
Discussed is the unit-ofmeasure situation in programming. An
analysis of common units of measure for assessing program
quality and programmer productivity reveals that some standard
measures are intrinsically paradoxical. Lines of code per pro-
grammer-month and cost per defect are in this category. Pre-
sented here are attempts to go beyond such paradoxical units as
these. Also discussed is the usefulness of separating quality
measurements into measures of defect removal eficiency and
defect prevention, and the usefulness of separating productivity
measurements into work units and cost units.

Measuring programming quality and productivity
by T. C. Jones

Although it is not always appreciated, the great advances in
chemistry, physics, and other scientific disciplines in the 19th and
20th centuries were preceded by advances in the measurement of
physical attributes and the development of accurate measuring
instruments in the 17th and 18th centuries. Indeed, it can almost
be said that scientific progress of any kind is totally dependent on
the ability to measure quantities precisely. Therefore, the work of
men like Gabriel Daniel Fahrenheit, who made the first mercury
thermometer in 1714; of John Harrison, who made the first practi-
cal chronometer in 1728, and many other measurement special-
ists, are the fundamental underpinnings of modern scientific
achievements.

It is because of the vital significance of measurement to progress
that so many common words and units of measure today are tak-
en from the names of those who explored better ways of measur-
ing new phenomena: Ampere, Celsius, Coulomb, Curie, Henry,
Hertz, Joule, Ohm, and Watt were all researchers whose names
have been applied to common units of measure, and there are
others such as Faraday, Galvani, and Volta who have indirectly
lent their names to measurement.

Copyright 1978 by International Business Machines Corporation. Copying is permit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) theJournd reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in com-
puter-based and other information-service systems. Permission to republish other

In the field of computer programming, the lack of precise and
unambiguous units of measure for quality and productivity has
been a source of considerable concern to programming managers
throughout the industry. In 1972, there was established in the San
Jose Programming Center of the IBM Corporation a study group
to explore the interrelated topics of program quality, programmer
productivity, and the units of measure that could clearly display
trends in both areas.

One of the projects carried out by that group was a detailed analy-
sis of common units of measure used to assess productivity and
quality throughout the open literature of the entire industry.
Some of the findings were surprising, and it soon became evident
that a number of widespread units of measure were misleading
and even paradoxical. For example, the unit cost per defect was
discovered to yield the lowest values for the most defective pro-
grams, thus making obsolete technologies appear more favorable
in some instances than modern ones. The unit fines of code writ-
ten per programmer-month was found to consistently penalize
high-level languages, and tended to favor programs written in As-
sembler language. These findings are of some importance to the
industry, because they make it difficult to compare productivity
and quality from program to program. In extreme cases, they can
slow down the acceptance of new methods because the methods
may-when measured-give the incorrect impression of being
less effective than former techniques, even though the older ap-
proaches actually were more expensive. This paper attempts to
describe the common units of measure, and point out the nature
of the paradoxes that occasionally occur. When the paradoxes
and measurement variables are clearly understood, it becomes
possible to make reasonable assessments of programming quality
and productivity, and to apply units of measure that behave in a
predictable manner.

Counting lines of code

A fundamental problem of all measurement techniques involving
computer programs is that of knowing exactly what is meant by
the phrase “lines of code.” This topic is discussed in References
1 and 2. The conclusions there and the one here are generally the
same; namely, that programs consist of more than executable
lines of code. Programs also contain commentary lines, data dec-
larations, Job Control Language (JCL) in some cases, and macro-
instructions. Some counting methods consider every statement to
be a line, whereas other methods consider only a subset, such as
executable lines and data declarations, in the counts of the pro-
gram. Between the extremes of counting everything and counting
only executable lines there may be more than a two-to-one varia-
bility for the same program.

40 JONES IBM SYST J VOL 17 NO I 1978

~-

This problem is not really too serious provided it is recognized.
Counting methods become troublesome when productivity rates
are being discussed without knowing the line-counting rules in

i effect. The convention used at one programming center calls for
' counting executable lines and data declarations, but not counting

comments or JCL. Macroinstructions are counted once when ex-
panded, and calls that invoke macroinstructions are counted
once. There is no inference that this method is either better or
worse than the other possibilities. The key is to state the counting
rules when reporting on quality and productivity. Otherwise,
there is no way of knowing what the results mean.

A more subtle problem occurs when counting lines of code for
programs written in high-level languages. In PL/I, for example, a
line might be everything that occurs between semicolons, or ev-
erything that is written on a single line of a coding pad. Here, too,
it is important to state the conventions in effect for the data to be
meaningful.

To avoid such variations associated with counting lines of source
code, an alternative is to count bytes or object instructions. Al-
though this method has much to recommend it and is often used
successfully, it is not always easy to estimate the final, compiled
size of programs written in high-level languages. Since compilers
differ in efficiency, and since individual programming styles can
interact with the compilers in astonishingly diverse ways,3 it is
incorrect to assume that X number of source code lines in a given
high-level language compile into Y number of object code lines.

As an example of the difficulty of doing source-to-object code
expansions consistently, a number of cost-estimating reference
manuals recommend different ratios for expanding high-level
source lines into object lines for a particular language. The lowest
expansion is 1.6 object lines for each source line, and the greatest
expansion is 6 object lines per source line. It is a simple matter to
count object lines in completed programs, but it is not easy to
estimate expansion factors before a program has been written,
without knowing the programmers' styles and the compilers to be
used.

Still another possibility is to accept the uncertainties of line
counting and accumulate multiple counts of source lines, object
lines, and bytes. Identify the compilers used. Then publish the
line-counting conventions in effect for the programs being report-
ed.

With any method, there are even more variables associated with
counting lines of code than those so far discussed. For example,
some programs are written in mixed languages. Other programs
require scaffold code or throwaway code for testing and in-

IBM SYST J * VOL 17 0 NO 1 * 1978 JONES 41

tegrating the main program, yet that code does not become part of
the final, delivered product. One might question the counting of
such code. How should one count the changing of an existing
program? Should only the new lines be counted, or should the
base lines in the existing program also be counted?

In counting as in accounting, experience and practice require that
whatever the counting method, it should be (1) documented and
clearly understood by all who work on the program; and (2) the
significant programming reality is the final version-its quality
and cost-that is delivered to the users. The size of this final ver-
sion, counted by whatever method is agreed upon, is the key to
uniformly assessing productivity and defect rates.

Once delivered, of course, programs become candidates for
changes and modifications, as defects are noted and the original
requirements change. Here, too, the basic concept applies that
what is important is the version of the program actually delivered
after modifications.

As in building a house, in which the scaffolding is part of the cost,
programs seem to be characterized by the same kind of thinking.
For initial creation, the important aspect is the cost of the deliv-
ered program. Intermediate versions are significant only because
they are part of the cost of producing the final program. After
installation, the costs of program changes and extensions are im-
portant both as they occur, and because they are part of cumula-
tive costs of the program. In other words, the size of the change
and the cost of the change are important, as well as the size of the
total program after the change and the cumulative cost of the pro-
gram after the change. These concepts are discussed in detail lat-
er in this paper. Because of the uncertainties in counting lines of
code, object lines, or bytes, one might come to believe that the
entire issue is irrelevant. Programs, after all, are written to pro-
vide functions, and the number of lines of code it takes to supply
a function is of much less importance than the cost of the function
itself. In fact, it is not important that the function be supplied via
a program. If microcode or an electronic circuit can supply the
same function for a lower cost than programming, it might be
preferable to measure cosr per function rather than cost per line
of code.

Although such an evaluative approach may become increasingly
important, this paper does not explore these issues for several
reasons. There is a great deal still to be learned about quality and
productivity normalized against lines of code. We have not ex-
plored the limits of knowledge, and comparisons between dif-
ferent kinds of programs-with lines of code counted the same
way for both-almost daily yield new insights and discoveries. It
is premature to abandon this method, just when results are be-

42 JONES IBM SYST J VOL 17 NO 1 1978

coming encouraging. Also, to explore such things as cost per
function, it is necessary to be able to define and count functions.
At present, the methodology for doing this seems too uncertain,
although some progress is visible.

Measuring program quality

The term quality is used here to mean an absence of defects that
would cause a program to behave unpredictably or stop success-
ful execution. There are two fundamental ways of minimizing
programming defects that significantly determine quality meas-
urements. One is to prevent defects from occurring. The other is
to remove defects that have occurred. Therefore, quality meas-
urements are related to restricting the quantity of defects that
come into existence, and their efficient removal by various kinds
of reviews and tests used in programming.

The pivotal concepts in the defect removal portion of quality
measurement are those of defect removal eficiency and cumula-
tive defect removal eficiency. Defect removal efficiency is the
reduction of the defects that are present at the beginning of a
defect removal operation by a certain percentage. Cumulative de-
fect removal efficiency is the percentage of defects that have been
removed by a series of removal operations, based on the number
of defects that are present at the beginning of the series, or added
while the series is in progress. The concept of cumulative defect
removal efficiency is illustrated by Figure 1.

The nature of cumulative defect removal efficiency is shown by
the results of the second defect removal operation, and in com-
bining the results of the first and second operations. Note that
although the second removal operation has found two defects out
of the total of ten in the hypothetical program, its efficiency is
actually fifty percent (not twenty percent) because only four de-
fects remain in the program at the time the operation is carried
out. Since the sum of the effects of the two operations is eight
defects out of ten removed, the cumulative efficiency is eighty
percent. Even though the first operation had a sixty percent effi-
ciency and the second operation had an efficiency of fifty percent,
the cumulative efficiency clearly is not one hundred ten percent.

Bad fixes are another aspect of defect removal that require quan-
tification when the efficiency of a given defect removal operation
is being measured with accuracy. Bad $x injection is the in-
troduction of a new defect, one not previously in the program,
while repairing a defect in that program. It is useful to keep inde-
pendent records of bad fixes so that separate statistics can be
maintained for both detection efficiency and repair effectiveness.

IBM SYST J VOL 17 NO 1 1978 JONES

a theory
of defect
removal

Figure 1 Cumulative defect re-
moval efficiency

I 1

‘ S E C d d
OPERATION

1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 0 DEFECTS

\FIRST /”
OPERATION

6 DEFECTS 2 DEFECTS
FROM FROM RE
INITIAL 10
(60%

MAlNlNG 4
(50%

FFFICIENCY) EFFICIENCY)

43

estimating Given defect removal efficiency and cumulative defect removal
program efficiency, programming defect removal operations become more
defects open to analysis and calibration. Indeed, it is largely through di-

rect measurements of defect removal efficiency that improved
forms of removal operations, such as design and code in-
spec t ion~~ have come into existence.

Since defect removal efficiency statistics imply a knowledge of
all, or almost all, defects found during the life of a program, the
question arises of how such a theory of defect removal efficiency
can be turned into a practical tool for everyday programming.
We believe that this can be done as follows. As a program moves
through the development cyde, records are kept of the quantities
of defects found in all removal operations. Later, when the pro-
gram has reached its intended users, records are also kept of the
defects found in actual utilization of the program in its production
environment. After several years, we sum all the defect records
and find both the total quantity of discovered defects and the de-
fect removal efficiencies of the series of reviews, inspections, and
tests that were used to bring the program into existence.

We have been seeking trends based on experience that might
prove to be useful in making predictions. Therefore, the proce-
dure just given is not usually much help to the first few programs
to be analyzed because too much time elapses before a sufficient ~

quantity of data have been collected to carry out the analysis. ~

Indeed, a program may already have been replaced or discarded
before the data are sufficient. However, as more programs are
measured and the results are analyzed, trends and problem areas
become visible, and gradually significant improvements in cu-
mulative defect removal efficiency become possible. Thus, real-
time results may not always be possible, but long-term improve-
ment in knowledge of removal efficiency eventually repays the
effort. This is not unlike experience in other fields, such as medi-
cine, in which the development of a cure for a disease is generally
preceded by careful epidemiological studies on the causes of the
disease, its outbreaks, the vectors that transmit it, and all other
observations that relate to the disease.

Another problem in accumulating statistics of defect removal effi-
ciency concerns major program changes between defect removal
operations. A change in user requirements or a design change
might take place between two defect removal operations. The re-
sult might be that the program that enters the second operation is
quite different from the program that exited after the first opera-
tion. Our experience suggests two methods of dealing with this
problem, a simpler method that tends to introduce distortions into
the records (which may be tolerable), and a sophisticated method
that preserves the accuracy of the data, but with added expense.

I 44 JONES IBM SYST J VOL 17 NO 1 197R I

By the simpler method, cumulative defect removal is expressed
by the following formula: defects found before

Cumulative defect removal efficiency =
release
defects found before and
after release

By this formula, if 100 defects are found in a program during its
entire life-in both development and in production-and 90 of the
defects are found before release, then the cumulative defect re-
moval efficiency is considered to be 90 percent. We often find
this coarse measure to be useful.

The more sophisticated and detailed method requires the flagging
of changes in the programming work products, including lines of
code themselves. Although our goal is to arrive at the same for-
mula as has just been described, the more detailed approach of
flagging calls for analyzing the defect data and adjusting the quan-
tities, depending on whether the problems were true defects or
were caused by changing requirements. An adjunct of this meth-
od is that of analyzing the sources of programming defects. Given
in Reference 2 are the following six causes of programming de-
fects:

0 Functional problems and the misunderstanding of user

0 Problems of logic and internal program design.
0 Coding problems.
0 Documentation problems.
0 Incorrect repairs or bad fixes.
0 Miscellaneous causes (a small category).

If a flagging system were utilized, and if records were kept
against each work product during each defect removal operation,
the resulting information could be displayed in a table that shows
the contribution of each defect source to the overall total of de-
fects, and the contribution of each defect removal operation to-
ward the elimination of defects in each source. For simplicity,
Table 1 gives an example display that is characteristic of the data
we have collected, although this specific example is a hypotheti-
cal one. (All data are given in units of percent.)

Suppose that a program’s defect causes fall into only two cate-
gories, A and B. Suppose also the program is known to have 100
total defects, of which 40 are caused by category-A problems and
60 are caused by category-B problems. Then it is clear that cate-
gory A causes 40 percent of the program’s initial problems, and
category B causes 60 percent of the problems. Now suppose that
the program is to be tested by a single defect removal operation
that is known to have an efficiency of 50 percent against category-
A defects and 70 percent against category-B defects. After the

requests.

IBM SYST J VOL 17 NO I 1978 JONES 45

Table 1 Sources of defects and defect removal efficiency by source

A. Percentages of defects by source
Functional design and misunderstandings
Logic design and misunderstandings
Coding problems
Documentation and others (not shown)

I5
20
30
35

B. Percentage of defect removal efficiency by source

Activity Eficiency percentage Percentage of
against defects in incorrect

repairs to ~ _ _ _ _ _ _ _ _ _ _
function logic coding defects

Functional specification review
Logic specification review
Module logic inspection
Module code inspection
Unit test
Function test
Component test
Subsystem test
System test

50 - -
40 50 -
60 70 -

65 75 70
10 10 25
20 25 55
15 20 65
15 15 55
10 10 40

+ I
+ 2
+ 2
+ 3
+4
+5
+5
+7

+ 10

Cumulative Efficiency 98 98 99

Net cumulative efficiency 98

completion of the defect removal operation, the 40 category-A
defects would have been reduced by 50 percent, so 20 undetected
category-A defects are presumed to remain in the program for
discovery by subsequent defect removal operations. The 60 cate-
gory-B defects would have been reduced by 70 percent. Thus, 42
category-B defects would have been removed and 18 such defects
would remain for subsequent removal. Since a total of 62 defects
out of 100 have been removed, the cumulative detection efficien-
cy against both sources is 62 percent in this example.

Of course, in operational situations it is necessary to adjust such
elementary calculations as these to include bad fixes, to handle
more than a single defect removal operation, and to recognize
defects against more than two sources. In our experience, the
necessary recordkeeping has been rather complicated, but the
long-term value of the data and the insights that are gained have
proved to be quite beneficial.

There is a great amount of record-keeping complexity associated
with the more detailed flagging method of defect removal efficien-
cy analysis. Therefore, the simpler method may prove to be use-
ful initially, even considering the vagaries that this method in-

To make the simpler method truly simple, however, it is neces- simpler
sary to normalize the data. Because programs vary widely in size method
and in other attributes that can cause defect quantities to fluctu-
ate, it is not convenient to measure the raw quantities of defects
alone. It is more practical to express defect levels in terms of
some general unit, such as defects per thousand fines of source
code. (Let the term “lines” be defined by local convention.) This
method of normalization is useful for both quality and productiv-
ity measures, as is explained later in this paper.

In working with the simpler form of defect removal efficiency
analysis, it is necessary to make the following two simplifying
assumptions:

0 All defects, regardless of source or of origin (whether design
problems, coding problems, or some other) are lumped to-
gether and counted as the single variable, defects.

0 The defect removal efficiencies of all reviews, inspections,
tests, and other defect removal operations are lumped togeth-
er and counted as the single variable, cumulative defect re-
moval eficiency .

With these two simplifying assumptions and with the data for de-
fect quantities in normalized form as defects per thousand lines of
code, the results are both easy to work with and surprisingly pow-
erful. Even though some imprecision is unavoidable, the value of
this approach is that it breaks down the topic of quality into the
two pivotal concepts of defect prevention and defect removal.
The method also allows program data to be displayed as a matrix
or table of data.

The most basic display is that of total defects per thousand lines maintenance
of code as one axis, and the cumulative defect removal efficiency potential
as the other axis. Elements of the resulting matrix might be called
the maintenance potential of a program. The maintenance po-
tential of a program is the quantity of defects not found during
defect removal operations. Undiscovered defects are sources of
potential maintenance activity, if such defects occur during the
actual use of a program. Table 2 is ap example of such a matrix
that is typical of values for selected ranges of the two variables.

Table 2 shows that if the total quantity of defects in a particular
program ranges between 30 and 35 per thousand lines of code,
and the cumulative defect removal efficiency of all reviews, in-
spections, and tests ranges between 90 and 95 percent, then the
maintenance potential or quantity of undiscovered defects that
might cause maintenance changes ranges between 1.5 and 3.5 po-
tential maintenance problems per thousand lines of code. For ex-
ample, the best case in this situation is 30 defects per thousand

ISM SYST J VOL 17 NO I 1978 JONES 47

Table 2 Maintenance potential' or undiscovered defects as a function of cumulative defect
removal efficiency and initial total defects per thousand lines of code

Total
defects per

lines
thousand Cumulative defect removal eficiency percentage
_______.__________

of code 90 91 92 93 94 95
~~

35 3.5 3.15 2.8 2.45 2.1 1.75

34 3.4 3.06 2.72 2.38 2.04 1.7

33 3.3 2.97 2.64 2.31 1.98 1.65

32 3.2 2.88 2.56 2.24 I .92 1.6

31 3.1 2.79 2.48 2.17 1.86 1.55

30 3.0 2.7 2.4 2. I 1.8 1.5

*Maintenance potential = total defects ~ defect removal efficienc)

lines of code, 95 percent cumulative defect removal efficiency, for
a potential maintenance load of 1.5 problems per thousand lines.
This is shown in the lower right corner of Table 2 .

As has been meptioned, a whole family of interesting and useful
data displays can be constructed from the basic concepts already
presented, when augmented by other kinds of programming data.
For example, suppose there is uncertainty regarding how many
lines of code must be written for a new program. All that is known
is that the quantity probably falls somewhere between 15 and
20 000 lines. In such a case, it is possible to link a series of graphs
togefher to display all key variables. For example, the best case
for the program just cited in connection with Table 2 consists of
the smallest quantity of lines, the lowest number of defects, and
the highest defect removal efficiency. That means 15 000 lines
multiplied by 30 defects per thousand lines, for a lifetime poten-
tial of 450 defects. If the cumulative defect removal efficiency is
95 percent for the program in question one would calculate a po-
tential of 1.5 defects per thousand lines, or 23 defects in all.

The worst case for the program is 20 thousand lines multiplied by
35 defects per thousand lines, for a lifetime potential of 700 de-
fects. If the cumulative defect removal efficiency is 90 percent in
this case, then the program is estimated to contain 3.5 defects per
thousand lines, or 70 defects in all.'

probability The general form for displaying the linkage of ranges of variables
rectangle together is what I call aprobability rectangle because it bounds

the probable ranges within which the program is to be developed.
A series of such rectangles, each based on 'at least one variable

Table 3 Maintenance potential as a function of hypothetical program size range

Range in
~ undetected

defects per
I thousand Program size range (thousands of lines)

lines 15 20
~~

3.5 52.5 70

1 .s 18 30
__.~~,____.___

~ _ _ _ _ _ _ . _ _ ~ _ _ . ~ ~ . . ~ _

Such rectangles take the form of a matrix, with the base of the
rectangle indicating the range of one variable, and the height in-
dicating the range of another variable. The elements of the matrix
indicate the interaction of the two variables. The size of a matrix
(or number of elements) depends on the ranges of the variables
and the granularity-degree of coarseness-with which the data
are displayed.

Table 3 illustrates a probability rectangle for the number of main-
tenance changes that might be expected in the hypothetical pro-
gram. Here the size range is 15 000 to 20 000 lines and defects
range from 30 to 35 per thousand lines. The cumulative defect
removal efficiency ranges from 90 to 95 percent. Table 3 is the
simplest form of the probability rectangle and shows only the ex-
treme ends of the ranges, with no intervening values. In reality,
more information is usually displayed. We have used this simple
form to clarify the principle.

Note in this probability rectangle that although none of the inter-
mediate variables used in its construction varies enormously, the
difference between the best and worst case is quite large. Indeed,
the best case is 18 potential problems (or defects remaining to be
fixed) and the worst case is 70 defects, or 3.88 times the potential
problems of the best case. When the variables that affect a pro-
gram's defect rate are separated and analyzed independently, and
then recombined, it becomes evident that small changes yield
large results.

It is often said that quality cannot be tested into a program. The
combined impact of improving the defect removal efficiency by
even a few percentage points, if coupled with reducing the quanti-
ty of defects by another few percentage points, yields a large re-
duction of defects in the delivered program.

Before discussing productivity measurements, it is well to ob-
serve that the term quality has been used here to mean an absence

Table 2 Maintenance potential' or undiscovered defects as a function of cumulative defect
removal efficiency and initial total defects per thousand lines of code

Total
defects per

lines
thousand Cumulative defect removal eficiency percentage
_______.__________

of code 90 91 92 93 94 95
~~

35 3.5 3.15 2.8 2.45 2.1 1.75

34 3.4 3.06 2.72 2.38 2.04 1.7

33 3.3 2.97 2.64 2.31 1.98 1.65

32 3.2 2.88 2.56 2.24 I .92 1.6

31 3.1 2.79 2.48 2.17 1.86 1.55

30 3.0 2.7 2.4 2. I 1.8 1.5

*Maintenance potential = total defects ~ defect removal efficienc)

lines of code, 95 percent cumulative defect removal efficiency, for
a potential maintenance load of 1.5 problems per thousand lines.
This is shown in the lower right corner of Table 2 .

As has been meptioned, a whole family of interesting and useful
data displays can be constructed from the basic concepts already
presented, when augmented by other kinds of programming data.
For example, suppose there is uncertainty regarding how many
lines of code must be written for a new program. All that is known
is that the quantity probably falls somewhere between 15 and
20 000 lines. In such a case, it is possible to link a series of graphs
togefher to display all key variables. For example, the best case
for the program just cited in connection with Table 2 consists of
the smallest quantity of lines, the lowest number of defects, and
the highest defect removal efficiency. That means 15 000 lines
multiplied by 30 defects per thousand lines, for a lifetime poten-
tial of 450 defects. If the cumulative defect removal efficiency is
95 percent for the program in question one would calculate a po-
tential of 1.5 defects per thousand lines, or 23 defects in all.

The worst case for the program is 20 thousand lines multiplied by
35 defects per thousand lines, for a lifetime potential of 700 de-
fects. If the cumulative defect removal efficiency is 90 percent in
this case, then the program is estimated to contain 3.5 defects per
thousand lines, or 70 defects in all.'

probability The general form for displaying the linkage of ranges of variables
rectangle together is what I call aprobability rectangle because it bounds

the probable ranges within which the program is to be developed.
A series of such rectangles, each based on 'at least one variable

The units of measure of programming cost I have called cost
units. These units concern the program itself, rather than the hu-

~ man activities that go into creating the program. Examples of pro-
gramming cost units include the following:

Programmer-months of effort per thousand lines of code.
CPU hours and connect hours per thousand lines of code.
Dollars expended per thousand lines of code.

0 Cost per page for documentation.
Cost per defect for maintenance.

Here too there are variations, such as hours per line instead of
months per thousand lines. Also bytes may replace lines in a defi-
nition. The general concept is the same, however, to normalize
by the product rather than by the work of creating the product.

Lines of code per programmer-month

Both work units and cost units are needed in evaluating program-
ming productivity. A basic difference between the two units is
that each is the reciprocal of the other. A misunderstanding of
this difference has sometimes led to one of the problems with
lines of code per programmer-month. In such a case, for example,
the work unit has mistakenly been pressed into service as a cost
unit, where it has sometimes served unsuccessfully. As a general
unit of measure, lines of code per programmer-month has a num-
ber of weaknesses to which industry-wide variations in reported
programming productivity may be attributed.

Noted here are five problem areas that involve lines of code per
programmer-month:

0 Sensitivity to line-counting variations.
0 Ineffectiveness for noncoding tasks.
0 Tendency to penalize high-level language programs in favor of

0 Arithmetic awkwardness in accounting for subtasks.
0 Attention focusing on the act of coding, which is a misdirec-

tion, since the coding of a program is but a small part of the
total effort required.

programs writen in Assembler language.

Line counting variations have been discussed earlier in this paper line
and in Reference 1. We merely add that they can lead to perhaps a counting
two-to-one variation in apparent productivity, depending on the
line counting method used.

The problem of ineffectiveness in measuring noncoding tasks is noncoding
summarized here from a fuller discussion in Reference 6. The tasks
complete job of developing a computer program requires more

IBM SYST J VOL 17 NO 1 1978 JONES 5 1

Table 4 The paradox of lines of code per programmer-month

Activity Assembler High-level
program program

Design
Coding
Testing
Documentation
Management/support

4 weeks
4 weeks
4 weeks
2 weeks
2 weeks

4 weeks
2 weeks
2 weeks
2 weeks
2 weeks

Total effort 16 weeks 12 weeks
(4 months) (3 months)

Lines of source code 2000 500
Lines of source code

per programmer-month 500 167

than coding activities and these activities must also be measured.
Therefore, when lines of code per programmer-month is used on
noncoding tasks, the results are apt to be questionable. Results
may even approach being nonsensical, as illustrated by this sce-
nario. With modern defect prevention and defect removal tech-
niques in programming, it sometimes happens that no defects are
discovered during testing because the program has no defects at
the time the test is carried out. If testing is done by an indepen-
dent group rather than by the programmers themselves this tends
to introduce slack time into development. By normal program de-
velopment practice, the programmer usually cannot be fully reas-
signed until testing is over, in case defects should be discovered.
Since it is nonproductive, slack time does not contribute to lines
of code per programmer-month. It is therefore inaccurate to say
for example, that one’s productivity is one thousand lines of code
per month during testing when there is no cpding, and much of
the time is spent waiting for bugs that may never occur. It is rea-
sonable to say that slack time has added one month to a project
but it is not reasonable to say that slack has proceeded at a rate of
one thousand lines of code per month.

high- The problem of penalizing high-level language programs has only
level recently been explored, and it has been found to be quite impor-

languages tant. Many portions of a programming development project are
language-independent, and take the same amount of time regard-
less of the programming language selected. Such things as under-
standing user requirements, writing specifications, writing test
cases, and writing user documentation are not affected in any way
by the programming language selected. We know that high-level
languages require fewer source statements to program a given
function than does Assembler language. But language-indepen-
dent activities proceed at the same rate as in Assembler language
programs, yet fewer lines of code are written in high-level lan-
guage than in Assembler language. The result is an apparent pro-
ductivity lowering for the whole development cycle with high-

52 JONES IBM SYST J VOL 17 NO 1 0 1978

level languages, even though development costs have actually
been reduced. This is one of the paradoxes of programming meas-
urement.

Table 4 illustrates an apparent loss of productivity when a pro-
gram is written in a high-level language instead of Assembler lan-
guage. Note that the true cost for the high-level language version
of the same program was actually lower. The paradox lies in the
unit of measure itself. Lines of code per programmer-month often
displays this paradox, if activities other than pure coding are in-
cluded in the measurements.

Table 4 illustrates that although the high-level-language version of
the program has actually required four weeks less time than the
Assembler language version (both versions assumed to offer iden-
tical functions), the high-level language apparent productivity ex-
pressed in terms of lines of code per programmer-month is only
about one-third as great as that of Assembler language.

Although the Assembler language version in the example in Table
4 has 2000 lines and the high-levet-language version has 500 lines,
this does not imply a general statement that one high-level lan-
guage statement is equivalent to four Assembler-language state-
ments. As was mentioned earlier in this paper, there is no reason
to believe that any expansion factor for any high-level language
can yield uniformly acceptable results. This is one of the reasons
why it is important to define line-counting rules when discussing
productivity rates. It is also one of the reasons why it is generally
advisable to establish separate productivity targets for programs
in each source language, and to use extreme caution in comparing
productivity rates (for source lines, object lines, or bytes) from
language to language.

Another problem with lines of code per programmer-month is the
cumbersome arithmetic it entails, when one tries to measure all
parts of a programming development cycle. The point is illustrat-
ed by the following example. Suppose a program consisting of
1000 lines of source code has been developed. The development
cycle consists of four separate activities, each of which has taken
one month to complete and has yielded a total development ex-
penditure of four programmer-months. The sum of four con-
secutive activities, each of which proceeded at a rate of 1000 lines
of code per month, is not 4000 lines of code per month, but 250
lines of code per programmer-month. Although simple in this ex-
ample, the concept is cumbersome if data for a number of pro-
grams are being analyzed, and each program is divided into a
large number of subactivities.

The fifth problem with lines of code per programmer-month is
that it contributes to a mental set toward the coding, a task that

IBM SYST J VOL 17 NO I 1978 JONES

Table 5 Comparison of work units and cost units

Activity Raw time Lines of code Programmer-months
expended per programmer per thousand lines

month of source code

Design 4 weeks 2000 0.5
Coding 4 weeks 2000 0.5
Testing 4 weeks 2000 0.5
Documentation 2 weeks 4000 0.25
Management/support 2 weeks 4000 0.25

Totals 16 weeks 500 2.0
(4 months)

Lines of source code 2000

is not always a major activity. The productivity measure of lines
of code per programmer-month originated in the early days of
programming, when writing a program was usually a one-person
effort. This main activity may well have consisted of actual cod-
ing. Today, programs are often developed by teams of specialists,
of which the coder is only one part. Further, in modular program-
ming where programs are constructed from reusable modules,
rather than being hand-coded, there may be no new coding to be
measured.

Modern programming methods are moving rapidly in the direc-
tion of developing reusable modules that can be cataloged in a
library, and then obtained from the library to create new pro-
grams with little or no additional coding. The trend of attention is
now away from work units and toward cost units, as is discussed
in this paper.

other As has been previously mentioned, there are work units other
work than lines of code per programmer-month. The most common
units way of estimating and measuring machine time during program-

ming projects is that of CPU hours and/or connect hours per pro-
grammer-month. This unit, however, shares the vagaries of other
work units, and tends to fluctuate widely from person to person
and program to program. Experience leads to the conclusion that
it is wise to discard the work unit form of machine time measure-
ment. A preferable measure is CPU hours per thousand lines, a
topic that is discussed later in the paper.

Another work unit of questionable reliability is that of pages writ-
ten per writer-month for documentation and publications. To be
useful, it is obviously necessary to define the page, and even then
the results tend to be erratic and of marginal utility. Here also the
cost unit form, which might be expressed as documentation cost
per thousand lines of code, seems more reliable as a way of gain-

I Table 6 Work unit comparison of past experience and improved programming technologies

Activity Past Improved
experience programming

technologies
I

User analysis and 3 programmer- 3 programmer-

Design 20 pages per week 20 pages per week
Coding 60 lines per day 110 lines per day
Testingldebugging 10 tests per day 20 tests per day
Documentation 5 pages per day 6 pages per day
Maintenance 4 hours per change 6 hours per change

requirements statement weeks weeks

Programming cost units

Of the several programming cost units mentioned-cost per byte,
cost per line, cost per thousand lines, and others-from my expe-
rience, cost per thousand lines of code serves best. Here, lines of
code means source lines of executable instructions and data dec-
larations, but not commentary lines. Source lines are natural
units for most managers and programmers, and selecting a thou-
sand lines or bytes helps to visualize a realistic development
cycle. Of course, for programs smaller than a thousand lines
some other unit, such as a hundred lines, might be preferable.

The advantage of cost units as opposed to work units is that all
development and maintenance expenses, including manpower,
machine time, and dollars can be expressed in terms of this basic
unit, and can be used to derive complete project costs by sum-
ming the subactivity costs. The summing of cost units is simpler
than summing work units, and is one of the reasons why cost
units are more useful and versatile than work units.

Table 5 illustrates the differences between a work unit (lines of
code per programmer-month) and a cost unit (programmer-
months of effort per thousand lines). The example is taken from
the 2000 line Assembler language program shown in Table 4. In
this example, the work unit data under lines of code per program-
mer-month do not add up directly. The net productivity at the end
must be calculated by dividing 2000 lines of source code by the
four months of effort. The data under programmer-months per
thousand lines of source code can be added directly, and lead to
a cost/value analysis that is discussed later in this paper.

Tables 6 and 7 give a hypothetical example comparison of work example
versus cost units wherein the data are typical of those found in
the literature. Assume that a company is debating the merits of
various improved programming technologies, and wishes to know
whether they are cost justified. Suppose also that an experimental
program is developed for comparison, using improved program-
ming methods. Expenditure of personnel time is to be compared

productivity
analysis

using
probability
rectangles

56

Table 7 Cost unit' comparison of past experience and improved programming technologies

Activity Pust Improved
experience programming

technologies
"" ~~~~

User analysis and
requirements statement 0.24 0.24

Design 0.72 1.08
Coding 1.5 0.66
Testinddebugging 1.5 0.72
Documentation 0.48 0.36
Maintenance 1.56 0.72

Total 6.00 3.78
~-

*Programmer-months per thousand lines of source code

to the experience of several past programming projects. On the
basis of the information in Table 6, it is difficult to compare the
two programs definitively because each method has advantages
and disadvantages. Compared on the basis of programmer-
months per thousand lines, as shown in Table 7, the cost advan-
tage of the improved programming technologies stands out
clearly.

By using a cost unit, a series of useful productivity analyses can
be made. To visualize these analyses, the probability rectangle
approach, discussed earlier in this paper, is used again. In the
particular probability rectangles used here, the cost units are dol-
lars spent per thousand lines. Other measures, however, such as
CPU hours per thousand lines or programmer-months per thou-
sand lines, are equally possible and useful.

Programs have two attributes that lend themselves to a display of
their cost of productivity ranges. They have size, which can be
displayed in units such as thousands of lines of code. They also
have costs and expenditures that can be expressed in such terms
as dollars, programmer-months, or CPU hours.

The fundamental units of size and cost make possible the plotting
of those parameters and the comparison of programs. Such data
plots also highlight major uncertainties and the ranges of those
uncertainties that confront a programming manager and cost es-
timator. Typical of the factors that such a person must estimate
are the number of lines of code to be produced and the unit cost
per line or per thousand lines.

In the following example, a company plans to develop a new pro-
gram, the size of which is estimated to fall between three and five
thousand lines of code. Previous unit costs for programs at the
company have ranged between $20 000 and $25 000 per thousand

JONES IBM SYST J VOL 17 NO 1 1978

~-

lines (a typical cost range). In Figure 2 , these estimates ate
plotted as a probability rectangle. The best case for the program
being estimated is 3000 lines of code produced at a unit cost of
$20 000 per thousand, yielding a total expenditure of $60 000, i.e.,
the lower left corner of the rectangle. The worst case is 5000
lines of code produced at a unit cost of $25 000 per thousand
yielding a total expenditure of $125 000, i.e., the upper right cor-
ner of the rectangle. The center point of the rectangle is the mean
of both variables. This point indicates that an expected size of
4000 lines has been produced at a unit cost of $22 500 per thou-
sand, thus yielding a total expenditure of $90 000.

While the programming project is under way, both the size of a
program and the unit cost of a program tend to fluctuate indepen-
dently. Therefore, it is helpful to be able to separate these vari-
ables, so they can be analyzed independently. Such information
aids in business decisions about whether the project is worth-
while and should be continued. Such an analysis also provides
feedback about potentially dangerous situations before they be-
come pathological and cannot be corrected. The probability rec-
tangle approach provides management with the expected bound-
ary conditions of program size and program costs, and facilitates
making decisions about whether to continue a project in the event
that worst-case situations occur.

A probability rectangle analysis also aids in heading off what we
termpathological programming situations. Generally, a patholog-
ical program is one where unit costs and/or size far exceeded
worst-case expectations. Figure 3 illustrates the contrasts be-
tween a normal development and maintenance expenditure pat-
tern and a pathological one. The curves plotted here are not a
probability rectangle, but ones that have been derived from the
concept of normalizing data to display various costs on a per-
thousand-lines basis. This graph is one of the family of several
possible data displays that use cost units and normalizatiofl.

In normal development, early expenditures are usllally high be-
cause of the tooling up and necessary learning that accompany
requirements, specifications, functional definition, and design.
This spending pattern typically levels off during coding, testing,
and maintenance. On the other hand, pathological development is
often characterized by hasty requirements analysis, incomplete
design, and the premature start of coding. The discovery of over-
looked functional needs frequently triggers the rewriting and re-
compiling of much of the code. Such programs may be termed
rear loaded, as illustrated in Figure 3 by low initial expenditures
and by steeply increasing costs late in the project. One of the
values of data normalization and cost units is that such patterns
can be seen as they are developing, and corrective action can be
taken.

IBM SYST J VOL 17 0 NO 1 1978 JONES

Measuring productivity in a complex environment

We now explore more realistic program development situations
that involve complex programs in which development and main-
tenance are intermixed at the same time. One of the few items of
wisdom in programming about which almost everyone seems to
agree is that there is no such thing as a final program; changes
always occur.

The concepts of normalization and programming cost units are
useful in describing complex and realistic changing situations, as
well as hypothetical cases. To do so, however, it is necessary to
measure or evaluate the following costs:

0 Costs of changing a program as circumstances change.
0 Cumulative costs of program ownership.

Assume a programming system that has been developed and put
into production status. Its initial size was 50 000 lines of code,
developed at a unit cost of $40 000 per thousand lines. Thereafter,
major changes were made to the system that added or deleted
lines of code. Table 8 summarizes events in the life cycle of this
hypothetical programming system.

The basic programming system entered production status with a
unit cost of $40 000 per thousand lines, or $2 000 000 in total
costs. Later there were two additions and one deletion. Although
the additions and deletions were presumably made at different
times for different reasons, and had varying unit costs, the cu-
mulative cost of ownership always increases. Furthermore, after
the additions and deletions, the unit cost for the whole system
had risen from $40 000 per thousand lines at its initial completion
to $50 000 per thousand lines after the third change. Although it is
possible for the unit cost to decrease (such as when many lines
are added for a very low cost) the general trend is usually upward
with time, and the cumulative cost of ownership is always up-
ward.

The main goals of productivity improvement are to lower the unit
cost for development and the cumulative cost of ownership dur-
ing the entire life of the program. It is important to be clear about
these goals because technologies and strategies that tend to mini-
mize unit costs and ownership costs are not always the same as
those that lead to the most rapid coding or hand crafting of pro-
grams. For example, if a program were to be developed and there
were a choice between writing the program from scratch or modi-
fying an existing program, the following things might occur. As-
sume the new program to be 5000 lines of code in size and could

Table 8 Life cycle of a hypothetical programming system

Event Size in Cost in Cumulative
thousands dollars per cost in

of lines thousand dollars
lines of code

I

~ ______ - - ~

Creation 50 40,000 2,000,000
Addition 10 50,000 500,000
Deletion - 5 40,000 200,000
Addition 5 60,000 300,000

Subtotal
" ~ .~ "

60 50,000 3,000,000

To offer the same set of functions via modification might require
2400 lines of new code added to a base of 2600 lines of cbde bor-
rowed from an existing program. Because of the difficulty of un-
derstanding or learning the base, productivity on writing the 2400
lines might drop to only 300 lines of code per month, or 8 months
in all. Yet regardless of the apparent productivity rates, the costs
are lower via modification. That is, if the delivered versions of the
equivalent programs are contrasted in cost units, then the new
program would require 2 programmer-months per thousand lines
of code, and the modified version would require only 1.6 pro-
grammer-months per thousand lines.

This example illustrates the observation that on the average, pro-
ductivity rates on new programs decline as size increases-with
small programs of less than 2000 lines of code often taking in the
vicinity of 1 programmer month per thousand lines, and large sys-
tems of over 512 000 lines often taking 10 programmer-months
per thousand lines or more. When the cost of maintaining or
changing a program is measured, however, a reverse trend is
noted. That is, the smaller the change, the larger the unit cost is
likely to be. This is because it is necessary to understand the base
program even to add or modify a single line, and the overhead of
the learning curve exerts an enormous leverage on small changes.
Additionally, it is often necessary to test the entire program and
perhaps recompile much of it, even though only a single line has
been modified. This subject is discussed in somewhat more detail
in Reference 2.

The cost saving that is often associated with reusing code that
has already been written, rather than hand crafting it, is one of the
main economic incentives leading to an increasing interest in
modular programming and reusable module structures. It is in
analyzing the potential cost saving that cost units as a means of

If a program is being created from a library of precoded functions,
the unit of lines of code per programmer-month has no meaning,
since the work of the programmer has changed. Still, there are
costs associated with assembling the products. Measuring with
cost units leads to speculation about new ways of doing business,
and about productivity gains similar to those in engineering and
manufacture through the use of interchangeable parts.

Reusable code may significantly change one’s perception of pro-
ductivity. If, for example, one is developing a program function
that is expected to be cataloged for reuse in many future pro-
grams, it might be well to invest in exhaustive testing, so as to
approach zero program defects.

Problems of cost units

Although my experience indicates that cost units are more useful
than work units in measuring programs at the present time, there
are problems with cost units. Discussed here are limitations of
two cost units, cost per defect for maintenance repairs and cost
per page for publications and documentation.

In the context of programming, both units are in fact peripheral to
the main concept of what a program is. With respect to program-
ming, cost units aim at the product itself-lines of code or bytes.
Thus cost per defect is a supplemental unit; the real indicator and
true cost unit is defect removal cost per thousand lines or, alter-
natively, defect removal cost per iine.

Similarly for documentation and publications, cost per page is a
reasonable unit in a localized sense. However, it is preferable to
measure documentation costs per thousand lines or documenta-
tion cost per line, so that these costs can be added to the other
subactivity costs.

cost per Of the two units of measure, cost per defect is likely to cause the
defect greater misunderstanding. Cost per defect is a key unit because,

as mentioned in Reference 2, about half the money ever spent on
programming has been used for defect removal and repair. As it is
commonly measured and used, cost per defect is one of the para-
doxical units of measure, and tends to penalize high-quality pro-
grams because it often assumes its lowest values for the most
defective programs. High-quality programs tend to be relatively
free of simple defects, which are cheap to repair, and only have a
residue of rather elusive problems. Also, cost per defect is a com-
pound unit of measure, and one should understand both parts of
the compound. All defect removal operations, such as testing,
have two distinct expense elements. One element is preparation,
which includes writing test cases, reading specifications, and
many other activities. Preparation costs accrue whether a pro-

60 JONES IBM SYST J VOL 17 NO 1 1978

gram has any defects in it or not, and these costs increase more or
less as a function of program size. The other expense element is
repair, which includes fixing bugs that are found and retesting
after repairing the defects. Suppose, for example, that two similar
programs are being tested, and we are interested in comparing
their defect removal costs in some normalized form. Assume that
both programs consist of one thousand lines of Assembler code,
but one program has been written using improved programming
methods, such as topdown design and structured code, for defect
prevention. The other program, however, has been using older
methodologies. Assume also that in testing only one problem is
found in the modern program, whereas the old style program has
ten problems reported. Preparation costs for the test are identical
for both programs and run ten hours each. Defect repair costs for
the modern program are only six hours, but total thirty hours

1 for the old-style program. By adding the preparation and repair
1 hours and dividing by the number of defects in each case the cost
~ per defect is sixteen hours for the single modern program defect
~ and four hours for the old-style program. The paradox lies in the

observation that the greater the number of defects found in the
program, the cheaper they are to repair. It might be thought that
by separating the preparation costs from the repair costs the para-
dox would be resolved. This, however, is not the case. The low-
defect program shows six hours per defect for repair alone,
whereas the high-defect program requires only three hours per
defect in repair costs.

The overall conclusion is that cost per defect is not a reliable unit cost per
of measure, since it penalizes high-quality programs. A better page
method is to look at defect removal and repair costs per thousand
lines. With this unit, the true expenses of high-defect levels are
revealed, i.e., sixteen hours of test cost per thousand lines of
code for high quality programs, and forty hours of test cost per
thousand lines of code for old-style programs.

The situation with cost per page of documentation is not quite as
traumatic as it is with cost per defect, since page costs do not tend
to favor high-defect work products. The problem with cost per
page is that it tends to achieve its lowest values for pages with the
greatest amount of white space. If white space is held constant,
cost per page tends to be lower for documents with the greatest
number of pages (although this latter point is not a definite rule).

The problems with cost per page can be shown by the following
example. Suppose that two identical programs are being docu-
mented, and both are one thousand lines of code in size. In one
case, the writer merely converts a specification into a publication,
and produces a fifty-page document at a cost of $3000. This yields
a cost per page of $60. In the second case, the writer works hard
to condense the materials, and produces a thirty-page document

IBM SYST J VOL 17 NO 1 1978 JONES 61

at a cost of $2400, or $80 per page. Even though the cost per page
favors the large document, the smaller publication is the less ex-
pensive of the two. If documentation costs per thousand lines of
code is the unit of measure, this fact is clearly revealed. The small
book costs $2400 per thousand lines of code, whereas the larger
costs $3000 per thousand lines of code. With documentation as
with programming, care must be used in selecting units of meas-
ure for the results to be truly meaningful.

ratios and Of all the ways to discuss productivity data, ratios and per-
percentages centages tend to be the least reliable and the most likely to cause

serious misunderstandings. Ratios show, for example, per-
centages of time, expenses, or CPU hours devoted to different as-
pects of development. It is extremely common-perhaps more
common than any other method-to see reports that indicate
such things as “design took twenty percent of the time and fifteen
percent of the programmer-months while coding took thirty per-
cent of the time and forty percent of the programmer-months.”

The fundamental problem with ratios and percentages is that they
assume that various development activities are connected in such
a way that if you know one of the activities, you can derive the
others. For example, there is an assumption (implicit in the use of
ratios) that if you can estimate coding costs accurately, then you
can derive testing costs by assuming that testing is some per-
centage of the coding cost. These basic assumptions are incor-
rect, and there are no known fundamental ratios between the
various activities of programming. Consider the two activities of
coding and testing. Coding expenses are a function of the com-
pleteness of the design, the skills of the coders, and the tools and
methods used. Testing expenses are a function of preparation
costs and defect repair costs. It is possible-in fact quite com-
mon-for two programs A and B to have virtually identical cod-
ing expenses, but very different testing expenses. The assumption
that a ratio of coding costs to testing costs developed for program
A will work for program B is a common misconception, and one
of the key sources of estimating error.

The alternative to ratios and percentages is straightforward. Cal-
culate the costs of each development activity on its own merits
and then sum all the subactivity costs to arrive at the total pro-
gramming cost. This way, even if one activity is grossly incorrect,
the problem does not propagate itself throughout other activities,
which might be the case if ratios had been used.

Without multiplying examples, it may easily be seen that ratios
are extremely simplistic, and supply little or no useful informa-
tion. Indeed, the only thing that ratios do well is preserve secret
or proprietary information about how much time or money were
actually spent.

62 JONES IBM SYST J VOL 17 NO I 1978

JONES 63

