Discussed is a technique for investigating the efficiency of com-
piled programs. Based on research that uses FORTRAN as a test
subject, the method is more widely applicable. Time analyses
show programmers points at which efficiencies may be increased.
Also discussed are uses of the technique for comparing the effi-
ciencies of compilers and languages, and for making perform-
ancelcost analyses. Presented are validation data for the method
under several sets of conditions.

A method for the time analysis of programs
by S. L. de Freitas and P. J. Lavelle

Program efficiency depends on several factors, including the se-
lection of a language, algorithm, structure, and programming
technique suitable for each application. Furthermore, efficiency
is always related to a specific hardware-software environment.
The great variations among operating systems, compilers, and
computer models preclude the use of a fixed set of rules for
achieving program optimization.

Optimizing compilers are used to improve the efficiency and to
reduce the size of the object code, at the expense of an increase in
the time and storage needed for the compilation. Though the ad-
vantages of particular compilers are well known, they also con-
tain some undesirable characteristics. Optimization is often done
in a standard way for all programs, with no provision for selecting
only certain parts of a program for optimization. It is difficult for
the programmer to determine the nature and extent of the opti-
mization performed, in order to improve a program at the source
code level. Certain unnecessary or inefficient operations (such as
data conversions caused by bad source code) are not recognized
by some compilers.

This paper describes research on this problem by the authors that
has led them to write a program that analyzes the output of the
LIST option of the FORTRAN compiler. The experimental program
inserts information based on this analysis into the compiled listing
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of the program, as an aid to the programmer in determining the
cost and timing of each FORTRAN statement, thereby seeking to
improve program efficiency. The major advantage of our method
is that it is based on the characteristics of the machine being used,
and on the manner in which the FORTRAN compiler generates the
object code. The result of these studies is to incorporate the na-
ture of the data, the type of operations being performed, and all
the characteristics described in the program.

A FORTRAN compiler and the 1BM System/360 Model 65 computer
have been used as subjects of this study. Other compilers and
computers are similarly applicable subjects, as is discussed later
in this paper.

Nowadays the cost-conscious computer user knows that the use
of Assembler-language-level programming should be avoided as
much as possible. In high-level language techniques—such as
structured programming and peer reviewing—better algorithm
choices are more fruitful in a great many cases than down-to-the-
microsecond programming. By using improved programming
techniques, however, the programmer loses contact with the
machine architecture and lacks motivation for chasing the lost
microsecond. General guidelines!-? exist, but they are simply
what they are—general.

Only an in-depth analysis of the compiler-generated object code
can furnish a secure set of optimization rules. Unluckily the num-
ber of possible instructions, forms, and cases is too large to cope
with even for such a simple language as FORTRAN. Thus we have
found it simpler to show the programmer the cost of his program-
ming rather than to rely on incomplete optimization rules.

The techniques needed to introduce our compiler efficiency as-
sessment are relatively simple under the following conditions.
The compiler is modest in its objectives and does not optimize too
strongly at the interstatement level. The machine architecture
and instruction timings are simple. (Multiple instructions per
word, high-speed buffers, cache and virtual storage, and speed-up
options that hardware designers put into machines are often the
nightmare of compiler designers.) Finally, the compiler source
code is available and/or that development is included from the
compiler design stage.

Another motivation for our research has been the difficulty of ob-
taining, understanding, and reliably modifying a whole real com-
piler in a short time. If our solution finds widespread use, compiler
modification should be considered.

ANATEMP: a time analysis program

Our time analysis program, called ANATEMP, has been tested and
is currently running on an 1BM System/360 Model 65,% operating
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Figure 1 General flow of a FORTRAN program using ANATEMP
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under control of 0S-MVT Release 21.8. ANATEMP has been applied
to programs compiled by the IBM FORTRAN IV G Level 21 com-
piler. Figure 1 shows the flow of a FORTRAN program as it is being
compiled, analyzed by ANATEMP, link-edited, and executed.

The program is compiled with the SOURCE and LIST options.
The SYSPRINT output of the compilation is directed to a temporary
data set on disk. Batch compilations are allowed, with each
unit being analyzed separately. Note that in the SYSPRINT data
set, the output from the SOURCE option for each compilation
precedes the output from the LIST option for that compilation.
ANATEMP then performs the following steps: (1) The source list-
ing is read from disk into main storage. If the source contains
more than eight hundred cards, the excess is saved in a spill
data set on disk. When all the source data have been read
and the LIST data reached, the spill data set—if used—is
rewound. (2) At this point, the SOURCE data and the LIST data are
analyzed together. Instructions that correspond to each execut-
able FORTRAN statement are determined, timing calculations are
performed, and the results are printed. (3) If there are additional
data to be analyzed (batch compilations), return to step 1. When
all data have been analyzed, ANATEMP terminates. The link-edit
and execution steps are then executed normally.

The information provided by ANATEMP is inserted into the FOR-

TRAN source listing of the compiler in blank fields that are not
otherwise used. [t is assumed that a 133-character printer is used.
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An example of the information provided is shown in Figure 2. An
Appendix is provided to illustrate the use of ANATEMP and to pro-
vide guidelines for source code optimizations. In Figure 2, for a
main program LINK is the link time of the program with 0S; for
subprograms, it is the prologue time. The following is a descrip-
tion of the numbered fields in Figure 2.

. Branch flag. B is present in this column if the statement may
cause a branch, unless the branch is to an external reference.

. External reference. All statements that make implicit or ex-
plicit external references are flagged with an E.

. Loop flag. Statements that contain an implicit DO LOOP, or end
an explicit DO LOOP contain an L in this field.

. Number of external references. This field contains the number

of external references made by each statement; a blank sig-
nifies no external references.
Offset. The offset field contains the location relative to the
origin of the program at which each statement begins. This
information is particularly useful to the programmer because
it allows a quick determination of the number of bytes used to
generate each statement. This is an excellent tool for debug-
ging, since the address in the PSW at abend minus the address
of the entry point often points to the statement where the
abend has occurred, or, in virtual systems, where the program
is paged.

. Minimum execution time. When present, this field represents
the minimum time necessary to execute the corresponding
statement. This information is useful in analyzing compound
statements (e.g., IF (A.GT.B) C = D), where different execution
times are possible.

. Execution time. This is the total time expected for execution
of all instructions that compose the statement, and includes
the time for the execution of in-line subprograms, if any. If the
statement makes an external reference (indicated by a flag in
field 2), this value excludes the execution time of the ex-
ternal subprogram.

. One iteration time. This value, enclosed in parentheses, is the
time needed to perform one iteration of a DO LOOP as defined
in a DO command.

. DO LOOP housekeeping. This value represents the time re-
quired to initialize a DO LOOP. It should be added to the value
of field 8 to find the value of the first iteration. ANATEMP uses
a stack array for DO LOOP timing calculations, since nested DO
LoOPS work on a Last-In-First-Out (LIFO) basis.

The RESUME is a list of all instructions used by the program to-
gether with the number of occurrences of each and is printed at
the end of the listing. The number of Defined Constants (DC) gen-
erated by the compiler is presented, and the sum of times for all
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Figure 2 Demonstration of ANATEMP results

FORTRAN IV G LEVEL 21 MAIN DATE = 77266 17/12/21 PAGE 0001
1234 5 6 7 8
LINK = 24.92

INPUT/OUTPUT STATEMENTS

DIMENSION AAA(10)

FORMAT (20F10.2)

WRITE(3,10) (AAA(I)l = 1,10) 002DA8
WRITE(3,10) AAA 002DEC

DATA TYPES AND CONVERSIONS

002E0C

002E14
INTE4A = REAL 002E38
REAL4 = INTE4B 002E5C
REAL*8 REALS
REALS = INTE4A 002E80
K1 =Q +J + E + KKK 002EA4
K222 = IFIX(Q + E) + J + KKK 002F04

EXPRESSION EVALUATION

DIMENSION VETOR(5C), V2(50,50)

DO 70 | = 150 002F32

VETOR(I) 002F42

DO 70 J 002F4E

VETOR(l) () +A*B/C*VaJl) 002F58 A

CONTINUE 002F70 . 38.79) 1.8
44.90) 3.6

RESUL = A * B/ C 002FAC

DO 80 | 002FBC

VETOR(l) 002FDO

DO 80 J 002FDC

VETOR()) OR(l) + RESUL * v2(J.l) 002FEG

CONTINUE 002FF6

(L

M =J + (365 — 100) / 5 003032
M1 =J + 53 00304E

SUBSCRIPT

DIMENSION SUB(100), SMAT(10,10)
FASTER = SUB(M + 2) 00305A 418
SLOW = SMAT(M + 3.N) 00306A 12.88

TOTAL = 0.0 00308A 2.13
DO 90 | = 1,100 003092 3.33
TOTAL = TOTAL + SUB() 00309E 4.56
CONTINUE 0030AA 7.90 ( 13.39) 2.4
TOTAL = 0.0 0030C6 3.33
DO 110 | = 1,10 0030D2 3.33
DO 110 J = 1,10 0030DE 3.98
TOTAL = TOTAL + SMAT(,J) 0030EC 4.56
CONTINUE 0030F8 15.80 ( 21.29) 3.0
( 2527)2

LOGICAL IF & BRANCHING

IF(A.LT.B.OR.C.GT.F.ORH.GE.T) GO TO 100 003130
I ALT.B) GO TO 100 00317C

F(C.GT. F) GO TO 100 00318A
l H.GE.T) GO TO 100 003198
IF(A.GT.B) GO TO 100 0031A6
IF(A — B) 100, 100, 200 0031B4
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FORTRAN IV G LEVEL 21 MAIN DATE = 77266 17/12/21  PAGE 0002

0045 B 100 GO TO (20,30,40,50), ITEM 0031C4 10.90
0046 B 101 GO TO 200 0031F8 2.20
0047 200 ASSIGN 50 TO NUMBER 0031FE 213
0048 B GO TO NUMBER,(30,50,40) 003206 2.20
0049 201 CONTINUE

MACHINE DEPENDENT OPTIMIZATION

INTEGER*2 INT2,INTX,INTY INTZ

INT2 INTX / INTY * INTZ 00320C

INT4 IN4X / IN4Y * IN4Z 00322E
003242
00324E
00325A
003266

SUBPROGRAMS

CALL MATMPY(X,5,40,YYY ROOT) 003272
INL = MOD(l.J) 00327C
STOP 003296
END

FORTRAN IV G LEVEL 21 DATE = 77266 17/12/21 PAGE 0003

SUBPROGRAMS CALLED
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
IBCOM= F8 MATMPY FC

SCALAR MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
I

REALS 120 128 J 12C W 130 K 134
INTE4A 138 REAL 13C REAL4 140 INTE4B 144 K1 148
Q 14C E 150 KKK 154 K222 158 A 15C
B 160 C 164 RESUL 168 M 16C M1 170
FASTER 174 SLOW 178 N 17C TOTAL 180 F 184
H 188 T 18C ITEM 190 NUMBER 194 INT4 198
IN4X 19C IN4Y 1A0 IN4Z 1A4 MN 1A8 K11 1AC
MN1 1BO Div 1B4 DI VI 188 DV 1BC DvI 1CO
X 1C4 YYy 1C8 ROOT 1CC INL 100 INT2 1D4
INTX 1D6 INTY 108 INTZ 1DA

ARRAY MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
AAA 1DC VETOR 204 A 2CC SuB 29DC SMAT 2B6C

FORMAT STATEMENT MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
10 2CFC

*OPTIONS IN EFFECT* NOID,EBCDIC,SOURCE,LIST,NODECK,LOAD,MAP
*OPTIONS IN EFFECT* NAME = MAIN, LINECNT = 60

*STATISTICS* SOURCE STATEMENTS = 60,PROGRAM SIZE = 12964
*STATISTICS* NO DIAGNOSTICS GENERATED
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FORTRAN IV G LEVEL 21 MATMPY DATE = 77266 17/12/21 PAGE 0001

1234 5 6
0001 SUBROUTINE MATMPY(X,J,1,YYY ROOT)
LINK = 76.07
0002 B RETURN 00016C 2.85
0003 END

FORTRAN IV G LEVEL 21 MATMPY DATE = 77266 17/12/21 PAGE 0002

SCALAR MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
X 90 J 94 ! 98 Yyy 9C ROOT AQ

*OPTIONS IN EFFECT* NOID,EBCDIC,SOURCE,LIST,NODECK,LOAD MAP
“OPTIONS IN EFFECT* NAME = MATMPY, LINECNT = 60
*STATISTICS* SOURCE STATEMENTS = 3, PROGRAM SIZE = 372
*STATISTICS* NO DIAGNOSTICS GENERATED

*STATISTICS* NO DIAGNOSTICS THIS STEP 2

RESUME OF INSTRUCTIONS USED IN OBJECT CODE GENERATED BY THE COMPILER
INSTRUCTION NUMBER TIMES USED

4
oo A

N

—- Q)

—

pory

8
7
1
4
4
3
2
8
9
5
4
5
23
2
2
4
5
0
3
1
7
4
5
1
0
2
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SDR
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SR
SRDA
ST
STD
STE
STH
ST™M
TOTAL = 47 INSTRUCTIONS TOTAL TIM
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statements is also given. This, of course, does not represent the
expected execution time, but serves as a guideline for com-
parisons.

We coded ANATEMP in FORTRAN to allow FORTRAN programmers
to make modifications for various computer hardware. Two as-
sembler subroutines were used. The first, MOVECOI, is a general-
purpose subroutine to move characters from one storage location
to another. The second is an interface subroutine to ADCON#,
which is the FORTRAN module that is used to make conversions.
Input/output operations on disk are performed sequentially, thus
allowing better efficiency through automatic blocking and de-
blocking.

No restrictions are imposed on the programmer in using ANA-
TEMP. When a cataloged procedure has been built (e.g.,

FORTTCLG, with T for timing instead of G) the programmer exe-
cutes the procedure as a standard IBM procedure just as
FORTGCLG would be executed.

Observations on ANATEMP

We evaluated the cost of using ANATEMP by comparing the CPU
and execution time spent by the FORTRAN compiler and by ANA-
TEMP for several programs of different sizes. All values were ob-
tained from the System Management Facilities (SMF)* records
generated by the OS operating system. The sum of these runs indi-
cated the following results:

Total number of input cards: 3192.

FORTRAN source statements: 1948.

CPU time used by the FORTRAN compiler: 95.75 seconds.
Execution time for the FORTRAN compiler: 4.5 minutes.
CPU time used by ANATEMP: 60.63 seconds.

Execution time for ANATEMP: 3.5 minutes.
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Table 1 Time comparisons for a program running with other programs

Parameter Tests

3

Time furnished
by the system 9.85
(seconds)

Time calculated by

ANATEMP (seconds) ~ 10-21

Percentage A — B

difference B —3.52

Thus we conclude from the cases studied that ANATEMP uses ap-
proximately 65 percent as much CPU time, and 75 percent as
much execution time as the FORTRAN compiler.

The instruction times used are calculated from IBM formulas,? un-
der certain constraints, limitations, and assumptions that arise
from three different sources. With respect to compiler character-
istics, certain instructions in the System/360 Model 65 set are not
used in object code generated by the FORTRAN G compiler. There-
fore, timings for these instructions need not be included in the
program. In addition, simplifications are possible for timing cal-
culations of the following other instructions. The Move instruc-
tion (MVC) is the only storage-to-storage (SS) instruction that is
generated by the compiler. Since this instruction is used only in a
standard way to perform linkage between subprograms, a fixed
time can be used for the calculations. The Store Multiple (STM)
and Load Multiple (LM) instruction timings depend on boundary
alignment. Since they are also used only for linkage purposes by
the compiler, and are aligned on a double word boundary, fixed
times can be used.

Instruction times can also be affected by hardware-dependent oc-
currences that cannot be predicted and are not accounted for in
the timing formulas.?

As for execution time dependence, in computing instruction
times, it is assumed for all branch instructions that the branch is
taken, unless the mask is zero or the second operand in a Regis-
ter-to-Register (RR) instruction is zero. In particular, it is assumed
that the branch is always taken for Branch on Index Low or
Equal (BXLE) instructions.

After compilation, the program ANATEMP calculates the execu-
tion time for each executable FORTRAN statement, as well as oth-
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Table 2 Time comparisons for a program running with no other active programs

Parameter Tests

2

Time furnished by the system
(seconds)

Time calculated by ANATEMP
(seconds)

Percentage A — B
difference B

er information, using the basic times and associated formulas for
each machine instruction. Several tests were made to compare
the times furnished by the system and by ANATEMP. The reader
should take into account the timing considerations for System/360
Model 65 as described in References 4 and 5.

In the first set of tests, summarized in Table 1, a simple program
that consisted of a DO LOOP using fixed-point operations only was
run concurrently with other programs. In the second set of tests,
summarized in Table 2, the same program was run with no other
active programs. Using the 0S macroinstructions TTIMER and STI-
MER, the authors have developed the subroutine TIMEOI to meas-
ure the CPU time elapsed between two points of a program. This
subroutine was used in a third set of tests, which included fixed

and floating-point operations. Table 3 shows the results of the
third set of tests. Results with multiprogramming are given by
testst and 2.

For the System/360 Model 65, as shown in Tables 1-3, the times
predicted by ANATEMP represent a good approximation to the real
times. We expect similar results for all computers with com-
parable architectures. On models in which a high-speed buffer
and/or Dynamic Address Translation (DAT) are installed, the ac-
curacy of ANATEMP may not be as good as the present results.
The information that would be provided, however, would be use-
ful since the relative values of times calculated for different com-
mands are correct.

Concluding remarks

The research discussed in this paper can be seen as serving a
number of different needs, some of which are the following:
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Table 3 Time comparisons for a program running with and without muitiprogramming

Parameter

A
Time
Sfurnished
by the
system
(seconds)

B C

. ) Percentage Percentage Percentage
Time Time

difference difference difference

calculated furnished
by ANATEMP by TIMEO!
(seconds) (seconds)

A-B C-B A-C
B B C

42.23
110.10
43.95
111.62

38.72 41.83
108.25 109.71
38.72 43.64
108.25 110.72

It provides a tool for day-to-day programming.

It provides a feasibility study of the value of including timing
analysis facilities in production compilers.

For a given language, timing analysis gives a comparison of
the efficiencies of various compilers.

For a given machine, timing analysis gives a comparison of
the efficiencies of different languages.

For a given problem, timing analysis can be a useful perfor-
mance/cost analysis tool for various sets of languages, com-
pilers, and machines.

Timing analysis gives feedback for machine and compiler de-
sign.

We think that a lot of work is still to be done in this avenue of
applied research. The method described in this paper can also be
applied to programs written in other high-level languages, such as
CoBOL and PL/I. The authors believe that the type of analysis de-
scribed here can also be made available as a compiler option, thus
making timing analyses faster and cheaper to obtain. With addi-
tional effort, such an analysis could also detect and flag improper
boundary alignment, which often reduces efficiency in System/
370.
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Appendix: Guidelines for source code optimizations

With results produced by ANATEMP, the FORTRAN statements that
use significant amounts of time can be determined by inspection.
In this way, one might spot several areas where optimization is
necessary. Listed here are some examples of optimization at
source level for FORTRAN programs that have been specifically
compiled under FORTRAN G. These examples were possible to dis-
cover and correct using ANATEMP, and were also included by
Larson! in describing coding techniques for FORTRAN program
efficiency.

Figure 2 is used as a reference for the presentation of the follow-
ing examples:

o [Input/Output statements. Statement 0003 shows a loop flag
(L), indicating that repeated calling and return of an external
reference (E) is being requested. The solution is to avoid im-
plied DO-loops in /O statements and to attempt to minimize
the number of items in 1/0 lists. Thus, for efficiency, statement
0004 is preferable.

Data types and conversions. Perhaps the most common
source of performance degradation is unnecessary internal
data conversion during execution. Statements 0005 to 0012
show examples and cures.

Expression evaluation. Optimization of redundant expres-
sions, especially in loops, at source level is always recom-
mended. In statement 0017, the expression A*B/C is always
computed, although it is in fact constant. The solution is
simple, as shown in statement 0023, where the redundant
computation is moved out of the loop. The difference in in-
struction time between statement 0025 and statement 0026
shows clearly the importance of pre-evaluation of numerical
expressions because these expressions are evaluated at exe-
cution time.

Subscripts. As subscript computations at object time are ex-
pensive, the rule is only to use multidimensional arrays if they
are essential to an algorithm. Although this may make the
source coding a little more difficult to follow, the resulting im-
provement in performance more than compensates for the ef-
fort. Refer to ANATEMP results in statements 0027 through
0038.
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