Some large-scale linear and especially niixed-integer program-
ming problems, and the underlying practical decision-making sit-
uations, have so far been solved with only limited success. A new
control language for IBM’s system MPSX-MIP/370 permiits recursive
use of the basic system and easy access to its elements, and
therefore appears to offer great potential for new advances.

The paper first describes the facilities of the language, called the
Extended Control Language, and the interfaces to the system
and gives a number of representative illustrative uses. It then
considers a humber of basic applications of the system and pos-
sible heuristic and algorithmic approaches to difficult problems,
often very large problems with structure, which may now become
more easily solvable or tractable for the first time.

The Extended Control Language of MPSX/370
and possible applications
by L. Sldte and K. Spielberg

The application of mathematical programming to large-scale
practical problems has been hampered by the absence of reliable
tools other than linear programming (with the possible exception
of such techniques as simulation, project management, econo-
metric forecasting, etc.). There exists a wealth of know-how, al-
gorithms, and heuristics, but their realization in practice has been
lagging, being largely limited to small-scale or highly specialized
problems.

The Extended Control Language of IBM’s MPSX/370 (Mathematical
Programming System Extended/370)!® appears to offer potential
for substaritial progress beyond what has so far been attainable. It
is a PL/I-based language that permits access to all of the individual
procedures of the system as well as to most of the working arrays
of a particular linear programming problem.

A user can write PL/I programs that access the system repeatedly
(e.g., iteratively), or that modify data and procedures after preset
interruptions, followed by resumption of execution. This ability
should permit substantial improvement in the solution of selected
problems in nonlinear and mixed-integer programming.
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Practical problems that lead naturally to sequences of linear pro-
grams (such as dynamic management science problems) can be
set up and solved in succession. At the same time, well-known
algorithms or heuristics can be applied to decompose very large
models into smaller fragments, to be solved i an orderly and
tractable fashion.

In this paper, we give an overview of the systems features and
capabilities, followed by a sketch of possible applications. Qur
intent is to give an idea of some of the possibilities. We cannot
hope to give a complete survey, nor can we attempt to give a
complete list of references. If we overstress our own past work
and that of close associates, it is only because we are most famil-
iar with it.

Facilities of the Extended Control Language

MPSX/370 can be invoked by means of a PL/ program, so that
strictly speaking, the Extended Control Language?*: ® is PL/I. Cer-
tain MPSX/370 facilities have been designed to aid in this process,
and more broadly speaking, PL/I augmented by these facilities is
referred to as the Extended Control Language.

Much of the control of the linear programming and mixed-integer
programming runs is provided by the communication region of
MPSX/370. It consists of a collection of PL/ variables, referred to
by privileged names (all starting with the character X), e.g.,

Datanames:

XDATA name of data
XPBNAME  name of problem

Parameters:

XTOLV feasibility tolerance

XFREQINV  frequency of inversion

XDOINV address for inversion demand (see the discussion
on setting demands)

XMXDROP bound on IP (integer programming) objective func-
tion

XMXJ number of integer variables

The communication region cells are set by assignment state-
ments, e.g.,

XDATA=‘ANDELU’
XPBNAME="'PB15’
XMXDROP=5000
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The communication region cells have default values assigned (de-
clared and initialized) by the system procedure DPLINIT, invoked
by the PL/I statement %INCLUDE DPLINIT.

The procedures of MPSX/370, which have retained their names for
the most part, can be invoked by PL/I call statements, e.g.:

CALL CONVERT;

CALL SETUP;

CALL RESTORE(‘NAME’, ‘BASI');
CALL OPTIMIZE; etc.

Arguments are passed in argument lists and through the commu-
nication region variables.

““Demands’’ are activated by the system when certain conditions
arise during a run. The action to be taken when the condition
occurs is defined through the PL/1 <ON CONDITION" facility. A typ-
ical definition follows:

ON CONDITION(XDONFS) BEGIN;
CALL STATUS;

CALL SOLUTION;

STOP;

END;

The first statement names a condition and begins the block that
defines the actions to be taken when the condition occurs. In this
example those actions are execution of the STATUS and SOLUTION

procedures, followed by termination of the PL/I program. XDONFS
is a communication region variable associated with the system’s
recognition of problem infeasibility.

Some conditions, such as problem infeasibility or major error, are
defined by the system; others, such as attainment of a particular
iteration count, are defined by the user.

Names and descriptions of some of the demands are as follows:

Name Description

XDONFS problem has no feasible solution
XDOUNB solution is unbounded

XMAJERR major error is detected

XDOFREQ! iteration count is a multiple of XFREQI
XMXDOFRN node number is a multiple of XMXFRN

The last two demands are examples of conditions for which the
user specifies the controlling parameter (e.g., XFREQ1). Default
implementation of demands is provided by DPLINIT.
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In PL/, data are stored in generalized arrays called structures. A
structure is created by a DECLARE (DCL) statement. It can have
several levels of detail, which can be explicity declared and then
referenced. For our purposes, we need not go into a careful de-
scription of structures; the reader can get the flavor from the ex-
amples.

One basic use of PL/I structures is the creation of input or revised
data in a user (PL/) program. For example, the following struc-
ture:

DCL 1 STCOL10),
2 IND CHAR(2),
2 NAME! CHAR(@),
2 NAME2 CHAR(),
2 VALUE DEC FLOAT(6);

can be used to represent 10 coefficients of a COL section input
deck for CONVERT. The structure STCOL needs to be filled with
data by insertion (from a PL/1 program) of the appropriate in-
dicators, names, and values.

Also, the entire input deck for an MPSX/370 run can be placed into
one overall structure (see pages 197 and 198 of Reference 5 for a
complete example). What is important for us is the potential use-
fulness of a main-storage resident PL/I structure. Many problems
exist in which the data for the linear programming model, espe-
cially in the case of cost coefficients, are complicated functions of
real-life situations (e.g., they may have to be computed from rate
tables, subject to other constraints such as union rules, etc.). In
such situations, one may have a need for the computation of the
coefficients (from parameters in case studies, for instance) in PL/
procedures, and subsequent insertion in the appropriate slots of
the overall input structure.

Once the structure is established, say in STRCT], it can be invoked
from certain MPSX/370 procedures via the argument list by means
of the keyword ‘STRUCTURE’, €.g., CALL CONVERT (‘STRUCTURE’,
STRCT1).

A number of MPSX/370 procedures, such as SOLUTION, RANGE,
TRANROW, and TRANCOL, have output that the user can request to
be stored in PL/ structures.

SOLUTION and RANGE output can be examined and analyzed, and
possibly altered, and the subsequent algorithmic procedure can
then be modified as a result.

TRANROW and TRANCOL permit the retrieval of portions of the
initial or current (i.e., updated) simplex tableau. This can, for
example, be used to observe the effect on the current solution of
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introducing unit changes for the nonbasic variables, thus per-
mitting sensitivity analysis involving the entire updated tableau
(or sections thereof). Algorithmic uses of such facilities might be
the generation of ‘‘surrogate constraints’’ or ‘‘Benders inequal-
ities’” or “‘Gomory cuts’’ in integer programming (e.g., sece Refer-
ences 6 and 7).

Whenever the entire matrix is involved, there must be the possi-
bility of selective output. MPSX/370 uses ‘‘selection lists’ and
“‘code parameters’’ to limit the output in various ways.

Selection lists

Selection lists are used as arguments of systems procedures such
as the ones listed previously. They are used to define a subset of
the rows and/or columns of the linear programming matrix which
are to be used currently. A selection list consists of keywords
such as ‘RMASKS’, which precede sets of masks (each being eight
characters in length) to identify those names (identifiers of rows,
for instance) that are of interest (are to be selected). For example,
the list:

‘RMASKS’, ‘MASKI’, ‘X##sxxxx CMASKS®, ‘YY****xx= leads to the
selection of:

e All rows specified by MASKI.
e All rows whose names start with the character X.
o All columns whose names start with the characters YY.

In the above, the asterisks represent any character.

The Extended Control Language also provides a special proce-
dure, SELIST, to aid in the automatic construction of selection
lists that are to correspond to a current algorithmic situation. In
the following example, SELIST is used to construct the masks of
selection lists that correspond to the basis.

DCL BNAME (XM) CHAR (8);
DCL ISIZE BIN FIXED (31);
DCL C(3) CHAR (8) INITIAL (‘RMASKS’, ‘MASKT’, ‘’);
DCL TAB(XM,XJ);
DCL 1 STR4,
2 BRHS(1) DEC FLOAT (6),
2 TABLEAU(1,XJ) DEC FLOAT(6),
CALL SELIST (‘BASIS’, ‘NAME’, BNAME, ‘SIZE’, ISIZE),
PUT DATA(BNAME) SKIP;
ILP: DO I=1 TO XM;
C((2)=BNAME (D)
CALL TRANROW(‘'STRUCTURE’, STR4, ‘NONAME’,
‘SELIST’, C);
PUT LIST (“VALUE OF I IS’, I);
TAB(1,*)=TABLEAU(1,*);
END;
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The example should be reasonably clear even without PL/ exper-
tise on the reader’s part.

o The call to SELIST via keywords ‘BASIS’, ‘NAME’, ‘SIZE’,
causes the program to place the names of the basic variables
into the character array BNAME and the size of the basis index
set (which we know to be equal to XM, the number of rows of
the linear programming (LP) model) into ISIZE.

At a typical iteration of the loop 1LP (which is executed XM
times) the name of the ith basic variable is placed into the
second position of the character vector C (i.e., in place of
MASKI1 . . .).

As a consequence, the call to TRANROW, via keywords
‘STRUCTURE’, ‘NONAME’, and ‘SELIST’, causes the coefficient
values of row i (and not their names) to be placed into array
TABLEAU(1,X)).

If space were tight, one would not accumulate the coefficient
matrix in an array TAB(,*), but might write it out, row per row,
on a disk.

The overall intent of the example might be to store the initial
matrix in row form, or to work on the rows of the updated
tableau during execution of a linear or a mixed-integer pro-
gram.

Note: The program SELIST should not be confused with the
keyword SELIST.

Code parameters

Just as selection lists can be used to limit the portion of the matrix
to be examined, code parameters (‘RSECTION’, ‘CSECTION’) can be
employed to limit the types of information to be placed into the
SOLUTION or RANGE report by the systern. For details see the
program reference manual.®

Algorithmic tools and internal data

Most of the facilities described at the beginning of the previous
section deal with accessing the system on a fairly high level (con-
trol language level). The use of SELIST was somewhat of an ex-
ception. Here we first discuss the use of internal system subrou-
tines and the possibly necessary access to internal computational
data.

The following internal subroutines of MPSX/370 are callable from a
user subroutine in the Extended Control Language:3-*

SELIST PRICEDI1
INVALUE FTRANLI1
GETVEC1 FTRANU1
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FIXVEC1 BTRANLI1
POSTMUL BTRANUI1
PREMUL ELIMNI1
PRICEPI1 CHUZR!

The reader who is familiar with the various steps of the simplex
method will have no difficulty in identifying these subroutines
with functional transformations of the algorithm. What one has to
learn from the manuals (see Reference 5, pages 277 to 279, for a
detailed example) is the initialization of structures and computa-
tion of addresses (see also the following discussion) which are
required for the implementation of an algorithm. For any particu-
lar use, the difficulties are not great, but a general discussion
would lead too far afield here.

One gains access to internal computational data by means of a
systems macro DPALG, i.e., by the initialization:

%INCLUDE DPLALG;

The system permits the addressing of relevant data in symbolic
fashion. These data reside in three possible areas:

e The H-region (keys and internal numbers of vectors in the
basis; updated by ELIMNI1 after each pivot step).
The column byte map (logical information about the status of
the variables).
The work regions (a variable number of regions, each of XM
double words).

The addressing scheme makes use of the PL/1 operator ADDR and
the capability of providing a ‘‘pointer’’ to a structure (by means
of BASED) in a declaration statement of a structure.

For example, the PL/ statements

PCOL=ADDR(BMAP()));
IF XBASIC THEN.. ;

permit the testing of the basic or nonbasic nature of variable j,
because DPLALG contains a structure

DECLARE 1 BCOL BASED (PCOL),
2 (XBASIC,XUB,XOBSUT,...),
2 (... );

which effectively functions as a ‘‘window”’ over the totality of
data, picking out the wanted data item automatically.

In similar fashion, one is able to access the work regions by virtue
of the DPLALG declaration statement:

DECLARE 1 WREGION BASED(PW).
2 (WSIGN,MW) BIN FIXED(15),
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2 JINC BIN FIXEDQ1),
2 W(XM REFER(MW)) DEC FLOAT(16);

To access the kth work region one must set
PW=XW(k);

and may then obtain the rth double word in that region by the
statement:

a=W(r).

Important fundamental applications

There are a number of fundamental uses of the system that must
be mentioned, even though they are fairly straightforward and
need little exposition. The fact is that they may be most important
from a day-to-day applications point of view. The Extended Con-
trol Language has much to offer in that it makes the implementa-
tion of such features simpler and potentially more powerful than
was previously possible.

Future linear programming models will require increased utiliza-
tion of realistic data from maintained data bases. An attractive
feature of the Extended Control Language is that it permits the
direct use of DL/, the PLA data-handling language of IMS (see
Reference 8), a widely used data base system.

The use of interactivity is important from a data-managing and
model-building point of view. Being called from a PL/I program,
subject to standard PL/ compilation, MPSX/370 with the Extended

Control Language feature can easily be put into the interactive
mode, e.g., via the system TSO (time sharing option?).

There has also been a recent, albeit slow, trend towards inter-
activity in algorithmic work. Some of our previous work in Refer-
ences 10 and 11 may be useful in illustrating this concept.

Programs and program products (systems) in other languages can
be accessed, as long as they can be accessed from PL/1. This capa-
bility opens possibilities for generating results through an MPSX/
370 run and feeding them to other programs, or conversely using
other programs to provide input data for MPSX/370. A good can-
didate for such interaction may be a simulation program, such as
the system GPSS V.!2

Usually, the input to a system such as MPSX/370 is one of variable
names and constraint coefficients, even if done with one of the
matrix generation packages. It appears that the Extended Control
Language will facilitate the generation of coefficients according to
complicated rules.
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Examples come to mind readily in the case of cost coefficients.
The cost coefficients can be dependent on many parameters in
nonlinear or discontinuous form. They might depend, typically,
on rate tables, transportation constraints, union rules, etc. One
can conceive of case studies that would require repetitive calcula-
tion of costs followed by optimization, possibly aided by user in-
tervention in the interactive mode.

Report generation as such is not likely to require Extended Con-
trol Language features. However, especially in the case of a com-
plicated model (as might be generated according to the above dis-
cussion), the useful output for management might require output
generation within PL/ programs. For example, the output of the
optimization run may be for a problem that was set up in an inter-
mediate step of an overall procedure and would then require anal-
ysis, interpretation, and translation via programs written in PL/I
for that purpose.

The repeated solution of a linear (integer) program is important in
many ways. One instance derives from the fact that many linear
programming models do not tell the entire story about the real
situation. As a result, many solutions are unsatisfactory in prac-
tice. One may then have to write additional PL/1 programs for
checking the overall acceptability of the results and for rejecting
the results (by modification of input data or by addition of new
constraints) so that more acceptable solutions might be found in a
repeated run. Interactivity (inspection of solution by management
at a terminal) might play a big role in this mode of operation.

A particular instance of the above would be the case of problem
constraints that are too weak or too tight. The reentrant mode
would be used after a tightening or relaxation of the constraints
(e.g., by changes in the right-hand sides) in a systematic or inter-
active (possibly unsystematic) fashion. One may also conduct a
variety of parametric studies more general in nature than those
permitted directly by procedures of MPSX/370 itself.

As shown schematically in Figure 1, many large-scale linear pro-
gramming problems are for interlinked or dynamic models. Their
main objective is to tie together a number of diverse operations
(say, Department 1, Department 2, Department 3 of a corpora-
tion) or a number of dynamically repeated operations for the
same department, with inputs passed on from stage to stage plus
external inputs that are known or predicted.

Such a situation calls for the repeated solution of the same, or
slightly modified, linear programming model with varying inputs.
The linking of the various stages and preparation of the inputs can
be executed readily within the Extended Control Language.
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Many large-scale problems exhibit more complicated structures.
Much of what has been said above would also apply to them.
Certain ideas of valid heuristic approaches can perhaps be gained
from discussions of heuristics or decomposition and partitioning
in this paper, or from such sources as Reference 13.

With many large problems, one may be content to use schemes
that do not guarantee an optimum but may yet yield satisfactory
answers (better than those attainable by other means). What is
‘“‘large”” may depend on the type of problem and on the machine
on which one wants to solve the problem. Large may refer to a
3,000-row, 20,000-variable linear program, or to a 200-variable
integer program, and for special structures the situation may
again be quite different. Two possible approaches are briefly out-
lined here, even though they already lead into the next section on
heuristic problem solving. In both instances, one solves approxi-
mate (relaxed) problems, that is, problems in which some of the
constraints of the original problem have been left out.

Consider a problem of the structure depicted in Figure 2. Solving
the subproblems D1, D2, - - -, Dr in sequence, with the linking
constraints below neglected, is in some sense an approximation
to the overall problem. Quite often the large problem is generated
by aggregation of models that solve the problems of individual
departments D1, D2, - - -, as if they were independent. Setting up
the overall problem is then an attempt at recapturing the con-
sequences of interlinkages among the departments.

The Extended Control Language provides the ability of collecting
the solutions to the various subproblems and substituting them
into the linking problem. One can then investigate the in-
feasibilities in the ‘‘linking’’ problem, and possibly alter the sub-
problems DI, D2, - - - as a consequence, in order to obtain an
improved overall solution in another attempt. (The literature is
full of schemes for such approaches, but the user is well-advised
to be guided as much as possible by his practical insights into the
problem.)

For very large integer problems without structure, the following
approach can be quite feasible. Partition the integer variables into
smaller sets, e.g., partition a 1,000-variable set into the 10 sets of
variables (1 to 100), (101 to 200), - - -, (901 to 1,000). Solve the
problem initially as a mixed-integer problem with the first set of
variables (1 to 100) designated as integer variables, the others as
continuous variables. Given a solution to this problem, fix the
integer-valued variables at their optimal values and solve the
problem again with the first variables substituted and the second
set of variables (101 to 200) designated as integer, etc. Of course,
the success of such a scheme cannot be guaranteed. But many
alternatives are possible, and a carefully monitored approach of
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such a nature cannot fail to produce better insight, at least, into
the nature of the overall problem than was initially available.

A similar approach in a structure situation was taken by one of
the authors.'* The problem was the Fixed Charge Transportation
Problem, i.e., a transportation problem with shipment x(i, j) on
the routes (7, j), and the additional imposition of a fixed charge
f, j) if any shipment occurs on route (i, j). The problem is a
mixed-integer problem with m - n (number of sources times num-
ber of destinations) integer variables v(i, j).

The stagewise approach, which converges but can be interrupted
whenever one is content with one of the obtained solutions, is
that of deleting all integer variables and solving the transportation
problem at the outset. At the next step, one includes as first set
those y(i, j) integer variables for which there were shipments on
route (i, j). This approach leads back to a Fixed Charge Trans-
portation Problem, but with hopefully only few (initially no more
than m + n — 1) integer variables. In general, one adjoins to the
current set of integer variables those y(i, j) that have been newly
introduced in the last solution obtained. For most data, such a
solution procedure converges well before too many (namely
close to m - n) integer variables have to be taken into the mixed-
integer problem. One good feature of such a method is that there
are always many feasible solutions to the problem, a property
that is by no means assured in general mixed-integer programming.

Heuristic problem solving

Heuristic approaches to mathematical programming problems are
important in at least two ways. First, they may either afford the
only means of getting solutions to otherwise intractable problems
or may, at any rate, curtail the work in arriving at useful solu-
tions. Second, they may be indispensable within algorithms de-
signed for the efficient computation of truly optimal solutions.

The latter argument for heuristics has recently been bolstered by
important new work in computational complexity,!> which ap-
pears to make it quite clear that a very broad class of operations
research (mathematical programming) problems are essentially of
the same degree of complexity. All of these problems, and they
appear to include most mixed-integer problems, are just about as
difficult as the traveling salesman problem, and that problem is
difficult indeed.

Such a ‘‘complexity’” result does not mean that there is no hope
of getting reasonable solutions to practical problems. What it sug-
gests is that one should utilize all insights one can muster and
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implement all heuristics one can think of, since all brute force
methods are of no avail by themselves.

In terms of this paper then, the above constitutes a powerful argu-
ment for the use of the Extended Control Language as a tool to-
wards implementing heuristics.

We are concerned with a problem P which is in a sense intrac-
table. As a consequence, we replace it by a sequence of problems
which are tractable:

. Replace P by a relaxation P’.
Solve P'.

. Test the solution of P’. Is it a good solution to P? If so, record
it.
“Improve” the solution to P'. That is, use all ingenuity and
insight at your disposal to arrive at a solution of P, taking as a
starting point the solution to P’ just obtained. Record any so-
lutions found.

5. Gotol.

Several elements in the above scheme have been left undefined.
For example: How does one obtain the relaxation P’? How does
one avoid looping? When does one terminate? Answers to such
questions are difficult io give in general, but relatively easy for a
well-known special case.

It is often easy to arrive at solutions that are infeasible but, in
some sense, close to feasibility for the overall problem. Computer
programs are in general quite bad at ‘‘recognizing’’ such situa-
tions. For special problems, it is important that the user has
means of interrupting the machine solution process from time to
time, or under certain conditions, and to ‘‘look’’ at the solution in
some detail. This condition implies the desirability of pro-
grammed interrupts in the Extended Control Language, via a suit-
able demand definition, with possible uses of interactivity, and
subsequent alterations and reentry of system execution.

In integer programming, one of the natural ways of arriving at a
potentially feasible integer solution is rounding. Most simply, one
may use one input parameter r and round fractional variables:

e x(j) down if x(j) = [x()] + r.
o x(j) up if x(j) > [x()] + r.

While rounding ensures integrality, it does not ensure feasibility.
One may therefore also have to pay attention to the constraints of
the problems that are likely to be violated by the rounding proc-

€8S,
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With the Extended Control Language one may interrupt the proc-
essing of MPSX-MIP/370 (MIP—mixed-integer programming) after
generation of a node in the branch and bound procedure (using
the XMXDOFRN demand with XMXFRN=1), and then try rounding
(possibly in a fashion guided by one’s knowledge of the problem)
to generate feasible solutions.

For certain mixed-integer problems, the very difficult task of find-
ing feasible solutions can be made easy by exploitation of the
structure. We give two examples, of many. The reader may wish
to consult References 6, 7, and 16 for other examples.

The fixed-charge problem

For the fixed-charge problem:

min Ye() - x() + SY0) - ¥0) )
A-x=b (normal constraints)
x(7) = u(y) - y(j) (linking constraints, for all or some j)
x() = 0, y() €{0, 1}

in which the possibilities y(j) = 0 serve the purpose of suppressing
activity x(j) (and with it the fixed charge f(j)), corresponding to
every fractional solution 0 < y(j) < 1, there is always an integer
feasible solution y (y(j) = 1 for y(j) > 0, x(j) unchanged). Refer-
ences 17 and 18 describe a very important special case, the plant
location problem.

Set covering
The problem is:
minc -y
E-y=e
y() €{0, 1} forall j

where F is an m by n matrix of zeros and ones and ¢ is a unit
vector of m ones. The objective is to pick columns j so as to cover
the right-hand side at minimal cost. Applications are numerous
and important (also for related problems, e.g., the problems with
more general right-hand side ‘‘requirements’’).

For every fractional solution, one can again find a feasible integer
solution by rounding the fractional variables up. More impor-
tantly, Reference 19 gives a procedure by which the rounded so-
lution can be improved by being transformed to a vertex of the
underlying polyhedron. Such a transformation, as well as other
heuristics, can be carried out within the Extended Control Lan-
guage at every node of the branch and bound algorithm of MPSX-
MIP/370.
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Multiple choice problems

Many resource allocation and scheduling problems have the addi-
tional constraints

zjej(k)y(j) =1, k=1,2,---,p

where the J(k) are often a partitioning of the original index set J
for the (0, 1) integer (decision) variables y(}); i.e.

J=J1)+JQ2)+ -+ Jp)

Such problems are usually not very well-behaved, in the sense
that the linear programming solutions invariably have fractional
values for many of the y(j), j € J(k) (adding up to one, but other-
wise not very meaningful). MPSX-MIP/370 has special features
(sos—specially ordered sets) for treating multiple choice prob-
lems. Even so, the possibility of judicious rounding to multiple
choice feasible solutions should by no means be disregarded.

It has long been known that many large-scale integer program-
ming problems, especially in the difficult area of scheduling, are
reasonably well-behaved under local exploration schemes. In one
case, some lattice point (integer point, usually a vertex of the
hyper-cube, for example, a point with coefficients all 0 or 1) is
generated and then enumerated over ‘‘neighbors’” of the point in
some limited neighborhood. Good results for such an approach
were probably obtained first for the traveling salesman prob-
lem.2°

An airline scheduling program?! used by some airlines was essen-
tially based on such an approach. Relatively small subsets of col-
umns (about 1,000 columns) were selected out of an enormous

set-covering problem (millions of columns) and optimized over
the subsets by the algorithm of Reference 19.

Many other important practical problems are likely to yield to
such a mode of attack, and the Extended Control Language could
be used whenever the frequent solution of linear or integer prob-
lems would be required in the overall process.

Algorithmic uses

In the previous section, we dealt with the more straightforward
solution approaches, which would come to mind fairly readily.
Yet, there is also an enormous literature on more sophisticated
techniques. Out of the vast literature, the user might initially wish
to consult books such as those in References 6 and 7 on integer
programming, in Reference 13 on large-scale linear programming,
and perhaps in Reference 22 on general operations research ap-
proaches.
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Relatively little of practical advantage has as yet accrued from
this body of fine work, and there are surely many opportunities
for coming up with applications of great usefulness.

In the following discussion, we merely scratch the surface to give
some idea of the potential. The emphasis is again on mixed-in-
teger programming, not only because that is where most of our
own experience lies, but also because a very large percentage of
currently unsolved practical problems fall into this field. A de-
tailed exposition would surely be too lengthy, so we present a
mere outline, with one or two references to papers or books in
which more references can be found.

There are many ways in which linear programming subproblems
on the one hand, or possibly modifications of the simplex method
on the other hand, can be important in nonlinear programming.

Programs with quadratic objective function and linear con-
straints are much easier than the general nonlinear case.
There are possibilities of modifying the simplex method itself
for a direct approach to the problem. For older methods the
reader may consult Reference 22. Fundamental new ideas
stem from the work of Lemke.?® They have given rise to a
body of literature on fixed point and complementary pivot al-
gorithms that is clearly important,2* but for which it is difficult
to foresee what role, if any, the simplex method will play.
Many general problems lend themselves to approximate treat-
ment via piecewise linearization of the constraints and/or the
objective function.

For problems with structure, there are partitioning methods
that require the iterative solution of linear programs.?2?
Among a variety of search methods that lead to repeated solu-
tion of linear programs, one may consider the ‘“methods of
feasible direction,’’?® or ‘‘sequential search methods,’’?” etc.

The standard commercial mixed-integer programming codes use
branch and bound programming, primarily because of its basic
simplicity and reliability. However, there is some evidence that
this technique does not function at its best for pure integer pro-
grams, especially pure (0, 1) programs. Enumerative techniques
appear to be better in many instances, in particular when the
problems are such that certain constraints can be taken care of
implicitly rather than explicitly in the search scheme.

The fundamental work on branch and bound schemes goes back
to Little, Sweeney, Murty, Karel, Land, Doig, and Dakin; that on
enumeration to Balas and others.%7 For some new approaches,
which may be of interest in connection with the Extended Control
Language, see References 10, 11, and 28.
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Decomposition, partitioning, and column generation techniques
have been around for a while (based on the work of Dantzig,
Wolfe, Benders, Gomory, and Gilmore!?) but have found applica-
tion primarily for special problems only. It appears that the Ex-
tended Control Language opens up possibilities for generalized
implementation of such techniques, always coupled with periodic
checks that are necessary to avoid continuation of the algorithm
when it begins to become ineffective (the major drawback of all
such methods, which should rot prevent their judicious use).

It is clear that branch and bound methods and enumeration meth-
ods can be combined in many ways, but there has been hardly
any computational work of such a nature, undoubtedly on ac-
count of the considerable programming difficulties. Recent work
suggests that there is some potential for such approaches, espe-
cially in the interactive mode. Linear programming subproblems
are important, and for large problems, the use of a robust linear
programming code, such as MPSX/370, would be essential.!!

For specially structured problems, there has been substantial in-
terest in Lagrangian methods that place linear combinations of
constraints into the objective function (see Reference 29 for a fun-
damental paper and Reference 30 for an excellent summary). The
method is easy to implement and can be quite effective for the
right kind of problem.

An entire body of literature is devoted to the addition of cutting
planes to linear programs in order to remove unwanted vertices of
the underlying polyhedron. For integer programming, these
methods are primarily associated with Gomory. Other important
contributions were made by Johnson, Balas, Glover, etc. in in-
teger programming and by Kelley for convex programming.5-7-13
As to practical applications, much the same can be said as for
Lagrangian methods, and a case can be made for augmenting
commercial codes so as to accommodate the addition of cutting
planes, as inconvenient as that may be in codes that are organized
around a matrix with a fixed number of rows (the addition of new
rows requires the invoking of the system procedure SETUP in the
case of MPSX/370). This difficulty may be overcome by a sufficient
number of empty rows added to the original model.

Finally, it may be redundant, but it is probably still worthwhile to
stress once more the importance of looking for and heeding the
existence of structure in mathematical programming. Few re-
liable statistics exist. But it is probably fair to say that a high
percentage, perhaps even an overwhelming percentage, of large-
scale and difficult mathematical programming problems have spe-
cial structure. It is, of course, tempting to resolve them by means
of a general purpose code. However, when that does not lead to
satisfactory results, and when the problem is sufficiently impor-
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tant to warrant the work that is required, then there is little choice
other than to examine and exploit the structure, whether by algo-
rithmic or by heuristic means.

In many instances, the Extended Control Language will provide
the user with a tool for implementing whatever techniques are
required to take advantage of the special nature of the problem.
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