
Discussed  is  the  unit-ofmeasure  situation in programming. An 
analysis of common  units of measure for assessing  program 
quality and  programmer  productivity  reveals  that  some  standard 
measures are intrinsically  paradoxical. Lines of code  per  pro- 
grammer-month and cost  per  defect are in  this  category.  Pre- 
sented  here are attempts  to go beyond  such  paradoxical  units  as 
these. Also discussed is the  usefulness of separating  quality 
measurements  into  measures of defect  removal  eficiency and 
defect  prevention, and the  usefulness of separating  productivity 
measurements  into work units  and  cost  units. 

Measuring  programming quality and  productivity 
by T. C. Jones 

Although it is not always  appreciated,  the  great  advances in 
chemistry,  physics,  and  other scientific disciplines in the 19th and 
20th centuries  were preceded by advances in the measurement of 
physical attributes  and  the  development of accurate measuring 
instruments in the 17th and 18th centuries.  Indeed, it can  almost 
be said that scientific progress of any kind  is totally dependent on 
the ability to  measure  quantities  precisely.  Therefore,  the  work of 
men like Gabriel Daniel Fahrenheit, who made the first mercury 
thermometer in 1714; of John Harrison, who made the first practi- 
cal chronometer in  1728, and many other  measurement  special- 
ists,  are  the  fundamental underpinnings of modern scientific 
achievements. 

It is because of the vital significance of measurement  to  progress 
that so many common words and  units of measure  today  are  tak- 
en from the  names of those who explored  better  ways of measur- 
ing new phenomena:  Ampere,  Celsius, Coulomb, Curie,  Henry, 
Hertz,  Joule,  Ohm,  and Watt were all researchers  whose  names 
have been applied to common units of measure,  and  there  are 
others  such  as  Faraday,  Galvani,  and Volta who  have indirectly 
lent their  names to measurement. 
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In the field  of computer programming, the lack of precise and 
unambiguous units of measure  for quality and productivity  has 
been a source of considerable  concern  to programming managers 
throughout the  industry. In 1972, there  was established in the San 
Jose Programming Center of the IBM Corporation  a  study  group 
to  explore  the  interrelated  topics of program quality,  programmer 
productivity,  and  the units of measure  that could clearly display 
trends in both  areas. 

One of the  projects carried out by that  group was a detailed analy- 
sis of common units of measure used to  assess productivity and 
quality throughout  the open literature of the  entire  industry. 
Some of the findings were surprising,  and it soon became  evident 
that  a  number of widespread units of measure  were misleading 
and even  paradoxical.  For  example,  the unit cost  per defect was 
discovered to yield the lowest values for  the most defective  pro- 
grams,  thus making obsolete technologies appear  more  favorable 
in some instances than modern ones.  The unit fines of code writ- 
ten  per  programmer-month was  found to consistently penalize 
high-level languages, and tended  to  favor  programs  written in As- 
sembler  language.  These findings are of some  importance to the 
industry,  because  they make it difficult to  compare  productivity 
and quality from program to  program.  In  extreme cases, they  can 
slow down the  acceptance of new methods  because  the  methods 
may-when measured-give the  incorrect impression of being 
less effective than  former  techniques,  even though the  older  ap- 
proaches actually were more expensive.  This  paper  attempts  to 
describe  the  common units of measure, and point out  the  nature 
of the  paradoxes  that occasionally occur. When the  paradoxes 
and  measurement variables are clearly understood, it becomes 
possible to  make  reasonable  assessments of programming quality 
and  productivity, and to apply units of measure  that  behave in a 
predictable  manner. 

Counting  lines of code 

A fundamental problem of all measurement  techniques involving 
computer  programs is that of knowing exactly  what  is  meant by 
the  phrase  “lines of code.” This topic is discussed in References 
1 and 2. The  conclusions  there  and  the  one  here are generally  the 
same;  namely,  that programs consist of more than  executable 
lines of code.  Programs  also contain commentary  lines, data  dec- 
larations,  Job  Control Language (JCL) in some cases,  and macro- 
instructions.  Some counting methods  consider  every  statement  to 
be a line,  whereas  other  methods  consider only a subset, such as 
executable lines and  data  declarations, in the  counts of the  pro- 
gram.  Between  the  extremes of counting everything and  counting 
only executable lines there may be more than  a two-to-one varia- 
bility for  the  same program. 
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This problem is not really too  serious provided it is recognized. 
Counting methods become troublesome when productivity  rates 
are being discussed without knowing the line-counting rules in 

i effect. The  convention used at  one programming center  calls  for 
' counting executable lines and data  declarations,  but  not  counting 

comments or JCL. Macroinstructions are counted  once when ex- 
panded,  and calls that invoke macroinstructions are  counted 
once.  There  is no inference  that  this method is either  better  or 
worse than  the  other possibilities. The key is to  state  the  counting 
rules when reporting on quality and  productivity.  Otherwise, 
there is no way of knowing what the  results  mean. 

A more subtle problem occurs when counting lines of code  for 
programs written in high-level languages. In PL/I, for  example, a 
line might  be everything that occurs between semicolons,  or  ev- 
erything that is written on a single line of a coding pad. Here,  too, 
it  is important  to  state  the  conventions in effect for  the  data  to  be 
meaningful. 

To avoid such  variations  associated with counting lines of source 
code, an alternative is to  count  bytes or object instructions. Al- 
though this method has much to recommend it and is often used 
successfully, it is not always easy  to  estimate  the final, compiled 
size of programs written in high-level languages. Since  compilers 
differ in efficiency, and since individual programming styles  can 
interact with the compilers in astonishingly diverse  ways,3 it is 
incorrect  to  assume  that X number of source  code lines in a given 
high-level language compile into Y number of object  code  lines. 

As an example of the difficulty of doing source-to-object  code 
expansions  consistently,  a number of cost-estimating reference 
manuals recommend different ratios  for  expanding high-level 
source lines into  object lines for a particular language. The lowest 
expansion is 1.6 object lines for  each  source  line,  and  the  greatest 
expansion is 6 object lines per  source line. It is a simple matter to 
count  object lines in completed programs,  but it is not  easy to 
estimate  expansion  factors before a program has been written, 
without knowing the programmers' styles and the  compilers  to be 
used. 

Still another possibility is to  accept  the uncertainties of line 
counting and  accumulate multiple counts of source  lines,  object 
lines, and  bytes. Identify the compilers used.  Then publish the 
line-counting conventions in effect for  the  programs being report- 
ed. 

With any method,  there are even more variables associated with 
counting lines of code  than  those so far  discussed. For  example, 
some programs are written in mixed languages. Other  programs 
require scaffold code  or  throwaway  code  for  testing  and in- 
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tegrating the main program, yet that  code  does  not  become  part of 
the final, delivered product. One might question  the  counting of 
such  code. How should one  count  the changing of an existing 
program? Should only the new lines be counted,  or should the 
base lines in the existing program also be counted? 

In counting as in accounting,  experience  and  practice  require  that 
whatever the counting  method, it should be (1) documented  and 
clearly understood by  all who work on the  program;  and (2) the 
significant programming reality is the final  version-its quality 
and cost-that is delivered to  the  users.  The size of this final ver- 
sion,  counted by whatever method is agreed upon, is the key to 
uniformly assessing productivity and  defect  rates. 

Once  delivered, of course,  programs  become  candidates  for 
changes and modifications, as defects  are noted and the original 
requirements  change. Here,  too,  the basic  concept  applies  that 
what is important is the version of the program actually delivered 
after modifications. 

As in building a house, in which the scaffolding is part of the  cost, 
programs  seem to  be characterized by the same kind of thinking. 
For initial creation,  the  important  aspect is the  cost of the deliv- 
ered  program.  Intermediate  versions are significant only because 
they are  part of the  cost of producing the final program.  After 
installation,  the  costs of program changes and extensions  are im- 
portant  both as they occur,  and  because  they  are  part of cumula- 
tive costs of the  program. In other  words,  the size of the  change 
and  the  cost of the change  are  important, as well as  the size of the 
total program after  the change and the cumulative cost of the pro- 
gram after  the  change.  These  concepts are discussed in detail lat- 
er in this  paper.  Because of the  uncertainties in counting lines of 
code, object lines,  or  bytes,  one might come  to believe that  the 
entire issue is irrelevant.  Programs,  after  all,  are written to pro- 
vide functions,  and  the number of lines of code it takes  to supply 
a  function is of much less  importance than the  cost of the  function 
itself. In fact, it is not important  that  the function be supplied via 
a  program. If microcode  or an electronic circuit can supply  the 
same  function  for  a lower cost  than programming, it  might be 
preferable to  measure cosr per function rather than cost  per line 
of code. 

Although such  an  evaluative  approach may become increasingly 
important,  this  paper  does not explore  these  issues  for  several 
reasons.  There is a  great deal still to be learned  about  quality and 
productivity normalized against lines of code. We have  not  ex- 
plored the limits of knowledge, and  comparisons  between dif- 
ferent kinds of programs-with lines of code  counted the same 
way for both-almost daily yield new insights and discoveries.  It 
is premature to abandon this method, just when results are be- 
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coming encouraging.  Also,  to  explore  such things as  cost  per 
function, it  is necessary  to be able  to define and count  functions. 
At present,  the methodology for doing this  seems  too  uncertain, 
although some  progress is visible. 

Measuring program quality 

The term quality is used here  to mean an  absence of defects  that 
would cause  a program to  behave unpredictably or  stop  success- 
ful execution.  There  are  two  fundamental ways of minimizing 
programming defects  that significantly determine quality meas- 
urements. One is to prevent  defects from occurring. The  other is 
to  remove  defects  that  have  occurred.  Therefore, quality meas- 
urements are related  to restricting the quantity of defects  that 
come  into  existence,  and  their efficient removal by various kinds 
of reviews and tests used in programming. 

The pivotal concepts in the  defect removal portion of quality 
measurement  are  those of defect  removal  eficiency and cumula- 
tive  defect  removal  eficiency. Defect removal efficiency is the 
reduction of the  defects  that are present at  the beginning of a 
defect removal operation by a  certain  percentage.  Cumulative  de- 
fect removal efficiency is the  percentage of defects  that  have been 
removed by a series of removal operations, based on the number 
of defects  that are present at the beginning of the  series,  or added 
while the  series is in progress.  The  concept of cumulative  defect 
removal efficiency  is illustrated by Figure 1. 

The  nature of cumulative defect removal efficiency is shown by 
the  results of the  second defect removal operation, and in com- 
bining the  results of the first and  second  operations.  Note  that 
although the  second removal operation  has found two  defects  out 
of the  total of ten in the  hypothetical  program,  its efficiency is 
actually fifty percent  (not  twenty  percent)  because only four  de- 
fects remain in the program at the time the  operation is carried 
out. Since  the sum of the effects of the  two  operations is eight 
defects  out of ten removed,  the cumulative efficiency is eighty 
percent.  Even though the first operation had a sixty percent effi- 
ciency and  the  second operation had an efficiency of fifty percent, 
the cumulative efficiency clearly is not  one  hundred  ten  percent. 

Bad fixes are  another  aspect of defect removal that  require  quan- 
tification when the efficiency of a given defect removal operation 
is being measured with accuracy. Bad $x injection is the in- 
troduction of a new defect,  one not previously in the  program, 
while repairing a  defect in that  program. It is useful to  keep inde- 
pendent  records of bad fixes so that  separate  statistics can be 
maintained for  both  detection efficiency and  repair  effectiveness. 
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estimating Given defect  removal efficiency and cumulative defect removal 
program efficiency, programming defect removal operations  become  more 
defects open to analysis  and  calibration.  Indeed, it is largely through di- 

rect  measurements of defect removal efficiency that  improved 
forms of removal  operations,  such  as design and  code in- 
spec t ion~~  have  come  into  existence. 

Since  defect  removal efficiency statistics imply a knowledge of 
all, or almost all,  defects found during the life of a  program,  the 
question  arises of how such a theory of defect removal efficiency 
can be turned  into  a practical tool for  everyday programming. 
We believe that  this can be done  as follows. As a  program moves 
through the  development cyde, records are kept of the quantities 
of defects  found in  all removal operations.  Later, when the  pro- 
gram has  reached its intended  users,  records  are  also  kept of the 
defects  found in actual utilization of the program in its  production 
environment.  After  several  years, we sum all the  defect  records 
and find both  the  total quantity of discovered  defects  and  the  de- 
fect removal efficiencies of the  series of reviews,  inspections,  and 
tests  that  were used to bring the program into  existence. 

We have been seeking trends  based on experience  that might 
prove to be useful in making predictions.  Therefore, the proce- 
dure  just given is not usually much help to  the first few  programs 
to be analyzed  because  too much time elapses before a sufficient ~ 

quantity of data have been collected to  carry  out the analysis. ~ 

Indeed, a program may already have been replaced or discarded 
before  the data  are sufficient. However,  as more programs are 
measured  and  the  results  are  analyzed,  trends and problem  areas 
become  visible,  and gradually significant improvements in cu- 
mulative defect removal efficiency become  possible. Thus, real- 
time results may not always be possible,  but long-term improve- 
ment in knowledge of removal efficiency eventually  repays  the 
effort. This is not unlike experience in other fields, such  as medi- 
cine, in which the  development of a  cure  for a disease is generally 
preceded by careful epidemiological studies  on  the  causes of the 
disease, its outbreaks,  the  vectors  that  transmit  it,  and all other 
observations  that  relate to the  disease. 

Another problem in accumulating statistics of defect  removal effi- 
ciency concerns major program changes between defect removal 
operations. A change in user  requirements  or  a design change 
might take place between  two  defect removal operations.  The  re- 
sult might be that  the program that  enters  the  second  operation is 
quite different from the program that  exited  after  the first opera- 
tion.  Our  experience suggests two  methods of dealing with this 
problem, a simpler method that  tends  to  introduce  distortions  into 
the  records  (which may be tolerable),  and a sophisticated method 
that  preserves  the  accuracy of the data, but with added  expense. 
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By the simpler method, cumulative defect removal is expressed 
by the following formula:  defects found before 

Cumulative defect removal efficiency = 
release 
defects  found  before  and 
after  release 

By this formula, if 100 defects are found in a program during its 
entire life-in both  development  and in production-and 90 of the 
defects  are found before release,  then  the  cumulative  defect  re- 
moval efficiency is considered  to be 90 percent. We often find 
this coarse  measure to be useful. 

The more sophisticated and detailed method requires  the flagging 
of changes in the programming work products, including lines of 
code  themselves. Although our goal  is to arrive at the  same  for- 
mula as has just been  described,  the more detailed approach of 
flagging calls for analyzing the  defect  data and adjusting the  quan- 
tities,  depending on whether  the problems were  true  defects  or 
were caused by changing requirements. An adjunct of this meth- 
od  is that of analyzing the sources of programming defects. Given 
in Reference 2 are  the following six causes of programming de- 
fects: 

0 Functional problems and the misunderstanding of user 

0 Problems of logic and internal program design. 
0 Coding problems. 
0 Documentation  problems. 
0 Incorrect  repairs  or bad fixes. 
0 Miscellaneous causes  (a small category). 

If a flagging system  were utilized, and if records  were  kept 
against each work product during each defect removal operation, 
the resulting information could be displayed in a table  that  shows 
the  contribution of each  defect  source  to  the  overall  total of de- 
fects, and the  contribution of each  defect removal operation  to- 
ward the elimination of defects in each  source.  For  simplicity, 
Table 1 gives an  example display that is characteristic of the  data 
we have collected, although this specific example is a hypotheti- 
cal one. (All data  are given in units of percent.) 

Suppose  that  a  program’s  defect  causes fall into  only two  cate- 
gories,  A  and  B.  Suppose  also  the program is known to have 100 
total defects, of which 40 are  caused by category-A problems  and 
60 are  caused by category-B problems. Then it  is clear that  cate- 
gory A  causes 40 percent of the  program’s initial problems,  and 
category B  causes 60 percent of the problems. Now suppose  that 
the program is to be tested by a single defect removal operation 
that is known to  have  an efficiency of 50 percent against category- 
A  defects  and 70 percent against category-B  defects.  After  the 
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Table 1 Sources of defects and  defect removal efficiency by source 

A. Percentages of defects by source 
Functional design and misunderstandings 
Logic design and misunderstandings 
Coding  problems 
Documentation and  others  (not  shown) 

I5 
20 
30 
35 

B. Percentage of defect removal efficiency by source 

Activity  Eficiency  percentage  Percentage  of 
against  defects in incorrect 

repairs  to ~ _ _ _ _ _ _ _ _ _ _  
function  logic  coding  defects 

Functional specification review 
Logic specification review 
Module logic inspection 
Module code inspection 
Unit test 
Function test 
Component  test 
Subsystem  test 
System  test 

50 - - 
40 50 - 
60 70 - 

65 75 70 
10 10 25 
20 25 55 
15 20 65 
15 15 55 
10 10 40 

+ I  
+ 2  
+ 2  
+ 3  
+4 
+5 
+5 
+7 

+ 10 

Cumulative Efficiency 98  98 99 

Net  cumulative efficiency 98 

completion of the defect removal operation,  the 40 category-A 
defects would have been reduced by 50 percent, so 20 undetected 
category-A defects  are  presumed  to remain in the  program  for 
discovery by subsequent defect removal operations.  The 60 cate- 
gory-B defects would have  been  reduced by 70 percent.  Thus, 42 
category-B  defects would have been removed and 18 such  defects 
would remain for  subsequent  removal.  Since  a  total of 62 defects 
out of 100 have been removed,  the cumulative detection efficien- 
cy against both  sources is 62 percent in this example. 

Of course, in operational  situations it is necessary to  adjust such 
elementary  calculations as  these  to include bad fixes, to handle 
more than a single defect removal operation,  and  to recognize 
defects against more than two  sources. In our  experience,  the 
necessary  recordkeeping  has  been  rather  complicated,  but  the 
long-term value of the  data and the insights that are gained have 
proved to be quite beneficial. 

There is a great  amount of record-keeping complexity associated 
with the  more  detailed flagging method of defect  removal efficien- 
cy  analysis.  Therefore,  the simpler method may prove  to be use- 
ful initially, even considering the vagaries that  this  method in- 



To make the simpler method truly simple,  however, it is neces- simpler 
sary to normalize the  data. Because programs vary widely in size method 
and in other  attributes  that can cause  defect  quantities  to fluctu- 
ate, it is not  convenient to measure  the raw quantities of defects 
alone.  It is more practical  to  express defect levels in terms of 
some general unit,  such as defects  per  thousand  fines of source 
code. (Let the term “lines” be defined by local convention.)  This 
method of normalization is useful for  both quality and  productiv- 
ity measures, as is explained later in this  paper. 

In working with the simpler form of defect removal efficiency 
analysis, it is necessary  to make the following two simplifying 
assumptions: 

0 All defects,  regardless of source  or of origin (whether design 
problems, coding problems, or some other)  are  lumped to- 
gether and counted as the single variable, defects. 

0 The  defect removal efficiencies of all reviews,  inspections, 
tests,  and  other  defect removal operations  are  lumped  togeth- 
er and counted as the single variable, cumulative  defect re- 
moval  eficiency . 

With these  two simplifying assumptions and with the data  for de- 
fect  quantities in normalized form as defects  per  thousand lines of 
code,  the  results  are both easy to work with and surprisingly pow- 
erful. Even though some imprecision is unavoidable,  the  value of 
this  approach is that it breaks  down  the topic of quality into  the 
two pivotal concepts of defect prevention and defect  removal. 
The method also allows program data  to be displayed as  a matrix 
or table of data. 

The most basic display is that of total  defects per thousand lines maintenance 
of code as  one  axis, and  the cumulative defect removal efficiency potential 
as the  other  axis.  Elements of the resulting matrix might be called 
the maintenance  potential of a  program.  The maintenance po- 
tential of a program is the  quantity of defects not found during 
defect removal operations.  Undiscovered  defects are  sources of 
potential maintenance  activity, if such  defects  occur  during  the 
actual use of a program. Table 2 is ap example of such  a matrix 
that is typical of values for selected ranges of the  two  variables. 

Table 2 shows  that if the  total  quantity of defects in a  particular 
program ranges  between 30 and 35 per  thousand lines of code, 
and the  cumulative  defect removal efficiency of all reviews, in- 
spections,  and  tests ranges between 90 and 95 percent,  then  the 
maintenance potential or quantity of undiscovered  defects  that 
might cause  maintenance changes ranges between 1.5 and 3.5 po- 
tential maintenance  problems  per  thousand lines of code.  For  ex- 
ample,  the  best  case in this situation  is 30 defects  per  thousand 
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Table 2 Maintenance  potential'  or  undiscovered  defects as a  function of cumulative  defect 
removal  efficiency  and initial total  defects  per  thousand  lines  of  code 

Total 
defects  per 

lines 
thousand  Cumulative  defect  removal  eficiency  percentage 
_______.__________ 

of code 90 91 92 93 94 95 
~~ 

35 3.5 3.15 2.8 2.45 2.1 1.75 

34 3.4 3.06 2.72 2.38 2.04 1.7 

33 3.3 2.97 2.64 2.31 1.98 1.65 

32 3.2 2.88 2.56 2.24 I .92 1.6 

31 3.1 2.79 2.48 2.17 1.86 1.55 

30 3.0 2.7 2.4 2. I 1.8 1.5 

*Maintenance potential = total defects ~ defect removal efficienc) 

lines of code, 95 percent  cumulative  defect  removal efficiency, for 
a potential maintenance load of 1.5 problems per  thousand  lines. 
This is shown in the lower right corner of Table 2 .  

As has been meptioned, a whole family of interesting  and useful 
data displays can be constructed from the basic concepts  already 
presented, when augmented by other kinds of programming data. 
For example,  suppose  there is uncertainty regarding how many 
lines of code  must be written for  a new program. All that is known 
is that  the  quantity probably falls somewhere  between 15 and 
20 000 lines. In such  a  case, it is possible to link a  series of graphs 
togefher to display all key variables. For example, the  best  case 
for  the program just cited in connection with Table 2 consists of 
the smallest quantity of lines,  the  lowest number of defects, and 
the highest defect removal efficiency. That  means 15 000 lines 
multiplied by 30 defects per thousand  lines,  for  a lifetime poten- 
tial of 450 defects. If the cumulative defect removal efficiency is 
95 percent  for the program in question  one would calculate  a po- 
tential of 1.5 defects  per  thousand  lines,  or 23 defects in all. 

The worst case  for  the program is 20 thousand lines multiplied by 
35 defects  per  thousand  lines,  for  a lifetime potential of 700 de- 
fects. If the  cumulative  defect removal efficiency is 90 percent in 
this  case,  then  the program is estimated to contain 3.5 defects  per 
thousand  lines, or 70 defects in all.' 

probability The  general form for displaying the linkage of ranges of variables 
rectangle together is what  I call aprobability  rectangle  because it bounds 

the  probable  ranges within which the program is to  be developed. 
A series of such  rectangles,  each  based on 'at least one variable 



Table 3 Maintenance potential as a function of hypothetical program size range 

Range in 
~ undetected 

defects  per 
I thousand Program  size  range  (thousands of lines) 

lines 15 20 
~~ 

3.5 52.5 70 

1 .s 18 30 
__.~~,____.___ 

~ _ _ _ _ _ _ . _ _ ~ _ _ . ~ ~ . . ~ _  

Such rectangles take  the form of a  matrix, with the  base of the 
rectangle indicating the range of one  variable,  and  the height in- 
dicating the range of another  variable.  The  elements of the matrix 
indicate  the  interaction of the  two  variables.  The size of a matrix 
(or number of elements)  depends on the ranges of the  variables 
and the granularity-degree of coarseness-with which the  data 
are  displayed. 

Table 3 illustrates  a probability rectangle for  the  number of main- 
tenance  changes  that might be expected in the  hypothetical  pro- 
gram. Here  the size range is 15 000 to 20 000 lines and  defects 
range from 30 to 35 per thousand lines. The  cumulative  defect 
removal efficiency ranges from 90 to 95 percent.  Table 3 is the 
simplest form of the probability rectangle and shows only the  ex- 
treme  ends of the  ranges, with no intervening values. In reality, 
more information is usually displayed. We have used this simple 
form to clarify the  principle. 

Note in this probability rectangle that although none of the  inter- 
mediate variables used in its construction varies enormously,  the 
difference between  the best and  worst  case is quite large.  Indeed, 
the best case is 18 potential problems (or defects remaining to be 
fixed) and  the  worst  case is 70 defects,  or 3.88 times the  potential 
problems of the best case. When the variables that affect a pro- 
gram's  defect  rate are separated  and analyzed independently,  and 
then  recombined, it becomes evident  that small changes yield 
large results. 

It is often said that quality cannot be tested  into a program.  The 
combined impact of improving the  defect removal efficiency by 
even  a few percentage  points, if coupled with reducing the  quanti- 
ty of defects by another few percentage  points, yields a large re- 
duction of defects in the delivered program. 

Before discussing productivity measurements, it is well to  ob- 
serve  that  the term quality has been used here  to mean an  absence 



Table 2 Maintenance  potential'  or  undiscovered  defects as a  function of cumulative  defect 
removal  efficiency  and initial total  defects  per  thousand  lines  of  code 

Total 
defects  per 

lines 
thousand  Cumulative  defect  removal  eficiency  percentage 
_______.__________ 

of code 90 91 92 93 94 95 
~~ 

35 3.5 3.15 2.8 2.45 2.1 1.75 

34 3.4 3.06 2.72 2.38 2.04 1.7 

33 3.3 2.97 2.64 2.31 1.98 1.65 

32 3.2 2.88 2.56 2.24 I .92 1.6 

31 3.1 2.79 2.48 2.17 1.86 1.55 

30 3.0 2.7 2.4 2. I 1.8 1.5 

*Maintenance potential = total defects ~ defect removal efficienc) 

lines of code, 95 percent  cumulative  defect  removal efficiency, for 
a potential maintenance load of 1.5 problems per  thousand  lines. 
This is shown in the lower right corner of Table 2 .  

As has been meptioned, a whole family of interesting  and useful 
data displays can be constructed from the basic concepts  already 
presented, when augmented by other kinds of programming data. 
For example,  suppose  there is uncertainty regarding how many 
lines of code  must be written for  a new program. All that is known 
is that  the  quantity probably falls somewhere  between 15 and 
20 000 lines. In such  a  case, it is possible to link a  series of graphs 
togefher to display all key variables. For example, the  best  case 
for  the program just cited in connection with Table 2 consists of 
the smallest quantity of lines,  the  lowest number of defects, and 
the highest defect removal efficiency. That  means 15 000 lines 
multiplied by 30 defects per thousand  lines,  for  a lifetime poten- 
tial of 450 defects. If the cumulative defect removal efficiency is 
95 percent  for the program in question  one would calculate  a po- 
tential of 1.5 defects  per  thousand  lines,  or 23 defects in all. 

The worst case  for  the program is 20 thousand lines multiplied by 
35 defects  per  thousand  lines,  for  a lifetime potential of 700 de- 
fects. If the  cumulative  defect removal efficiency is 90 percent in 
this  case,  then  the program is estimated to contain 3.5 defects  per 
thousand  lines, or 70 defects in all.' 

probability The  general form for displaying the linkage of ranges of variables 
rectangle together is what  I call aprobability  rectangle  because it bounds 

the  probable  ranges within which the program is to  be developed. 
A series of such  rectangles,  each  based on 'at least one variable 



The  units of measure of programming cost  I  have called cost 
units. These  units  concern  the program itself, rather than the hu- 

~ man activities  that  go  into  creating  the  program.  Examples of pro- 
gramming cost  units include the following: 

Programmer-months of effort per  thousand lines of code. 
CPU hours  and  connect  hours  per  thousand lines of code. 
Dollars expended  per thousand lines of code. 

0 Cost per page for  documentation. 
Cost  per  defect  for  maintenance. 

Here  too  there  are  variations,  such  as  hours  per line instead of 
months per thousand  lines. Also bytes may replace lines in a defi- 
nition. The  general  concept is the  same,  however,  to normalize 
by the product  rather than by the work of creating the  product. 

Lines of code per programmer-month 

Both work units  and  cost units are needed in evaluating program- 
ming productivity. A basic difference between the  two  units is 
that  each is the reciprocal of the other. A misunderstanding of 
this difference has sometimes led to  one of the  problems with 
lines of code per programmer-month. In such  a case, for  example, 
the work unit has mistakenly been pressed  into  service as a cost 
unit, where it has sometimes served  unsuccessfully. As a  general 
unit of measure, lines of code  per programmer-month has a num- 
ber of weaknesses  to which industry-wide  variations in reported 
programming productivity may be attributed. 

Noted  here are five problem areas  that involve lines of code  per 
programmer-month: 

0 Sensitivity to line-counting variations. 
0 Ineffectiveness  for noncoding tasks. 
0 Tendency  to penalize high-level language programs in favor of 

0 Arithmetic awkwardness in accounting  for  subtasks. 
0 Attention focusing on the  act of coding, which is a misdirec- 

tion,  since  the coding of a program is but  a small part of the 
total effort required. 

programs writen in Assembler language. 

Line  counting  variations  have been discussed earlier in this  paper line 
and in Reference 1. We merely add  that they can lead to  perhaps a counting 
two-to-one variation in apparent  productivity,  depending on the 
line counting method used. 

The problem of ineffectiveness in measuring noncoding tasks is noncoding 
summarized here  from a fuller discussion in Reference 6. The tasks 
complete job of developing a  computer program requires  more 
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Table 4 The paradox of lines of code per programmer-month 

Activity  Assembler  High-level 
program  program 

Design 
Coding 
Testing 
Documentation 
Management/support 

4 weeks 
4 weeks 
4 weeks 
2 weeks 
2  weeks 

4 weeks 
2  weeks 
2  weeks 
2 weeks 
2 weeks 

Total effort 16 weeks 12 weeks 
(4 months) (3 months) 

Lines of source  code 2000 500 
Lines of source  code 

per  programmer-month 500 167 

than coding activities  and  these  activities must also be  measured. 
Therefore, when lines of code  per programmer-month is used on 
noncoding tasks,  the  results  are  apt  to be questionable.  Results 
may even  approach being nonsensical, as illustrated by this  sce- 
nario. With modern defect prevention  and  defect  removal  tech- 
niques in programming, it sometimes happens  that  no  defects are 
discovered during testing because  the program has no defects  at 
the time the  test is carried out. If testing is done by an  indepen- 
dent group  rather  than by the  programmers  themselves  this  tends 
to  introduce  slack time into  development. By normal program  de- 
velopment practice,  the programmer usually cannot be fully reas- 
signed until testing is over, in case  defects should be discovered. 
Since it is nonproductive, slack time does not contribute to lines 
of code  per  programmer-month.  It is therefore  inaccurate  to say 
for  example,  that  one’s productivity is one  thousand lines of code 
per month during testing when there is no cpding, and much of 
the time is spent waiting for bugs that may never  occur.  It is rea- 
sonable  to  say  that slack time has added  one month to a  project 
but it is not reasonable to say that slack has  proceeded  at  a  rate of 
one  thousand lines of code  per  month. 

high- The problem of penalizing high-level language programs has only 
level recently been explored,  and it has been found to be quite impor- 

languages tant. Many portions of a programming development  project are 
language-independent, and take  the  same  amount of time regard- 
less of the programming language selected.  Such things as under- 
standing user  requirements, writing specifications, writing test 
cases, and writing user  documentation are not affected in any way 
by the programming language selected. We  know that high-level 
languages require  fewer  source  statements  to program a given 
function than  does Assembler language. But language-indepen- 
dent  activities  proceed at the  same  rate as in Assembler language 
programs, yet fewer lines of code  are written in high-level lan- 
guage than in Assembler language. The result is an  apparent  pro- 
ductivity lowering for  the whole development  cycle with high- 

52 JONES IBM SYST J VOL 17 NO 1 0 1978 



level languages,  even though development  costs  have  actually 
been reduced.  This is one of the  paradoxes of programming meas- 
urement. 

Table 4 illustrates  an  apparent  loss of productivity when a  pro- 
gram is written in a high-level language instead of Assembler lan- 
guage. Note that  the  true  cost  for  the high-level language version 
of the  same program was actually lower.  The  paradox lies in the 
unit  of measure itself. Lines of code per programmer-month often 
displays this  paradox, if activities  other than pure coding are in- 
cluded in the  measurements. 

Table 4  illustrates  that although the high-level-language version of 
the program has actually required four weeks less time than  the 
Assembler language version (both  versions  assumed to offer iden- 
tical functions),  the high-level language apparent  productivity  ex- 
pressed in terms of lines of code per programmer-month is only 
about  one-third as great as that of Assembler language. 

Although the Assembler language version in the  example in Table 
4 has 2000 lines and  the high-levet-language version has 500 lines, 
this does  not imply a general statement  that  one high-level lan- 
guage statement is equivalent to  four Assembler-language state- 
ments. As was mentioned earlier in this  paper,  there is no  reason 
to believe that any expansion  factor  for any  high-level language 
can yield uniformly acceptable  results. This is one of the  reasons 
why  it is important  to define line-counting rules when discussing 
productivity rates.  It is also one of the  reasons why it is generally 
advisable to establish  separate  productivity  targets  for  programs 
in each  source language, and to  use  extreme caution in comparing 
productivity rates  (for  source  lines, object lines,  or  bytes) from 
language to language. 

Another problem with lines of code  per  programmer-month is the 
cumbersome  arithmetic it entails, when one  tries to measure all 
parts of a programming development cycle.  The point is illustrat- 
ed  by the following example.  Suppose  a program consisting of 
1000 lines of source  code has been developed.  The  development 
cycle  consists of four  separate  activities,  each of which has  taken 
one month to complete and has yielded a total development ex- 
penditure of four programmer-months.  The sum of four  con- 
secutive  activities, each of which proceeded at a rate of  1000 lines 
of code per month, is not 4000 lines of code per month,  but 250 
lines of code per programmer-month. Although simple in this  ex- 
ample, the concept is cumbersome if data  for  a  number of pro- 
grams are being analyzed, and each program is divided into  a 
large number of subactivities. 

The fifth problem with lines of code per programmer-month is 
that it contributes  to  a mental set  toward  the  coding,  a  task  that 
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Table 5 Comparison of work units and cost units 

Activity  Raw  time  Lines of code  Programmer-months 
expended  per  programmer  per  thousand  lines 

month of source  code 

Design 4 weeks 2000 0.5 
Coding 4 weeks 2000 0.5 
Testing 4 weeks 2000 0.5 
Documentation 2 weeks 4000 0.25 
Management/support 2 weeks 4000 0.25 

Totals 16 weeks 500 2.0 
(4 months) 

Lines of source code 2000 

is not  always  a major activity.  The  productivity  measure of lines 
of code per programmer-month originated in the early days of 
programming, when writing a program was usually a one-person 
effort. This main activity may  well have  consisted of actual  cod- 
ing. Today,  programs  are often developed by teams of specialists, 
of which the  coder is only one  part.  Further, in modular program- 
ming where  programs  are  constructed from reusable  modules, 
rather  than being hand-coded,  there may be no new coding to  be 
measured. 

Modern programming methods are moving rapidly in the  direc- 
tion of developing reusable modules that can be cataloged in a 
library,  and  then obtained from the library to  create new pro- 
grams with little or no additional coding. The trend of attention is 
now away from work units and toward  cost  units, as is discussed 
in this  paper. 

other As has been previously mentioned,  there  are work units  other 
work than lines of code  per  programmer-month.  The  most common 
units way of estimating and measuring machine time during program- 

ming projects is that of CPU hours  and/or  connect  hours  per  pro- 
grammer-month.  This  unit,  however,  shares  the  vagaries of other 
work units,  and  tends to fluctuate widely from person to person 
and program to program.  Experience  leads to  the conclusion  that 
it is wise to discard  the work unit form of machine time measure- 
ment. A preferable  measure is CPU hours  per  thousand  lines,  a 
topic that is discussed  later in the  paper. 

Another work unit of questionable reliability is that of pages writ- 
ten  per writer-month for  documentation  and  publications.  To be 
useful, it  is obviously  necessary to define the page,  and even then 
the  results  tend to be erratic  and of marginal utility. Here also  the 
cost unit form, which might be expressed  as  documentation  cost 
per  thousand lines of code, seems more reliable as a way of gain- 



I Table 6 Work unit comparison of past experience and improved programming technologies 

Activity Past  Improved 
experience  programming 

technologies 
I 

User  analysis  and 3 programmer- 3 programmer- 

Design 20 pages  per  week 20 pages per week 
Coding 60  lines  per  day 110 lines  per  day 
Testingldebugging 10 tests  per  day 20 tests  per  day 
Documentation 5 pages  per  day 6  pages  per  day 
Maintenance 4 hours per  change 6 hours  per  change 

requirements  statement  weeks  weeks 

Programming cost units 

Of the  several programming cost  units mentioned-cost per byte, 
cost per line, cost per thousand  lines, and others-from my expe- 
rience,  cost  per  thousand lines of code  serves  best. Here, lines of 
code  means  source lines of executable  instructions  and data dec- 
larations, but not commentary lines. Source lines are  natural 
units for most managers and programmers, and selecting a  thou- 
sand lines or bytes helps to visualize a realistic development 
cycle. Of course,  for programs smaller than  a  thousand lines 
some other unit, such  as  a hundred lines, might  be preferable. 

The  advantage of cost units as opposed to work units is that all 
development and maintenance expenses, including manpower, 
machine time,  and  dollars can be expressed in terms of this  basic 
unit, and can be used to  derive  complete project costs by sum- 
ming the  subactivity  costs.  The summing of cost  units is simpler 
than summing work  units, and is one of the  reasons why cost 
units are more useful and  versatile  than work units. 

Table 5 illustrates  the differences between a work unit (lines of 
code per programmer-month) and a cost unit (programmer- 
months of effort per  thousand lines). The  example is taken from 
the 2000 line Assembler language program shown in Table 4. In 
this example,  the work unit data  under lines of code per program- 
mer-month do not add up  directly.  The net productivity at  the end 
must be  calculated by dividing 2000 lines of source  code by the 
four months of effort.  The data  under  programmer-months  per 
thousand lines of source  code can be added  directly, and lead to 
a  cost/value analysis that is discussed  later in this  paper. 

Tables 6 and 7 give a hypothetical example  comparison of work example 
versus  cost  units wherein the  data  are typical of those  found in 
the  literature. Assume that  a  company is debating the  merits of 
various  improved programming technologies, and wishes  to know 
whether  they are cost justified. Suppose  also  that  an  experimental 
program is developed  for  comparison, using improved program- 
ming methods.  Expenditure of personnel time is to be  compared 
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Table 7 Cost unit' comparison of past  experience  and  improved  programming  technologies 

Activity Pust Improved 
experience  programming 

technologies 
"" ~~~~ 

User  analysis  and 
requirements  statement 0.24  0.24 

Design 0.72 1.08 
Coding 1.5  0.66 
Testinddebugging 1.5  0.72 
Documentation 0.48 0.36 
Maintenance 1.56 0.72 

Total 6.00 3.78 
~- 

*Programmer-months per thousand lines of source  code 

to  the  experience of several  past programming projects. On the 
basis of the information in Table 6, it  is  difficult to  compare  the 
two  programs definitively because each method has  advantages 
and disadvantages. Compared on  the basis of programmer- 
months per  thousand  lines,  as shown in Table 7, the  cost advan- 
tage of the  improved programming technologies stands  out 
clearly. 

By using a  cost unit, a  series of useful productivity  analyses  can 
be  made. To visualize these  analyses, the probability rectangle 
approach, discussed earlier in this paper, is used again. In the 
particular probability rectangles used here,  the  cost units are dol- 
lars  spent per thousand lines. Other  measures,  however,  such  as 
CPU hours per thousand lines or programmer-months per  thou- 
sand lines,  are equally possible and useful. 

Programs have  two  attributes  that lend themselves to a display of 
their cost of productivity  ranges. They have  size, which can be 
displayed in units  such  as  thousands of lines of code.  They also 
have costs and expenditures  that  can be expressed in such  terms 
as  dollars,  programmer-months,  or CPU hours. 

The  fundamental  units of size and cost make possible the plotting 
of those  parameters  and  the  comparison of programs. Such  data 
plots also highlight major uncertainties  and  the  ranges of those 
uncertainties  that  confront a programming manager and  cost  es- 
timator. Typical of the  factors  that  such  a  person must estimate 
are  the number of lines of code to  be produced  and the unit cost 
per line or  per  thousand lines. 

In the following example,  a  company plans to develop a new pro- 
gram,  the size of which is estimated  to fall between three  and five 
thousand lines of code.  Previous unit costs  for  programs  at  the 
company have ranged between $20 000 and $25 000 per  thousand 
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lines (a typical  cost range). In Figure 2 ,  these  estimates ate 
plotted as a probability rectangle. The best  case  for  the program 
being estimated is  3000 lines of code  produced  at a unit cost of 
$20 000 per thousand, yielding a total expenditure of $60 000, i.e., 
the lower left corner of the  rectangle.  The  worst  case is 5000 
lines of code  produced  at  a unit cost of $25 000 per  thousand 
yielding a total  expenditure of $125 000, i.e., the  upper right cor- 
ner of the  rectangle.  The  center point of the rectangle is the mean 
of both  variables.  This point indicates  that  an  expected  size of 
4000 lines has been produced at a unit cost of $22 500 per  thou- 
sand,  thus yielding a total expenditure of $90 000. 

While the programming project is under way, both the size of a 
program and the unit cost of a program tend to  fluctuate  indepen- 
dently.  Therefore, it  is  helpful to  be  able  to  separate  these vari- 
ables, so they can be analyzed independently.  Such information 
aids in business  decisions  about  whether  the  project is worth- 
while and should be continued.  Such an analysis also  provides 
feedback about potentially dangerous  situations  before  they be- 
come pathological and  cannot be corrected.  The probability rec- 
tangle approach  provides management with the  expected bound- 
ary conditions of program size and program costs, and facilitates 
making decisions  about  whether  to  continue  a  project in the  event 
that  worst-case  situations  occur. 

A probability rectangle analysis also aids in heading off what we 
termpathological programming situations.  Generally,  a patholog- 
ical program is one  where unit costs  and/or size far  exceeded 
worst-case  expectations. Figure 3 illustrates the  contrasts be- 
tween a normal development  and  maintenance  expenditure  pat- 
tern  and  a pathological one.  The  curves plotted here are not  a 
probability rectangle,  but  ones  that  have  been derived from  the 
concept of normalizing data  to display various  costs  on  a  per- 
thousand-lines  basis.  This graph is one of the family of several 
possible data  displays  that use cost  units and normalizatiofl. 

In normal development, early expenditures are usllally high be- 
cause of the tooling up and necessary learning that  accompany 
requirements, specifications, functional definition, and  design. 
This spending pattern typically levels off during coding,  testing, 
and maintenance. On the  other  hand, pathological development is 
often characterized by hasty requirements  analysis,  incomplete 
design,  and  the  premature  start of coding. The  discovery of over- 
looked functional  needs  frequently triggers the rewriting and re- 
compiling of much of the  code.  Such programs may be  termed 
rear  loaded, as illustrated in Figure 3 by low initial expenditures 
and by steeply increasing costs  late in the  project.  One of the 
values of data normalization and  cost units is that  such  patterns 
can be seen as they are  developing,  and  corrective  action  can be 
taken. 
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Measuring  productivity in a complex  environment 

We now explore more realistic program development  situations 
that involve complex programs in which development and main- 
tenance  are  intermixed  at  the  same  time. One of the  few  items of 
wisdom in programming about which almost  everyone  seems  to 
agree is that  there is no such thing as a final program;  changes 
always  occur. 

The  concepts of normalization and programming cost units are 
useful in describing complex and realistic changing situations,  as 
well as  hypothetical  cases. To do so, however, it is necessary to 
measure  or  evaluate  the following costs: 

0 Costs of changing a program as circumstances  change. 
0 Cumulative costs of program ownership. 

Assume a programming system  that  has been developed  and put 
into  production  status.  Its initial size was 50 000 lines of code, 
developed at a unit cost of $40 000 per  thousand lines. Thereafter, 
major changes  were made to  the  system  that  added  or deleted 
lines of code. Table 8 summarizes  events in the life cycle of this 
hypothetical programming system. 

The basic programming system  entered  production  status with a 
unit cost of $40 000 per thousand  lines,  or $2 000 000 in total 
costs.  Later  there were two  additions  and  one  deletion. Although 
the  additions  and  deletions were presumably made at different 
times for different reasons, and had varying unit costs,  the cu- 
mulative cost of ownership  always  increases.  Furthermore,  after 
the  additions  and  deletions,  the unit cost  for  the whole system 
had risen from $40 000 per  thousand lines at its initial completion 
to $50 000 per  thousand lines after the third change. Although it is 
possible for  the unit cost  to  decrease (such as when many lines 
are  added  for  a  very low cost)  the  general  trend is usually upward 
with time,  and  the cumulative cost of ownership is always up- 
ward. 

The main goals of productivity improvement  are  to  lower  the unit 
cost  for  development and the  cumulative  cost of ownership  dur- 
ing the  entire life of the program. It is important to be clear  about 
these goals because technologies and  strategies  that  tend  to mini- 
mize unit costs  and  ownership  costs  are  not  always  the  same  as 
those  that lead to the most rapid coding or hand crafting of pro- 
grams. For  example, if a program were to be developed  and  there 
were a  choice  between writing the program from scratch  or modi- 
fying an existing program,  the following things might occur. As- 
sume  the new program to be 5000 lines of code in size  and could 



Table 8 Life cycle of a hypothetical programming system 

Event  Size in Cost in Cumulative 
thousands dollars per  cost in 

of lines thousand dollars 
lines of code 

I 

~ ______ - - ~ 

Creation 50 40,000 2,000,000 
Addition 10 50,000 500,000 
Deletion - 5  40,000 200,000 
Addition 5 60,000 300,000 

Subtotal 
" ~ .~ " 

60  50,000 3,000,000 

To offer the  same  set of functions via modification might require 
2400 lines of new code  added  to  a  base of  2600 lines of cbde  bor- 
rowed from an existing program. Because of the difficulty  of un- 
derstanding or learning the  base, productivity on writing the 2400 
lines might drop  to only 300 lines of code  per  month,  or 8 months 
in all. Yet  regardless of the  apparent productivity rates,  the  costs 
are  lower via modification. That  is, if the delivered versions of the 
equivalent programs  are  contrasted in cost  units,  then  the new 
program would require 2 programmer-months per thousand lines 
of code,  and  the modified version would require only 1.6 pro- 
grammer-months  per thousand lines. 

This  example  illustrates  the  observation  that on the  average, pro- 
ductivity rates on new programs decline as size increases-with 
small programs of less than 2000 lines of code  often taking in the 
vicinity of 1 programmer month per thousand  lines, and large sys- 
tems of over 512  000 lines often taking 10 programmer-months 
per thousand lines or more. When the  cost of maintaining or 
changing a program is measured,  however,  a  reverse  trend is 
noted.  That  is,  the  smaller  the  change,  the larger the  unit  cost is 
likely to  be.  This is because it is necessary  to  understand  the  base 
program even  to  add  or modify a single line, and the  overhead of 
the learning curve  exerts  an  enormous leverage on small changes. 
Additionally, it is often necessary to test  the  entire program and 
perhaps recompile much of it, even though only a single line has 
been modified. This  subject is discussed in somewhat  more detail 
in Reference 2. 

The cost saving that is often associated with reusing code  that 
has already been written,  rather than hand crafting it,  is one of the 
main economic  incentives leading to an increasing interest in 
modular programming and reusable module structures.  It is in 
analyzing  the potential cost saving that  cost units as a  means of 



If a program is being created from a library of precoded  functions, 
the unit of lines of code  per programmer-month has  no meaning, 
since the  work of the programmer has  changed.  Still,  there are 
costs  associated with assembling the  products.  Measuring with 
cost  units  leads to speculation about new ways of doing business, 
and about  productivity gains similar to  those in engineering and 
manufacture  through  the use of interchangeable  parts. 

Reusable code may significantly change  one’s  perception of pro- 
ductivity.  If,  for  example,  one is developing a program function 
that is expected  to be cataloged for  reuse in many future  pro- 
grams, it might be well to invest in exhaustive  testing, so as  to 
approach  zero program defects. 

Problems of cost units 

Although my experience indicates that cost units are more useful 
than work units in measuring programs  at  the  present  time,  there 
are problems with cost  units.  Discussed  here  are limitations of 
two  cost  units,  cost  per  defect  for maintenance repairs  and  cost 
per page for publications and  documentation. 

In  the  context of programming, both  units  are in fact  peripheral  to 
the main concept of what a program is. With respect to program- 
ming, cost  units aim at  the  product itself-lines  of code  or  bytes. 
Thus  cost per defect is a  supplemental  unit;  the real indicator  and 
true  cost unit is defect removal cost  per  thousand lines or, alter- 
natively,  defect removal cost per iine. 

Similarly for  documentation  and  publications,  cost  per page is a 
reasonable unit in a localized sense.  However, it is preferable  to 
measure  documentation  costs  per  thousand lines or  documenta- 
tion cost  per  line, so that  these  costs can be added to  the  other 
subactivity costs. 

cost  per Of the  two  units of measure,  cost  per  defect is likely to  cause  the 
defect greater  misunderstanding.  Cost  per  defect  is a key unit  because, 

as mentioned in Reference 2, about half the money ever  spent on 
programming has  been used for  defect removal and repair. As it  is 
commonly measured and used,  cost  per  defect is one of the para- 
doxical units of measure, and tends  to penalize high-quality pro- 
grams because it often assumes  its  lowest values for  the most 
defective  programs. High-quality programs  tend  to be relatively 
free of simple defects, which are  cheap  to  repair,  and only have  a 
residue of rather  elusive  problems.  Also,  cost  per  defect is a com- 
pound unit of measure,  and  one  should  understand  both  parts of 
the  compound. All defect removal operations,  such  as  testing, 
have  two  distinct  expense  elements.  One element is preparation, 
which includes writing test cases, reading specifications,  and 
many other  activities.  Preparation  costs  accrue  whether a pro- 
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gram has  any  defects in  it or  not,  and  these  costs  increase more or 
less as a function of program size.  The  other  expense  element is 
repair, which includes fixing bugs that  are found and  retesting 
after repairing the  defects.  Suppose,  for  example,  that  two similar 
programs are being tested, and we are interested in comparing 
their  defect  removal  costs in some normalized form.  Assume  that 
both programs  consist of one  thousand lines of Assembler code, 
but one program  has been written using improved programming 
methods,  such as topdown design and  structured code,  for defect 
prevention.  The  other  program,  however, has been using older 
methodologies. Assume also that in testing only one problem is 
found in the modern program,  whereas  the old style program has 
ten problems reported.  Preparation  costs  for  the  test  are  identical 
for both programs and run ten  hours  each. Defect repair costs  for 
the modern program are only six hours,  but  total thirty hours 

1 for  the old-style program. By adding the  preparation  and  repair 
1 hours and dividing by the  number of defects in each case  the  cost 
~ per defect is sixteen  hours  for  the single modern program defect 
~ and  four  hours  for  the old-style program.  The  paradox lies in the 

observation  that  the  greater  the  number of defects  found in the 
program,  the  cheaper they are  to repair.  It might be thought  that 
by separating  the  preparation  costs from the  repair  costs the para- 
dox would be  resolved.  This,  however, is not the case.  The low- 
defect program shows six hours  per defect for  repair  alone, 
whereas  the high-defect program requires only three  hours  per 
defect in repair  costs. 

The  overall  conclusion is that  cost  per  defect is not a reliable unit cost per 
of measure,  since it penalizes high-quality programs.  A  better page 
method is to look at defect removal and  repair  costs  per  thousand 
lines. With this  unit,  the  true  expenses of high-defect levels are 
revealed, i.e., sixteen  hours of test  cost per thousand lines of 
code  for high quality programs,  and  forty  hours of test  cost per 
thousand lines of code  for old-style programs. 

The situation with cost per page of documentation is not quite as 
traumatic as it is with cost per defect, since page costs do not tend 
to favor high-defect work products.  The problem with cost  per 
page is  that it tends  to  achieve  its  lowest values for pages with the 
greatest  amount of white space. If white space is held constant, 
cost  per page tends to be lower for  documents with the  greatest 
number of pages (although this  latter  point is not a definite rule). 

The  problems with cost per page can be shown by the following 
example.  Suppose  that  two identical programs are being docu- 
mented,  and  both are one  thousand lines of code in size. In one 
case,  the  writer merely converts  a specification into a publication, 
and  produces  a fifty-page document  at  a  cost of $3000. This yields 
a cost  per page of $60. In the  second case, the  writer  works hard 
to condense  the  materials, and produces  a thirty-page document 

IBM SYST J VOL 17 NO 1 1978 JONES 61 



at  a  cost of $2400, or $80 per page. Even though the  cost per page 
favors  the large document,  the smaller publication is the less  ex- 
pensive of the  two. If documentation  costs  per  thousand lines of 
code is the unit of measure, this fact is clearly revealed.  The small 
book costs $2400 per  thousand lines of code,  whereas  the  larger 
costs $3000 per  thousand lines of code. With documentation as 
with programming, care must be used in selecting units of meas- 
ure  for  the  results  to be truly meaningful. 

ratios and Of all the ways to  discuss  productivity data, ratios  and  per- 
percentages centages  tend  to be the least reliable and  the most likely to  cause 

serious  misunderstandings.  Ratios  show,  for  example,  per- 
centages of time,  expenses,  or CPU hours  devoted to different as- 
pects of development.  It is extremely common-perhaps more 
common than any  other method-to see  reports  that  indicate 
such things as “design  took twenty percent of the time and fifteen 
percent of the programmer-months while coding took  thirty  per- 
cent of the time and  forty  percent of the  programmer-months.” 

The  fundamental problem with ratios  and  percentages is that they 
assume  that  various development activities  are  connected in such 
a way that if you know one of the  activities, you can  derive  the 
others.  For  example,  there is an assumption (implicit  in the use of 
ratios) that if you can estimate coding costs  accurately,  then you 
can derive testing costs by assuming that testing is some  per- 
centage of the coding cost.  These  basic  assumptions  are  incor- 
rect,  and  there  are no known fundamental ratios between  the 
various activities of programming. Consider  the  two  activities of 
coding and testing. Coding expenses are a function of the com- 
pleteness of the  design,  the skills of the  coders, and the tools and 
methods  used. Testing expenses are a function of preparation 
costs  and  defect  repair  costs.  It is possible-in fact  quite com- 
mon-for two  programs A and B to  have virtually identical  cod- 
ing expenses, but very different testing expenses.  The  assumption 
that a ratio of coding costs  to testing  costs  developed  for program 
A will work for program B is a common misconception,  and  one 
of the key sources of estimating error. 

The  alternative to ratios and percentages is straightforward. Cal- 
culate  the  costs of each  development  activity on its own merits 
and then sum all the subactivity costs  to arrive at the  total  pro- 
gramming cost.  This  way,  even if one  activity is grossly incorrect, 
the problem does not propagate itself throughout other  activities, 
which  might be the  case if ratios had been used. 

Without multiplying examples, it may easily be seen  that  ratios 
are  extremely simplistic, and supply little or no useful informa- 
tion.  Indeed,  the only thing that  ratios  do well  is preserve  secret 
or  proprietary information about how much time or money were 
actually spent. 

62 JONES IBM SYST J VOL 17 NO I 1978 



JONES 63 


