
A key controlled cryptographic  system requires a  mechanism for 
the  safe and secure  generation,  distribution, and installation of 
its  cryptographic keys. This paper  discusses  possible  key  genera- 
tion,  distribution, and installation procedures for the  key man- 
agement  scheme  presented in the  preceding  paper. 

Generation,  distribution,  and  installation 
of cryptographic  keys 

by S. M. Matyas and C. H. Meyer 

Key  generation is the  process  that  provides  the  cryptographic 
keys required by a  cryptosystem. Key distribution is the  trans- 
porting or  routing of cryptographic  keys  through  the  cryptosys- 
tem for  subsequent installation. Key  installation is the entering of 
cryptographic  keys  into designated cryptographic  devices.  The 
protocols  presented  here  for  the  generation,  distribution,  and in- 
stallation of cryptographic  keys are based on the  key manage- 
ment scheme  presented by Ehrsam et al. in the preceding  paper.' 

The key management  scheme  discussed by Ehrsam et  al. distin- 
guishes between key-encrypting keys and data-encrypting  keys. 
The  former are used  to  encipher  other  keys and are defined ahead 
of time as part of the  process of initializing the  cryptographic 
system,  or  cryptosystem. They remain constant  for relatively 
long periods-they  may be changed perhaps  once a year.  Data- 
encrypting  keys, on the  other  hand, are generated dynamically 
during regular system  operations,  hence special precautions  must 
be  taken  to  protect  them. Data-encrypting  keys remain in exist- 
ence  as long as  the  data  exists  that  they  protect.  That  period, 
for  communication  security, is determined by the length of time 
the  user is signed on  to  the  system. Usually it is relatively short. 
For file security, when data is stored in enciphered  form,  data- 
encrypting  keys may exist for  a relatively long time. 
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One special key-encrypting  key,  the host  master  key, is generated 
by some random  process  such  as  tossing a coin or  throwing  dice. 
All other  key-encrypting keys are  produced by using the  Data 
Encryption  Standard   DES)^ as a  pseudorandom-number  gener- 
ator, a  procedure  that  can be performed under  secure  conditions 
on  the  computer. Data-encrypting keys  are  generated dynamical- 
ly,  as  needed,  at  the  host  processor by exploiting the  random- 
ness  associated with the many different users  and  processes  that 
normally are  active  on  the  system  at  any given time. 

With the DES, each 64-bit cryptographic key consists of  56 inde- 
pendent key bits and eight bits that  can be used for  parity  check- 
ing. There are 256 different possible keys.  Since  the DES is a pub- 
licly known algorithm,  cryptographic  strength must be based on 
the  secrecy of its  cryptographic  keys. For that  reason,  great  care 
must be exercised in selecting keys.  They should be as nearly 
random as  possible, so that  an  organized  search  for  them would 
not be likely to meet with early success. If there  were  a known 
bias in the  selection of keys,  for  example,  an  opponent could 
search  the  more likely candidates first. 

The distribution of cryptographic  keys  can  be  accomplished in a 
variety of ways,  as by courier, registered mail, or  telephone,  as 
long as  the likelihood of compromising the key  is within accept- 
able limits. Key installation can be accomplished by activating 
hardware  switches  or dials or by reading the key into main  mem- 
ory  and  then exercising an appropriate  operation to  set  the key 
into  the  cryptographic facility. A number of techniques  can be 
used to minimize the risk of entering  an  incorrect key into  the 
system.  They include multiple entry, validation patterns,  and 
exercising the  cryptographic  system. In the  present  discussion, 
it  is assumed  that  host  and terminal master keys are  entered in 
the form of 16 parity-adjusted hexadecimal digits. 

Generation of the host master  key 

Regardless of the  selection  procedure used for  the specification of 
keys,  organized  and  predictable  methods should be  avoided  for 
choosing key bits. Any selection procedure based on  one’s tele- 

~ phone  number, name and  address,  date of birth,  or  the  like, is so 
~ frail that no real protection is provided. Also, the  pseudorandom- 

number  generator  programs available on many computer  systems 
are  far  too  predictable  to be used for  this  purpose  and should be 
avoided. 

Since  the  master  key,  either directly or through  one of its derived 
variants, provides protection  (through  encipherment)  for all 
other  keys  stored in the  system,  and  since  the  master key will 
in  all probability remain unchanged within the  system  for long 
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periods,  great  care  must  be  taken  to  select  this key in a  ran- 
dom manner. The method  recommended  here is to  use a random 
process  performed by the  user of the  system. 

Assume that  a 64-bit parity-adjusted key is required for  the  selec- 
tion process,  and  that odd parity is used;  that  is,  every  eighth bit 
is  adjusted so that  the  number of bits in the eight-bit group is odd. 
With a parity-adjusted key in the  system,  a  consistency  check  can 
be made to  ensure that  the  proper key has been entered. 

tossing Let  the bit values 0 and 1 in the  cryptographic key be  determined 
coins by the  occurrence of heads  and  tails,  respectively.  Then  toss 56 

coins in eight groups of seven  coins each, and record the  results. 
Each  group is then  converted to its  corresponding  parity-adjusted 
hexadecimal digits as shown in Table 1. 

Each  group of seven bits in the 56-bit key is expanded  to eight bits 
by appending  an additional parity bit (odd parity is maintained). 
This  process  can  be performed with the aid of a  table, if desired. 
Using Table 2, for  example,  the first four bits index  the  table row 
and  the  last  three bits the  table  column.  Since  every  entry in the 
table  has  correct  parity,  a  parity-adjusted key will be  formed  even 
if there should be  an  error in indexing. The  cryptographic key (the 
value entered  into  the  system and saved in a  secure  repository  for 
backup  purposes) is defined as  that  string of hexadecimal digits 
produced by the  table lookup process.  The  values  used in in- 
dexing the  table are ignored (discarded). 

throwing The method described  above  can  also  be used with dice.  Instead 
dice of tossing seven  coins,  the  user rolls seven  dice. The binary digits 

can be obtained by considering an  even roll (2, 4,  or 6) to repre- 
sent a 0 bit and an odd roll (1, 3 ,  or 5 )  to represent a 1 bit. 

Generation of key-encrypting keys 

The potentially large number of key-encrypting  keys  that might 
be used in a cryptosystem  increases  the likelihood that  at  least 
one of them may become known to  an opponent.  Therefore  the 
key generating  procedure  must,  as  an  absolute minimum, be  de- 
signed so that if one  or more  keys  become  compromised,  the 
work factor will remain high enough to provide sufficient pro- 
tection for  the remaining keys. 

It is recommended  that  the key generating  procedure  involve or 
make use of the  host  master  key,  or  one of its  variants, by execut- 
ing one  or  more of the  cryptographic key management  opera- 
tions. Not only will an  opponent be forced to carry out  part of his 
attack on the  same  host  system,  but  because  the  operations  them- 
selves must be executed  as  part of the  attack,  the  opponent is 
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Table 1 Results of coin  tossing  converted  to  binary and hexadecimal  digits (heads H = 
binary 0, tails T = 1) 

Trial Result Binary Hex 

HHHTHTH 
THTHHHT 
TTHTHHH 
THHHTTT 
HHTTTTH 
TTHHHHH 
HHHTTHT 
HHTHTHH 

o001010 
1010 001 
1101 000 
lo00 1 1 1  
0011  110 
1 1 0 0  000 
0001  101 
0010 100 

15 
A2 
DO 
8F 
3D 
c1 
1A 
29 

Parity adjusted key = hex 15A2D08F3DCllA29 

Table 2 Parity  adjusted  hexadecimal  digits  (odd  parity) 

DECIMAL 0 1 2 3 4 5 6 7  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

31NARY 000 001 010 011 100 101 110 111 

0000 01 02 04  07 08  OB OD OE 

0001 10 13 15 16 19 1A I C  1F 

0010 20 23 25 26 29 2A 2C 2F 

0011 31  32 34 37 38 38 3D 3E 

0100 40 43 45 46 49 4A 4C 4F 

0101 51  52 54 57 58 5B 5D 5E 

0110 6 1  62 64 67 68 68  6D 6E 

0111 70 73 75 76 79 7A 7C 7F 

1000 80 83 85 86 89 8A 8C 8F 

1001 91  92 94 97 98 96 9D 9E 

1010 A1 A2 A4 A7 A8 AB AD AE 

1011 BO 83 B5 86 B9 BA BC BF 

1100 CI c 2  c 4  c7  c 8  CB CD cr 
1101 DO 03 D5 D6 09 DA DC DF 

1110 EO E 3  E5 E6 E9 EA EC EF 

1111 F 1  F2 F4 17 F8 FB FD FE 

constrained by the  particular  operational  characteristics of the 
host machine itself. Since  the time it takes  to  encipher  and 
decipher is known for  a given system, the minimum required 
computation time can be determined. 

The  present implementation3, uses  a method employing the DES 
as a  pseudorandom-number  generator.  The  basic idea is that  a 64- 
bit random  number RN can be used in conjunction with the DES 
algorithm to produce the entire set of key-encrypting keys (except 
the  host  master key). RN,  in this case, is generated  externally by 
a random process like that used in generating  the  host  master  key, 
such as coin tossing or dice throwing. Let Yi equal the ith pseudo- 
random number  generated,  and  let Ki equal  the ith cryptographic 
key (i = 1, 2 . * n) ,  which is obtained from yi by adjusting  each 
byte  for odd parity. 
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Figure 1 Using  the  reencipher 
from  master key (RFMK) 
operation to make Yi a 
function of both  the  host 
master  key KMO and  a 
64-bit  pseudorandom 
number RN 

RFMK: 1 RN, TOD + I _t A, 

RFMK 1 RN, A, &y I - Y, adlust) 
K, 

Note that: 
TOD = tlme of day 

I = the numberof pseudorandom numbers 

A = a 64-blt lnterrnedlate result 
y, = E, (DKMO (Ea (DKMO (0))) 

KMO = host master hey 
(I = DKMI (RN) 

KM1 = first vanant of KMO 
E = enopherment of 
D = decipherment of 

generated 
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The  approach  described  here is to use  one of the  host  processor's 
cryptographic  operations so that  the Yi values are  functions of the 
host  master key as well as  functions of R N .  This approach  makes 
use of the reencipher  from  master  key (RFMK) operation' as 
shown in Figure 1. Since RN is a random  number, so is the  inter- 
mediate  quantity D,,,(RN) in Figure 1 (provided, as assumed 
here,  that  the DES does  not  introduce  any bias). Therefore Yi is a 
function of two  secret, independent  cryptographic  keys: one 
( R N )  supplied by the  user,  the  other (KMO) supplied by the  sys- 
tem. 

Because the DES algorithm is irreversible, knowledge of several 
clear  keys K,,,  Ki,  . . Kt, or, in fact, even knowledge of the cor- 
responding values Y,, ,  Yi, . . * Yij would not  permit R N  or KMO to 
be  deduced.  Therefore, knowledge of one  or more of the gener- 
ated keys would not allow any of the remaining keys to be de- 
duced. 

It should be pointed  out  that  the  procedure  described  above  does 
not depend  on the randomness  provided by the time-of-day clock. 
A clock value is introduced, in this case,  to reduce  the likelihood 
that  the  user will inadvertently  generate a duplicate  list of keys by 
accidentally entering  the  same RN value into the  procedure. A 
duplicate RN could  be  entered,  for  example, if a new R N  were 
punched  into a data card which was accidentally replaced with a 
card containing an old value. 

Generation of data-encrypting keys 

A data-encrypting key is  produced by generating a 64-bit number 
R N ,  and defining it to  be  the desired key already enciphered  un- 
der a  key-encrypting key known to  the  system.  For  example, in 
communication  security, R N  is defined as  the  session  key, K S ,  
enciphered  under  the  host  master  key, as follows: 

RN = E,,,(KS). 

In file security, on the  other  hand, RN is defined as  the file key, 
KF,  enciphered  under  a  secondary file key KNF, as follows: 

RN = E,,,(KF) 

With this  strategy, it is not necessary  to  generate the data-en- 
crypting key in clear form and then  encipher it under  the  appro- 
priate  key-encrypting key-that is, the data-encrypting key is 
never  exposed in clear  form. 

Basically, a  pseudorandom  number R N  is generated within the 
host  processor  as a result of the dynamically changing and  unpre- 
dictable  nature of the  resource  demands placed upon  the  system 
by its  users. 
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One  approach to generating pseudorandom  numbers  makes  use 
of the reencipher to master key (RTMK) operation in conjunction 
with two  seed  values, U and Z ,  which are  derived internally 
within the  host  processor.  The  seed values are used as input pa- 
rameters to  the RTMK operation,  which, in turn, is used in deriv- 
ing RN. Two  independent  seed  values are used to give the  proce- 
dure  added  strength,  since  both values must be compromised be- 
fore  a  successful  attack is possible. Figure 2 illustrates  the  basic 
idea behind this  pseudorandom-number generating procedure. 

Consecutive  seed values-Z(l), Z(2) . . Z(i) ,  for example- 
could be  generated by combining two  or more independent time- 
of-day clock readings.  Independence, in this case,  can be 
achieved by interleaving  an  input-output  operation of unpredict- 
able length between  successive clock readings. The seed  value 
U(0) could be  derived from a  combination of user-dependent  and 
process-dependent information stored in the volatile memory of 
the host processor.  Each value U(i), for values of i greater than 
zero, is defined as  the  output of an RTMK operation  whose input 
consists of U(i - 1) and Z(i). Hence it follows that U(i)  is a 
function of U(0) and Z(1),  Z(2) - Z(i) .  

It should be noted that RN(i) is a  function of two  independent 
seed  values, U(i - 1) and Z(i) ,  each with enough combinations 
to thwart  exhaustive  analysis.  The U-values, U(1), U(2) . 
U(i) are generated internally by feeding back the result from 
the first RTMK operation.  These values are protected by us- 
ing a second RTMK operation.  The RTMK operation  ensures  that it 
is not possible to  deduce U(i) from RN(i). Hence knowledge of 
one  or  more of the  generated values of RN will not  permit  other 
values of R N ,  past or  future,  to be deduced. 

To subvert  this  pseudorandom-number generating process,  an 
opponent  must  cope with the changing and  unpredictable values 
of Z(i) and  the  secret  quantity U(i - l ) ,  which itself is a  function 
of U(0) and Z(1), Z(2) . . . Z(i - 1). Even if one of the  seed 
values should become compromised, the  other provides enough 
cryptographic  strength so that  an  exhaustive  attack  intended 
to  recover a set of eligible RN(i) would be  computationally 
infeasible. 

Master  key  entry  at  the  host  processor 

For reasons of security,  the  master key cannot be read once it i has been set  into  a cryptographic facility. The following pro- 
cedure,  however, will allow a  system  administrator  to  determine, 
within certain  limits,  whether  the  master key stored in the  cryp- 
tographic facility is the  one  that was intended. 

Figure 2 DES-based pseudoran- 
dom-number  generator 
for  data-encrypting  keys 

(protected area) 

RTMK 1 U(i). U(I) I-+RN(O 

U(O1 = arbitrarv value ~, I 
20)  = function of two or more  tlme-of-day 

clock readlngr 
R N ( ! )  = ith generated random number 
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Some  function, +(KMO), of the  master key can  be  computed  ex- 
ternally to  the  system  and  compared with a similar quantity gen- 
erated within the  system. For example, with the aid of a pro- 
grammed version of the DES, KMO could be used as a key to en- 
crypt a 64-bit random number R N :  

+(KMO) = E,,,(RN). 

Once  the  master key has been set  into  the  cryptographic  facility, 
the encipher  under  muster  key ( F " )  operation  could  be used to 
generate  the  same  quantity, as follows: 

EMK: {RN}  + EKMO(RN). 

Comparison of these  two values can  establish  whether  the  keys 
used in the  two  routines  are  identical.  The  comparison is only 
relative,  however,  because  the  wrong,  but  identical,  key  could 
have been entered in both routines.  The  challenge,  therefore, is 
to  reduce  the risk of this  event  as  far  as  possible. 

hard-wired The reading of temporarily  stored  keys  into  the main storage of a 
entry system can be avoided by providing a  direct wire connection be- 

tween the key entry point and the nonvolatile key storage  area of 
the  cryptographic facility. The key can  then be entered by means 
of toggle switches,  dials,  or  the like. The  direct wire connection 
should be so constructed,  as by shielding, that probing or  the tap- 
ping of transmitted information (the  keys) is not possible. 

Even with hard-wired key entry,  there is still some  chance  that 
the key entered  into  the  cryptographic facility will be different 
from the key that was intended.  The following analysis  provides 
an  estimate of the probability of an  undetected error, ~ ( u E ) ,  in the 
entered key-that is,  the probability that a wrong key  has  been 
installed in the nonvolatile storage of the  cryptographic facility. 

To simplify the calculation,  let it be  assumed  that only one of the 
16 hexadecimal digits entered  into  the  cryptographic facility 
might be in error  (that is, that multiple errors, whose probability 
of occurrence is small anyhow, will be ignored), and  that  the 
probability of error,  p, during key entry is much higher than the 
probability of error between  the key entry point and  the  non- 
volatile storage  area of the  cryptographic facility. These  assump- 
tions are  reasonable in view of the  fact  that machine error is much 
less likely than is human error. 

In  the  situation  described  above, an  error in key entry will not  be 
detected if the  parity of the  incorrectly  entered  hexadecimal digit 
is correct.  Since  there  are 16 possible hexadecimal digits, of 
which only eight have odd parity, eliminating the  correct digit 
leaves  seven  combinations  that  have  correct  parity  out of 15 pos- 
sible combinations.  Therefore  the probability of an  undetected 
error, p(UE), is given by 
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The  person  who  is  authorized to  enter KMT at  the terminal is 
given the  quantity V,. As part of the  entry  procedure,  the termi- 
nal will cause  the  value V,  to  be  generated  and  displayed. The 
user  can  determine  whether KMT has been entered  correctly by 
comparing V ,  with V,. 

If V ,  is stored in nonvolatile storage  at  the  terminal,  frequent 
checks  can  be  made  on  the  correctness of the master  key. Alter- 
nately, V ,  could  be written down  and  posted in a  conspicuous 
location at  the  terminal. A keyboard  entry command causing V ,  
to  be generated  and displayed thus would allow V ,  and V, to  be 
compared periodically by the terminal operator. 

Distribution of cryptographic keys 

Whenever  data-encrypting  keys  (session keys and file keys)  occur 
outside  the  cryptographic  facility,  they are maintained under  the 
eneipherment of some key-encrypting key.  This  protocol allows 
data-encrypting  keys  to be routed  through  the  system  over  paths 
that  are not secure.  Recovery of the data-encrypting key in a us- 
able form is possible only if the  recipient  possesses  the  appropri- 
ate key-encrypting key. 

Key-encrypting keys are distributed through the  system in an al- 
together different way.  One  cannot  always rely on  encryption as a 
means of protecting  the  secrecy of these  keys,  since  each  node 
must  have at least  one key that is installed initially in clear  form. 
That key must  be  sent  to  the  node  over  a  path  whose risk of com- 
promise is within acceptable limits; that is, the  probability of in- 
terception  must  be  very  low. One such method is to  use  a  courier, 
normally the  safest  and most secure  means of transporting  keys. 
Security in this case, of course,  depends on the reliability of the 
courier. 

Although not  necessarily  recommended,  other  means of trans- 
mitting keys are by registered mail and by private  telephone  con- 
versation.  These  methods are less  secure  than using a courier be- 
cause  there is a greater  chance  that  an  opponent could intercept 
the key during transmission.  The probability of compromise 
could be reduced,  however, by transmitting  two or  more bit pat- 
terns  over  independent  paths  and combining them at  the final des- 
tination,  for  example by using an EXCLUSIVE-OR operation. 

The  same  method could be applied to the key entry  procedure 
itself. For example,  several different bit patterns could be entered 
into  the  cryptographic facility by each of several  persons.  These 
bits could then be combined within the cryptographic facility to 
produce  the  desired  key. For  the key to  be  compromised,  this 
protocol would require  the collusion of  all persons  involved in the 
key entry  process. 
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Summary 

In  connection with the key management scheme  discussed by 
Ehrsam et al. in the preceding paper,' we have  described  two 
kinds of keys: 

Data-encrypting  keys, which protect  either  data in transit (pri- 
mary communication  keys, or session  keys) or  stored  data 
(primary file keys,  or file keys); 

0 Key-encrypting  keys, which encipher  other keys-for ex- 
ample,  host  master  keys,  secondary  communication  keys (of 
which the terminal master key is a  special  case),  and  second- 
ary file keys. 

Generally speaking,  the  method of key generation  that is best  for 
a given class of cryptographic  keys is determined by the  expected 
number of each  type of key that will be  needed  and the time when 
the  keys will be  required by the  cryptosystem. In many cases,  the 
keys can be created dynamically on demand,  but  sometimes  they 
are  required  ahead of time to initialize the  system. 

The  host  master key is generated by a  random  process  such as 
tossing coins or throwing dice.  Human involvement to  that  extent 
is reasonable in the key generation  process  because only one 
master key is  required  for  each  host  processor  and the  master key 
is likely to remain unchanged for  a relatively long time. Since  the 
master key protects all other keys stored  at  the host  processor, 
special care should be taken  to  ensure  that it is generated  and 
installed in the  cryptographic facility in a  secure  manner. 

It  is  reasonable to anticipate  that  the  total number of key-encrypt- 
ing keys (excluding the  host  master  key) may be  large  enough so 
that they should be  generated using mechanical (nonhuman)  pro- 
cedures.  The  desired  keys can be  produced using the DES al- 
gorithm as a  pseudorandom-number  generator. The seed  values 
used in this procedure are generated  by the user employing a 
random  process similar to  that used in generating the  host  master 
key.  Since  the key-encrypting keys are used in initializing the 
cryptosystem,  they must be generated  ahead of time.  This  can be 
accomplished under  secure conditions on  the  computer. 

Data-encrypting  keys  also  are  required in large numbers  (one  for 
each  session  and file using encryption),  but they need not  be gen- 
erated until specifically requested-that is, until they are needed 
to  protect  a communications session or  to  protect  stored  data. 
Hence  data-encrypting keys either could be generated  ahead of 
time and  stored in table form until needed,  or they could be gener- 
ated dynamically on  demand.  Disadvantages in generating  them 
ahead of time are  that  the keys would be  exposed  longer to pos- 
sible compromise by an  opponent,  and  they would require  addi- 
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