Data being transmitted through a communications network can
be protected by cryptography. In a data processing environment,
cryptography is implemented by an algorithm which utilizes a se-
cret key, or sequence of bits. Any key-controlled cryptographic
algorithm, such as the Data Encryption Standard, requires a
protocol for the management of its cryptographic keys. The com-
plexity of the key management protocol ultimately depends on
the level of functional capability provided by the cryptographic
system. This paper discusses a possible key management scheme
that provides the support necessary to protect communications
between individual end users (end-to-end encryption) and that
also can be used to protect data stored or transported on remov-
able media.

A cryptographic key management scheme
for implementing the Data Encryption Standard

definitions
and background

by W. F. Ehrsam, S. M. Matyas, C. H. Meyer,
and W. L. Tuchman

Cryptography is the only known technologically feasible method
of protecting stored data. Cryptography can be used to protect
against the threats of passive wiretapping (recording or listening
in on transmissions) and active wiretapping (modification of mes-
sages or insertion of false or stale messages). It can also prevent
accidental or deliberate substitution of one device for another and
the exposure of proprietary data by the accidental misrouting of
message traffic. Further, cryptography can protect against theft
and undetected interference with system resident data and data
stored on removable media.

Cryptography deals with the methods involved in preparing
cryptograms—messages or writings intended to be incomprehen-
sible to all except those who legitimately possess the means to
recover the original information. The designer of a cryptographic
system, or cryptosystem, is a cryptographer.

Copyright 1978 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

EHRSAM ET AL. IBM SYST J e VOL 17 ¢ NO 2 ¢ 1978

Notice to readers of the IBM Systems Journal

The paper entitled, ‘A cryptographic key management scheme
for implementing the Data Encryption Standard” by W. F.
Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. Tuchman,
IBM Systems Journal, Volume 17, Number 2, pages 106-125,
contains a typographical error on page 106. Two lines of type
were omitted from the first paragraph. The reverse of this notice
is a replacement for page 106, in which the error has been cor-
rected. Please insert it in your copy of Volume 17, Number 2.

Additional copies of the replacement page can be ordered by
telephone from the Editor (914-686-5680) or the Publications
Manager (914-686-5585), or by writing to the address below.

The Systems Journal regrets the error.

C. A. Thiel, Editor

IBM Systems Journal

Dept. 10-786, Box 3-30, Third Floor
44 South Broadway

White Plains, New York 10601

G321-5076 TNL—IBM SYST J e VOL 17 @ NO 2 » 1978

The opponent or antagonist of a cryptosystem is a cryptanalyst.
Cryptanalysis is concerned with techniques used to penetrate
communications and recover the original information by means
other than those available to the legitimate recipient.

Cryptology is the science of disguised or secret communications.
It embraces both cryptography and cryptanalysis.

The basic challenge in cryptography is to devise a method that
transforms messages (known as plaintext) into cryptograms
(known as ciphertext) in a cryptographically secure way—that is,
the method must withstand intense efforts at cryptanalysis. Plain-
text can be protected by either of two techniques: it can be en-
coded using a code system, or it can be enciphered (encrypted)
using a cipher system.

Code systems require a code book or dictionary that relates the
words, phrases, and sentences of the vocabulary (the plaintext) to
its equivalent code group (the ciphertext), and vice versa. The
number of plaintext messages that can be encoded depends on the
number of combinations of phrases that can be obtained from the
code book. Although that number may be large, not every combi-
nation or pattern of bits can be encoded. Hence the versatility
and usefulness of code systems is limited, especially in computer
applications.

Cipher systems require two basic elements: a set of rules or
steps—that is, an algorithm—constituting the basic cryptographic
procedure, which is constant in character and agreed upon in ad-
vance, and a specific cryptographic key, selected from a large set
of possible keys, which is known only by the communicators.

A cryptographic algorithm can be represented as an extremely
large number of possible mathematical procedures called trans-
formations. Each transformation defines how sequences of in-
telligible data (representing a message) are changed into se-
quences of apparently random noise (gibberish) that are unintelli-
gible to humans or machines. The cryptographic key is a secretly
held sequence of numbers or characters, relatively short, which
identifies the transformation to be used.

To be useful, the algorithm should have, for each of its trans-
formations, an inverse operation that changes the gibberish back
into intelligible data. (This process is called decipherment or
decryptment.) It is assumed here that encipherment and decipher-
ment are performed using the same cryptographic key. Thus, a
cryptographic algorithm will provide data security between two
nodes of a data processing system if those two nodes have the
algorithm installed (in hardware or software) and if both nodes
have exact knowledge of the key.

IBM SYST J VOL 17 ¢ NO 2 » 1978 EHRSAM ET AL.

It is important to note that, for good data security, only the key
need be kept secret. The details of the algorithm are assumed to
be known to everyone. The cryptographic key, therefore, is often
considered analogous to the secretly held combination of a safe.

It is always possible to construct an unbreakable system if the
number of characters in the key is equal to or greater than the
number of characters of plaintext to be enciphered. It is required,
however, that the key be randomly selected and used only once.
This approach is impractical in data processing systems because
of the large amount of message traffic. In a practical approach, the
key must be of fixed length, relatively short, and capable of re-
peated use.

Basically there are three general classes of ciphers: transposition
ciphers, substitution ciphers, and combinations of these called
product ciphers. A transposition cipher involves the rearrange-
ment or permutation of the plaintext letters without change in
their identity. A substitution cipher involves the replacement of
plaintext letters by one or more letters (or other symbols) without
changing their sequence. Cryptographic research conducted dur-
ing World War II showed that strong encryption systems could be
obtained using alternate steps of substitution and transposition,
resulting in a product cipher.!

Further research into the development of strong product ciphers
was undertaken in the private sector in the late 1960’s. During
the period from 1968 to 1975, a cryptographic procedure con-
sisting of 16 alternate steps (or rounds) of key-controlled sub-

stitution and fixed permutation, based on work done by Horst
Feistel, was developed at 1BM.? This algorithm was accepted as a
standard by the National Bureau of Standards and became ef-
fective on July 15, 1977. It is known as the Data Encryption
Standard (DES).?

The DES enciphers a 64-bit (eight-character) block of plaintext
into a 64-bit block of ciphertext under the control of a 56-bit cryp-
tographic key. The general process of encryption consists of 16
separate rounds of encipherment, each round using a product ci-
pher approach, or cipher function. The interaction of data, cryp-
tographic key K, and cipher function f is illustrated in Figure 1.
The externally supplied key K consists of 64 bits: 56 bits are used
by the algorithm and eight bits may be used for parity checking. A
special shifting scheme on the original 56-bit key is used so that a
subset of 48 key bits is used in each round. These subsets of key
bits are denoted K,, K, - -+ K. During decipherment, the
rounds are performed in reverse order (K, is used in round one,
K, in round two, and so forth).

EHRSAM ET AL. IBM SYST J 8, VOL 17 @ NO 2 #1978

Figure 1 Enciphering computation (adapted from FIPS Publication 46, National Bureau of
Standards?)

INPUT

i

INITIAL PERMUTATION

PERMUTED INPUT L

[f-L@® ik |

Rz = L1 (D) Ry, K2)

!

PRELIMINARY OUTPUT I Ris = Lis (O f(Ris, Kig) l L Lig = Ris
L

]

(INVERSE INITIAL PERMUTATION)
[}
OuTPUT

In the following discussion of key management, let X represent a
64-bit block of input data (plaintext), Y a 64-bit block of output
data (ciphertext), and K a 64-bit cryptographic key (eight bits may
be used for parity checking, hence are not used by the algorithm
itself). The notation E,(X) = Y means that the encipherment (E)
of X under key K is equal to Y, and the notation D,(Y) = X means
that the decipherment (D) of Y under key K is equal to X.

In the DES, a cryptographic relationship exists between the plain-
text, ciphertext, and cryptographic keys on the one hand and the
complements of those quantities on the other hand. That relation-
ship, called the complementary property of the DES, can be ex-
pressed

E,(X) = E;(®)

where the bars represent complementation, or bit inversion.

Because of the complementary property of the DES, if an analyst
could obtain E (X) and EK(X') for an arbitrary X, it would be pos-
sible to reduce the key space from 2% to 2°. Therefore the key
space could be exhausted in 2°° trials instead of 2 trials. How-
ever, depending on the implementation, it may be impractical for

IBM SYST J @ VOL 17 ¢ NO 2 ¢ 1978 EHRSAM ET AL.

an opponent to obtain plaintext (X) and its complement (X)
enciphered under the unknown cipher key. Moreover, it has been
suggested that in unusual cases, when a longer key is desired,
multiple encryption methods (superencipherment) can be used as
a means of increasing the work factor (a measure of the strength
of a cryptographic procedure). The work factor is an expression of
the time and resources required for a competent cryptanalyst, us-
ing known techniques and equipment, to solve for the particular
key in use, given full knowledge of the algorithm used and large
amounts of plaintext (which the cryptanalyst may specify) and
corresponding ciphertext. At this writing, the authors are un-
aware of any demonstrated method of solving for a single key bit,
other than by key exhaustion (trying each possible key).

It must be remembered that if the key required for decrypting
data is lost or unknown, the data cannot be recovered from the
ciphertext. It is just as difficult for the authorized user to decrypt
this data when the key is unknown as it is for the opponent.

The DES can be used to obtain either a block cipher or a stream
cipher. In a block cipher, each 64-bit input block is enciphered
into a corresponding 64-bit output block of ciphertext. In a stream
cipher, a 64-bit pseudorandom initializing vector is used to start a
process that produces a long pseudorandom bit stream which can
then be added to the plaintext, using modulo 2 addition, to pro-
duce the desired ciphertext. Only the block cipher mode will be
treated here.

The block cipher can be used in either of two modes of operation:
block encryption and chained block encryption. When block en-

cryption is used, each 64-bit block of data is enciphered sepa-
rately. In chained block encryption, the encipherment of each
block is also made dependent on prior information (plaintext, ci-
phertext, or the like) that is available when the block is enci-
phered. Two important chained block encryption techniques are
ciphertext feedback and plaintext-ciphertext feedback, as defined
below.

Let X, X, - - - X, denote blocks of plaintext to be chained using
key K and nonsecret initializing vector Y, and let Y, ¥, -

denote the blocks of ciphertext produced When c1phertext feed—
back is used, the following relationship holds:

Y=E/X ®Y_) for i=1

where @ represents modulo 2 addition. When plaintext-cipher-
text feedback is used, the following relationships hold:

EX, ®Y)
and
Y=EX ®Y_ DX_) for i>1

EHRSAM ET AL. IBM SYST J @ VOL 17 ¢ NO 2 e 1978

Chained block encryption (or block chaining) can be used to ex-
tend the strong intersymbol dependence in a single block of ci-
phertext to include all chained blocks. (Strong intersymbol de-
pendence is a property of the DES, since each ciphertext bit is a
complicated function of all plaintext bits and all key bits.) Hence,
block chaining can be used to overcome difficulties with highly
redundant or structured data.

Plaintext-ciphertext feedback has the additional property of error
propagation. Corruption of a single bit of ciphertext will cause
each subsequent bit of recovered plaintext to be in error with
probability 0.5. By appending a known pattern of bits to the end
of the plaintext prior to encryption, and comparing that value to
the value recovered, the error propagation feature can be used for
checking the true content of a message.

Chaining techniques are useful for encrypting data, and the block
cipher (with no chaining) is useful for key transformation opera-
tions. To simplify the discussion that follows, chaining methods
are not considered.

There are three approaches to incorporating encryption into a
communications system: link-by-link, node-by-node, and end-to-
end encryption.

In link-by-link encryption, data is encrypted across the medium
connecting two directly communicating nodes. Link-by-link en-
cryption is logically independent of the system and does not nec-
essarily imply that the cryptographic capability is integrated into
the communicating nodes. It can be thought of as implemented by
a pair of cryptographic devices bracketing the line between two
communicating nodes and situated between the nodes and their
modems (modulators or demodulators).

Node-by-node encryption is logically similar to link-by-link en-
cryption in that each link is protected by a unique key. However,
the translation from one key to another occurs within a security
module, which may be a peripheral device attached to the node.
Moreover, plaintext occurs only within the security module, not
within the node.

In end-to-end encryption, data encrypted at the originating node
is not decrypted until it arrives at its final destination. The cryp-
tographic capability is integrated into the participating nodes to
the extent that the system can control the setting of the keys and
turning the cryptographic capability on and off. The crypto-
graphic capability present at a host processor node could be
provided either by a programmed implementation of the DES
algorithm or by special hardware integrated into the central proc-
essing unit, into a front-end processor, or into the channel.

IBM SYST J e VOL 17 @ NO 2 @ 1978 EHRSAM ET AL.

end-to-end
encryption

For end-to-end encryption, the common key that must be present
at each node for encryption and decryption can be provided in
either of two ways. It can be a private personal key associated
with and manually éntered into the node by each individual user,
or it can be a secret device key resident within the node, initially
installed by authorized personnel, maintained in a nonvolatile
store, and shared by many system users. In the latter case, the
keys are managed by the system, and the implementation pro-
vides cryptographic transparency.

Any key-controlled cryptographic algorithm, such as the DES, re-
quires a protocol for safely handling and controlling its crypto-
graphic keys. This aspect of cryptography is called key manage-
ment. Its complexity depends on the level of functional capability
provided by the cryptosystem.

The key management scheme presented here enables the DES to
be integrated into data processing systems to provide protection
for communications between individual end users (end-to-end en-
cryption). With end-to-end encryption, data can be deciphered
only at its final intended destination. Data is never exposed at
intermediary nodes. Moreover, there is no danger from mis-
directed messages since each end user has a unique data-encrypt-
ing key.

By integrating cryptography into the host system, end-to-end en-
cryption provides a means for encrypting and decrypting stored
data. For this reason, the key management scheme can be used to
protect data stored and transported on removable media.

The key management scheme involves host processor nodes as
well as terminal riodes. Each terminal has a unique terminal mas-
ter key stored in the clear within the terminal’s cryptographic de-
vice. The terminal master key is stored also at the host processor
to which the terminal is attached and is protected through the use
of a special host resident key called the host master key. The
master key is the only key stored in clear form at the host proc-
essor; all other keys are enciphered.

End-to-end encryption between individual end users is achieved
by the use of a common data encrypting key (defined as the pri-
mary communication key), which is generated dynamically and
remains operable for the duration of the communications session.
Hence this key is also called a session key (KS). When referring
to file security, the data encrypting key is defined as the primary
file key, or file key (KF).

The session key is a time-variant quantity that is generated at the
host processor. It is transmitted to the appropriate terminal under
the encipherment of that terminal’s master key, where it is recov-
ered and used for protecting data communications.

EHRSAM ET AL. IBM SYST J @ VOL 17 @ NO 2 & 1978

This basic idea—transmitting or storing a data-encrypting key un-
der the encipherment of a key-encrypting key available at the des-
tination node—can be extended so that session keys and file keys
are generated at one host processor and recovered at another. In
that case, the data-encrypting key is enciphered under a common
key held only by the two participating nodes. When applied to
communication security, the common key is called a secondary
communication key (KNC), and when applied to file security, the
key is called a secondary file key (KNF).

The main purpose of the session key is to establish a common
data-encrypting key between end nodes that have different mas-
ter keys. A session may involve several different end users at the
same time. Session keys are also useful in limiting the amount of
communicated data enciphered under any single key within the
system. The limitation reduces the threat that an opponent could
successfully build a dictionary of plaintext and ciphertext equiva-
lents which could be used to attack the system.

The host master key concept

Because the DES is a key-controlled algorithm, the protection
achieved through encryption ultimately depends on the secrecy
of the cryptographic key. If the cipher keys cannot be adequately
protected, the use of cryptography does not enhance security; it
does little more than create a nuisance factor for the opponent.
Consequently, the effectiveness of any cryptographic algorithm,
such as the DES, is highly dependent on the techniques used for
the selection, handling, and protection of the cryptographic keys
used in the ciphering process.

One way to ensure the secrecy of cryptographic keys would be to
keep them in a protected area of storage accessible only to the
cryptographic algorithm. However, to provide secrecy for these
keys when in use by the algorithm, and to prevent intermediate
results of each round from being exposed, the algorithm itself
would have to be kept in a protected area.

A random access memory (RAM), addressable only by the cryp-
tographic algorithm, would provide a protected area for cipher
keys. However, the keys must be available to users authorized to
employ them. Access to the keys must be controlled, therefore,
by means other than cryptography, such as store-and-fetch pro-
tection features or privileged operations.

Because the RAM approach does not provide a means for con-
trolling access to cipher keys, it can be ruled out in favor of an
equally secure approach in which a RAM is not needed. In this
approach only a single key, the master key, is stored in clear form

IBM SYST J o VOL 17 @ NO 2 o 1978 EHRSAM ET AL.

protection of
cipher keys

time variant
keys

at the host system. All other keys are protected through encipher-
ment using the master key. Hence the problem of providing se-
crecy for cipher keys is reduced to providing secrecy for only one
key—the master key.

The inaccessible area containing the master key and the cryp-
tographic algorithm is called the cryptographic facility. It is as-
sumed that the master key is in nonvolatile storage, so that it need
be loaded into the cryptographic facility only once. The master
key can be routed to the cryptographic facility by reading it into
main memory and exercising a set master key operation, which
moves the master key from main memory to a nonvolatile storage
element in the cryptographic facility, or it can be entered into
nonvolatile storage by a manual process using mechanical
switches or dials.*

The use of encrypted keys within the host system has the advan-
tage, compared with the use of clear keys, that even if an oppo-
nent obtains an encrypted key, any intercepted ciphertext can be
deciphered only on the system possessing the appropriate master
key. (For security purposes, no two master keys will ever be the
same, except by pure chance.)

The distinction between encrypted keys and clear keys is impor-
tant in that the ability of an opponent to obtain an encrypted key
does not authorize him to use the cryptographic facility or gain
access to the system. With clear keys, on the other hand, a sys-
tem can be attacked externally. Information obtained by wire-
tapping, for example, could be decrypted at any computer using a
programmed version of the DES algorithm.

As indicated previously, the cryptographic algorithm and the
master key are contained in the protected area of the crypto-
graphic facility. This strategy permits the master key, other ci-
pher keys used by the ciphering algorithm, and the results of in-
termediate rounds of encipherment or decipherment to be kept
secret. It is also assumed that the cryptographic facility has an
input port for data (which may include clear or encrypted keys),
an output port, and a control line to indicate the desired opera-
tion. The cryptographic operations necessary to provide key
management are developed around these assumptions.

Communication security

Let KS, KS, - - - KS, represent the time-variant, dynamically
changing data-encrypting keys used for enciphering and decipher-
ing data. It is assumed that KS is operational for the duration of a
communications session (KS is the primary communication key,
or session key, as discussed before). Let KMT represent the mas-

EHRSAM ET AL. IBM SYST J ¢ VOL 17 ¢« NO 2 # 1978

ter key of the terminal, and KMHQ the master key of the host
processor. A common session key (KS) between two nodes is
established by generating KS at one node and sending it to the
other node in enciphered form. This requires that both nodes
share a common key—in this case, KMT.

The encipher (ECPH) and decipher (DCPH) operations available at
the host processor are defined as follows:

(key), data} — E,__ (data)
(key), E

ECPH: {E,, .0

DCPH: {E (data)} — data.

KMHO key

The symbols within brackets indicate the cryptographic facility
input, and the arrow points to the result.

Since the terminal can be in communication with only one node at
a time, the terminal’s encipher and decipher operations are han-
dled differently than those for the host processor. When E, (KS)
is received at the terminal, K is first recovered by exercising a
decipher under master key (DMK) operation:

DMK: {E,,(KS)} — KS.

This is accomplished by deciphering E, (KS) with the current
value of the terminal master key stored within the cryptographic
facility. In a strict sense, DMK is not really a decipher-under-mas-
ter-key operation, since the result never leaves the cryptographic
facility but is stored in the working key register, where it remains
until changed by a key management operation or until power to
the terminal is turned off.

The encipher and decipher operations available at the terminal
are defined as follows:

ECPH: {data} — E, (data)

DCPH: {E (data)} — data.

They operate under the key value stored in the working key regis-
ter. By protocol, that value is the communication key KS.

Since K is generated dynamically for each communications ses-
sion, E,,,(KS) also is a dynamic quantity. By storing KMT at the
host processor where KS can be readily generated, it is possible
for E,, (KS) to be produced. A capability for session key genera-
tion at a single host processor is more economical than dupli-
cating the same function across many terminals.

To satisfy the condition that no clear key occur outside the facil-
ity, at the same time avoiding the need to generate KS directly
within this secure area, the following method for session key gen-
eration is adopted: a 64-bit pseudorandom number RN is gener-

IBM SYST J VOL 17 @ NO 2 & 1978 EHRSAM ET AL.

two master
keys

ated™ and is defined to be the session key enciphered under the
master key of the requesting node (host processor H in the pres-
ent example). At host processor H, RN is thus defined as

RN =E,,,,,(KS).

The quantity RN is used directly at H to encipher and decipher
data. To obtain E,, (KS), which is required at terminal T, a
transformation must be applied to E,,, (KS). This transforma-
tion is accomplished by deciphering E,,, (KS) with the value of
KMHO stored in the cryptographic facility and reenciphering K.S
with KMT. As previously stipulated, KMT is stored at the host
processor for the purpose of accomplishing this translation.

Since KMT must not be stored in clear form at H, it would appear
that storing KMT under KMHO encipherment might solve the
problem. That procedure, however, would create an exposure to
KS, since entering E, ., (KMT) and E, .(KS) into the decipher
operation would yield

DCPH: {E,, ;o (KMT), E,, (KS)} = KS.

This condition violates the stipulation that clear keys should not
occur outside the cryptographic facility. The quantity E,, .(KS)
could be obtained, for example, through a wiretap, and the quan-
tity E,u;0(KMT) could become exposed during storage at host
processor H.

The situation described above can be avoided by defining a sec-
ond master key, KMH1. Instead of storing KMT under KMHOQ
encipherment, it is stored under KMH1 encipherment. Thus the
translation from E,,,,..(KS) to E,, ,(KS) is accomplished by using
KMT). This procedure requires a new translation capabil-

EKMHI(
ity, defined as the reencipher from master key (RFMK) operation:

RFMK: {E4, . (KMT), E, . (KS)} = E . ;(KS).

In a practical implementation of the two-master-key approach,
only one key actually resides in clear form within the crypto-
graphic facility (KMHO in the present example), so the user sees
only a one-master-key system. The second master key can be
derived internally within the cryptographic facility, for example
by selected inversion of bits within KMHO. (KMH1 is defined, in
this case, to be the first variant of the master key KMHO.)

It must be realized that the use of two keys that do not differ
much from each other is tolerable only if their use does not result
in exploitable correlations of the ciphertext produced when the
same plaintext is enciphered with each of the keys. Since, for the
DES, even a single bit change in the key has a drastic effect on the

*The generation of cryptologically secure keys requires a careful technical procedure. See the discussion of
key generation in S. M. Matyas and C. H. Meyer, *‘Generation, distribution, and installation of cryptographic
keys,”” IBM Systems Journal, this issue, page 126.

EHRSAM ET AL. IBM SYST J e VOL 17 « NO 2 & 1978

ciphertext, there is no practical way to compute E,, . (KMT)
from E,,,,,,(KMT); hence the proposed scheme is cryptographi-
cally strong.

File security

The previous section described a key management scheme for
protecting data communications. It seems natural to ask if the key
management scheme for communication security can be adapted
easily for use with file security, the protection of stored data.

Suppose we want to protect stored data in the same way that
communicated data is protected; that is, we want to use a session
key in the form E,,,, (KS) in conjunction with the encipher and
decipher operations to respectively create and recover a file. For
data to be recoverable, the quantity E,, . (KS) must be saved for
later use or else recreated when needed. If E,, . (KS) is stored
within the system, especially for long periods, it must be pro-
tected by a suitable method of controlled access because knowl-
edge of E, . (KS) would allow data to be recovered directly with
the decipher operation. The difficulty could be avoided, of
course, by using this quantity as a personal key and not storing it
within the system. However, the advantage of a personal key
must be weighed against that of cryptographic transparency, in
which the user is relieved of any responsibility for handling keys.
When stored information is shared among many users, the sys-
tem-managed key may be the only pragmatic solution.

It must be anticipated that the master key may eventually change,
whether E,, ., (KS) is stored in the system or used as a personal
key. Therefore a method must exist for recovering K§ in the clear
so it can be enciphered under the new master key, or else there
must be a method for translating KS§ directly from encipherment
under the old master key to encipherment under the new master
key. In either case, the procedure would be cumbersome because

of the many different KS values.

Still another disadvantage in basing a file recovery strategy on the
stored quantity E,, (KS) is that recovery at a different host
processor would not be practical since it would require that
KMHO0 be revealed to the other host, and the master key is too
important to be shared with another host processor.

These disadvantages mitigate against the use of E,,,, (KS) as the
quantity that should be saved for later use in file recovery opera-
tions. The disadvantages can be overcome, however, by the use
of a secondary file key (KNF) so that KS can be stored under
KNF encipherment rather than KMHO0 encipherment.

IBM SYST J @ VOL 17 ® NO 2 e 1978 EHRSAM ET AL.

problems in storing
enciphered data

file keys

One way to incorporate the idea of a secondary file key would be
to store the quantity E,, .(KS) in the file header. At the host proc-
essor, KNF would be stored under the encipherment of some
key-encrypting key (the choice of this key-encrypting key will be
discussed later). Recovery of data would be accomplished by
reading E, (KS) from the file header, obtaining access to the
value of KNF stored at the host processor, and regenerating the
quantity E,, . (KS) by an appropriate translation operation.

Two questions left unanswered are what key can KNF be safely
enciphered under, and what type of translation operation will al-
low KS to be translated from encipherment under KNF to enci-
pherment under KMH(.

With the dual master key approach, in which KMHO0 and KMH1
are available, KNF should not be stored under KMHO encipher-
ment. If it were, the decipher operation could be used to obtain a
clear session key, as follows:

DCPH: {E,,...(KNF), E, (KS)} — KS.

Again, this violates the strategic principle that no cryptographic
operation should allow clear keys to be recovered from any cryp-
tographic quantities that are routinely stored or routed through
the cryptosystem.

There is no such exposure in storing KNF under KMH 1 encipher-
ment. However, if both KNF and KMT are enciphered under
KMH]1, an opponent who has access to the host processor still
would be able to recover E,,, . (KS) from E_, (KS), and therefore
could decipher intercepted ciphertext. Therefore a better isola-
tion between communication security and file security is desir-
able. Stated more simply, the cryptographic operation that allows
E m(KS) to be recovered from E,, (KS) should not allow
(KS) to be recovered from E ., (K.S).

E:KMHO KMT
One way to achieve separation between communication security
and file security is to encipher the terminal master keys and sec-
ondary file keys under different variants of the host master key.
This can be accomplished by storing terminal master keys under
KMH]1 encipherment (the first variant of KMHO), and storing sec-
ondary file keys under KMH? encipherment (the second variant
of KMHO0). KMH? is derived from KMH(in a manner similar to
that of KMH1, by inverting selected bits in KMH0. (A precise
specification for KMH? is not important to our discussion.)

The reencipher to master key (RTMK) operation therefore is de-
fined as

RTMK: {E ..(KNF), E,, (KS)} — E, . (KS).

EHRSAM ET AL. IBM SYST J ¢ VOL 17 « NO 2 o 1978

Since the key KS normally is associated with communications
sessions, the key KF will be used to denote encipherment within
file security applications. KF, in this case, is called a primary file
key, or file key for short. Using this new notation, the quantities
stored on the file become E,,, (KF) and E,, (data). The protocol
for generating KF is slightly different from that for KS. The
pseudorandom number RN is defined to be equivalent to
E, -(KF)instead of E,, . (KF). Thus the RTMK operation is used
to produce E., . (KF) from E, (KF). This quantity in turn is
used with the ECPH operation to encipher data.

Since the quantity E,, .(KF) is not dependent on the master key,
a change of master keys will not require that E,, .(KF) be retrans-
lated. Therefore, storing E,,.(KF) on the file header has the ad-
vantage that a change in master keys does not require that the file
header be changed. The only change required is that, at the host
system, KNF must be reenciphered from its encipherment under
the old value of KMH?2 to encipherment under the new value of
KMH?2. Moreover, since KNF does not take on the importance of
a master key, a recovery protocol at other nodes is possible (as-
suming that KNF is given to the other nodes).

If cryptographic transparency is desired, the quantity E, (KF)
can be written on the data file together wih the encrypted data (as
mentioned before). Access to the data, in this case, can be en-
forced by making the RTMK operation privileged and by con-
trolling read access to the quantity E,, . (KNF). In an alternate
approach, E, .(KF) can be treated as a personal key and not
stored within the system or written on the data file. Under these
circumstances, access to data additionally requires that this (se-
cret) quantity be provided to the system at the time data is to be
recovered.

Encryption between host nodes

In the previous section, a key management scheme was described
that allows communication security and file security to be
achieved when a single host processor node and a multiplicity of
terminal nodes define the communications network. In this sec-
tion, the key management scheme is extended to include many
host processor nodes. Note that instead of using KMHO, KMH]1,
and KMH?, the shortened notation KM0, KM1, and KM?2 is now
employed.

Let i and j denote two host nodes whose master keys are KMo
and KMO’, respectively. The following secondary file keys are
then defined:

IBM SYST J @ VOL 17 @ NO 2 e 1978 EHRSAM ET AL.

a protocol
for file security

KNF"—known only by node i; allows files enciphered at i to
be recovered only at i (a similar key KNF" is available at j);
KNF"—shared by nodes i and j; allows files enciphered at i to
be recovered only at j (a similar key KNF" is available at i and
j for data flow in the reverse direction).

It is important that the secondary file keys be stored (enciphered)
under the proper variant of the master key. Basically, encipher-
ment under the first variant allows recovery at a different node,
whereas encipherment under the second variant allows recovery
at the same node.

The protocol in which data is not shared with other nodes has
already been discussed. At node i, a pseudorandom number RN
is defined as

RN = E,,,.(KF).

Using the reencipher to master key (RTMK) operation, E . (KF)
can be obtained from E,,,(KNF") by exercising

(KNFY, RN} - E,, (KF).

Since RN is written on the encrypted file, E, .(KF) is regener-
ated in the same manner during the recovery phase. Once
E,,(KF) is produced, the encipher and decipher operations can

be used to encrypt and decrypt the file.

RTMK: {E

kM2l KMo

The protocol that allows files to be encrypted at node i and recov-
ered at node i is described as follows: At node i, a pseudorandom
number RN is defined as

RN=E,, (KF).

KMo!

RN can be used directly in the encipher (ECPH) operation to en-
crypt the file by exercising

ECPH: {RN, data} — E, (data).

The reencipher from master key (RFMK) operation is then used to
generate E,, ,(KF) by exercising

RFMK: {E, (KNF"), E, (KF)} - E,,.«(KF).

KMt KMot

The quantity E,, ..(KF) is recorded on the file so that recovery is
possible at node j. The reencipher to master key (RTMK) operation
is used at node j to generate E., ,(KF) by exercising

RTMK: {E,,, (KNF"), E, . KF)} = B, ,(KF).

The decipher (DCPH) operation can now be used to recover data
by exercising

DCPH: {E,, (KF), E, (data)} — data.

The protocol being described has the nice feature that encrypted
data files at node i can easily be sent to node j without the data

EHRSAM ET AL. IBM SYST J » VOL 17 ¢ NO 2 ¢ 1978

under KF having to be deciphered and reenciphered under a new
KF. This is accomplished by using the RTMK operation to recover
(KF) from E___.(KF), and using the RFMK operation to gen-

EKMO" KNF .
erate E,,.(KF) from E,,(KF), by exercising
ot KF)} = Ep (KF)

(KNF', E
KMOi(KF)} i EKNFii(KF)

and replacing E,, ..(KF) with E. .,(KF) on the encrypted file.
(This replacement may require that the file be copied to another

volume.)

RTMK: {E

KM2! KMO!

RFMK: {E,,,(KNF"), E

Again, let i and j denote host nodes whose master keys are KM0'
and KM0’, respectively. The collection of nodes consisting of the
host processor i and all its logically associated terminals will be
defined as domain i. A similar domain can be defined for host
processor j.

The problem at this point is how to establish a common session
key KS between two domains, for example between a terminal in
domain i and an application program in domain j.

To establish a common KS between domains i and j, the host
processors must share a common key, which should not be the
host master key of either system. Instead, the host processors
should share a special key that can be used only for sending ses-
sion keys from one domain to the other. The cryptographic key
used for this purpose is called a secondary communication key
(KNC).

In the protocol to be discussed, the following secondary commu-
nication keys are defined:

e KNC"—known only by host processor i; allows a session key

generated at host processor i to be established between two
nodes within domain i; a similar key KNC" is defined at host
processor j;
KNC"—shared by host processors i and j; allows a session
key generated at host processor i to be transmitted and recov-
ered at host processor j; a similar key KNC" is available at i
and j to allow the session key to flow in the reverse direction.

The reader will notice the symmetry between secondary commu-
nication keys on the one hand, and secondary file keys on the
other. Encipherment of either a secondary communication key or
a secondary file key under the first variant of the host master key
allows a data-encrypting key to be forwarded and recovered at
another node, whereas encipherment of either a secondary com-
munication key or a secondary file key under the second variant
allows a data-encrypting key to be recovered at that same node.

IBM SYST J e VOL 17 @ NO 2 o 1978 EHRSAM ET AL.

a protocol for
communication security

Generally speaking, there will be only one KNC" key and one
KNC" key, but many KNC" and KNC” keys. KNC" and KNC"
are defined in order to emphasize the symmetry between commu-
nication security and file security. In terminals, the master key
KMT performs the function of a secondary communication key;
that is, it is used as a key under which the session key is trans-
mitted to the terminal, but not as a key under which keys are
enciphered for storage at the terminal. Hence the set {KNC"}
actually represents the set {KMT:, KMT2i < KMT;}.

The method for establishing a common session key within a single
domain—that is, between host processor and terminal-—has al-
ready been covered. The key management protocol for single do-
main communications is not affected by the expanded protocol
for cross domain communications; hence nothing more need be
said about single domain communications.

The method for establishing a common session key between two
domains, say from domain i to domain j, is first to define a
pseudorandom number RN at node i as follows:

RN=E, .(KS).

KMo

RN can then be used directly in the ECPH or DCPH operations to
encrypt or decrypt data, or it can be used with the RFMK opera-
tion to transform K§ under the encipherment of a terminal master
key belonging to domain i. To send KS to domain j, the RFMK
operation is used at node i to generate E,, .,(KS) by exercising

(KNCP), E 3y (KS)} = By n(KS).

The quantity E,, .,(KS) is then transmitted to node j, where the
RTMK operation is used to recover E_ (KS) by exercising

RFMK: {E,

KMo!
RTMK: {E,,,(KNCY), E, (KS)} = B, (KS).

This quantity can then be used directly in the ECPH or DCPH oper-
ations at node), or it can be used with an RFMK operation to
transform KS under the encipherment of a terminal master key
belonging to domain j.

Note that the quantity E, (KS) is transmitted from node i to
node j over an exposed path. An opponent who recovers this
value by wiretapping can make no use of the quantity at node i
since the value EKMT(KNC”) is nowhere stored in the system.
(The RTMK operation cannot be effectively used at node i.) On the
other hand, at node j the opposite is true. The same protocol that
must permit node j to recover E,, (KS) can potentially be sub-
verted by the opponent. Because of this, the RTMK operation
should be made privileged and its execution carefully controlled
by the system. In summary, when a secondary communication
key is used in conjunction with the above described protocol to
forward a session key from one domain to another, recovery of

EHRSAM ET AL. IBM SYST J e VOL 17 ¢ NO 2 ® 1978

the session key at the destination (host processor) must be pro-
tected by means other than cryptography.

A key management scheme could be defined, however, for which
it would not be possible to recover the session key at either node i
or j when only information obtained through wiretapping was
used. This protocol would require that the session key be a com-
posite of random data generated at each node. The disadvantage
would be that additional cryptographic operations would have to
be performed as part of the procedure for establishing the session
key.

Summary

A key management protocol has been described that will allow
the Data Encryption Standard (DES) to be integrated into elec-
tronic data processing systems for the purpose of obtaining com-
munication security and file security. Several cryptographic keys
have been defined that allow the desired key management pro-
tocol to be achieved. They are:

Host master key (KM0)

First variant of the host master key (KM1)
Second variant of the host master key (KM2)
Terminal master key (KMT)

Secondary communication key (KNC)
Secondary file key (KNF)

Primary communication key, or session key (K.S)
Primary file key, or file key (KF).

The following cryptographic operations are used by the key man-
agement scheme at the host processor:

Set master key
SMK: {key}

Encipher under master key
EMK: {key} — E,, (key)

Encipher
ECPH: {E

(KS), data} — E,(data)

KMo

Decipher

DCPH: {E,,(KS), E,(data)} — data

KM0

Reencipher from master key

RFMK: {E., (KMT), E,, (KS)} - E, (KS)

kM1 KMT

Reencipher to master key
RTMK: {E,, .(KNF), E, ,.(KF)} - E,, (KF).

KMZ(

The following cryptographic operations are used by the key man-
agement scheme at the terminal:

IBM SYST J ® VOL 17 @ NO 2 e 1978 EHRSAM ET AL.

Decipher from master key
DMK: {E,, (KS)} = KS§

KMT

Encipher
ECPH: {data} — E, (data)

Decipher
DCPH: {E, (data)} — data.

Data-encrypting keys stored (or in use) at the host processor are
protected by a host master key (KMO0). This concept is expanded
to include the storing of key-encrypting keys under host master
key variants KM1 and KM?2. The master key and its variants pro-
vide a means of enforcing the separation or stratification of cryp-
tographic keys into groups that are both logically and functionally
different.

Broadly speaking, cryptography reduces the problem of pro-
tecting data, in certain clearly defined situations, to that of pro-
tecting the secrecy and use of a small set of cryptographic keys.
Without cryptography, a system is vulnerable to such external
attacks as wiretapping and theft of removable storage. When
cryptography is used, the opponent is forced to attack the system
from within.

Control over the execution of the defined cryptographic opera-
tions can be exercised by:

e activating or deactivating certain cryptographic operations
with a physical, key-operated switch;
maintaining the secrecy of certain special cryptographic quan-
tities used as input to cryptographic operations;

® making certain cryptographic operations privileged.

It must be emphasized that without system integrity, cryptogra-
phy will not add significantly to the overall security of a system
when the opponent is an authorized user or can gain entry to the
system. Although cryptography can enhance the integrity of a
computer system, it is not sufficient for integrity. When used in
conjunction with other security features, cryptography does play
an important and valuable role in a total security plan.

CITED REFERENCES

1. C. E. Shannon, ‘“Communication theory of secrecy systems,” Bell System
Technical Journal 28, 656-715 (1949).

2. H. Feistel, ‘‘Cryptography and computer privacy,” Scientific American 228,
No. 5, 15-23 (May 1973).

3. Data Encryption Standard, Federal Information Processing Standard (FIPS)
Publication 46, National Bureau of Standards, U.S. Department of Commerce,
Washington, DC (January 1977).

. S. M. Matyas and C. H. Meyer, ‘“Generation, distribution, and installation of
cryptographic keys,” IBM Systems Journal 17, No. 2, 126-137 (1978, this
issue).

EHRSAM ET AL. IBM SYST J » VOL 17 « NO 2 ¢ 1978

5. C. H. Meyer, ‘‘Ciphertext/plaintext and ciphertext/key dependence vs number
of rounds for the Data Encryption Standard,”” AFIPS Conference Proceedings
47 (June 1978, to be published).

Reprint Order No. G321-5066.

IBM SYST J e VOL 17 @« NO 2 » 1978 EHRSAM ET AL. 125

