
The  installation  scheduling  problem  involves  finding  a  program 
for installing a large number of sizes and types of items  (e.g.,  ma- 
chines) over time so as to optimize  some  measure (e.g., initial 
capital investment), subject to various resource  constraints.  Ex- 
amples of this  problem are scheduling the  installation of point-of- 
sale terminals in supermarket and retail chains, and teller termi- 
nals in banks. 

We  have  formulated  the installation scheduling problem  as  a 
mixed integer linear program and developed  a  computer  code for 
solving the model. By using techniques for exploiting the special 
structure of the  model, our formulation allows rather quick solu- 
tion times. 

Solving the installation  scheduling  problem 
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The installation scheduling problem is often a difficult aspect of 
capital investment  programs. Simply stated,  the installation 
scheduling problem involves finding an orderly  schedule  for in- 
stalling a large number of systems of different sizes  and  types 
over time so as to optimize some measure  (e.g., initial capital 
investment),  subject  to  various  resource  constraints.  Examples of 
this problem are scheduling the installation of point-of-sale termi- 
nals in supermarkets and retail stores, and teller terminals in 
banks. 

We have  formulated the installation scheduling problem as  a 
mixed integer linear program and developed a computer  program, 
the  Installation Optimization System (IOS), for solving the model. 
IOS uses IBM’S mixed integer linear programming system MIPi370 
as a subroutine.  Because of special structure in the  model,  our 
formulation allows  rather quick solution times,  thus avoiding the 
usual criticism of integer linear programs  that they require  exces- 
sive  computational effort. 

We  will  first give a detailed description of the installation sched- 
uling problem.  Next we  will present  our mixed integer program- 
ming formulation of the  problem. We  will then show how the 
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problem may be solved using 10s. Finally, we  will give computa- 
tional results  obtained by applying IOS to an actual installation 
scheduling problem. 

The installation  scheduling  problem 

1 In  general,  the installation scheduling problem arises when a deci- 
sion must be made as to when to perform all or part of a set of 

1 actions  (typically, money investments)  over a given time interval. 
The time interval is divided into  a  number of time periods;  one 
time period is the  approximate time required to perform an ac- 
tion.  The problem has  the following characteristics: 

0 Each  action  has  associated  costs and benefits determined by 
functions.  The  cost function specifies the  amount of capital 
required to perform the  action; this cost is dependent upon the 
time period in which the  action is performed. At a given time 
period,  for  those  actions that were performed in previous time 
periods,  the benefit function determines  the  amount of capital 
that is made currently available. In  general, benefit functions 
will generate nonnegative returns, although this is not a  re- 
striction. Both costs and benefits are  estimates which take in- 
to  account such  factors  as possible future inflation, invest- 
ment tax  credits,  tax  rates,  and  depreciation. 

8 The problem has  an  associated initial capital  investment  that 
is used to  start performing actions. At any time period,  capital 
is expended by performing actions,  the  amount of capital used 
being determined by the appropriate  cost  function. At the 
same  time,  capital benefits are derived in two ways: (a) any 
capital not expended at the  previous time period is carried 
forward, and (b) capital benefits arise from previously per- 
formed  actions,  as determined by the  appropriate benefit func- 
tions. 

We can now ask: 

1. Is it possible to perform all  of the  actions in the given time 
interval, given the initial capital  investment? 

2. If so, what is an action schedule  that will optimize some  meas- 
ure? For example, we  might  wish to maximize the final capital 
position at the  end of the time interval or,  alternately, we 
might  wish to minimize the time required to return the initial 
capital investment. 

3 .  If 1 is not  possible,  can we  find a  schedule  for performing part 
of the  set of actions  that will optimize some function? 

Our  interest in the installation scheduling problem resulted from 
investigating the installation of point-of-sale systems in super- 
market chains.  In  this  case, an action is either  the  conversion of 
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one  store to a point-of-sale system  or  the  installation of a  system 
in a new store.  Stores  are divided into  several  types  depending 
primarily upon  business  volume, and there  are many stores of 
each  type.  For  a given store  type,  the  cost of installation depends 
upon the time during the  year  that  the installation is  made. The 
benefit at  any time derived from a  particular  store which has  pre- 
viously had a system installed depends, again, upon what time 
during the  year  that  the original installation was made,  the  type of 
store, and upon how long it has been since installation. A typical 
problem specification would  be these  cost  and benefit functions, 
the number of stores of each  type,  the time interval in which total 
installation of the store chain must be accomplished (usually sev- 
eral  years),  and  the initial capital investment.  The  objective is to 
determine  an installation schedule in which all stores  in  the  chain 
have had systems  installed, and the final capital position  at  the 
end of the time interval is maximized. 

Many decision  problems of this  type  can  be  cast as mixed integer 
programming problems. A good introduction  to  these  types of 
models is Wagner.l 

The  mixed  integer  linear  programming  model 

We  will cast  the model for  the installation problem in terms of the 
example in the  previous section for  the installation of point-of- 
sale systems in supermarkets. Note,  however,  that  the model is 
applicable to a wide class of similar problems. 

Let  the  constant N be the number of types of stores to be installed 
and let the  constant mi be the  number of stores of type i, with i = 
1, . * ., N .  The  total number of stores  to  be installed is C p i .  The 
time interval specified for  the problem will be divided into T time 
periods,  one period being the  approximate time required to install 
one  system. 

The  cost of installing a system is dependent upon the  store  type 
and  the time period in which it  is installed. Let the  constant Ci, be 
the  cost of installing a system in a  store of type i in time period t ,  
with 1 5 i 5 N and 1 5 t 5 T.  

The capital benefit derived at some time period from a  system 
that  has been installed at a previous time period is dependent up- 
on the  store type,  the time period in which the  system was origi- 
nally installed,  and  the  number of time periods  that  have  elapsed 
between installation and  the  current  period. Let Bit? be  the capital 
available at time period t for  a  store of type i that  had  a  system 
installed at time period t - r ,  where 1 5 i 5 N ,  2 5 t 5 T ,  and 1 5 

r < t. 
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The initial capital  investment will be  denoted by K .  We note  that 
K must be  at  least equal to  some Cit, else no stores will have 
systems installed and  the model as defined in the sequel will have 
no feasible solution. 

~ The installation activities xit will denote  the  number of stores of 
type i having systems installed in time period t ,  with 1 5 i 5 N 
and 1 5 r 5 T .  For an optimal solution to  the  model,  this  set of 
activities will represent an optimal installation schedule.  Frac- 
tional parts of xit  values indicate that installations are  started  dur- 
ing one time period and finished during the next period. For ex- 
ample,  for  a  particular i, xit = 2.75 and x ~ , ~ + ~  = 1.25 means  that 
two  installations are started at the beginning of period t and  one at 
the beginning of period t + 1. In addition,  one installation is start- 
ed 0.25 through period t (i.e., 0.75 of the work will  be done in 
period t )  and is finished in the first quarter of period t + 1. We 
require that  the xit be nonnegative. 

The  activities dit are  the number of starts of installations of type i 
up  to  and including time period t ,  for 1 I i 5 M ,  1 5 t I 7‘ - 1. 
We require  that dit be nonnegative and  integer. 

The  activity p t  will be the capital position at the end of time period 
t .  For t < T ,  p t  is the amount of capital  that is carried  forward 
from period t and made available for  system  installations in peri- 
od t + l .  Clearly pT is the final capital position at  the end of the 
problem’s time interval; this is the quantity that  the model at- 
tempts to maximize. 

Given these  specifications, we construct  the following mixed in- 
teger linear programming formulation: 

Maximize p T  (1) 

subject  to 

N 1- 1 .v 

IBM SYST J VOL 17 NO I 1978 CHEN,  CROWDER, A N D  JOHNSON 85 



all xit 2 0; all p t  2 0; all dit 2 0 and integer (8) 

The  equations given by 2 require  that all stores  have  systems  in- 
stalled within the specified time interval.  Equation 3 specifies that 
the  capital position at  the  end of the first time period is the initial 
investment  minus  the  amount  expended  for  installations in that 
period.  The  equations  represented by 4 specify the  capital posi- 
tions for  the  end of time periods 2 through T: p t  is the sum of the 
carry-over from the previous period ( p P l )  and the  capital derived 
at period t for all previously installed stores, minus the  capital 
outlay for  installations in period t .  Relations 5-7 impose  restric- 
tions on the  values of the scheduling activities xit; in effect,  these 
relations ensure  that any system installations initiated in period t 
are completed in period t + 1. To see  this, we observe  that  for 
some t ,  Relations 5 and 6 ensure  that  the value of xi,l+l gives 

t+ 1 t 1 .xik 2 next integer above x ik .  
k = l  k=1 

In general,  the fractional part, if any, of 
t 

represents  the  part of an installation begun in time t which must 
be completed in time t + 1. 

That  is, xi,t+l must be large enough to  complete  any installation 
started but not completed in time period t .  This device is similar 
to Beale and Tomlin’s sos2 special ordered sets.2 S O S ~  is a  set of 
variables such that, at most, two adjacent variables may take 
nonzero  values.  Our  device  makes no set  restrictions,  but  rather 
makes restrictions on the possible values of adjacent  variables 
only. 

Our initial formulation of this problem resulted in a model that 
required all the .xit to be integer (the model consisted of Relations 
1-4 and all p t  z 0, all xit 2 0 and integer). This model had two 
deficiencies; first,  because of the integer-valued activities x i t ,  all 
installations were required to begin and end in the same time peri- 
od.  This was an unrealistic  assumption in terms of the real prob- 
lem being modeled. The second deficiency was the  fact  that  this 
formulation resulted in a mixed integer program that was very 
difficult to  solve using the  branch and bound procedures in M I P ~  
370. Because of the  severe  restrictions on the integer activities, 
the problem was very tightly over-constrained, making it very 
difficult to find feasible integer solutions.  For  these  reasons, we 
reformulated the relaxed problem given by Relations 1-8 above, 
obtaining a model that was not only a  better reflection of the real 
problem but was also more amenable  to solution by MIP/370. 
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The installation optimization system 

10s is a P L ~ I  program that  uses IBM’S mixed integer linear  pro- 
gramming  system MIPi370 to solve the installation  scheduling prob- 
lem. ~ I P i 3 7 0  is a special feature of the IBM Mathematical Program- 
ming System Extended/370 (MPSXi370). Under osivs, the mini- 
mum machine configuration to  install,  execute,  and  support 10s is 
the  same as for MPSXi370: the OSivs minimum real storage  require- 
ment and the  Universal  Instruction Set.  For  exact storage  re- 
quirements as a  function of problem size,  see  the MPSX/370 Pro- 
gram Reference M a n ~ a l . ~  

The  functions of 10s can be divided in three  categories: matrix 
generation, problem solution, and report  generation. 

The problem matrix is generated from the  parameters  described 
in the  previous  section.  These  data  are input to 10s in a pre- 
determined format, where they are transformed to an  internal  for- 
mat suitable for  processing by MIPi370. 

The size of the resulting integer linear program is a  function of N 
and T:  the  number of logical variables (constraints) is 

2N(T - 1) + T 

The number of structural variables is 

N(2T - 1 )  + T 

of  which N ( T  - I )  are integer. 

10s uses  the branch-and-bound facilities of MIPi370 to solve  the 
integer linear programming model.  The  interested  reader is re- 
ferred  to  the MIPi370 Program Reference Manual4 for  a detailed 
description of MIPi370. A good exposition on branch-and-bound 
algorithms is Benichou, et al.s 

Mixed integer programming problems  are often very difficult to 
solve because  there is usually no clear indication as to the  order 
in which branching should occur  over  the integer variable set. As 
a  result, most sophisticated integer programming codes, including 
MIPi370, have  a  variety of built-in heuristic procedures  for  auto- 
matically deciding the branching order.  For  a given problem, 
some rules may work remarkably well  while others may perform 
very badly. It is usually left to the investigator to make several 
runs employing different combinations of branching heuristics un- 
til the  correct combination is found;  this can often be a  very  ex- 
pensive and  frustrating  experience.  Fortunately  our model has  a 
branching order  that is simple and straightforward:  the integer 
variables are ordered on the basis of time. For example,  for N = 2 
and T = 3 ,  we would order  the integer variables di, as 

{ 4 , 1 3  4 , l .  4 2 3  4 , J  
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This ordering, combined with the  branch-and-bound algorithm 
used by MIPi370, leads  rather quickly to a fairly respectable (in 
terms of objective value) first integer  solution,  thus providing a 
good bound for, hopefully, expeditious optimization of the prob- 
lem. 

report The  output  from MIPi370 is usually not especially readable to nov- 
generation ices;  sometimes it is even  inscrutable  to  experts. For this  reason, 

we have  incorporated  a  report  writer  into 10s that  outputs  the 
solution(s) in a more comprehensible form. As a  rule, MIP/370 will 
find several  feasible integer solutions to a problem before it finally 
finds the optimal integer solution. These solutions are generated 
in a certain order, each having a  better objective function value 
than the  previous  one.  It is sometimes useful to  inspect  this  series 
of solutions;  for this reason, all solutions  are printed by the 10s 
report  writer.  The form of the  output is given in the  next  section. 

Computational experience 

A typical problem solved by 10s was the task of obtaining a 
schedule  for installing point-of-sale systems in a supermarket 
chain.  The  actual  data to 10s was generated by the  Benefithnvest- 
ment System (BIS). This system, programmed in APL, is used by 
IBM to  assist in measuring the financial impact of computer  sys- 
tems  and allows the quantification of benefits and investments 
associated with various  proposals. The  data  that we obtained us- 
ing BIS took into  account  such  factors  as possible future inflation, 
investment  tax  credits, tax rates, and depreciation. 

The  supermarket chain had three  types of stores: eight of Type 1, 
10 of Type  2,  and 12 of Type 3.  In the  notation of the  earlier 
section on the programming model, N = 3, m, = 8, m2 = 10, and 
m:, = 12. The  time period required for installation of one system 
was three  months, and the time interval allowed for installation of 
the  entire chain was nine years;  thus T = 36. 

The  cost of installing a  system in a  store was in the range 
$113,143-119,317 for  store  Type 1 ,  $125,696-132,233 for  Type  2, 
and  $137,472-144,261 for  Type 3. The  capital benefit derived from 
installed stores was in the range $7,612-14,617 per quarter for 
store  Type 1 ,  $9,370-19,282 for  Type 2, and $11,129-23,837 for 
Type  3. 

We solved this problem for  various values of K ,  the initial capi- 
tal investment. Figure 1 is the 10s output  for  the first (but  not 
optimal) integer solution obtained with K = $200,000; this solu- 
tion required 1.00 minute of System/370 Model 168 CPU execu- 
tion time.  The  columns are, from left to right, the  time period 
index,  the  number of store  types 1, 2,  and  3  to  have  systems in- 
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Figure 1 IOS output-first integer solution 
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stalled in the time period, and the  accrued capital position at  the 
end of the time period.  Fractional  values of stores to  have sys- 
tems installed in a time period arise  because installation can be 
initiated in one  time period and completed in the following period. 
Figure 2 gives a  time  sequence  graph of the  schedule of Figure 1. 
The left-hand column is the time period index t .  The  next  three 
columns give a  graphic  interpretation of the installation schedule. 

Figure 3 is the 10s output  for  the optimal integer solution with K 
= $200,000, obtained  after 3.27 minutes of CPU execution  time. 
Note  that  the  accrued capital position at the  end of the last time 
period is the  quantity  to be maximized,  and  has  a  better  value in 
this solution than in the first integer solution of Figure 1. Figure 4 
is a time sequence graph of the optimal integer solution. 

We attempted to solve  this problem with K = $150,000. We ob- 
tained a first integer solution after 0.72 minute of CPU execution 
time. However, 10s was unable to  prove optimality after 20 min- 
utes of execution  time, and the  search was halted.  This  demon- 
strates  the unpredictability of attempting  to  obtain  optimal solu- 
tions to mixed integer  programs,  even with a sophisticated  sys- 

Figure 2 Installation  schedule-first 
integer solution 
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tem like MIPi370. Making seemindv innnrl~nlls chanoec tn the I 

often the  case  that  users of mixed integer programming models 
never realistically expect  to obtain optimal solutions  to  their 
problems, but are quite happy to settle  for  several good feasible 
integer solutions, provided the linear programming bound assures 
that no integer solution can be significantly better. 

C.."..".. I 

that  the solution techniques  embodied in 10s are  applicable  to 
wide classes of similar problems.  There  are  extensions of the in- 
stallation scheduling problem which we have not addressed  but 
which might  be interesting  to  pursue. For example, in many appli- 

~ . . . . - . - - - - - - - - - 

cations a substantial henefit i c  tn he deriv-cI x x A - . n  Gm-1 --+:-- 

terminal benefits could have on optimal installation schedules. 
< I  
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~ Another topic that could be significant in certain applications is Figure 4 Installation schedule- 

i the question of purchase  versus  lease of systems. We feel  that Optimal  integer solution 

investigators seeking solutions for  these  and  other  extensions of 
the installation scheduling problem should consider  the mixed in- 
teger programming approach  that we have  presented. 
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