




The  opponent or antagonist of a  cryptosystem is a cryptanalyst. 
Cryptanalysis is concerned with techniques used to  penetrate 
communications  and  recover  the original information by means 
other  than  those available to the legitimate recipient. 

Cryptofogy is the  science of disguised or  secret  communications. 
It  embraces  both  cryptography  and  cryptanalysis. 

The  basic challenge in cryptography is to  devise a method  that 
transforms  messages (known as plaintext) into  cryptograms 
(known as ciphertext) in a cryptographically secure way-that is, 
the method must  withstand intense efforts at  cryptanalysis. Plain- 
text  can  be  protected by either of two  techniques: it can be en- 
coded using a code  system,  or it can be enciphered (encrypted) 
using a  cipher  system. 

Code  systems require  a  code book or dictionary that  relates  the 
words,  phrases,  and  sentences of the vocabulary (the  plaintext)  to 
its equivalent code  group  (the  ciphertext),  and vice versa.  The 
number of plaintext messages that  can  be  encoded  depends  on  the 

i number of combinations of phrases  that can be  obtained from the 
code  book. Although that number may  be large,  not  every combi- 
nation or pattern of bits can be encoded.  Hence  the versatility 
and  usefulness of code systems is limited, especially in computer 

~ applications. 

Cipher  systems require  two  basic  elements:  a  set of rules or 
steps-that is, an algorithm-constituting  the basic  cryptographic 

1 procedure, which is constant in character  and agreed upon in ad- 
vance,  and  a specific cryptographic  key,  selected from a large set 
of possible keys, which is known only by the  communicators. 

A cryptographic algorithm can be  represented as an  extremely 
large number of possible mathematical procedures called trans- 
formations.  Each  transformation defines how sequences of in- 
telligible data (representing  a  message)  are changed into  se- 
quences of apparently random noise (gibberish) that  are unintelli- 
gible to  humans  or  machines.  The  cryptographic key is a  secretly 
held sequence of numbers  or  characters, relatively short, which 
identifies the  transformation  to  be  used. 

To be useful, the algorithm should have,  for  each of its  trans- 
formations,  an  inverse  operation  that  changes  the gibberish back 
into intelligible data. (This  process is called decipherment or 
decryptment.)  It is assumed here that  encipherment and decipher- 
ment are performed using the  same  cryptographic key. Thus, a 
cryptographic algorithm will provide  data  security  between  two 
nodes of a  data  processing  system if those  two nodes have  the 
algorithm installed (in hardware or software)  and if both  nodes 
have  exact knowledge of the  key. 



It is important to note that, for good data  security, only the key 
need be kept  secret.  The  details of the algorithm are  assumed  to 
be known to  everyone.  The  cryptographic  key,  therefore, is often 
considered analogous to  the  secretly held combination of a  safe. 

It is always  possible to  construct an  unbreakable  system if the 
number of characters in the key is equal  to or  greater than the 
number of characters of plaintext to  be enciphered. It is required, 
however,  that  the key be randomly selected and used  only  once. 
This  approach is impractical in data  processing  systems  because 
of the large amount of message traffic.  In a practical approach,  the 
key must be of fixed length, relatively short, and capable of re- 
peated  use. 

Basically there  are  three general classes of ciphers: transposition 
ciphers,  substitution  ciphers, and  combinations of these called 
product  ciphers. A transposition  cipher involves the  rearrange- 
ment or permutation of the  plaintext  letters without change in 
their  identity. A substitution  cipher involves the  replacement of 
plaintext letters by one  or more letters  (or  other  symbols)  without 
changing their  sequence.  Cryptographic  research  conducted  dur- 
ing  World War I1 showed that  strong  encryption  systems could be 
obtained using alternate  steps of substitution  and  transposition, 
resulting in a  product  cipher.' 

Further  research  into  the  development of strong  product  ciphers 
was  undertaken in the  private  sector in the  late 1960's. During 
the period from 1968 to 1975, a  cryptographic  procedure  con- 
sisting of 16 alternate  steps  (or  rounds) of key-controlled sub- 
stitution and fixed permutation,  based on work done by Horst 
Feistel, was developed at I B M . ~  This algorithm was accepted  as  a 
standard by the National Bureau of Standards  and  became ef- 
fective on July 15,  1977. It is known as  the  Data  Encryption 
Standard (DEW3 

The DES enciphers a 64-bit (eight-character) block of plaintext 
into a 64-bit block of ciphertext  under  the  control of a 56-bit cryp- 
tographic key.  The general process of encryption  consists of  16 
separate  rounds of encipherment,  each  round using a product ci- 
pher  approach,  or cipher  function. The interaction of data, cryp- 
tographic key K ,  and  cipher  function f is illustrated in Figure 1. 
The  externally supplied key K consists of  64 bits: 56 bits are used 
by the algorithm and eight bits may be used for  parity  checking. A 
special shifting scheme on the original 56-bit key is used so that a 
subset of 48 key bits is used in each  round.  These  subsets of key 
bits are denoted K , ,  K ,  . K16. During decipherment,  the 
rounds  are  performed in reverse  order (K16 is used in round one, 
K,, in round two, and so forth). 
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an  opponent  to obtain plaintext (X) and its complement ( X )  
enciphered  under  the unknown cipher  key.  Moreover, it has been 
suggested that in unusual cases, when a longer key is desired, 
multiple encryption  methods  (superencipherment)  can  be used as 
a means of increasing the work factor (a measure of the  strength 
of a cryptographic procedure). The work factor is an  expression of 
the time and  resources required for a competent  cryptanalyst, us- 
ing known techniques and equipment, to solve for  the  particular 
key in use, given full knowledge of the algorithm used  and large 
amounts of plaintext (which the  cryptanalyst may specify) and 
corresponding  ciphertext. At this writing, the  authors  are un- 
aware of any demonstrated method of solving for a single key bit, 
other  than by key exhaustion (trying each  possible  key). 

It must be  remembered  that if the key required for  decrypting 
data is lost or  unknown, the  data  cannot be recovered  from the 
ciphertext.  It is just as difficult for  the  authorized  user to  decrypt 
this  data when the key is unknown as it is for  the  opponent. 

The DES can be used to  obtain  either a block cipher or a stream 
cipher. In a block cipher,  each 64-bit input block is enciphered 
into a corresponding 64-bit output block of ciphertext. In a stream 
cipher, a 64-bit pseudorandom initializing vector is used  to  start a 
process  that  produces a long pseudorandom bit stream which can 
then be added to  the plaintext, using modulo 2 addition,  to pro- 
duce  the  desired  ciphertext. Only the block cipher  mode will be 
treated  here. 

The block cipher can be used in either of two modes of operation: 
block encryption  and chained block encryption. When block en- 
cryption is used,  each 64-bit block of data is enciphered  sepa- 
rately.  In  chained block encryption,  the  encipherment of each 
block is also  made  dependent on prior information (plaintext, ci- 
phertext,  or  the like) that is available when the block is enci- 
phered.  Two  important chained block encryption  techniques are 
ciphertext feedback and plaintext-ciphertext feedback, as defined 
below. 

Let X , ,  X ,  . . X n  denote blocks of plaintext  to  be  chained using 
key K and nonsecret initializing vector Yo, and let Y,, Y, . Y, 
denote  the  blocks of ciphertext  produced. When ciphertext  feed- 
back is used,  the following relationship holds: 
Yt = EK(Xi CB Yip , )  for i 2 1 

where CB represents modulo 2 addition. When plaintext-cipher- 
text  feedback is used,  the following relationships hold: 

y,  = E,W, @ Yo) 
and 

Yi = E,(X, G3 Yip, G3 Xi-,) for i > 1. 
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Chained block encryption  (or block chaining) can  be  used to  ex- 
tend  the  strong  intersymbol  dependence in a single block of ci- 
phertext  to include all chained blocks.  (Strong intersymbol de- 
pendence is a  property of the DES, since  each  ciphertext bit is a 
complicated function of  all plaintext bits and all key bits.) Hence, 
block chaining can be used to  overcome difficulties with highly 
redundant or  structured  data. 

Plaintext-ciphertext  feedback  has  the additional property of error 
propagation.  Corruption of a single bit of ciphertext will cause 
each  subsequent bit of recovered  plaintext  to  be in error with 
probability 0.5. By appending a known pattern of bits to  the end 
of the  plaintext  prior  to  encryption, and comparing that value to 
the value recovered,  the  error propagation feature  can  be used for 
checking  the  true  content of a message. 

Chaining techniques are useful for  encrypting data, and the block 
cipher (with no chaining) is useful for key transformation  opera- 
tions. To simplify the discussion that follows, chaining methods 
are not considered. 

There  are  three  approaches  to  incorporating  encryption  into a 
communications  system: link-by-link, node-by-node,  and  end-to- 
end encryption. 

In link-by-link encryption,  data is encrypted  across  the medium 
connecting  two  directly communicating nodes. Link-by-link en- 
cryption is logically independent of the  system and does  not nec- 
essarily imply that the cryptographic capability is integrated  into 
the communicating nodes.  It can be  thought of as  implemented by 
a pair of cryptographic  devices  bracketing  the line between  two 
communicating nodes  and  situated  between  the  nodes  and  their 
modems (modulators or demodulators). 

Node-by-node encryption is logically similar to link-by-link en- 
cryption in that  each link  is protected by a unique key.  However, 
the  translation from one key to  another  occurs within a  security 
module, which may be a peripheral device  attached  to  the  node. 
Moreover,  plaintext  occurs only within the  security  module, not 
within the  node. 

In end-to-end encryption,  data  encrypted  at  the originating node 
is not decrypted until it arrives at its final destination. The  cryp- 
tographic capability is integrated into  the  participating  nodes to 
the  extent  that  the  system can control  the setting of the  keys  and 
turning the  cryptographic capability on and off. The  crypto- 
graphic capability present -at a  host  processor  node could be 
provided either by a programmed implementation of the DES 
algorithm or by special hardware integrated into  the  central  proc- 
essing unit,  into  a front-end processor, or into the  channel. 
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end-to-end For end-to-end  encryption,  the  common key that  must  be  present 
encryption at  each  node  for  encryption  and  decryption can be  provided in 

either of two  ways. It  can  be a private personal  key associated 
with and manually entered  into the  node by each individual user, 
or it can be a secret device  key resident within the  node, initially 
installed by authorized  personnel, maintained in a  nonvolatile 
store, and  shared by many system  users. In  the  latter  case,  the 
keys are managed by the  system,  and  the  implementation  pro- 
vides cryptographic  transparency. 

Any key-controlled  cryptographic  algorithm,  such as  the DES, re- 
quires a protocol  for safely handling and controlling its  crypto- 
graphic  keys.  This  aspect of cryptography is called key  manage- 
ment. Its complexity  depends on the level of functional  capability 
provided by the cryptosystem. 

The key  management  scheme  presented  here  enables the DES to 
be  integrated  into  data  processing  systems to provide  protection 
for  communications  between individual end  users  (end-to-end  en- 
cryption). With end-to-end encryption,  data can be deciphered 
only at its final intended  destination.  Data is never  exposed  at 
intei-mediary nodes.  Moreover,  there is no danger  from mis- 
directed  messages  since  each  end  user  has  a unique data-encrypt- 
ing key. 

By integrating cryptography  into  the  host  system,  end-to-end  en- 
cryption provides a  means  for  encrypting  and  decrypting  stored 
data.  For this  reason,  the key management  scheme can  be used to 
protect  data  stored and transported  on removable media. 

The key management  scheme  involves  host  processor  nodes as 
well as terminal  nodes.  Each terminal has a unique terminal mas- 
ter key stored in the  clear within the terminal’s cryptographic  de- 
vice. The terminal  master key is  stored  also  at  the  host  processor 
to which the  terminal is attached  and is protected  through the use 
of a  special  host  resident key called the host  master  key.  The 
master key is the only key stored in clear form at  the  host  proc- 
essor; all other  keys  are  enciphered. 

End-to-end encryption  between individual end  users is achieved 
by the  use of a  common  data  encrypting key (defined as  the pri- 
mary communication  key), which is generated dynamically and 
remains operable  for  the  duration of the  communications  session. 
Hence  this  key is also called a session  key ( K S ) .  When referring 
to file security,  the  data  encrypting key is defined as  the primary 

jile  key, orfile key ( K F ) .  

The session key is a time-variant quantity  that is generated  at  the 
host  processor.  It is transmitted to  the appropriate  terminal  under 
the  encipherment of that terminal’s master  key,  where it is recov- 
ered  and used for  protecting  data  communications. 
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This  basic idea-transmitting or storing  a  data-encrypting key un- 
der the  encipherment of a key-encrypting key available at  the  des- 
tination node-can be  extended so that  session  keys  and file keys 
are generated at one  host  processor and recovered  at another.  In 
that  case,  the data-encrypting key is enciphered  under  a  common 
key held only by the  two  participating  nodes. When applied to 
communication  security,  the common key is called a secondary 
communication  key ( K N C ) ,  and when applied to file security,  the 
key is called a secondary file key (KNF).  

The main purpose of the session key is to  establish a common 
data-encrypting key between end nodes  that  have different mas- 
ter keys. A session may involve several different end  users  at  the 
same  time.  Session  keys  are  also useful in limiting the  amount of 
communicated data  enciphered  under any single key within the 
system.  The limitation reduces  the  threat  that  an  opponent could 
successfully build a dictionary of plaintext and ciphertext  equiva- 
lents which could be used to  attack  the  system. 

~ The  host  master  key  concept 

Because  the DES is a key-controlled algorithm, the  protection 
achieved through encryption ultimately depends on the  secrecy 
of the  cryptographic  key. If the  cipher  keys  cannot be adequately 
protected,  the use of cryptography  does  not  enhance  security; it 
does little more than  create  a  nuisance  factor  for  the  opponent. 
Consequently,  the effectiveness of any  cryptographic  algorithm, 
such as  the DES, is  highly dependent  on  the  techniques used for 
the  selection, handling, and  protection of the  cryptographic  keys 
used in the ciphering process. 

One way to  ensure  the  secrecy of cryptographic  keys would be to protection of 
keep them in a protected  area of storage  accessible only to the cipher  keys 
cryptographic  algorithm.  However,  to provide secrecy  for  these 
keys when in use by the  algorithm,  and  to  prevent  intermediate 
results of each  round from being exposed,  the algorithm itself 
would have to be kept in a  protected  area. 

A random access memory (RAM), addressable only by the  cryp- 
tographic algorithm, would provide  a  protected  area  for  cipher 
keys.  However,  the  keys must be available to  users authorized to 
employ them.  Access to  the keys must be controlled,  therefore, 
by means other  than  cryptography,  such as store-and-fetch  pro- 
tection features  or privileged operations. 

Because the RAM approach  does  not  provide  a  means  for  con- 
trolling access  to  cipher keys, it can  be ruled out in favor of an 
equally secure  approach in which a RAM is not  needed. In this 
approach only a single key,  the master key, is stored in clear form 
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at  the  host  system. All other keys are protected  through  encipher- 
ment using the  master  key.  Hence  the problem of providing  se- 
crecy  for  cipher  keys is reduced  to providing secrecy  for only one 
key-the master  key. 

The  inaccessible  area containing the  master key and  the  cryp- 
tographic algorithm is called the cryptographic facility. It is as- 
sumed that  the  master key is in nonvolatile  storage, so that it need 
be loaded into  the  cryptographic facility only once.  The  master 
key can be routed to the  cryptographic facility by reading it into 
main memory and exercising a  set muster key operation, which 
moves  the  master key from main memory to  a nonvolatile storage 
element in the  cryptographic  facility, or it can be  entered  into 
nonvolatile storage by a manual process using mechanical 
switches or dials.4 

The use of encrypted  keys within the host  system  has the advan- 
tage,  compared with the  use of clear  keys,  that  even if an oppo- 
nent  obtains  an  encrypted  key, any intercepted  ciphertext  can  be 
deciphered only on the  system  possessing  the  appropriate  master 
key. (For security  purposes, no two  master keys will ever  be  the 
same,  except by pure  chance.) 

The distinction between  encrypted  keys  and  clear  keys is impor- 
tant in that  the ability of an opponent  to  obtain  an  encrypted key 
does not authorize him to  use  the  cryptographic facility or gain 
access  to  the  system. With clear  keys,  on the other hand, a sys- 
tem can be attacked  externally. Information obtained by wire- 
tapping, for  example, could be  decrypted  at any computer using a 
programmed version of the DES algorithm. 

As indicated previously,  the  cryptographic algorithm and  the 
master key are contained in the  protected  area of the  crypto- 
graphic  facility.  This  strategy  permits the master key,  other ci- 
pher keys used by the ciphering algorithm,  and the  results of in- 
termediate  rounds of encipherment or decipherment to be kept 
secret.  It  is  also  assumed  that  the  cryptographic facility has  an 
input port for  data (which may include clear or  encrypted  keys), 
an output port,  and a  control line to indicate  the  desired  opera- 
tion.  The  cryptographic  operations  necessary to provide key 
management are developed around  these  assumptions. 

Communication  security 

timevariant Let KS,, KS,  . KS,  represent  the  time-variant, dynamically 
keys changing data-encrypting keys used for enciphering and  decipher- 

ing data. It is assumed  that KS is operational  for the  duration of a 
communications  session (KS is the primary communication  key, 
or  session  key, as discussed  before). Let  KMTrepresent  the mas- 



1 ter key of the  terminal, and KMHO the  master key of the host 
processor. A common session key ( K S )  between two nodes is 

~ established by generating KS at one  node and sending it to  the 
other  node in enciphered  form.  This  requires  that  both  nodes 

~ share a common key-in this case, KMT. 

The encipher (ECPH) and decipher (DCPH) operations  available at 
the  host  processor are defined as follows: 

ECPH: {E,,,(key), data} -+ E,,,(data) 

DCPH: {E,,,,(key),  E,,,(data)} + data. 

The  symbols within brackets  indicate  the  cryptographic facility 
input,  and  the  arrow  points  to  the  result. 

Since  the terminal can be in communication with only one node at 
a time, the  terminal’s encipher and decipher operations are han- 
dled differently than  those  for  the  host  processor. When E,,,(KS) 
is  received  at  the  terminal, K S  is first recovered by exercising a 
decipher under master key (DMK) operation: 

DMK: {E,,,(KS)} + KS. 

This  is accomplished by deciphering E,,,,(KS) with the  current 
value of the  terminal  master key stored within the  cryptographic 
facility. In a  strict  sense, DMK is not really a  decipher-under-mas- 
ter-key  operation,  since  the result never  leaves  the  cryptographic 
facility but is stored in the working key register,  where it remains 
until changed by a key management operation  or until power to 
the terminal is turned off. 

The encipher and decipher operations available at  the  terminal 
are defined as follows: 

ECPH: {data} -+ E,(data) 

DCPH: (E,(data)} -+ data. 

They operate  under  the key value stored in the working key regis- 
ter. By protocol,  that value is the  communication key K S .  

Since KS is generated dynamically for  each  communications  ses- 
sion, E,,,(KS) also is a dynamic  quantity. By storing K M T  at  the 
host  processor  where K S  can be readily generated, it is possible 
for E,,,(KS) to  be  produced. A capability for  session key genera- 
tion at  a single host  processor is more economical  than dupli- 
cating the  same  function  across many terminals. 

To satisfy the condition that no clear key occur  outside the facil- 
ity,  at  the  same time avoiding the  need to generate K S  directly 
within this  secure  area,  the following method for  session key gen- 



ated*  and is defined to be the  session key enciphered  under  the 
master key of the  requesting  node  (host  processor H in the  pres- 
ent  example). At host  processor H, RN is thus defined as 

RN = E,,,,,(KS). 

The  quantity RN is used directly at H to  encipher  and  decipher 
data.  To  obtain E,,,(KS), which is required at terminal T, a 
transformation  must  be applied to E,,,,(KS). This  transforma- 
tion is accomplished by deciphering E,,,,(KS) with the value of 
KMHO stored in the  cryptographic facility and  reenciphering KS 
with KMT.  As previously stipulated, KMT is stored  at  the  host 
processor  for  the  purpose of accomplishing this translation. 

Since KMT must  not  be  stored in clear form at H, it would appear 
that  storing KMT under KMHO encipherment might solve  the 
problem. That  procedure,  however, would create  an  exposure  to 
K S ,  since  entering E,,,,(KMT) and E,,,(KS) into the decipher 
operation would yield 

DCPH: {E,,,,(KMT), E,,,(KS)} + K S .  

This condition violates  the stipulation that  clear  keys  should  not 
occur  outside  the  cryptographic  facility.  The  quantity E,,,(KS) 
could be  obtained,  for  example,  through a wiretap,  and the quan- 
tity EKMHO(KMT) could become  exposed during storage at host 
processor H. 

twomaster The  situation  described  above  can be avoided by defining a  sec- 
keys ond master key, KMHI .  Instead of storing KMT under KMHO 

encipherment, it is stored  under K M H l  encipherment.  Thus  the 
translation from EKMHO(KS) to E,,,(KS) is accomplished by using 
E,,,,(KMT). This  procedure  requires a new translation capabil- 
ity, defined as  the reencipher from  master key (RFMK) operation: 

RFMK: {E,,,,(KMT), E,,,,(KS)I -+ E,,(KS). 

In  a  practical implementation of the  two-master-key  approach, 
only one key actually  resides in clear form within the  crypto- 
graphic facility (KMHO in the  present  example), so the  user  sees 
only a  one-master-key  system.  The second master key can  be 
derived internally within the  cryptographic  facility,  for  example 
by selected  inversion of bits within KMHO.  (KMH1 is  defined, in 
this  case,  to  be  the first variant of the  master key KMHO.) 

It must be realized  that  the use of two  keys  that do not differ 
much  from  each  other is tolerable only if their  use  does  not  result 
in exploitable  correlations of the  ciphertext  produced  when  the 
same  plaintext  is  enciphered with each of the keys.  Since,  for  the 
DES, even  a single bit change in the key has a drastic effect on the 

*The generation of cryptologically secure keys requires a careful technical procedure. See the discussion of 
key generation in S. M. Matyar  and C. H. Meyer, “Generation, distribution, and installation of cryptographic 
keys,” IBM Sysiems Journal, this issue, page 126. 
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~iphe r t ex t ,~  there is no practical way to  compute E,,,,(KMT) 
from E,,,,(KMT); hence  the  proposed  scheme is cryptographi- 
cally strong. 

File  security 

The  previous  section described a key management scheme  for 
protecting data communications. It seems  natural to ask if the key 
management scheme  for  communication  security  can  be  adapted 
easily for  use with file security,  the  protection of stored  data. 

Suppose we want to protect  stored  data in the  same way that 
communicated data is protected;  that  is, we want to use  a  session 
key in the form E,,,,(KS) in conjunction with the encipher and 
decipher operations  to respectively create and recover a file. For 
data  to  be  recoverable,  the  quantity E,,,,(KS) must be  saved  for 
later use or else  recreated when needed. If EKMHo(KS) is  stored 
within the  system, especially for long periods, it must be pro- 
tected by a suitable method of controlled  access  because knowl- 
edge of EKMHo(KS) would allow data  to  be recovered  directly with 
the decipher operation.  The difficulty could be  avoided, of 
course, by using this quantity as a personal key and  not  storing it 
within the  system.  However,  the  advantage of a personal  key 
must  be weighed against that of cryptographic  transparency, in 
which the  user is relieved of any responsibility for handling keys. 
When stored information is shared  among many users,  the sys- 
tem-managed key may be  the only pragmatic solution. 

It must be anticipated  that  the  master key may eventually  change, 
whether E,,,,(KS) is stored in the  system or used as a personal 
key.  Therefore  a  method must exist  for  recovering K S  in the  clear 
so it can be enciphered  under  the new master  key, or else  there 
must  be a method  for translating K S  directly from encipherment 
under  the old master key to  encipherment  under  the new master 
key.  In  either case,  the procedure would be cumbersome  because 
of the many different KS values. 

Still another  disadvantage in basing a file recovery  strategy  on  the 
stored  quantity E,,,,(KS) is that  recovery  at a different host 
processor would not be practical since it would require  that 
KMHO be revealed  to  the  other host, and the  master  key is too 
important  to  be  shared with another  host  processor. 

These  disadvantages mitigate against the  use of E,,,,(KS) as  the 
quantity  that should be saved for  later  use in  file recovery  opera- 
tions. The disadvantages  can  be  overcome,  however, by the use 
of a secondary  file  key ( K N F )  so that KS can be stored  under 
KNF encipherment  rather  than KMHO encipherment. 
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One way to  incorporate  the idea of a  secondary file key would be 
to  store  the  quantity E,,,(KS) in the file header.  At the host  proc- 
essor, KNF would be stored  under  the  encipherment of some 
key-encrypting key (the  choice of this  key-encrypting key will be 
discussed later).  Recovery of data would be accomplished by 
reading E,,,(KS) from the file header, obtaining access  to  the 
value of K N F  stored  at  the  host  processor, and regenerating  the 
quantity E,,,,(KS) by an  appropriate  translation  operation. 

Two  questions  left  unanswered are what key can K N F  be safely 
enciphered under, and what type of translation  operation will al- 
low KS to  be  translated from encipherment  under K N F  to enci- 
pherment  under KMHO. 

With the  dual  master key approach, in which KMHO and KMHl 
are  available, K N F  should not be  stored  under KMHO encipher- 
ment. If it were,  the decipher operation could be used to obtain  a 
clear session key,  as follows: 

DCPH: {E,,,,(KNF), E,,,(KS)} -+ K S .  

Again, this  violates  the  strategic principle that no cryptographic 
operation should allow clear  keys  to  be  recovered  from  any  cryp- 
tographic quantities  that  are routinely stored  or  routed  through 
the  cryptosystem. 

There is no such  exposure in storing K N F  under KMHl  encipher- 
ment.  However, if both KNF and KMT are enciphered  under 
K M H l ,  an  opponent who has  access  to  the  host  processor still 
would be able to recover E,,,,(KS) from E,,,(KS), and  therefore 
could decipher  intercepted  ciphertext.  Therefore a better isola- 
tion between  communication  security  and file security  is  desir- 
able.  Stated  more  simply,  the  cryptographic  operation  that allows 
E,,,,(KS) to  be recovered  from E,,,(KS) should not allow 
E,,,,(KS) to be recovered from E,,,(KS). 

file keys One way to  achieve  separation  between  communication  security 
and file security is to  encipher  the terminal master  keys  and  sec- 
ondary file keys  under different variants of the  host  master  key. 
This can be accomplished by storing terminal master  keys  under 
KMHl encipherment  (the first variant of KMHO), and  storing  sec- 
ondary file keys  under KMH2 encipherment  (the  second  variant 
of KMHO).  KMH2 is derived from KMHO in a  manner similar to 
that of KMH1, by inverting selected  bits in KMHO. (A precise 
specification for KMH2 is not important to  our  discussion.) 

The reencipher to master key (RTMK) operation  therefore is de- 
fined as 



Since  the key KS normally is associated with communications 
sessions,  the  key K F  will be used to  denote  encipherment within 
file security  applications. K F ,  in this case, is called aprimavyJile 

, key,  orJile key for  short. Using this new notation,  the  quantities 
i stored on the file become E,,,(KF) and E,,(data). The protocol 

for generating KF is slightly different from that  for K S .  The 
pseudorandom  number RN is defined to be equivalent  to 
E,,,(KF) instead of E,,,,(KF). Thus  the RTMK operation is used 
to  produce  EKMHO(KF) from EKNF(KF).  This  quantity in turn is 
used with the ECPH operation to  encipher data. 

Since  the  quantity  EKNF(KF) is not  dependent  on  the  master  key, 
a change of master  keys will not require  that E,,,(KF) be retrans- 
lated.  Therefore,  storing EKNF(KF) on the file header  has  the  ad- 
vantage that  a  change in master  keys  does not require that  the file 
header be changed.  The only change  required  is  that, at  the host 
system, KNF must be reenciphered  from its encipherment  under 
the old value of KMH2 to  encipherment  under  the new value of 
KMH2. Moreover,  since KNF does  not  take on the  importance of 
a master  key,  a  recovery  protocol  at  other nodes is possible  (as- 
suming that KNF is given to  the  other  nodes). 

If cryptographic  transparency is desired,  the  quantity E,(KF) 
can  be written on the  data file together wih the  encrypted  data  (as 
mentioned before).  Access  to the  data, in this case,  can  be  en- 
forced by making the RTMK operation privileged and by con- 
trolling read  access  to  the quantity EKMH,(KNF). In an alternate 
approach, E,,,(KF) can  be  treated  as  a personal key and  not 
stored within the  system  or  written on the  data file. Under  these 
circumstances,  access to data additionally requires  that  this (se- 
cret)  quantity  be provided to  the  system  at  the time data is to  be 
recovered. 

Encryption  between  host  nodes 

In  the  previous  section,  a key management scheme was described 
that allows communication  security and file security  to  be 
achieved when a single host processor  node  and  a multiplicity of 
terminal nodes define the  communications  network.  In  this  sec- 
tion,  the key management scheme is extended  to  include many 
host processor  nodes.  Note  that  instead of using KMHO, KMHI, 
and KMH2, the shortened notation KMO, K M l ,  and KM2  is now 
employed. 

Let  i  and j denote  two host nodes whose master  keys are KMO' aprotocol 
and KMO', respectively.  The following secondary file keys are for  file  security 
then defined: 
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0 KNF"-known only by node i; allows files enciphered at i to 
be recovered only at i (a similar key KNF" is available at j); 
KNFi'-shared  by nodes  i  and j; allows files enciphered at i to 
be recovered only at j (a similar key KNFj' is available at i and 
j for  data flow  in the  reverse  direction). 

It is important  that  the  secondary file keys  be  stored  (enciphered) 
under  the  proper variant of the  master  key. Basically, encipher- 
ment under  the first variant allows recovery  at  a different node, 
whereas encipherment  under  the  second variant allows recovery 
at the  same  node. 

The protocol in which data is not shared with other  nodes  has 
already been  discussed. At node i, a pseudorandom number R N  
is defined as 

RN = E,,,,,(KF). 

Using the reencipher to muster  key (RTMK) operation,  EKMOi(KF) 
can  be obtained from EKM2,(KNFii) by exercising 

RTMK: {E,,,,(KNF"), R N }  -+ EKMOi(KF). 

Since RN is written on the  encrypted file, EKM0,(KF) is  regener- 
ated in the  same manner during the  recovery  phase.  Once 
E,,,,(KF) is produced, the encipher and decipher operations can 
be used to encrypt and decrypt  the file. 

The  protocol  that allows files to be encrypted  at node i and  recov- 
ered at node i is described as follows: At node i ,  a  pseudorandom 
number RN is defined as 

RN = E,,,,(KF). 

RN can be used directly in the encipher (ECPH) operation to  en- 
crypt  the file  by exercising 

ECPH: {RN,  data} + E,(data). 

The reencipher  from  master  key (RFMK) operation is then used to 
generate E,,,,(KF)  by exercising 

RFMK: {EKMIi(KNF"),  E,,,,(KF)} -+ E,,,,(KF). 

The quantity E,,,,(KF) is  recorded  on the file so that  recovery is 
possible at  node j.  The reencipher to master  key (RTMK) operation 
is used at  node j to generate E,,,,(KF) by exercising 

RTMK: {E,MZ,(KNFij) 9 E,,FiJ(KF)} + E,Mo,(KF). 

The decipher (DCPH) operation can now be used to  recover  data 
by exercising 

DCPH: {EKMo,(KF), E,(data)} +- data. 

The protocol being described has the nice feature  that  encrypted 
data files at  node i can easily be  sent to node j without the  data 



under K F  having to  be deciphered  and  reenciphered  under a new 
KF. This is accomplished by using the RTMK operation to  recover 
EKMOi(KF) from E,,,,,(KF), and using the RFMK operation to gen- 
erate  EKNF,j(KF) from E,,,,(KF), by exercising 

RTMK: {E,,,(KNF"), EKNFii(KF)} + EKMOi(KF) 

RFMK: {E,,,i(KNFij), E,,,,,(KF)} + EKNFij(KF) 

and replacing E,,,,(KF) with E,,,,(KF) on the  encrypted file. 
(This replacement may require  that the file be  copied  to  another 
volume.) 

Again, let i and j denote host nodes  whose  master  keys are KMO' aprotocolfor 
and KMO', respectively.  The collection of nodes consisting of the communication  security 
host  processor  i  and all its logically associated  terminals will be 
defined as domain i. A similar domain can  be defined for  host 
processor j. 

The problem at this point is how to  establish a common  session 
key K S  between  two  domains,  for  example  between a terminal in 

i domain i and an application program in domain j. 

To establish a common K S  between domains i and j, the  host 
processors  must  share  a common key, which should not  be the 
host  master key of either  system.  Instead,  the  host  processors 
should share a special key that  can  be used only for  sending  ses- 
sion keys from  one domain to  the  other.  The  cryptographic key 
used for  this  purpose is called a secondary  communication  key 
( K N C ) .  

In  the  protocol  to be discussed,  the following secondary  commu- 
~ nication keys are defined: 

0 KNC"-known only by host  processor  i; allows a  session key 
generated at host processor  i to  be established between  two 
nodes within domain i ;  a similar key KNC" is defined at host 
processor j; 

0 KNC'j-shared by host processors  i and j ;  allows a  session 
key generated  at  host  processor i to be transmitted  and  recov- 
ered at  host  processor j; a similar key KNC'' is available at i 
and j to allow the session key to flow in the  reverse  direction. 

The  reader will notice  the symmetry between  secondary  commu- 
nication keys on the  one  hand,  and  secondary file keys on the 
other.  Encipherment of either  a  secondary  communication key or 
a  secondary file key under  the first variant of the  host  master key 
allows a data-encrypting key to  be  forwarded  and  recovered at 
another  node,  whereas  encipherment of either  a  secondary  com- 
munication key or  a  secondary file key under  the  second  variant 
allows a data-encrypting key to be recovered  at  that  same  node. 
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Generally speaking,  there will be only one KNC" key and one 
KNC" key,  but many KNC" and KNC" keys. KNC" and KNCj' 
are defined in order  to emphasize  the  symmetry  between  commu- 
nication security  and file security.  In  terminals,  the  master key 
KMT performs  the  function of a  secondary  communication  key; 
that  is, it is used as a key under which the session key is trans- 
mitted to  the  terminal,  but  not as a key under which keys  are 
enciphered  for  storage at the  terminal.  Hence  the  set {KNC"} 
actually represents  the  set {KMT:, KMT; . . KMTL}. 

The  method  for establishing a common  session key within a single 
domain-that is, between  host  processor and terminal-has al- 
ready  been  covered.  The key management protocol  for single do- 
main communications is not affected by the  expanded  protocol 
for  cross domain communications;  hence nothing more need be 
said about single domain communications. 

The method  for establishing a common session key between  two 
domains,  say  from domain i to domain j ,  is first to define a 
pseudorandom  number RN at node i as follows: 

RN = E,,,,(KS). 

RN can  then  be used directly in the ECPH or DCPH operations  to 
encrypt  or  decrypt data,  or it can be used with the RFMK opera- 
tion to  transform K S  under  the  encipherment of a  terminal  master 
key belonging to domain i. To send KS to domain j, the RFMK 
operation is used at node  i  to  generate E,,,,(KS) by exercising 

RFMK: {E,,(KNC'j), E,,,,(KS)) + E,,,,(KS). 

The quantity E,,,,(KS) is then  transmitted to node j ,  where  the 
RTMK operation is used to  recover E,,,,(KS) by exercising 

RTMK: {EKM2j(KNCi') ,  EKNCij(KS)} + E,,,,(KS). 

This  quantity  can then be used directly in the ECPH or DCPH oper- 
ations  at  node j ,  or it can be used with an RFMK operation  to 
transform K S  under  the  encipherment of a terminal master key 
belonging to domain j. 

Note  that  the  quantity E,,,(KS) is transmitted from node i to 
node  j  over an exposed  path. An opponent  who  recovers  this 
value by wiretapping can make no use of the  quantity at node i 
since the  value EK,,,(KNC") is nowhere  stored in the  system. 
(The RTMK operation  cannot be effectively used at  node  i.) On the 
other  hand, at node j the  opposite is true.  The  same  protocol  that 
must permit node  j  to recover E,,,,(KS) can potentially be  sub- 
verted by the  opponent.  Because of this,  the RTMK operation 
should be  made privileged and  its  execution carefully controlled 
by the  system. In summary, when a  secondary  communication 
key is used in conjunction with the  above  described  protocol  to 



A key management scheme could be defined, however,  for which 
it would not be possible to recover the session key at either  node  i 
or j when only information obtained  through wiretapping was 
used.  This  protocol would require  that  the  session  key be a com- 
posite of random  data  generated at  each node. The disadvantage 
would be  that  additional  cryptographic  operations would have  to 
be performed as part of the  procedure  for establishing the session 
key. 

Summary 

A key management  protocol  has  been  described that will allow 
the  Data  Encryption  Standard (DES) to  be integrated into elec- 
tronic  data  processing  systems  for  the  purpose of obtaining  com- 
munication security  and file security.  Several  cryptographic  keys 
have  been defined that allow the  desired key management  pro- 
tocol to be achieved. They are: 

0 Host  master key (KMO) 
0 First  variant of the  host  master key (KM1)  
0 Second  variant of the  host  master key (KM2) 
0 Terminal master key (KMT)  
0 Secondary communication key (KNC) 
0 Secondary file key ( K N F )  
0 Primary communication  key, or session key ( K S )  
0 Primary file key,  or file key ( K F ) .  

The following cryptographic  operations  are used by the key man- 
agement scheme at  the host  processor: 

Set  master  key 
SMK: {key} 

Encipher  under  master  key 
EMK: {key} + E,,,(key) 

Encipher 
ECPH: {EK,,(KS), data} + E,(data) 

Decipher 
DcPH: {E,,(KS),  E,(data)} + data 

Reencipher  from  master  key 
RFMK: 9 EK,+fO(KS)} .”, E,,,(KS) 

Reencipher  to  master  key 
RTMK: {E,,,(KNF),  E,,,(KF)) + E,,,(KF). 

The following cryptographic  operations are used by the key man- 
agement scheme at  the terminal: 
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Decipher  from  master  key 
DMK: {E,,(KS)} 4 K S  

Encipher 
ECPH: {data} 3 E,,(data) 

Decipher 
DCPH: {E,(data)} + data. 

Data-encrypting  keys  stored (or in use) at  the host  processor  are 
protected  by a host  master key (KMO). This  concept is expanded 
to include the storing of key-encrypting keys under  host  master 
key variants KM1 and KM2. The  master key and  its  variants  pro- 
vide a means of enforcing the  separation or stratification of cryp- 
tographic keys  into  groups  that  are  both logically and  functionally 
different. 

Broadly speaking,  cryptography  reduces the problem of pro- 
tecting data, in certain clearly defined situations, to  that of pro- 
tecting the  secrecy  and  use of a small set of cryptographic  keys. 
Without cryptography,  a  system is vulnerable  to  such  external 
attacks  as wiretapping and theft of removable storage. When 
cryptography is used,  the  opponent is forced  to  attack  the  system 
from within. 

Control  over  the  execution of the defined cryptographic  opera- 
tions  can be exercised by: 

0 activating or deactivating  certain  cryptographic  operations 
with a physical,  key-operated  switch; 

0 maintaining the secrecy of certain  special  cryptographic  quan- 
tities used as input to  cryptographic  operations; 

0 making certain  cryptographic  operations privileged. 

It must be emphasized  that without system  integrity,  cryptogra- 
phy will not add significantly to  the  overall  security of a  system 
when the  opponent is an authorized  user  or  can gain entry to  the 
system. Although cryptography  can  enhance  the  integrity of a 
computer  system, it is not sufficient for integrity. When used in 
conjunction with other  security  features,  cryptography  does play 
an  important  and valuable role in a  total  security plan. 
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