
Discussed is a  technique  for  investigating  the  eficiency of com- 
piled  programs.  Based  on  research  that  uses FORTRAN as  a  test 
subject,  the  method  is  more  widely  applicable.  Time  analyses 
show  programmers  points  at  which  eficiencies  may  be  increased. 
Also  discussed  are  uses of the  technique  for  comparing  the  efi- 
ciencies of compilers  and  languages,  and  for  making  perform- 
ancelcost  analyses.  Presented  are  validation  data  for  the  method 
under  several  sets of conditions. 

A method  for  the  time  analysis of programs 
by S. L. de Freitas  and P. J. Lavelle 

Program efficiency depends on several  factors, including the  se- 
lection of a  language,  algorithm,  structure, and programming 
technique  suitable  for  each  application.  Furthermore, efficiency 
is always  related  to a specific hardware-software  environment. 
The  great  variations among operating systems,  compilers, and 
computer models preclude the use of a fixed set of rules  for 
achieving program optimization. 

Optimizing compilers  are used to  improve  the efficiency and  to 
reduce  the  size of the  object  code, at the  expense of an  increase in 
the time and storage needed for  the compilation. Though  the  ad- 
vantages of particular compilers are well known,  they  also  con- 
tain some undesirable  characteristics. Optimization is  often  done 
in a  standard way for all programs, with no provision for selecting 
only certain parts of a program for optimization. It is difficult for 
the programmer to  determine  the  nature and extent of the opti- 
mization performed, in order  to  improve a program at  the  source 
code  level.  Certain  unnecessary or inefficient operations (such as 
data  conversions  caused by bad source  code)  are not recognized 
by some compilers. 

This  paper  describes  research on this problem by the  authors  that 
has led them to  write  a program that  analyzes  the  output of the 
LIST option of the FORTRAN compiler. The experimental program 
inserts information based on this  analysis  into  the compiled listing 
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of the  program,  as  an aid to  the  programmer in determining  the 
cost  and timing  of each FORTRAN statement,  thereby  seeking  to 
improve  program efficiency. The major  advantage of our  method 
is that it  is based  on  the  characteristics of the  machine  being  used, 
and  on  the  manner in which  the FORTRAN compiler  generates  the 
object  code.  The  result of these  studies is to  incorporate  the  na- 
ture of the  data,  the  type of operations being performed,  and all 
the  characteristics  described in the  program. 

A FORTRAN compiler  and  the IBM Systemi360  Model 65 computer 
have  been  used as  subjects of this  study.  Other  compilers  and 
computers  are similarly  applicable  subjects, as is  discussed  later 
in this  paper. 

Nowadays  the  cost-conscious  computer  user  knows  that  the  use 
of Assembler-language-level programming  should  be  avoided as 
much as possible.  In high-level language  techniques-such as 
structured  programming  and  peer reviewing-better algorithm 
choices  are  more  fruitful in a great  many  cases  than  down-to-the- 
microsecond  programming. By using  improved  programming 
techniques,  however,  the  programmer  loses  contact  with  the 
machine  architecture  and  lacks  motivation  for  chasing  the  lost 
microsecond.  General  exist, but  they are simply 
what  they are-general. 

Only an  in-depth  analysis of the  compiler-generated  object  code 
can  furnish a secure  set of optimization  rules.  Unluckily  the  num- 
ber of possible  instructions,  forms,  and  cases  is  too  large  to  cope 
with even  for  such a simple  language as FORTRAN. Thus  we  have 
found  it  simpler to  show  the  programmer  the  cost of his  program- 
ming rather  than  to rely  on  incomplete  optimization  rules. 

The  techniques  needed  to  introduce  our  compiler efficiency as- 
sessment  are  relatively simple under  the following conditions. 
The compiler  is  modest in its  objectives  and  does  not  optimize  too 
strongly  at  the  interstatement  level.  The  machine  architecture 
and  instruction  timings  are  simple.  (Multiple  instructions  per 
word, high-speed  buffers, cache  and  virtual  storage,  and  speed-up 
options  that  hardware  designers  put  into  machines  are  often  the 
nightmare of compiler  designers.)  Finally,  the  compiler  source 
code  is  available  and/or  that  development is included  from  the 
compiler  design  stage. 

Another  motivation  for  our  research  has  been  the difficulty of ob- 
taining, understanding,  and reliably  modifying  a  whole  real com- 
piler in a  short  time. If our solution finds widespread  use,  compiler 
modification should  be  considered. 

ANATEMP: a  time analysis program 

Our  time  analysis  program,  called ANATEMP, has  been  tested  and 
is  currently  running  on  an IBM System/360  Model  65,3  operating 

IBM SYST J VOL 17 NO I 1978 DE FREITAS AND  LAVELLE 



Figure 1 General flow of a FORTRAN program using ANATEMP 
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under  control of OS-MVT Release 21.8. ANATEMP has been applied 

piler. Figure 1 shows  the flow  of a FORTRAN program as it is being 
compiled,  analyzed by ANATEMP, link-edited, and executed. 

to programs compiled by the IBM FORTRAN IV G Level 21 com- 

The program is compiled with the SOURCE and LIST options. 
The SYSPRINT output of the compilation is directed to a temporary 
data  set on disk. Batch compilations are  allowed, with each 
unit being analyzed separately.  Note that in the SYSPRINT data 
set,  the output from the SOURCE option  for  each compilation 
precedes  the  output from the LIST option  for  that  compilation. 
ANATEMP then performs the following steps: (1) The  source list- 
ing is read from disk into main storage. If the  source  contains 
more than eight hundred cards, the  excess is saved in a spill 
data  set on disk. When all the  source  data have been read 
and  the LIST data  reached,  the spill data set-if  used-is 
rewound. ( 2 )  At this  point,  the SOURCE data  and  the LIST data  are 
analyzed together.  Instructions  that  correspond to  each execut- 
able FORTRAN statement are determined, timing calculations are 
performed,  and  the  results  are  printed. (3) If there are additional 
data  to be analyzed  (batch  compilations),  return to  step 1. When 
all data  have  been  analyzed, ANATEMP terminates. The link-edit 
and  execution  steps are then  executed normally. 

1 

analysis The information provided by ANATEMP is inserted into the FOR- 
fields TRAN source listing of the compiler in blank fields that  are  not 

otherwise  used. It is assumed  that  a  133-character  printer is used. 
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I An example of the information provided is shown in Figure 2. An 
Appendix is provided to  illustrate  the use of ANATEMP and to  pro- 
vide guidelines for source  code  optimizations. In Figure 2,  for  a 
main program LINK is the link time of the program with OS; for 
subprograms, it is the prologue time.  The following is a  descrip- 
tion of the numbered fields in Figure 2. 

1. Brunch j a g .  B is present in this column if the  statement may 
cause  a  branch, unless the  branch is to  an  external  reference. 

2. External reference. All statements  that make implicit or  ex- 
plicit external  references  are flagged with an E. 

3 .  Loopjug. Statements  that  contain  an implicit DO LOOP, or  end 
an explicit DO LOOP contain an L in this field. 

4. Number  ofexternal references. This field contains  the  number 
of external  references made by each  statement;  a blank sig- 
nifies no external  references. 

5 .  Offset. The offset field contains  the location relative to  the 
origin of the program at which each  statement begins. This 
information is particularly useful to  the  programmer  because 
it allows a quick determination of the number of bytes used to 
generate  each  statement.  This is an excellent tool for debug- 
ging, since  the  address in the PSW at  abend minus the  address 
of the  entry point often points to the  statement  where  the 
abend  has  occurred, or, in virtual systems, where the program 
is paged. 

6. Minimum  execution time. When present, this field represents 
the minimum time necessary  to  execute  the  corresponding 
statement.  This information is useful in analyzing compound 
statements (e.g., I F  (A.GT.B) c = D ) ,  where different execution 
times are possible. 

7. Execution time. This is the  total time expected  for  execution 
of all instructions  that  compose  the  statement, and includes 
the time for  the  execution of in-line subprograms, if any. If the 
statement  makes  an  external  reference (indicated by a flag  in 
field 2), this value excludes  the  execution time of the  ex- 
ternal  subprogram. 

8.  One iteration time. This value, enclosed in parentheses, is the 
time needed  to perform one  iteration of a DO LOOP as defined 
in a DO command. 

9. DO LOOP housekeeping. This value represents  the  time  re- 
quired to initialize a DO LOOP. It should be added to  the value 
of field 8 to find the value of the first iteration. ANATEMP uses 
a stack  array  for DO LOOP timing calculations,  since  nested DO 
LOOPS work on a Last-In-First-Out (LIFO) basis. 

The RESUME is a list of all instructions used by the program to- 
gether with the  number of occurrences of each  and is printed at 
the  end of the listing. The number of Defined Constants (DC) gen- 
erated by the compiler is presented,  and  the  sum of times for all 
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Figure 2 Demonstration of ANATEMP results 

FORTRAN IV G LEVEL  21 MAIN DATE = 77266  17/12/21 PAGE 0001 
1234 5 6 7  a 9 

LINK = 24.92 
C INPUT/OUTPUT STATEMENTS 
C 

DIMENSION AAA(1O) 
10 FORMAT (20F10.2) 

- 3  WRITE(3,lO) (AAA(I),I = 1 , l O )  002DA8 
3 WRITE(3.10) AAA 002DEC 4 ao 

15.33 

C 
C DATA TYPES AND CONVERSIONS 
C 
50 I = J  002EOC 2.13 

W = K  002E14 13.06 
20 INTE4A = REAL 0 0 2 ~ 3 8  13.58 
30 REAL4 = INTE4B 002E5C 

REAL*8 REAL8 
13.06 

40 REAL8 = INTE4A 002E80 13.06 
K1 = Q + J + E + K K K  002EA4 40.23 
K222 = IFIX(Q + E) + J + KKK 002F04 

C 
C EXPRESSION EVALUATION 
C 

I 8.26 

DIMENSION VETOR(5C), V2(50,50) 
DO 70 I = 1,510 002F32 4.53 
VETOR(I) = 0.0 002F42 3.33 
DO 70 J = 1,510 002F4E 2.78 
VETOR(I) = VETOR(I) + A * B / c * v ~ ( J , I )   0 0 2 ~ 5 8  20.66 

70 CONTINUE 002F70 

RESUL = A * B / C 002FAC 

VETOR(1) = 0.0 002FDO 

VETOR(I) = VETOR(I) + RESUL * V2(J,I) 002FE6 

DO ao I = 1,5o 002FBC 

DO ao J = 1,5o 002FDC 

ao CONTINUE 002FF6 

M = J + (365 - 100) / 5  003032 
M I  = J + 53 00304E 

C 
C SUBSCRIPT 
C 

DIMENSION SUB(IOO), SMAT(10,IO) 
FASTER = SUB(M + 2) 
SLOW = SMAT(M + 3,'N) 
TOTAL = 0.0 
DO 90 I = 1,100 
TOTAL = TOTAL + SUB(1) 

90 CONTINUE 
TOTAL = 0.0 
DO  110 I = 1 , l O  
DO 110 J = 1 , l O  
TOTAL = TOTAL + SMAT(I,J) 

110 CONTINUE 

C 
C  LOGICAL IF & BRANCHING 
C 

IF(A.LT.B.OR.C.GT.F.0R.H.GE.T) GO TO 100 
IF(A.LT.B)  GO TO 100 
IF(C.GT.F) GO TO 100 
IF(H.GE.T) GO TO 100 
IF(A.GT.B)  GO TO 100 
IF(A - B) 100, 100, 200 

00305A 
00306A 

003092 
00309E 
0030AA 
0030C6 
0030D2 
0030DE 
0030EC 

0 0 3 0 8 ~  

0 0 3 0 ~ 8  

0031  30 
0031 7C 

0031  98 
0031  A6 
0031 84 

0031 8~ 

4.18 
12.88 
2.13 
3.33 
4.56 
7.90 ( 13.39)  2.4 
3.33 
3.33 

4.56 
3.98 

15.80 ( 21 29)  3.0 
( 25.27) 2.4 

28.09 
5.38 
5.38 
5.38 
5.38 
6.68 
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I FORTRAN IV G LEVEL 21 MAIN DATE = 77266 17/12/21 PAGE 0002 

0045  B  100 GO TO (20,30,40,50), ITEM 0031  C4  10.90 
0046  B 101 GO TO 200 0031 2.20 
0047 200 ASSIGN 50 TO NUMBER 

0049 201 CONTINUE 
0048 B GO TO NUMBER,(30,50,40)  003206  2.20 

C 
C MACHINE DEPENDENT OPTIMIZATION 
c 

0050 
0051 
0052 
0053 
0054 
0055 
0056 

C 
C ,. 

00322E 19.73 
003242  6.93 
00324E 3.53 
00325A  9.43 
003266  6.53 

INTEGER*2 INT2,INTX,INTY,INTZ 
INT2 = INTX / INTY * INTZ 
INT4 = IN4X / IN4Y * IN4Z 
K = M N * 2  
K11 = MNI + MNl  
DIV = DlVl / 4 
DV = DVI * 0 25 

SUBPROGRAMS 

0057 E 1 CALL MATMPY(X,5,40,YYY,ROOT) 

0059 E 1 STOP 003296  2.40 
0060 END 

L 

0058 INL = MOD(1.J) 00327C 21.78 

FORTRAN IV G LEVEL 21 MAIN DATE = 77266 17/12/21 PAGE 0003 

SUBPROGRAMS CALLED 
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION 
IBCOM= F8  MATMPY  FC 

SYMBOL 
REAL8 
INTE4A 

Q 
B 

FASTER 
H 

IN4X 
MNl  

X 
I NTX 

SCALAR MAP 
LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL 

120 I 128  J 12c W  130  K 
138 
14C 
160 
1 74 

19c 
1 BO 
1 C4 
1 D6 

I 88 

REAL 
E 
C 

SLOW 
T 

IN4Y 
DIV 
YYY 
I NTY 

13C 
150 
164 

18C 
1 A0 
184 

1 D8 

178 

1 ca 

REAL4 
KKK 

RESUL 
N 

ITEM 
IN4Z 
Dl VI 

ROOT 
I NTZ 

140 INTE4B 
154  K222 

17C TOTAL 
190 NUMBER 
1 A4 MN 
188 DV 
1 cc INL 
1 DA 

I 68 M 

144 

16C 

194 
1 A8 
1 BC 
1 DO 

158 

I ao 

K1 
A 

M I  
F 

I NT4 
K11 
DV I 

I NT2 

LOCA 
134 

15C 
170 

198 

I 48 

1 84 

1 AC 
1 co 
1 D4 

ARRAY MAP 
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBO 

SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATIO 
HJi-IVIH I 3 I H I t l V l t l \ l  I 

*OPTIONS IN EFFECT* NOID,EBCDIC,SOURCE,LIST,NODEC 
*OPTIONS IN EFFECT* NAME = MAIN, LINECNT = 60 
*STATISTICS* SOURCE STATEMENTS = 60,PROGRAM SIZE = 12964 
*STATISTICS* NO DIAGNOSTICS GENERATED 
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statements is also  given.  This, of course,  does not represent  the 
expected  execution  time, but serves  as a guideline for com- 
parisons. 

We coded ANATEMP in FORTRAN to allow FORTRAN programmers 
to make modifications for various computer  hardware.  Two  as- 
sembler subroutines were used. The first, MOVECO1, is a general- 
purpose  subroutine  to move characters from one  storage  location 
to  another.  The  second is an interface  subroutine  to ADCON#, 
which is the FORTRAN module that is used to make conversions. 
Input/output  operations on disk are performed sequentially,  thus 
allowing better efficiency through automatic blocking and  de- 
blocking. 

No restrictions are imposed on the programmer in using ANA- 
TEMP. When a cataloged procedure  has been built (e.g., 
FORTTCLG, with T for timing instead of G )  the  programmer  exe- 
cutes  the  procedure  as  a  standard IBM procedure just  as 
FORTGCLG would be  executed. 

Observations on ANATEMP 

We evaluated  the  cost of using ANATEMP by comparing the CPU 
and execution time spent by the FORTRAN compiler and by ANA- 
TEMP for  several  programs of different sizes. All values were  ob- 
tained from the System Management Facilities (SMF)4 records 
generated by the OS operating  system.  The  sum of these  runs indi- 
cated  the following results: 

0 Total  number of input cards: 3192. 
0 FORTRAN source  statements: 1948. 
0 CPU time used by the FORTRAN compiler: 95.75 seconds. 
0 Execution time for  the FORTRAN compiler: 4.5 minutes. 
0 CPU time used by ANATEMP: 60.63 seconds. 
0 Execution time for ANATEMP: 3.5 minutes. 
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Table 1 Time comparisons for a program running with other programs 

Parameter  Tests 

I 2 3 4 5 

Time furnished 

(seconds) 
A by the system 9.85  11.92  9.95  10.73 111.48 

ANATEMP(seconds) 
Time calculated by 

10.21 10.21 102.10 

Percentage A - B 
difference B 

-3.52 16.74 -2.54 5.09 9.29 

Thus we conclude from the  cases  studied  that ANATEMP uses ap- 
proximately 65 percent as much CPU time, and 75 percent as 
much execution time as the FORTRAN compiler. 

accuracy The  instruction  times used are calculated from IBM f o r m ~ l a s , ~  un- 
of time der certain  constraints, limitations, and  assumptions  that  arise 

estimates from three different sources. With respect  to compiler character- 
istics,  certain  instructions in the System/360 Model 65 set  are not 
used in object  code  generated by the FORTRAN G compiler.  There- 
fore, timings for  these  instructions need not be included in the 
program. In addition, simplifications are possible for timing cal- 
culations of the following other  instructions.  The Move instruc- 
tion (MVC) is the only storage-to-storage (ss) instruction  that is 
generated by the  compiler.  Since this instruction is used only in a 
standard way to perform linkage between  subprograms, a fixed 
time can be used for  the  calculations.  The  Store Multiple (STM) 
and  Load Multiple (LM) instruction timings depend on boundary 
alignment. Since  they  are also used only for linkage purposes by 
the  compiler,  and  are aligned on a double word boundary, fixed 
times can be used. 

Instruction times can also be affected by hardware-dependent oc- 
currences  that  cannot be predicted and  are not accounted  for in 
the timing f o r m ~ l a s . ~  

As for  execution  time  dependence, in computing instruction 
times, it is assumed  for all branch  instructions  that the branch is 
taken,  unless  the mask is zero  or the  second  operand in a Regis- 
ter-to-Register (RR) instruction is zero.  In  particular, it is assumed 
that  the  branch is always  taken  for  Branch on Index  Low  or 
Equal (BXLE) instructions. 

After compilation,  the program ANATEMP calculates the execu- 
tion time for  each  executable FORTRAN statement,  as well as oth- 
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Table 2 Time comparisons for  a  program running with no  other active programs 

Parameter 

I 

Tests 

2 
- 
3 

~ A Time furnished by the system 
(seconds) 9.88 9.68 97.80 

Time calculated by ANATEMP 
(seconds) 10.21 10.21 102.10 

Percentage A - B 
difference B 

-3.23 -5.18 -4.1 I 

er information, using the basic times and  associated  formulas  for 
each machine instruction.  Several  tests  were made to  compare 
the times furnished by the  system  and by ANATEMP. The  reader 
should take  into  account the timing considerations  for Systed360 
Model 65 as described in References 4 and 5. 

In the first set of tests, summarized in Table 1, a simple program 
that  consisted of a DO LOOP using fixed-point operations only was 
run concurrently with other  programs. In the  second  set of tests, 
summarized in Table 2, the  same program was run with no other 
active  programs. Using the OS macroinstructions TTIMER and STI- 
MER, the  authors  have  developed  the  subroutine TIME01 to meas- 
ure the CPU time elapsed  between  two points of a  program.  This 
subroutine was used in a third set of tests, which included fixed 
and floating-point operations.  Table 3 shows  the  results of the 
third set of tests.  Results with multiprogramming are given by 
tests1  and 2. 

For the Systed360 Model 65, as shown in Tables 1-3, the times 
predicted by ANATEMP represent  a good approximation to  the real 
times. We expect similar results  for all computers with com- 
parable  architectures. On models in which a high-speed buffer 
and/or Dynamic Address  Translation (DAT) are  installed,  the  ac- 
curacy of ANATEMP may not be  as good as  the  present  results. 
The information that would be provided,  however, would be  use- 
ful since the relative values of times calculated for different com- 
mands are  correct. 

Concluding remarks 

The  research  discussed in this paper can be seen  as  serving a 
number of different needs, some of which are  the following: 
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Table 3 Time  comparisons for a program running with and without multiprogramming 

Tests A 
Time 

furnished 
by  the 
system 

(seconds) 
___ 

1 42.23 

2 1 IO. IO 

3  43.95 

4  111.62 

- 

Parameter 

B C 

calculated  furnished 
by  ANATEMP  by TIME01 

(seconds) (seconds) 

Time 
Percentage  Percentage  Percentage 

Time difference difference  difference 

A - B  C - B  A - C  
B B  C 

38.72 41.83 9.05  8.03  0.09 

108.25 109.71 1.71 1.34 0.03 

38.72 43 ‘64 13.5  12.7 0.07 

108.25 110.72 , 3.1  2.3  0.08 

- 

0 It provides  a tool for day-to-day programming. 
0 It  provides a feasibility study of the value of including timing 

analysis facilities in production  compilers. 
0 For a given language, timing analysis gives a comparison of 

the efficiencies of various  compilers. 
0 For a given machine, timing analysis gives a comparison of 

the efficiencies of different languages. 
For a given problem, timing analysis  can be a useful perfor- 
mancekost analysis tool for  various  sets of languages,  com- 
pilers, and machines. 
Timing analysis gives feedback  for machine and  compiler  de- 
sign. 

We think that  a lot of work is still to be done in this  avenue of 
applied research.  The method described in this  paper  can  also be 
applied to programs written in other high-level languages,  such as 
COBOL and P L ~ I .  The  authors believe that  the  type of analysis  de- 
scribed here can also be made available as a compiler option,  thus 
making timing analyses  faster  and  cheaper  to  obtain. With addi- 
tional effort,  such  an  analysis could also  detect and flag improper 
boundary  alignment, which often  reduces efficiency in System/ 
370. 
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Appendix: Guidelines for  source  code  optimizations 

With results  produced by ANATEMP, the FORTRAN statements  that 
use significant amounts of time can be determined by inspection. 
In this  way,  one might spot  several  areas where optimization is 
necessary.  Listed  here  are  some  examples of optimization at 
source level for FORTRAN programs  that  have been specifically 
compiled under FORTRAN G. These  examples were possible to dis- 
cover  and  correct using ANATEMP, and were  also included by 
Larson' in describing coding techniques  for FORTRAN program 
efficiency. 

Figure 2 is used as a  reference for  the  presentation of the follow- 
ing examples: 

0 Inputloutput  statements. Statement 0003 shows  a  loop flag 
(L), indicating that  repeated calling and return of an  external 
reference (E) is being requested.  The solution is to avoid im- 
plied ~o-loops in I/O statements and to attempt to minimize 
the number of items in I/O lists. Thus, for efficiency, statement 
0004 is preferable. 

~ 0 Data  types  and  conversions. Perhaps  the most common 
source of performance  degradation is unnecessary  internal 
data  conversion during execution.  Statements 0005 to 0012 
show  examples  and  cures. 

0 Expression  evaluation. Optimization of redundant  expres- 
sions,  especially in loops, at source level is always  recom- 
mended. In statement 0017, the  expression A*BK is always 
computed,  although it is in fact  constant.  The  solution is 
simple, as shown in statement 0023, where the  redundant 

struction time between  statement 0025 and  statement 0026 

expressions  because  these  expressions  are  evaluated  at  exe- 
cution  time. 

0 Subscripts. As  subscript  computations at object time are ex- 
pensive,  the  rule is only to  use multidimensional arrays if they 
are essential  to  an algorithm. Although this may make  the 
source coding a little more difficult to follow, the  resulting im- 
provement in performance  more than compensates  for  the ef- 
fort.  Refer  to ANATEMP results in statements 0027 through 
0038. 

~ 

1 

I computation is moved out of the  loop.  The difference in in- 

, shows clearly the  importance of pre-evaluation of numerical 

I 
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Table 3 Time  comparisons for a program running with and without multiprogramming 

Tests A 
Time 

furnished 
by  the 
system 

(seconds) 
___ 

1 42.23 

2 1 IO. IO 

3  43.95 

4  111.62 

- 

Parameter 

B C 

calculated  furnished 
by  ANATEMP  by TIME01 

(seconds) (seconds) 

Time 
Percentage  Percentage  Percentage 

Time difference difference  difference 

A - B  C - B  A - C  
B B  C 

38.72 41.83 9.05  8.03  0.09 

108.25 109.71 1.71 1.34 0.03 

38.72 43 ‘64 13.5  12.7 0.07 

108.25 110.72 , 3.1  2.3  0.08 

- 

0 It provides  a tool for day-to-day programming. 
0 It  provides a feasibility study of the value of including timing 

analysis facilities in production  compilers. 
0 For a given language, timing analysis gives a comparison of 

the efficiencies of various  compilers. 
0 For a given machine, timing analysis gives a comparison of 

the efficiencies of different languages. 
For a given problem, timing analysis  can be a useful perfor- 
mancekost analysis tool for  various  sets of languages,  com- 
pilers, and machines. 
Timing analysis gives feedback  for machine and  compiler  de- 
sign. 

We think that  a lot of work is still to be done in this  avenue of 
applied research.  The method described in this  paper  can  also be 
applied to programs written in other high-level languages,  such as 
COBOL and P L ~ I .  The  authors believe that  the  type of analysis  de- 
scribed here can also be made available as a compiler option,  thus 
making timing analyses  faster  and  cheaper  to  obtain. With addi- 
tional effort,  such  an  analysis could also  detect and flag improper 
boundary  alignment, which often  reduces efficiency in System/ 
370. 
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