
The installation scheduling problem involves finding a program
for installing a large number of sizes and types of items (e.g., ma-
chines) over time so as to optimize some measure (e.g., initial
capital investment), subject to various resource constraints. Ex-
amples of this problem are scheduling the installation of point-of-
sale terminals in supermarket and retail chains, and teller termi-
nals in banks.

We have formulated the installation scheduling problem as a
mixed integer linear program and developed a computer code for
solving the model. By using techniques for exploiting the special
structure of the model, our formulation allows rather quick solu-
tion times.

Solving the installation scheduling problem
using mixed integer linear programming

by R. Chen, H. Crowder, and E. L. Johnson

The installation scheduling problem is often a difficult aspect of
capital investment programs. Simply stated, the installation
scheduling problem involves finding an orderly schedule for in-
stalling a large number of systems of different sizes and types
over time so as to optimize some measure (e.g., initial capital
investment), subject to various resource constraints. Examples of
this problem are scheduling the installation of point-of-sale termi-
nals in supermarkets and retail stores, and teller terminals in
banks.

We have formulated the installation scheduling problem as a
mixed integer linear program and developed a computer program,
the Installation Optimization System (IOS), for solving the model.
IOS uses IBM’S mixed integer linear programming system MIPi370
as a subroutine. Because of special structure in the model, our
formulation allows rather quick solution times, thus avoiding the
usual criticism of integer linear programs that they require exces-
sive computational effort.

We will first give a detailed description of the installation sched-
uling problem. Next we will present our mixed integer program-
ming formulation of the problem. We will then show how the

Copyright 1978 by International Business Machines Corporation. Copying is perrnit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) theJournal reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in com-
puter-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

82 CHEN, CROWDER, AND JOHNSON IBM SYST J VOL 17 NO I 1978

problem may be solved using 10s. Finally, we will give computa-
tional results obtained by applying IOS to an actual installation
scheduling problem.

The installation scheduling problem

1 In general, the installation scheduling problem arises when a deci-
sion must be made as to when to perform all or part of a set of

1 actions (typically, money investments) over a given time interval.
The time interval is divided into a number of time periods; one
time period is the approximate time required to perform an ac-
tion. The problem has the following characteristics:

0 Each action has associated costs and benefits determined by
functions. The cost function specifies the amount of capital
required to perform the action; this cost is dependent upon the
time period in which the action is performed. At a given time
period, for those actions that were performed in previous time
periods, the benefit function determines the amount of capital
that is made currently available. In general, benefit functions
will generate nonnegative returns, although this is not a re-
striction. Both costs and benefits are estimates which take in-
to account such factors as possible future inflation, invest-
ment tax credits, tax rates, and depreciation.

8 The problem has an associated initial capital investment that
is used to start performing actions. At any time period, capital
is expended by performing actions, the amount of capital used
being determined by the appropriate cost function. At the
same time, capital benefits are derived in two ways: (a) any
capital not expended at the previous time period is carried
forward, and (b) capital benefits arise from previously per-
formed actions, as determined by the appropriate benefit func-
tions.

We can now ask:

1. Is it possible to perform all of the actions in the given time
interval, given the initial capital investment?

2. If so, what is an action schedule that will optimize some meas-
ure? For example, we might wish to maximize the final capital
position at the end of the time interval or, alternately, we
might wish to minimize the time required to return the initial
capital investment.

3 . If 1 is not possible, can we find a schedule for performing part
of the set of actions that will optimize some function?

Our interest in the installation scheduling problem resulted from
investigating the installation of point-of-sale systems in super-
market chains. In this case, an action is either the conversion of

IBM SYST J VOL 17 0 NO 1 1978 CHEN, CROWDER, A N D JOHNSON 83

one store to a point-of-sale system or the installation of a system
in a new store. Stores are divided into several types depending
primarily upon business volume, and there are many stores of
each type. For a given store type, the cost of installation depends
upon the time during the year that the installation is made. The
benefit at any time derived from a particular store which has pre-
viously had a system installed depends, again, upon what time
during the year that the original installation was made, the type of
store, and upon how long it has been since installation. A typical
problem specification would be these cost and benefit functions,
the number of stores of each type, the time interval in which total
installation of the store chain must be accomplished (usually sev-
eral years), and the initial capital investment. The objective is to
determine an installation schedule in which all stores in the chain
have had systems installed, and the final capital position at the
end of the time interval is maximized.

Many decision problems of this type can be cast as mixed integer
programming problems. A good introduction to these types of
models is Wagner.l

The mixed integer linear programming model

We will cast the model for the installation problem in terms of the
example in the previous section for the installation of point-of-
sale systems in supermarkets. Note, however, that the model is
applicable to a wide class of similar problems.

Let the constant N be the number of types of stores to be installed
and let the constant mi be the number of stores of type i, with i =
1, . * ., N . The total number of stores to be installed is C p i . The
time interval specified for the problem will be divided into T time
periods, one period being the approximate time required to install
one system.

The cost of installing a system is dependent upon the store type
and the time period in which it is installed. Let the constant Ci, be
the cost of installing a system in a store of type i in time period t ,
with 1 5 i 5 N and 1 5 t 5 T.

The capital benefit derived at some time period from a system
that has been installed at a previous time period is dependent up-
on the store type, the time period in which the system was origi-
nally installed, and the number of time periods that have elapsed
between installation and the current period. Let Bit? be the capital
available at time period t for a store of type i that had a system
installed at time period t - r , where 1 5 i 5 N , 2 5 t 5 T , and 1 5

r < t.

84 CHEN, CROWDER, A N D JOHNSON IBM SYST J VOL 17 NO 1 1978

The initial capital investment will be denoted by K . We note that
K must be at least equal to some Cit, else no stores will have
systems installed and the model as defined in the sequel will have
no feasible solution.

~ The installation activities xit will denote the number of stores of
type i having systems installed in time period t , with 1 5 i 5 N
and 1 5 r 5 T . For an optimal solution to the model, this set of
activities will represent an optimal installation schedule. Frac-
tional parts of xit values indicate that installations are started dur-
ing one time period and finished during the next period. For ex-
ample, for a particular i, xit = 2.75 and x ~ , ~ + ~ = 1.25 means that
two installations are started at the beginning of period t and one at
the beginning of period t + 1. In addition, one installation is start-
ed 0.25 through period t (i.e., 0.75 of the work will be done in
period t) and is finished in the first quarter of period t + 1. We
require that the xit be nonnegative.

The activities dit are the number of starts of installations of type i
up to and including time period t , for 1 I i 5 M , 1 5 t I 7‘ - 1.
We require that dit be nonnegative and integer.

The activity p t will be the capital position at the end of time period
t . For t < T , p t is the amount of capital that is carried forward
from period t and made available for system installations in peri-
od t + l . Clearly pT is the final capital position at the end of the
problem’s time interval; this is the quantity that the model at-
tempts to maximize.

Given these specifications, we construct the following mixed in-
teger linear programming formulation:

Maximize p T (1)

subject to

N 1- 1 .v

IBM SYST J VOL 17 NO I 1978 CHEN, CROWDER, A N D JOHNSON 85

all xit 2 0; all p t 2 0; all dit 2 0 and integer (8)

The equations given by 2 require that all stores have systems in-
stalled within the specified time interval. Equation 3 specifies that
the capital position at the end of the first time period is the initial
investment minus the amount expended for installations in that
period. The equations represented by 4 specify the capital posi-
tions for the end of time periods 2 through T: p t is the sum of the
carry-over from the previous period (p P l) and the capital derived
at period t for all previously installed stores, minus the capital
outlay for installations in period t . Relations 5-7 impose restric-
tions on the values of the scheduling activities xit; in effect, these
relations ensure that any system installations initiated in period t
are completed in period t + 1. To see this, we observe that for
some t , Relations 5 and 6 ensure that the value of xi,l+l gives

t+ 1 t 1 .xik 2 next integer above x ik .
k = l k=1

In general, the fractional part, if any, of
t

represents the part of an installation begun in time t which must
be completed in time t + 1.

That is, xi,t+l must be large enough to complete any installation
started but not completed in time period t . This device is similar
to Beale and Tomlin’s sos2 special ordered sets.2 S O S ~ is a set of
variables such that, at most, two adjacent variables may take
nonzero values. Our device makes no set restrictions, but rather
makes restrictions on the possible values of adjacent variables
only.

Our initial formulation of this problem resulted in a model that
required all the .xit to be integer (the model consisted of Relations
1-4 and all p t z 0, all xit 2 0 and integer). This model had two
deficiencies; first, because of the integer-valued activities x i t , all
installations were required to begin and end in the same time peri-
od. This was an unrealistic assumption in terms of the real prob-
lem being modeled. The second deficiency was the fact that this
formulation resulted in a mixed integer program that was very
difficult to solve using the branch and bound procedures in M I P ~
370. Because of the severe restrictions on the integer activities,
the problem was very tightly over-constrained, making it very
difficult to find feasible integer solutions. For these reasons, we
reformulated the relaxed problem given by Relations 1-8 above,
obtaining a model that was not only a better reflection of the real
problem but was also more amenable to solution by MIP/370.

86 CHEN, CROWDER, A N D JOHNSON IBM SYST I VOL 17 0 NO 1 1978

The installation optimization system

10s is a P L ~ I program that uses IBM’S mixed integer linear pro-
gramming system MIPi370 to solve the installation scheduling prob-
lem. ~ I P i 3 7 0 is a special feature of the IBM Mathematical Program-
ming System Extended/370 (MPSXi370). Under osivs, the mini-
mum machine configuration to install, execute, and support 10s is
the same as for MPSXi370: the OSivs minimum real storage require-
ment and the Universal Instruction Set. For exact storage re-
quirements as a function of problem size, see the MPSX/370 Pro-
gram Reference M a n ~ a l . ~

The functions of 10s can be divided in three categories: matrix
generation, problem solution, and report generation.

The problem matrix is generated from the parameters described
in the previous section. These data are input to 10s in a pre-
determined format, where they are transformed to an internal for-
mat suitable for processing by MIPi370.

The size of the resulting integer linear program is a function of N
and T: the number of logical variables (constraints) is

2N(T - 1) + T

The number of structural variables is

N(2T - 1) + T

of which N (T - I) are integer.

10s uses the branch-and-bound facilities of MIPi370 to solve the
integer linear programming model. The interested reader is re-
ferred to the MIPi370 Program Reference Manual4 for a detailed
description of MIPi370. A good exposition on branch-and-bound
algorithms is Benichou, et al.s

Mixed integer programming problems are often very difficult to
solve because there is usually no clear indication as to the order
in which branching should occur over the integer variable set. As
a result, most sophisticated integer programming codes, including
MIPi370, have a variety of built-in heuristic procedures for auto-
matically deciding the branching order. For a given problem,
some rules may work remarkably well while others may perform
very badly. It is usually left to the investigator to make several
runs employing different combinations of branching heuristics un-
til the correct combination is found; this can often be a very ex-
pensive and frustrating experience. Fortunately our model has a
branching order that is simple and straightforward: the integer
variables are ordered on the basis of time. For example, for N = 2
and T = 3 , we would order the integer variables di, as

{ 4 , 1 3 4 , l . 4 2 3 4 , J

IBM SYST I VOL 17 0 NO 1 1978 CHEN, CROWDER, AND JOHNSON

This ordering, combined with the branch-and-bound algorithm
used by MIPi370, leads rather quickly to a fairly respectable (in
terms of objective value) first integer solution, thus providing a
good bound for, hopefully, expeditious optimization of the prob-
lem.

report The output from MIPi370 is usually not especially readable to nov-
generation ices; sometimes it is even inscrutable to experts. For this reason,

we have incorporated a report writer into 10s that outputs the
solution(s) in a more comprehensible form. As a rule, MIP/370 will
find several feasible integer solutions to a problem before it finally
finds the optimal integer solution. These solutions are generated
in a certain order, each having a better objective function value
than the previous one. It is sometimes useful to inspect this series
of solutions; for this reason, all solutions are printed by the 10s
report writer. The form of the output is given in the next section.

Computational experience

A typical problem solved by 10s was the task of obtaining a
schedule for installing point-of-sale systems in a supermarket
chain. The actual data to 10s was generated by the Benefithnvest-
ment System (BIS). This system, programmed in APL, is used by
IBM to assist in measuring the financial impact of computer sys-
tems and allows the quantification of benefits and investments
associated with various proposals. The data that we obtained us-
ing BIS took into account such factors as possible future inflation,
investment tax credits, tax rates, and depreciation.

The supermarket chain had three types of stores: eight of Type 1,
10 of Type 2, and 12 of Type 3. In the notation of the earlier
section on the programming model, N = 3, m, = 8, m2 = 10, and
m:, = 12. The time period required for installation of one system
was three months, and the time interval allowed for installation of
the entire chain was nine years; thus T = 36.

The cost of installing a system in a store was in the range
$113,143-119,317 for store Type 1 , $125,696-132,233 for Type 2,
and $137,472-144,261 for Type 3. The capital benefit derived from
installed stores was in the range $7,612-14,617 per quarter for
store Type 1 , $9,370-19,282 for Type 2, and $11,129-23,837 for
Type 3.

We solved this problem for various values of K , the initial capi-
tal investment. Figure 1 is the 10s output for the first (but not
optimal) integer solution obtained with K = $200,000; this solu-
tion required 1.00 minute of System/370 Model 168 CPU execu-
tion time. The columns are, from left to right, the time period
index, the number of store types 1, 2, and 3 to have systems in-

88 CHEN, CROWDER, A N D JOHNSON IBM SYST J VOL 17 NO 1 1978

Figure 1 IOS output-first integer solution

NSTATT.ATTON OPTIMIZATION SYSTEM ---- EXPERIMENTAL VERSION 3 9/13/77 I ~ .~ ~~

NITIAL INVESTMENT: 2 0 0 0 0 0 . 0 0 ""~""""""~""""""""""""""""""---""-------
I STORE TYPES I TIME PERIOD I"""_""_""_"""""""--- I CASH POSITION
I 1 2 3 1 """""""""_"""""""""""""""""""""" l -

2
1

3
4
5
6
7
8
9

10
11
12
1 3
14
15
16
17
18
19
20
21
22
2 3
24
25
26
27 .77

29
2 8 . 2 3

30 3 .12
. 4 4

i
I 31
I 32

2 . 4 4

I 33 1 :oo

1 . o o
. 8 5
. 1 5

. 9 4

. 0 6

1 : o o
. 6 6
. 3 4

1 . 3 2
.68
. 8 3
. 1 7

1 . 6 0
1 . 1 0
1 . 2 2

. 7 4 2 . 0 0
. 0 8

1 .88
1 . 3 8

4 . 0 0

74304.
9 2 9 5 4 .

34082.
10564.

57599.
80595.

103963.

35083.

128133.
81 584 .

30402.

27099.
107563.

4 3 4 0 .

100559.

182166.

269533.

1 1 4595.
540434.

1245557.
831687.

2080478.
1662776.

."

stalled in the time period, and the accrued capital position at the
end of the time period. Fractional values of stores to have sys-
tems installed in a time period arise because installation can be
initiated in one time period and completed in the following period.
Figure 2 gives a time sequence graph of the schedule of Figure 1.
The left-hand column is the time period index t . The next three
columns give a graphic interpretation of the installation schedule.

Figure 3 is the 10s output for the optimal integer solution with K
= $200,000, obtained after 3.27 minutes of CPU execution time.
Note that the accrued capital position at the end of the last time
period is the quantity to be maximized, and has a better value in
this solution than in the first integer solution of Figure 1. Figure 4
is a time sequence graph of the optimal integer solution.

We attempted to solve this problem with K = $150,000. We ob-
tained a first integer solution after 0.72 minute of CPU execution
time. However, 10s was unable to prove optimality after 20 min-
utes of execution time, and the search was halted. This demon-
strates the unpredictability of attempting to obtain optimal solu-
tions to mixed integer programs, even with a sophisticated sys-

Figure 2 Installation schedule-first
integer solution

T
t

t

IBM SYST J VOL 17 NO 1 1978 CHEN, CROWDER, AND JOHNSON 89

"""""""""""""""""""""""""""""""""-

TIME PERIOD I ~ - - _ ~ ~ - - _ ~ ~ ~ - ~ ~ ~ ~ _ ~ ~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ STORE TYPES 1
I CASH POSITION

""

I 1 2 3 I

1
2
3
4

25
24

33
34
3 5
36

1 . 5 5
. 1 0

3 . 1 7
. 3 5

2 . 1 3
1 . 7 0

1 : 0 0

1 . o o

1 . o o

1 :oo
. 7 6

. 6 4

. 2 4

. 7 2

. 3 6

1 . O O
. 2 8

.85

. 9 0

1 . 8 0
. 2 5

1 . 2 0

6 2 5 2 8 .
85053.

107578.
130103.

6 5 1 9 .
42932.

115758.
79345.

6835.
57909.

28966.

22763.

50526.
5011.

106783.

180605:

87087.
417082.

105759:
549640.

1413005.
994540.

1827659.
2247908.
2669486.

I
I
I

I
I

I
I

I
I

I
I

I
I

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I

tem like MIPi370. Making seemindv innnrl~nlls chanoec tn the I

often the case that users of mixed integer programming models
never realistically expect to obtain optimal solutions to their
problems, but are quite happy to settle for several good feasible
integer solutions, provided the linear programming bound assures
that no integer solution can be significantly better.

C.."..".. I

that the solution techniques embodied in 10s are applicable to
wide classes of similar problems. There are extensions of the in-
stallation scheduling problem which we have not addressed but
which might be interesting to pursue. For example, in many appli-

~ - . - - - - - - - - -

cations a substantial henefit i c tn he deriv-cI x x A - . n Gm-1 --+:--

terminal benefits could have on optimal installation schedules.
< I

90 CHEN. CROWDFR. A N D ICIHNQCIN I

~ Another topic that could be significant in certain applications is Figure 4 Installation schedule-

i the question of purchase versus lease of systems. We feel that Optimal integer solution

investigators seeking solutions for these and other extensions of
the installation scheduling problem should consider the mixed in-
teger programming approach that we have presented.

ACKNOWLEDGMENT
We wish to thank Michael Held of the IBM Systems Research

~~ ~ ~~~ ~~~

Institute for helpful discussions in the course of this work.
~-

CITED REFERENCES
1 . H. M . Wagner, Principles of Management Science, Prentice-Hall, Englewood

Cliffs, NJ (1970).
2. E. M. L. Beale and .I. A. Tomlin, “Special facilities in a general mathematical

programming system for nonconvex problems using ordered sets of vari-
ables,” Proceedings of the Fifth International Conference on Operations Re-
search, Editor: J. Lawrence, 447-454, Tavistock Publications, London (1970).

3. IBM Mathematical Programming System Extended1370 Program Reference
Manual, SH19-1095, IBM Corporation, Paris, France (1974).

4. Mixed Integer Programmingi370 Program Reference Manual, SH19-1099,
IBM Corporation, Paris, France (1974).

5 . M. Benichou, J . M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and 0.
Vincent, “Experiments in mixed-integer linear programming,” Mathematical
Programming 1, 76-94 (1971).

Reprint Order No. (3321-5065.

IBM SYST J VOL 17 NO I 8 1978 CHEN, CROWDER, AND JOHNSON 91

