
Some  large-scale  linear  and  especially  mixed-integer  program- 
ming  problems,  and  the  underlying  practical  decision-making  sit- 
uations,  have so far  been solved  with  only  limited  success. A new 
control  language  for IBM'S system MPSX-MIPI370 permits  recursive 
use of the  basic  system  and  easy  access  to  its  elements,  and 
therefore  appears  to  offer  great  potential  for  new  advances. 

The  paper  first  describes  the  facilities  ofthe  language,  called  the 
Extended  Control  Language,  and  the  interfaces  to  the  system 
and  gives  a  number of representative  illustrative  uses.  It  then 
considers  a  number of basic  applications of the  system  and pos- 
sible  heuristic  and  algorithmic  approaches  to  dificult  problems, 
often  very  large  problems  with  structure,  which  may  now  become 
more  easily  solvable  or  tractable for  the  first  time. 

:tended Control Language of MPSX/370 
#ssible  applications 

by L. Sldte and K. Spielberg 

The application of mathematical programming to large-scale 
practical  problems has been hampered by the  absence of reliable 
tools other  than linear programming (with the  possible  exception 
of such techniques as simulation, project  management,  econo- 
metric forecasting,  etc.).  There  exists  a wealth of know-how, al- 
gorithms,  and  heuristics, but their realization in practice  has been 
lagging, being largely limited to small-scale or highly specialized 
problems. 

The  Extended  Control Language of IBM'S MPSXi370 (Mathematical 
Programming System E~tendedi370)"~ appears  to offer potential 
for  substantial  progress beyond what has so far been attainable.  It 
is a mil-based language that permits access  to all  of the individual 
procedures of the  system as well as  to most of the working arrays 
of a particular  linear programming problem. 

A user can write PL/I programs that  access  the  system  repeatedly 
(e.g.,  iteratively),  or  that modify data and  procedures  after  preset 
interruptions, followed by resumption of execution.  This ability 
should permit substantial improvement in the solution of selected 
problems in nonlinear and mixed-integer programming. 
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~ ~~ ~~ ~~ ~ 

Practical problems  that lead naturally to  sequences of linear  pro- 
grams (such as dynamic management science problems) can be 
set up and solved in succession. At the same time, well-known 
algorithms or  heuristics can be applied to  decompose very large 
models into  smaller  fragments,  to  be solved id an  orderly  and 
tractable  fashion. 

In this paper, we give an overview of the  systems  features and 
capabilities, followed by a  sketch of possible applications.  Our 
intent is to give an  idea of some of the possibilities. We cannot 
hope  to give a  complete  survey,  nor can we attempt to give a 
complete list of references. If  we overstress  our own past work 
and that of close  associates, it is only because we are most famil- 
iar with it. 

Facilities of the Extended  Control  Language 

~ ~ ~ ~ 1 3 7 0  can be invoked by means of a PLII program, so that 
strictly speaking,  the  Extended  Control  Language4, E, is P L ~ I .  Cer- 
tain MPSXi370 facilities have been designed to aid in this  process, 
and more broadly speaking, PL/I augmented by these facilities is 
referred to  as  the  Extended  Control  Language. 

Much of the  control of the linear programming and mixed-integer interface 
programming runs is provided by the commpnication region of tothe 
M P S X ~ ~ ~ O .  It  consists of a collection of P L ~ I  variables,  referred  to communication 
by privileged names (all starting with the  character X), e.g., region 

Datanames: 

XDATA name of data 
XPBNAME name of problem 

Parameters: 

XTOLV feasibility tolerance 
XFREQINV frequency of inversion 
XDOINV address  for inversion demand (see  the  discussion 

~ XMXDROP bound on IP (integer programming) objective  func- 
on setting  demands) 

tion 
XMXJ number of integer variables 

The communication region cells are set by assignment state- 
ments,  e.g., 

XDATA='ANDELU' 
XPBNAME='PBIS' 
XMXDROP=5000 
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The communication region cells have default values assigned (de- 
clared and initialized) by the  system  procedure DPLINIT, invoked 
by the PL/I statement %INCLUDE  DPLINIT. 

The  procedures of MPSXi370, which have retained their  names  for 
the  most  part,  can be invoked by PL/I call statements,  e.g.: 

CALL  CONVERT: 
CALL SETUP; 
CALL RESTORE(‘NAME’,  ‘BASI’); 
CALL  OPTIMIZE: etC. 

Arguments are  passed in argument lists and through the commu- 
nication region variables. 

setting of “Demands”  are  activated by the  system when certain  conditions 
demands arise during a run.  The action to  be taken when the condition 

occurs is defined through the PL/I “ON CONDITION” facility. A typ- 
ical definition follows: 

ON CONDITION(XD0NFS) BEGIN: 
CALL  STATUS: 
CALL SOLUTION: 
STOP: 
END: 

The first statement names a condition and begins the block that 
defines the  actions  to be taken when the condition occurs. In this 
example those  actions  are  execution of the STATUS and SOLUTION 
procedures, followed by termination of the PLiI program. XDONFS 
is a communication region variable associated with the  system’s 
recognition of problem infeasibility. 

Some  conditions,  such as problem infeasibility or major error,  are 
defined by the  system;  others,  such  as  attainment of a particular 
iteration count,  are defined  by the  user. 

Names and descriptions of some of the  demands  are as follows: 

Name  Description 

XDONFS problem has no feasible solution 
XDOUNB solution is unbounded 
XMAJERR major error is detected 
XDOFREQl iteration  count is a multiple of XFREQl 
XMXDOFRN node number is a multiple of XMXFRN 

The  last  two  demands  are examples of conditions  for which the 
user specifies the controlling parameter  (e.g., XFREQI). Default 
implementation of demands is provided by DPLINIT. 
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In PL/I, data  are  stored in generalized arrays called structures. A 
structure is created by a DECLARE (DCL) statement.  It  can  have 
several levels of detail, which can be explicity declared  and  then 
referenced. For our  purposes, we need not go into  a  careful  de- 
scription of structures;  the  reader can get the flavor from the ex- 
amples. 

One basic  use of PL/I structures is the  creation of input or revised 
data in a  user (PLII) program. For example,  the following struc- 
ture: 

DCL 1 STCOL(IO), 
2 IND CHAR(Z), 
2 NAME1 CHAR@), 
2 NAME2 CHAR(@, 
2 VALUE DEC FLOAT(6); 

can be used to  represent 10 coefficients of a COL section input 
deck for CONVERT. The  structure STCOL needs  to  be filled with 
data by insertion (from a PL/I program) of the  appropriate in- 
dicators,  names,  and  values. 

Also, the  entire input deck for an MPSXi370 run can be placed into 
one overall structure  (see pages 197 and 198 of Reference 5 for  a 
complete example). What is important  for us is the  potential  use- 
fulness of a main-storage resident PL/I structure. Many problems 
exist in which the  data  for  the linear programming model,  espe- 
cially in the  case of cost coefficients, are complicated functions of 
real-life situations (e.g., they may have  to be computed from rate 
tables,  subject to other  constraints  such  as union rules, etc.).  In 
such  situations,  one may have a need for  the  computation of the 
coefficients (from parameters in case  studies,  for  instance) in PL/I 
procedures,  and  subsequent insertion in the  appropriate  slots of 
the overall input structure. 

Once  the  structure is established,  say in STRCTl, it can be invoked 
from certain MPSXi370 procedures via the argument list by means 
Of the keyword ‘STRUCTURE’, e.g., CALL CONVERT (‘STRUCTURE’, 
STRCTl). 

A number of MPSX/370 procedures,  such as SOLUTION, RANGE, 
TRANROW, and TRANCOL, have  output  that  the  user  can  request  to 
be stored in PL/I structures. 

SOLUTION and RANGE output can be examined and analyzed,  and 
possibly altered,  and  the  subsequent algorithmic procedure  can 
then be modified as a  result. 

TRANROW and TRANCOL permit the  retrieval of portions of the 
initial or currenf (i.e., updated) simplex tableau.  This can, for 
example, be used to observe  the effect on the  current solution of 
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introducing unit changes  for  the  nonbasic  variables,  thus  per- 
mitting sensitivity analysis involving the  entire  updated  tableau 
(or  sections  thereof). Algorithmic uses of such facilities might be 
the  generation of “surrogate  constraints”  or  “Benders inequal- 
ities” or “Gomory  cuts” in integer programming (e.g.,  see Refer- 
ences 6 and 7). 

Whenever the  entire matrix is involved,  there  must be the  possi- 
bility of selective  output. MPSXi370 uses  “selection  lists”  and 
“code  parameters” to limit the  output in various  ways. 

Selection  lists 
Selection lists are used as arguments of systems  procedures  such 
as  the  ones listed previously. They are used to define a subset of 
the rows and/or  columns of the  linear programming matrix which 
are to be used currently.  A selection list consists of keywords 
such as ‘RMASKS’, which precede  sets of masks (each being eight 
characters in length)  to identify those  names (identifiers of rows, 
for  instance)  that are of interest  (are  to be selected). For example, 
the list: 
‘RMASKS’, “,XSKI’, *x*******’, TMASKS’, ‘YY******’, leads to the 
selection of 

0 All rows specified by MASKI. 
0 All rows whose names start with the  character X .  
0 All columns whose names  start with the  characters YY. 

In the  above,  the  asterisks  represent  any  character. 

The  Extended  Control Language also provides a  special  proce- 
dure, SELIST, to aid  in the  automatic  construction of selection 
lists that  are  to  correspond  to a current algorithmic situation. In 
the following example, SELIST is used to  construct  the  masks of 
selection lists  that  correspond  to  the  basis. 
DCL  BNAME  (XM)  CHAR (8); 
DCL  ISIZE  BIN  FIXED (31); 
DCL  C(3)  CHAR (8) INITIAL (‘RMASKS’,  ‘MASKI’, ‘ ’); 
DCL  TAB(XM,XJ); 
DCL  1  STR4, 

2 BRHS(1)  DEC  FLOAT  (6), 
2 TABLEAU(1,XJ)  DEC  FLOAT(6), 

CALL  SELIST  (‘BASIS’,  ‘NAME’,  BNAME,  ‘SIZE’,  ISIZE); 
PUT  DATA(BNAME)  SKIP; 
ILP:  DO 1=1  TO XM; 

C((2)=BNAME (I) 
CALL  TRANROW(’STRUCTURE’,  STR4,  ‘NONAME’, 

‘SELIST’, C); 
PUT  LIST  (‘VALUE OF I IS’, I); 
TAB(I,*)=TABLEAU(l,*); 
END; 
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The examde should be reasonablv clear even without PL/I exper- 
tise on the  reader’s  part. 

The call to SELIST via keywords ‘BASIS’, ‘NAME’, ‘SIZE’, 
causes  the program to place the names of the  basic  variables 
into  the  character  array BNAME and the size of the  basis  index 
set (which we know to be equal to XM, the number of rows of 
the linear programming (LP) model) into ISIZE. 

0 At a typical iteration of the  loop ILP (which is executed XM 
times) the name of the  ith  basic variable is placed into  the 
second position of the  character  vector  C  (i.e., in place of 

0 As a  consequence,  the call to TRANROW, via keywords 
‘STRUCTURE’,  ‘NONAME’, and ‘SELIST’, causes  the coefficient 
values of row i (and not their names) to be placed into  array 

0 If space were tight,  one would not accumulate  the coefficient 
matrix in an  array TAB(I,*), but might write it out, row per row, 
on a  disk. 

0 The  overall  intent of the example might be to  store  the initial 
matrix in row form,  or  to work  on the rows of the  updated 
tableau during execution of a linear or a mixed-integer pro- 
gram. 

MASK1 . . .). 

TABLEAU(1,X.I). 

0 Note:  The program SELIST should not be confused with the 
keyword SELIST. 

Code  parameters 

Just as selection lists can be used to limit the portion of the matrix 
to be examined,  code  parameters (‘RSECTION’, ‘CSECTION’)  can be 
employed to limit the  types of information to be placed into  the 
SOLUTION or RANGE report by the  system.  For  details  see  the 
program reference 

Algorithmic tools and internal data 

Most of the facilities described at the beginning of the  previous 
section deal with accessing  the  system on a fairly high level (con- 
trol language level). The use of SELIST was somewhat of an  ex- 
ception.  Here we first discuss  the use of internal  system  subrou- 
tines and the possibly necessary  access to internal  computational 

The following internal  subroutines of MPSXi370 are callable from a internal 
user  subroutine in the  Extended  Control L a n g ~ a g e : ~ . ~  system 

SELIST PRICED1 
INVALUE FTRANLl 
GETVECl FTRANUl 

subroutines 
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FIXVECI BTRAN L 1 
POSTMUL BTRANUl 
PREMUL ELIMNI 
PRICEPl CHUZRl 

The  reader  who is familiar with the  various  steps of the simplex 
method will have  no difficulty  in identifying these  subroutines 
with functional transformations of the algorithm. What one  has to 
learn from the manuals (see  Reference 5 ,  pages 277 to 279, for  a 
detailed example) is the initialization of structures  and  computa- 
tion of addresses  (see  also  the following discussion) which are 
required for  the implementation of an algorithm. For any  particu- 
lar use,  the difficulties are not great,  but a general discussion 
would lead too  far afield here. 

accessof One gains access  to  internal  computational  data by means of a 
work regions systems  macro DPALG, i.e., by the initialization: 

and internal 
computational 

%INCLUDE  DPLALG; 

data The system permits  the addressing of relevant  data in symbolic 
fashion.  These data reside in three  possible  areas: 

0 The H-region (keys and internal numbers of vectors in the 

The column byte map (logical information about  the  status of 

The work regions (a variable number of regions,  each of XM 

basis;  updated by ELIMNI after each pivot  step). 

the  variables). 

double  words). 

The  addressing  scheme makes use of the PL/I operator ADDR and 
the capability of providing a “pointer”  to a structure (by means 
of BASED) in a  declaration  statement of a  structure. 

For example,  the PL/I statements 

PCOL=ADDR(BMAP(J)); 
IF XBASIC  THEN ... ; 

permit the  testing of the  basic or nonbasic  nature of variable j ,  
because DPLALG contains  a  structure 

DECLARE 1 BCOL BASED (PCOL), 
2 (XBASIC,XUB,XOBSUT ,... ), 
2 (... ); 

which effectively functions  as a “window”  over the totality of 
data, picking out  the wanted data item automatically. 

In similar fashion,  one is able  to  access  the work regions by virtue 
of the DPLALG declaration  statement: 

DECLARE 1 WREGION BASED(PW). 
2 (WSIGN,MW)  BIN  FIXED(IS), 
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2 JINC BIN FIXED(31), 
2 W(XM REFER(MW)) DEC FLOAT(16); 

To access  the kth work region one  must set 

PW=XW(k); 

and may then obtain  the  rth  double word in that region by the 
statement: 

a= W(r) .  

Important fundamental applications 

There are a number of fundamental uses of the  system  that must 
be mentioned,  even though they are fairly straightforward  and 
need little exposition.  The  fact is that they may be  most  important 
from a day-to-day applications point of view. The  Extended  Con- 
trol Language has much to offer in that it makes  the implementa- 
tion of such  features simpler and potentially more powerful than 
was previously possible. 

Future linear programming models will require  increased utiliza- 
tion of realistic data from maintained data  bases. An attractive 
feature of the  Extended Control Language is that it permits  the 
direct use of D M ,  the PL~I  data-handling language of IMS (see 
Reference 8), a widely used data base system. 

The  use of interactivity is important from a data-managing and 
model-building point of view. Being called from a P L ~ I  program, 
subject  to  standard PL~I  compilation, MPSXi370 with the  Extended 
Control  Language  feature can easily be  put  into the interactive 
mode, e.g., via the  system TSO (time sharing optionY). 

There  has  also been a  recent, albeit slow,  trend  towards  inter- 
activity in algorithmic work. Some of our  previous work in Refer- 
ences 10 and 11 may  be useful in illustrating this concept. 

Programs and program products  (systems) in other languages can 
be accessed,  as long as they can be accessed from PL/I. This  capa- 
bility opens possibilities for generating results through an MPSX/ 
370 run and feeding them to other  programs,  or  conversely using 
other  programs to provide input data  for MPSXi370. A good can- 
didate  for  such  interaction may be  a simulation program,  such as 
the system GPSS v.12 

Usually,  the input to a system such as MPSXi370 is one of variable 
names and constraint coefficients, even if done with one of the 
matrix generation  packages. It appears  that  the  Extended  Control 
Language will facilitate  the  generation of coefficients according to 
complicated rules. 
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Examples  come to mind readily in the  case of cost coefficients. 
The  cost coefficients can be  dependent on many parameters in 
nonlinear or  discontinuous  form.  They might depend,  typically, 
on rate  tables,  transportation  constraints, union rules,  etc.  One 
can conceive of case  studies  that would require  repetitive calcula- 
tion of costs followed by optimization, possibly aided by user in- 
tervention in the  interactive  mode. 

Report  generation as such is not likely to require Extended  Con- 
trol Language features.  However, especially in the  case of a com- 
plicated model (as might be generated according to  the  above dis- 
cussion),  the useful output  for management might require  output 
generation within PL/I programs. For example,  the  output of the 
optimization run may  be for  a problem that was set up in an  inter- 
mediate step of an overall procedure  and would then  require anal- 
ysis,  interpretation, and translation via programs written in PL/I 
for  that  purpose. 

The  repeated solution of a linear (integer) program is important in 
many ways. One  instance  derives from the  fact  that many linear 
programming models do not tell the  entire  story  about  the real 
situation. As a  result, many solutions are unsatisfactory in prac- 
tice. One may then have  to write additional PL/I programs  for 
checking the  overall acceptability of the results and  for rejecting 
the  results (by modification of input data  or by addition of new 
constraints) so that more acceptable  solutions might be  found in a 
repeated  run.  Interactivity (inspection of solution by management 
at  a terminal) might  play a big role in this mode of operation. 

A particular  instance of the  above would be the  case of problem 
constraints  that are  too weak or  too tight. The  reentrant mode 
would be used after  a tightening or relaxation of the  constraints 
(e.g., by changes in the right-hand sides) in a  systematic or inter- 
active (possibly unsystematic)  fashion.  One may also  conduct a 
variety of parametric  studies more general in nature  than  those 
permitted directly by procedures of MPSX/370 itself. 

As shown schematically in Figure 1, many large-scale linear pro- 
gramming problems are for interlinked or dynamic  models. Their 
main objective is to tie together  a  number of diverse  operations 
(say,  Department 1, Department 2, Department 3 of a corpora- 
tion) or a number of dynamically repeated  operations  for  the 
same  department, with inputs  passed on from stage to stage plus 
external  inputs  that  are known or predicted. 

Such a situation calls for  the  repeated solution of the  same,  or 
slightly modified, linear programming model  with varying inputs. 
The linking of the various  stages  and  preparation of the  inputs can 
be executed readily within the  Extended  Control  Language. 
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Many large-scale problems exhibit more complicated structures. 
Much of what has been said above would also apply to  them. 
Certain ideas of valid heuristic approaches can perhaps be gained 
from discussions of heuristics or decomposition and partitioning 
in this paper,  or  from  such  sources  as  Reference 13. 

With many large problems, one may be content  to  use  schemes 
that do not guarantee an optimum but may yet yield satisfactory 
answers  (better  than  those  attainable by other means). What is 
“large” may depend on the  type of problem and on the machine 
on which one  wants  to solve the  problem.  Large may refer to a 
3,000-row, 20,000-variable linear program, or  to a 200-variable 
integer program,  and  for special structures  the  situation may 
again be quite different. Two possible approaches are briefly out- 
lined here,  even though they already lead into  the  next  section on 
heuristic problem solving. In both  instances,  one  solves  approxi- 
mate (relaxed) problems,  that  is, problems in which some of the 
constraints of the original problem have been left out. 

Consider  a problem of the  structure  depicted in Figure 2. Solving 
the  subproblems Dl ,  D2, . . . , Dr in sequence, with the linking 
constraints below neglected, is in some  sense an approximation 
to  the overall problem. Quite often the large problem is generated 
by aggregation of models that solve the problems of individual 
departments D l ,  D2, e ,  as if they were independent.  Setting  up 
the overall problem is then an attempt  at  recapturing  the  con- 
sequences of interlinkages among the  departments. 

The  Extended  Control Language provides  the ability of collecting 
the  solutions  to the various  subproblems and substituting  them 
into  the linking problem. One can then  investigate  the in- 
feasibilities in the “linking” problem, and possibly alter the  sub- 
problems Dl ,  D2, . . . as a  consequence, in order  to  obtain  an 
improved overall solution in another  attempt. (The literature is 
full of schemes  for  such  approaches, but the  user is well-advised 
to be guided as much as possible by his practical  insights into  the 
problem.) 

For very large integer problems without structure,  the following 
approach can be  quite  feasible. Partition the integer variables  into 
smaller sets,  e.g., partition a 1,000-variable set  into  the 10 sets of 
variables (1 to  loo), (101 to 200), . . -, (901 to 1,000). Solve  the 
problem initially as a mixed-integer problem with the first set of 
variables (1 to 100) designated as integer variables,  the  others as 
continuous  variables. Given a solution to this problem, f ix  the 
integer-valued variables at their optimal values and  solve  the 
problem again with the first variables substituted  and  the  second 
set of variables (101 to 200) designated as integer, etc. Of course, 
the  success of such  a  scheme  cannot be guaranteed. But many 
alternatives are possible, and a carefully monitored approach of 
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such a nature  cannot fail to  produce  better insight, at  least, into 
the  nature of the overall problem than was initially available. 

A similar approach in a structure situation was taken by one of 
the  authors.14 The problem was the  Fixed Charge Transportation 
Problem, i.e., a  transportation problem with shipment x ( i ,  j )  on 
the  routes (i, j ) ,  and  the  additional imposition of a fixed charge 
f(i,  j )  if any  shipment occurs on route (i, j ) .  The problem is a 
mixed-integer problem with m . n (number of sources  times num- 
ber of destinations) integer variables y(i, j ) .  

The stagewise approach, which converges  but  can  be  interrupted 
whenever  one is content with one of the obtained solutions, is 
that of deleting all integer variables and solving the  transportation 
problem at the  outset. At the  next step,  one includes as first set 
those y ( i , j )  integer variables for which there were shipments  on 
route (i, j ) .  This  approach  leads back to a Fixed Charge  Trans- 
portation  Problem,  but with hopefully onlyfew (initially no more 
than m + n - 1) integer variables. In  general,  one adjoins to  the 
current  set of integer variables  those y ( i ,  j )  that  have  been newly 
introduced in the  last solution obtained. For most data, such  a 
solution procedure  converges well before  too many (namely 
close  to m - n )  integer variables  have to be taken  into  the mixed- 
integer problem.  One good feature of such  a method is that  there 
are  always many feasible solutions  to  the  problem,  a  property 
that is by  no means assured in general mixed-integer programming. 

Heuristic  problem  solving 

Heuristic  approaches to mathematical programming problems  are 
important in at  least  two  ways. First, they may either afford the 
only means of getting solutions to  otherwise  intractable  problems 
or  may, at any rate, curtail the work in arriving at useful solu- 
tions.  Second, they may be indispensable within algorithms  de- 
signed for  the efficient computation of truly optimal solutions. 

I 

The  latter  argument  for  heuristics  has recently been bolstered by 
important new work in computational c~mplexi ty , ’~ which ap- 
pears to make it quite  clear  that a very broad class of operations 
research (mathematical programming) problems are essentially of 
the  same  degree  of complexity. All  of these  problems,  and they 
appear  to include most mixed-integer problems, are  just  about as 
difficult as  the traveling salesman problem, and that problem is 
difficult indeed. 

Such a “complexity” result does not mean that  there is no  hope 
of getting reasonable  solutions  to  practical problems. What it sug- 
gests  is  that  one should utilize all insights one  can  muster  and 
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implement all heuristics  one  can think of,  since all brute force 
methods  are of no avail by themselves. 

In terms of this  paper  then,  the  above  constitutes a powerful argu- 
ment for  the use of the  Extended  Control Language as a tool to- 
wards implementing heuristics. 

We are concerned with a problem P which is in a  sense  intrac- ageneral 
table. As a  consequence, we replace it by a  sequence of problems heuristic 
which are tractable : scheme 

1. Replace P by a relaxation P’ . 
2. Solve P’. 
3. Test  the solution of P’. Is it a good solution to P? If so, record 

it. 
4. “Improve”  the solution to P‘. That  is, use all ingenuity and 

insight at your disposal  to  arrive at a solution of P, taking as a 
starting point the solution to P’ just obtained.  Record  any so- 
lutions found. 

5 .  Go to 1. 

Several  elements in the  above  scheme  have been left undefined. 
For example: How does  one  obtain  the relaxation P’? How  does 
one avoid looping? When does  one  terminate?  Answers to such 
questions  are difficult to give in general, but relatively easy  for  a 
well-known special case. 

It is often easy  to  arrive at solutions that are infeasible but, in rendering 
some sense,  close  to feasibility for  the overall problem.  Computer infeasible 
programs are in general quite bad at “recognizing” such  situa- solutions 
tions. For special problems, it is important  that  the  user  has feasible 
means of interrupting the machine solution process from time to 
time, or  under certain  conditions, and to  “look”  at  the solution in 
some detail.  This condition implies the desirability of pro- 
grammed interrupts in the  Extended Control Language, via a  suit- 
able demand definition, with possible uses of interactivity, and 
subsequent  alterations and reentry of system  execution. 

In integer programming, one of the natural ways of arriving  at a rounding 
potentially feasible integer solution is rounding. Most simply,  one 
may use  one input parameter r and round fractional  variables: 

0 x(i) down if x(i) 5 [x(i)] + r .  
x(i) up if x(i) > [x(i)] + r .  

While rounding ensures integrality, it does not ensure  feasibility. 
One may therefore  also  have  to pay attention  to  the  constraints of 
the problems that are likely to be violated by the rounding proc- 
ess. 
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Multiple choice  problems 

Many resource allocation and scheduling problems have  the addi- 
tional constraints 

x jEJ(k)YG)  = 1 > k =  1,2; * * , p  

where the J ( k )  are often apavtitioning of the original index  set J 
for  the (0, 1) integer (decision) variables yG); i.e. 

J = J(1) + 4 2 )  + . . . + J (p )  

Such  problems are usually not very well-behaved, in the  sense 
that  the  linear programming solutions invariably have  fractional 
values for many of the y ( j ) , j  E J ( k )  (adding up to  one, but  other- 
wise not very meaningful). MPSX-MIPI370 has special features 
(sos-specially ordered  sets)  for  treating multiple choice prob- 
lems.  Even so, the possibility of judicious rounding to multiple 
choice feasible  solutions should by no means be  disregarded. 

It has long been known that many large-scale integer program- 
ming problems, especially in the difficult area of scheduling,  are 
reasonably well-behaved under local exploration schemes.  In  one 
case, some lattice point (integer point, usually a  vertex of the 
hyper-cube,  for  example,  a point with coefficients all 0 or 1) is 
generated  and then enumerated  over  “neighbors” of the point in 
some limited neighborhood. Good results  for  such an approach 
were probably obtained first for  the traveling salesman prob- 
1em.20 

An airline scheduling program21 used by some airlines was essen- 
tially based on such  an  approach. Relatively small subsets of col- 
umns (about 1,000 columns) were selected  out of  an enormous 
set-covering problem (millions of columns) and optimized over 
the  subsets by the algorithm of Reference 19. 

Many other  important practical problems are likely to yield to 
such a mode of attack, and the  Extended Control Language could 
be used whenever  the  frequent solution of linear or  integer prob- 
lems would  be required in the  overall  process. 

Algorithmic uses 

In the previous section, we dealt with the  more  straightforward 
solution approaches, which would come to mind fairly readily. 
Yet,  there is also an  enormous  literature  on more sophisticated 
techniques. Out of the  vast  literature,  the  user might initially wish 
to  consult books such  as  those in References 6 and 7 on integer 
programming, in Reference 13 on large-scale linear programming, 
and perhaps in Reference 22 on general operations  research  ap- 
proaches. 
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Relatively little of practical advantage has as yet  accrued from 
this body of  fine work, and there  are  surely many opportunities 
for coming up with applications of great  usefulness. 

In the following discussion, we merely scratch  the  surface  to give 
some idea of the potential.  The  emphasis is again on mixed-in- 
teger programming, not only because that is where most of our 
own experience  lies, but also because a very large percentage of 
currently unsolved practical problems fall into this field. A de- 
tailed exposition would surely be too  lengthy, so we present a 
mere outline, with one or  two references  to  papers or books in 
which more references  can be found. 

nonlinear There  are many ways in which linear programming subproblems 
programming on the  one  hand, or possibly modifications of the simplex method 

on the  other  hand,  can be important in nonlinear programming. 

0 Programs with quadratic objective function and linear  con- 
straints  are much easier  than  the  general nonlinear case. 
There  are possibilities of modifying the simplex method itself 
for a direct  approach  to  the  problem.  For  older  methods  the 
reader may consult  Reference 22. Fundamental new ideas 
stem from the work of L e ~ n k e . ~ ~  They  have given rise to a 
body of literature on fixed point and complementary pivot al- 
gorithms that is clearly important,24  but  for which it  is  difficult 
to  foresee  what  role, if any,  the simplex method will play. 

0 Many general problems lend themselves  to  approximate  treat- 
ment via piecewise linearization of the  constraints  and/or  the 
objective  function. 

0 For problems with structure,  there  are partitioning methods 
that require the  iterative solution of linear programs.25 

0 Among a  variety of search  methods  that lead to repeated solu- 
tion of linear programs,  one may consider  the  “methods of 
feasible direction,’lZ6 or “sequential  search methods,”27  etc. 

enumerative The  standard commercial mixed-integer programming codes use 
schemesfor branch and bound programming, primarily because of its basic 
pureinteger simplicity and reliability. However,  there is some  evidence  that 

programming this  technique  does not function at its best for pure integer pro- 
grams, especially pure (0 ,  1) programs. Enumerative  techniques 
appear  to be better in many instances, in particular  when  the 
problems are  such  that  certain  constraints  can be taken  care of 
implicitly rather  than explicitly in the  search  scheme. 

The  fundamental work on branch and bound schemes goes back 
to  Little,  Sweeney,  Murty,  Karel,  Land, Doig, and Dakin;  that on 
enumeration  to Balas and  other^.^,^ For  some new approaches, 
which may  be of interest in connection with the  Extended  Control 
Language,  see  References 10, 11, and 28. 
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Decomposition,  partitioning, and column generation  techniques 
have been around  for  a while (based on  the work of Dantzig, 
Wolfe, Benders,  Gomory, and Gi lm~re '~ )  but  have found applica- 
tion primarily for special problems  only.  It  appears  that  the  Ex- 
tended  Control Language opens up possibilities for generalized 
implementation of such  techniques,  always  coupled with periodic 
checks  that  are  necessary  to avoid continuation of the algorithm 
when it begins to become ineffective (the major drawback of all 
such methods, which should not prevent  their  judicious use). 

It is clear  that  branch  and bound methods  and  enumeration meth- 
ods  can be combined in  many ways, but there has been hardly 
any computational  work of such  a  nature, undoubtedly on ac- 
count of the  considerable programming difficulties. Recent  work 
suggests that  there is some potential for  such  approaches,  espe- 
cially in the interactive mode. Linear programming subproblems 
are  important, and for large problems,  the use of a robust  linear 
programming code,  such as MPSXi370, would be essential." 

For specially structured  problems,  there has been substantial in- 
terest in Lagrangian methods  that place linear combinations of 
constraints  into  the  objective  function  (see  Reference 29 for a fun- 
damental paper  and Reference 30 for  an  excellent  summary).  The 
method is easy  to implement and can be quite effective for  the 
right kind of problem. 

An entire body of literature is devoted  to  the addition of cutting 
planes to linear programs in order  to remove unwanted vertices of 
the underlying polyhedron.  For integer programming, these 
methods  are primarily associated with Gomory.  Other  important 
contributions were made by Johnson,  Balas,  Glover,  etc. in in- 
teger programming and by Kelley for  convex p r ~ g r a m m i n g . ~ , ~ , ' ~  
As to practical applications, much the  same can be said as  for 
Lagrangian methods, and a case can be made for augmenting 
commercial codes so  as to accommodate the addition of cutting 
planes, as inconvenient  as  that may  be in codes  that  are organized 
around a matrix with a fixed number of rows (the addition of new 
rows requires the invoking of the  system  procedure SETUP in the 
case of MPSXi370). This difficulty  may be overcome by a sufficient 
number of empty rows added to the original model. 

Finally, it may  be redundant, but it is probably still worthwhile to 
stress  once more the  importance of looking for and heeding the 
existence of structure in mathematical programming. Few re- 
liable statistics  exist. But it is probably fair to  say  that a high 
percentage,  perhaps  even an overwhelming percentage, of large- 
scale and difficult mathematical programming problems have  spe- 
cial structure. I t  is, of course, tempting to  resolve them by means 
of a general purpose  code.  However, when that  does not lead to 
satisfactory  results, and when the problem is sufficiently impor- 
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tant  to  warrant  the work that is required,  then  there is little choice 
other  than  to  examine and exploit  the  structure,  whether by algo- 
rithmic or by heuristic  means. 

In many instances,  the  Extended  Control Language will provide 
the  user with a  tool  for implementing whatever  techniques are 
required to  take  advantage of the special nature of the  problem. 
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