used with dice. Instead
of tossing seven coins, the user rolls seven dice. The binary digits

can be obtained by considering an even roll (2, 4, or 6) to repre-
sent a 0 bit and an odd roll (1, 3, or 5) to represent a 1 bit.

Generation of key-encrypting keys

The potentially large number of key-encrypting keys that might
be used in a cryptosystem increases the likelihood that at least
one of them may become known to an opponent. Therefore the
key generating procedure must, as an absolute minimum, be de-
signed so that if one or more keys become compromised, the
work factor will remain high enough to provide sufficient pro-
tection for the remaining keys.

It is recommended that the key generating procedure involve or
make use of the host master key, or one of its variants, by execut-
ing one or more of the cryptographic key management opera-
tions. Not only will an opponent be forced to carry out part of his
attack on the same host system, but because the operations them-
selves must be executed as part of the attack, the opponent is

MATYAS AND MEYER IBM SYST J} & VOL 17 % NO 2 %1978

Table 1 Results of coin tossing converted 1o binary and hexadecimal digits (heads H =
binary O, tails T = 1)

Result Binary Hex

HHHTHTH 0001 010 15
THTHHHT 1010 001 A2
TTHTHHH 1101 000 Do
THHHTTT 1000 111 8F
HHTTTTH 0011 110 3D
TTHHHHH 1100 000 Cl1
HHHTTHT 0001 101 1A
HHTHTHH 0010 100 29

001D W —

Parity adjusted key = hex 15A2D08F3DC11A29

Table 2 Parity adjusted hexadecimal digits (odd parity)

DECIMAL o] 1 2 3 4 5

BINARY 000 001 010 011 100 101

0000 01 02 04 07 08 0B
0001 10 13 15 16 19 1A
0010 20 23 25 26 29 2A
0011 31 32 34 37 38 38
0100 40 43 45 46 49 a4A
0101 51 52 54 57 58 5B
0110 61 62 64 67 68 6B
0111 70 73 75 76 79 7A
1000 80 83 85 86 89 8A

W W N e G s W N o~ O

1001 91 92 94 97 98 9B
1010 Al A2 A4 A7 A8 A8
1011 =10} B3 B5 B6 B89 BA
1100 Cl c2 ca c7 c8 cB
1101 Do D3 b5 D6 D9 DA
1110 EO E3 ES E6 E9 EA
1111 F1 F2 Fa F7 F8 FB

constrained by the particular operational characteristics of the
host machine itself. Since the time it takes to encipher and
decipher is known for a given system, the minimum required
computation time can be determined.

The present implementation® ¢ uses a method employing the DES
as a pseudorandom-number generator. The basic idea is that a 64-
bit random number RN can be used in conjunction with the DES
algorithm to produce the entire set of key-encrypting keys (except
the host master key). RN, in this case, is generated externally by
a random process like that used in generating the host master key,
such as coin tossing or dice throwing. Let Y, equal the ith pseudo-
random number generated, and let K, equal the ith cryptographic
key (i = 1,2 - - - n), which is obtained from Y, by adjusting each
byte for odd parity.

IBM SYST J & VOL 17 ¢ NO 2 o 1978 MATYAS AND MEYER

the key generating
procedure

Figure 1 Using the reencipher
from master key (RFMK)
operation to make Y, a
function of both the host
master key KMO and a
64-bit pseudorandom
number AN

RFMK: { RN, TOD + i}— A

RFMK: { RN, A; | ——» Y,

(parity adjust)
————— K

Note that:
TOD time of day

i the number of pseudorandom numbers
generated

a 64-bit intermediate result

Ex (Oxmo (Ea (Do (NN

Drmy (RN)

host master key
first variant of KMO
encipherment of
decipherment of

LV T

The approach described here is to use one of the host processor’s
cryptographic operations so that the Y, values are functions of the
host master key as well as functions of RN. This approach makes
use of the reencipher from master key (RFMK) operation' as
shown in Figure 1. Since RN is a random number, so is the inter-
mediate quantity D, (RN) in Figure 1 (provided, as assumed
here, that the DES does not introduce any bias). Therefore Y, is a
function of two secret, independent cryptographic keys: one
(RN) supplied by the user, the other (KMO0) supplied by the sys-
tem.

Because the DES algorithm is irreversible, knowledge of several
clear keys K, Kl.2 s Ki, or, in fact, even knowledge of the cor-
responding values Y, , ¥, - - - Y, would not permit RN or KMO to
be deduced. Therefore, knowledge of one or more of the gener-
ated keys would not allow any of the remaining keys to be de-
duced.

It should be pointed out that the procedure described above does
not depend on the randomness provided by the time-of-day clock.
A clock value is introduced, in this case, to reduce the likelihood
that the user will inadvertently generate a duplicate list of keys by
accidentally entering the same RN value into the procedure. A
duplicate RN could be entered, for example, if a new RN were
punched into a data card which was accidentally replaced with a
card containing an old value.

Generation of data-encrypting keys

A data-encrypting key is produced by generating a 64-bit number
RN, and defining it to be the desired key already enciphered un-
der a key-encrypting key known to the system. For example, in
communication security, RN is defined as the session key, KS,
enciphered under the host master key, as follows:

RN=E_ (KS).

KM0
In file security, on the other hand, RN is defined as the file key,
KF, enciphered under a secondary file key KNF, as follows:

RN =E_, .(KF)

KNF

With this strategy, it is not necessary to generate the data-en-
crypting key in clear form and then encipher it under the appro-
priate key-encrypting key—that is, the data-encrypting key is
never exposed in clear form.

Basically, a pseudorandom number RN is generated within the
host processor as a result of the dynamically changing and unpre-
dictable nature of the resource demands placed upon the system
by its users.

MATYAS AND MEYER IBM SYST J @ VOL 17 @ NO 2 e 1978

One approach to generating pseudorandom numbers makes use Figure 2 DES-based pseudoran-
of the reencipher to master key (RTMK) operation in conjunction dom-number generator
with two seed values, U and Z, which are derived internally for data-encrypting keys

within the host processor. The seed values are used as input pa-
rameters to the RTMK operation, which, in turn, is used in deriv-
ing RN. Two independent seed values are used to give the proce- RTMK: | UG — 1), 20) |—= UG)
dure added strength, since both values must be compromised be- I
fore a successful attack is possible. Figure 2 illustrates the basic RTMIK: | UG, UG) | — RN ()

idea behind this pseudorandom-number generating procedure. .
Z(i)

(protected area)

2(i)

= arbitrary value

= function of two or more time-of-day
clock readings

RN(i) = ith generated random number

Consecutive seed values—Z(1), Z(2) - - - Z(i), for example—
could be generated by combining two or more independent time-

of-day clock readings. Independence, in this case, can be UG = Exologyowe 1) @0
RN(i) = ExmoOpyupu UGN

The specific relations are:

achieved by interleaving an input-output operation of unpredict-
able length between successive clock readings. The seed value
U(0) could be derived from a combination of user-dependent and
process-dependent information stored in the volatile memory of
the host processor. Each value U(;), for values of i/ greater than
zero, is defined as the output of an RTMK operation whose input
consists of U(i — 1) and Z(i). Hence it follows that U(i) is a
function of U(0) and Z(1), Z(2) - - - Z(i).

It should be noted that RN(i) is a function of two independent
seed values, U(i — 1) and Z(i), each with enough combinations
to thwart exhaustive analysis. The U-values, U(1), U2) - - -
U(i) are generated internally by feeding back the result from
the first RTMK operation. These values are protected by us-
ing a second RTMK operation. The RTMK operation ensures that it
is not possible to deduce U(i) from RN(i). Hence knowledge of
one or more of the generated values of RN will not permit other
values of RN, past or future, to be deduced.

To subvert this pseudorandom-number generating process, an
opponent must cope with the changing and unpredictable values
of Z(i) and the secret quantity U(i — 1), which itself is a function
of U(0) and Z(1), Z(2) - - - Z(i — 1). Even if one of the seed
values should become compromised, the other provides enough
cryptographic strength so that an exhaustive attack intended
to recover a set of eligible RN() would be computationally
infeasible.

Master key entry at the host processor

For reasons of security, the master key cannot be read once it
has been set into a cryptographic facility. The following pro-
cedure, however, will allow a system administrator to determine,
within certain limits, whether the master key stored in the cryp-
tographic facility is the one that was intended.

IBM SYST J ¢ VOL 17 e NO 2 e 1978 MATYAS AND MEYER

hard-wired
entry

Some function, ¢(KM0), of the master key can be computed ex-
ternally to the system and compared with a similar quantity gen-
erated within the system. For example, with the aid of a pro-
grammed version of the DES, KMO could be used as a key to en-
crypt a 64-bit random number RN:

H(KMO) = E,, (RN).

Once the master key has been set into the cryptographic facility,
the encipher under master key (EMK) operation could be used to
generate the same quantity, as follows:

EMK: {RN} — E_,_(RN).

Comparison of these two values can establish whether the keys
used in the two routines are identical. The comparison is only
relative, however, because the wrong, but identical, key could
have been entered in both routines. The challenge, therefore, is
to reduce the risk of this event as far as possible.

KMO0

The reading of temporarily stored keys into the main storage of a
system can be avoided by providing a direct wire connection be-
tween the key entry point and the nonvolatile key storage area of
the cryptographic facility. The key can then be entered by means
of toggle switches, dials, or the like. The direct wire connection
should be so constructed, as by shielding, that probing or the tap-
ping of transmitted information (the keys) is not possible.

Even with hard-wired key entry, there is still some chance that
the key entered into the cryptographic facility will be different
from the key that was intended. The following analysis provides
an estimate of the probability of an undetected error, p(UE), in the

entered key—that is, the probability that a wrong key has been
installed in the nonvolatile storage of the cryptographic facility.

To simplify the calculation, let it be assumed that only one of the
16 hexadecimal digits entered into the cryptographic facility
might be in error (that is, that multiple errors, whose probability
of occurrence is small anyhow, will be ignored), and that the
probability of error, p, during key entry is much higher than the
probability of error between the key entry point and the non-
volatile storage area of the cryptographic facility. These assump-
tions are reasonable in view of the fact that machine error is much
less likely than is human error.

In the situation described above, an error in key entry will not be
detected if the parity of the incorrectly entered hexadecimal digit
is correct. Since there are 16 possible hexadecimal digits, of
which only eight have odd parity, eliminating the correct digit
leaves seven combinations that have correct parity out of 15 pos-
sible combinations. Therefore the probability of an undetected
error, p(UE), is given by

MATYAS AND MEYER IBM SYST J VOL 17 @« NO 2 & 1978

p(UE) = p(KMO entry in error, correct parity)
= p(parity correct | KMO entry
in error) - p(KMO0 entry in error)
= (7/15)p
= 0.4667p

To improve the situation, two quantities (KMO0 and a function ¢ of
KMO0) are specified in such a way that errors associated with the
entry of KM0 and ¢(KM0) are statistically independent. The
choice of ¢(KMO) = KMO0 would not be a candidate, since it
would amount to entering KMO0 twice, and an error in the first
entry might well be repeated in the second. The choice of
¢(KMO0) = KMO (the complement of KMO0) appears to be satisfac-
tory. In this case, the complementary property of the DES al-
gorithm' can be used to advantage by first installing the com-
plement of KM0 in the cryptographic facility and enciphering the
arbitrary value U, then installing KMO in the facility and enci-
phering the complement of U. The output values are defined as Y,
and Y,, respectively. By the complementary property of the DES,
KM0 can be assumed to be installed properly in the cryptographic
facility whenever Y, equals the complement of Y,. Figure 3 illus-
trates this entry procedure.

An undetected error can now occur only if the entered quantities
are complements of each other and the parity of each quantity is
correct. It can be shown that

pUE) = (7/15)*(1/16)(1/7)p*
= 0.00194p"

Any corruption of the key in transit between the entry point and
the cryptographic facility also will be detected by this checking
procedure. There is very little chance that such errors will occur.

To enter the master key indirectly, it is read into main memory
and a set master key (SMK) operation is exercised to load it into
the nonvolatile storage area of the cryptographic facility. The
process of entering the master key into the system through an
external interface, however, introduces a potential source of hu-
man error. Moreover, a hardware or software error could occur
at any time while the key is in transit from its point of entry to the
cryptographic facility. Any of these potential sources of error
could cause an incorrect key to be set.

It is recommended that the master key be entered from a non-
volatile medium such as punched cards or magnetic tape. Such a
medium could be stored in a secure location, as in a safe or vault.
Thus it would be possible, as part of the standard protocol, to
define the master key as that value which is recorded on the
medium—provided, of course, that it has correct parity. Any
human error committed in recording the key on the medium,
then, would be of no real consequence. Likewise, any corrup-

IBM SYST J @ VOL 17 @ NO 2 » 1978 MATYAS AND MEYER

Figure 3 Master-key entry proce-
dure at the host proc-

essor

Step 2

KMO

l

i

|

Ekao(U) = Y3

£

|

Exmo (1)

Y2

Accept KMO if Y| = Y, otherwise reject KMO

indirect
entry

on-line
checking

off-line
checking

tion of the master key between its entry point and the cryp-
tographic facility can be detected by using the procedure de-
scribed previously, in which both the host master key and its
complement are entered into the cryptographic facility.

Master key entry at a terminal

Again, because the terminal master key (KMT) cannot be read
once it has been set, a checking procedure should be used to en-
sure that it has been installed properly in the cryptographic facil-
ity. The key can be set by means of switches, dials, or the like,
or it can be entered at a keyboard.

One way of determining whether the proper master key has been
set into a terminal’s cryptographic facility is to establish a com-
munications session with the host processor. If the installed ter-
minal master key differs from that stored at the host, the session
key at each node will be different and it will not be possible to
send and recover an agreed upon message.

For example, a simple hand shaking protocol could be adopted as
part of the session initiation process. The terminal could transmit
a value N, under K§ encipherment, to the host processor, where
a function ¢(N) would be computed and sent back to the terminal
under KS encipherment. At the terminal, a check would be made
to ensure that the returned value of ¢(N) agreed with a similar
value computed at the terminal. If the values agreed, the terminal
master key would be accepted.

It is often desirable to check KMT directly at a terminal without
involving the host processor at the same time. To do so, a valida-
tion pattern V can be used. This pattern is a nonsecret function of
KMT, created as part of the key generation process. By using the
encipher data (ECPH) operation,’ the validation pattern V. is de-
rived at a terminal as follows:

ECPH: {TID, TID} — E (TID) =V,

Dgyr(TID)

where TID is a terminal identification number unique to each ter-
minal. At key generation time, the encipher under master key
(EMK) and decipher data (DCPH) operations are used, along with
the encipher data (ECPH) operation,’ to produce a similar valida-
tion pattern, V,;, at the host system, as follows:

EMK: {KMT} — E,, (KMT)
pcpH: {E,, (KMT), TID} — D, (TID)
EMK: {D,, (TID)} — E,, (D, (TID))

(D,,,,(TID)), TID} — E

KMT

ECPH: {E

(TID) = V,,.

KMO0 DyyrTID)

MATYAS AND MEYER IBM SYST J ¢ VOL 17 « NO 2 o 1978

The person who is authorized to enter KMT at the terminal is
given the quantity V;. As part of the entry procedure, the termi-
nal will cause the value V| to be generated and displayed. The
user can determine whether KMT has been entered correctly by
comparing V,, with V..

If V, is stored in nonvolatile storage at the terminal, frequent
checks can be made on the correctness of the master key. Alter-
nately, V,; could be written down and posted in a conspicuous
location at the terminal. A keyboard entry command causing V.,
to be generated and displayed thus would allow V, and V, to be
compared periodically by the terminal operator.

Distribution of cryptographic keys

Whenever data-encrypting keys (session keys and file keys) occur
outside the cryptographic facility, they are maintained under the
encipherment of some key-encrypting key. This protocol allows
data-encrypting keys to be routed through the system over paths
that are not secure. Recovery of the data-encrypting key in a us-
able form is possible only if the recipient possesses the appropri-
ate key-encrypting key.

Key-encrypting keys are distributed through the system in an al-
together different way. One cannot always rely on encryption as a
means of protecting the secrecy of these keys, since each node
must have at least one key that is installed initially in clear form.
That key must be sent to the node over a path whose risk of com-
promise is within acceptable limits; that is, the probability of in-
terception must be very low. One such method is to use a courier,
normally the safest and most secure means of transporting keys.
Security in this case, of course, depends on the reliability of the
courier.

Although not necessarily recommended, other means of trans-
mitting keys are by registered mail and by private telephone con-
versation. These methods are less secure than using a courier be-
cause there is a greater chance that an opponent could intercept
the key during transmission. The probability of compromise
could be reduced, however, by transmitting two or more bit pat-
terns over independent paths and combining them at the final des-
tination, for example by using an EXCLUSIVE-OR operation.

The same method could be applied to the key entry procedure
itself. For example, several different bit patterns could be entered
into the cryptographic facility by each of several persons. These
bits could then be combined within the cryptographic facility to
produce the desired key. For the key to be compromised, this
protocol would require the collusion of all persons involved in the
key entry process.

IBM SYST J @ VOL 17 ¢ NO 2 e 1978 MATYAS AND MEYER

Summary

In connection with the key management scheme discussed by
Ehrsam et al. in the preceding paper,’ we have described two
kinds of keys:

e Data-encrypting keys, which protect either data in transit (pri-

mary communication keys, or session keys) or stored data
(primary file keys, or file keys);
Key-encrypting keys, which encipher other keys—for ex-
ample, host master keys, secondary communication keys (of
which the terminal master key is a special case), and second-
ary file keys.

Generally speaking, the method of key generation that is best for
a given class of cryptographic keys is determined by the expected
number of each type of key that will be needed and the time when
the keys will be required by the cryptosystem. In many cases, the
keys can be created dynamically on demand, but sometimes they
are required ahead of time to initialize the system.

The host master key is generated by a random process such as
tossing coins or throwing dice. Human involvement to that extent
is reasonable in the key generation process because only one
master key is required for each host processor and the master key
is likely to remain unchanged for a relatively long time. Since the
master key protects all other keys stored at the host processor,
special care should be taken to ensure that it is generated and
installed in the cryptographic facility in a secure manner.

It is reasonable to anticipate that the total number of key-encrypt-
ing keys (excluding the host master key) may be large enough so
that they should be generated using mechanical (nonhuman) pro-
cedures. The desired keys can be produced using the DES al-
gorithm as a pseudorandom-number generator. The seed values
used in this procedure are generated by the user employing a
random process similar to that used in generating the host master
key. Since the key-encrypting keys are used in initializing the
cryptosystem, they must be generated ahead of time. This can be
accomplished under secure conditions on the computer.

Data-encrypting keys also are required in large numbers (one for
each session and file using encryption), but they need not be gen-
erated until specifically requested—that is, until they are needed
to protect a communications session or to protect stored data.
Hence data-encrypting keys either could be generated ahead of
time and stored in table form until needed, or they could be gener-
ated dynamically on demand. Disadvantages in generating them
ahead of time are that the keys would be exposed longer to pos-
sible compromise by an opponent, and they would require addi-

MATYAS AND MEYER IBM SYST J @ VOL 17 @ NO 2 ® 1978

tional storage. One approach for dynamically generating data-
encrypting keys is to make use of the randomness associated with
the many users and processes normally active on the system at
any one time.

Among the more important principles to be followed in key gen-
eration is that the compromise of one or more keys should not
make it possible for the remaining keys to be deduced easily.
With regard to key distribution, we have shown that security can
be increased whenever two or more bit patterns of 64 bits are
transmitted over different paths and combined at the final destina-
tion. To enhance the security of key installation, we suggested
that two different related values, the key and a function of the
key, be entered into the cryptographic facility. Any errors that
occur in both values will be statistically independent, so the
likelihood of an undetected error—that is, the probability that a
wrong key will be installed—will be greatly reduced.

CITED REFERENCES

1. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. Tuchman. ‘‘A cryp-
tographic key management scheme for implementing the Data Encryption
Standard,”” IBM Systems Journal 17, No. 2, 106-125 (1978, this issue).

. Data Encryption Standard, Federal Information Processing Standard (FIPS)
Publication 46, National Bureau of Standards, U.S. Department of Commerce,
Washington, DC (January 1977).

. IBM Cryptographic Subsystem Concepts and Facilities, IBM Systems Li-
brary order number GC22-9063, IBM Corporation, Department 63T, Neigh-
borhood Road, Kingston, New York 12401 (1977).

. Programmed Cryptographic Facility Program Product General Information
Manual, IBM Systems Library order number GC28-0942, IBM Corporation,
Department D58, South Road, Poughkeepsie, New York 12603 (1977).

Reprint Order No. G321-5067

IBM SYST J @ VOL 17 ¢ NO 2 » 1978 MATYAS AND MEYER

137

