A newly designed and implemented automated storage hier-
archy management system that operates under MVS is de-
scribed. The needs for economical archival storage that at the
same times makes possible the efficient retrieval of users’ data
are reviewed. Discussed in detail is the fulfillment of this re-
quirement that is provided by the automated management of
MVSITSO on-line data storage space that includes the Mass
Storage System (MSS) and other storage devices in a hierarchy.
Experience with the system is summarized.

MARC: MVS archival storage and recovery program
by J. P. Considine and J. J. Myers

Increased computing power, in the form of faster processors and
faster and larger storage devices, has led to an increasing num-
ber of users served by computing installations, in batch and in-
teractive modes. Use of the increased computing power gener-
ates more and more data that must then be stored and made
available for future processing. This generates increased demand
for storage, especially on-line storage. Interactive users want
their data to be available in no more than a few seconds, and
even batch users try to avoid the delays that arise when process-
ing unmounted volumes. At the same time, there are constraints
on the amount of hardware that can be installed to support
users. As an alternative, a programming tool might enable a sys-
tem to make the most efficient use possible of the resources
available, while maintaining the responsiveness and availability
that users depend on. This paper describes such a tool.

After discussing the problem further, the concepts underlying
the overall approach to a solution and definitions of some key
terms are presented. Then there is briefly summarized previous
work by members of the IBM Research Division, addressing this
problem in the context of a general operating system environ-
ment. A detailed description is then given of one such solution
that has been implemented under the IBM 0S/vS2 MVS operating
system, the MvS Archiver (MARC). The term MvS (Multiple Vir-
tual Storage) represents 08/v$2 MVS throughout this paper. The
description includes architecture and function, design and imple-
mentation, and support of the Mass Storage System.

CONSIDINE AND MYERS IBM SYST J

The requirement for efficient archival storage and access arises
whenever a number of persons in an organization are concur-
rently using a computer system to solve their own problems.
Such an environment might be a service bureau, a university, a
research installation, or even a business of some size. The in-
creased processing power available brings more users into con-
tact with the computing system, and these users are coming to
expect quick and reliable access to their data. With the growing
number of interactive users, the number of individual files is in-
creasing, and users working in batch mode are also relying on
permanently assigned devices to avoid delays. Since spindles
(disk drives) are expensive, it is important to obtain good utiliza-
tion of the data devices. There are two difficulties in managing a
growing on-line data base. First, stored data must be available
while storage hardware is limited. Second, the integrity of the
stored data must be assured.

Most desirable would be on-line storage that is an open-ended
container for data. Users want to be able to create new files and
extend old ones as necessary without concern for exhausting the
storage resource. When on-line storage is open-ended, users can
keep vast quantities of data for long times, making possible
many new kinds of comparative studies that were previously not
feasible. The availability of large amounts of historical data can
lead to totally new applications.

Installation management, on the other hand, must exercise con-
trol so that the resource is used in accordance with management
priorities and is not preempted without justification by individu-
als. To maintain the service offered by an installation, however,
control must not unduly inconvenience the users. For instance,
management may choose to assign each user a fixed amount of
on-line storage, not necessarily the same for each user, but fixed
for each user. For one class of user, its allocation might be more
than ample and large amounts would not be used. For another
class, the management of its storage ration, inherently nonpro-
ductive work, may occupy a significant portion of the user’s
time. Although the problem is shown here with regard to a par-
ticularly simple allocation scheme, it is not necessarily alleviated
by more sophisticated ones, as long as one must manage one’s
assigned data space and storage needs personally. Trying to
avoid arbitrary storage restrictions that in the long run lead to
lower user productivity is one of the typical problems that arise
in managing a growing on-line data base.

A second facet of the growing user dependence on on-line files
is that of data integrity, i.e., protecting the data from damage.
The basic approach to this problem in the environment dis-
cussed here is to provide that copies of user files are available
for retrieval in case of damage — that is, provide backup. Gener-

No. 4 - 1977 MARC: ARCHIVAL STORAGE

the problem

Figure 1 Zipf's law for data set
accesses

SET REOFERENCES
~ =3
rl S

o
o
=]

CUMULATIVE FRACTION OF DATA
o
o
]

1 1 {
0.25 0.50 0.75 1.00

CUMULATIVE FRACTION OF DATA
SETS ACCESSED

approach to
a solution

Figure 2 Storage hierarchy resi-
dence times and corre-
sponding problems
addressed

T T b
CACHE (10 MILLISECONDS)
CPU SPEED
MAIN STORAGE

(10 SECONDS)

INTERACTIVE E
RESPONSE
DRUM (10 MINUTES)

VIRTUAL
STORAGE

MANAGEMENT
DISK (10 DAYS)

USER GROWTH| &
LIMITATION

\
L ARCHIVE (10 YEARS)

ally, either the installation management undertakes the responsi-
bility for creating these copies on behalf of the users or the users
are required to do it themselves. If the installation does the job,
the approach is simply to copy files on a regular basis, perhaps
weekly, keeping the copies off line, usually on tape. Because the
installation generally does not have good techniques for knowing
which data sets require new backup copies because of changes,
the usual approach is to copy all files. This can involve much
needless copying, and the whole process can require hours—
even for a modest sized on-line data base.

On the other hand, there are also difficulties if the user is left to
backup his own files—even though he knows which files need
backup. A user may make on-line copies of his data sets with
slightly different names, thereby proliferating copies of the same
data on on-line storage, or he may copy data sets to private
tapes, thereby requiring more and more operator intervention
for mounting, or he may do nothing. Either approach has its
costs in equipment and time, plus the user’s difficulty of keeping
track of all of the copies. Doing nothing is potentially the most
expensive method of all, since the user is exposed to the conse-
quences of lost data. A number of these concerns, as expressed
by a large group of computing system users, are included in a
SHARE White Paper on future operating systems.'

It has been observed in a number of different contexts that the
usage of a collection of objects is not uniformly distributed
across the collection. For instance, in the English language,
some one hundred different words make up well over half the
number of words spoken. All the rest of the language comes to
less than half the words used. This observation, known as Zipf’s
law, as applied to data set references and accesses, is shown in
Figure 1. A similar relationship applies for various components
of computing systems if we choose the time frame appropriately.
Consider a computing system as depicted schematically in Fig-
ure 2, which is structured hierarchically with different levels
addressing different problems. Consider processor references to
storage. The observation that successive references tend to be
to the same or nearby storage locations is behind the successful
use of high-speed cache storage in current processing units. A
cache is much faster but much smaller than the rest of the pro-
cessor storage. It is possible dynamically to select the contents
of the cache so that most of the instructions executed by the
processor refer to the cache rather than to the slower main stor-
age. When reference is made to main storage the contents are
copied into the cache and remain there for further reference un-
til displaced by new data that are needed. The effect of this op-
eration is to enable the processor to function almost as though it
had a large amount of the high-speed storage.

CONSIDINE AND MYERS IBM SYST J

Similarly if we consider all the instructions in a program, we find
that many programs tend to stay in the same part of their pro-
gram space for significant portions of their total execution time.
Thus it is not necessary to have a whole program accessible to
the processing unit at all times. Rather it is possible to load por-
tions of the program into main storage as required while holding
the rest of the program on some auxiliary storage device, such
as a drum or disk. This fact about most programs has enabled
virtual storage to share a given amount of processor storage
among more programs than would have been possible if each
program had to be loaded entirely. Thus a greater number of
simultaneous tasks can be serviced, thereby improving the re-
sponsiveness to the interactive user.

The common feature of these two examples is that because of
patterns of usage it is possible to design a hierarchical storage
structure, such that portions of the data being used are moved
between more and less accessible (and also more and less
costly) storage locations. This enables the overall system per-
formance to approach that which it would attain using only the
more accessible (more costly) devices, while the cost tends to
approach that of the less costly (less accessible) devices.

Observations on data set usage lead to similar conclusions about
the manner in which data sets are used. The pattern of reference
to data sets has the same locality as a program’s execution of its
instructions. A user works on a subset of files for a period of
time and then stops. He may go on to some other project or may
enter the program into production and no longer be working
with the same source and test files. In any case, in an uncon-
strained environment, users often have a significant number of
files that are not in active use, but which they do not wish to dis-
card immediately. This observation leads to the proposal of a
hierarchical scheme for file storage that is analogous — on a longer
time scale—to that established by virtual storage systems for
executing programs and data.’

It is at the interface between active data and archived data that
we see an opportunity to remove a significant barrier to the pro-
ductivity of the user and the growth of applications. The basic
principles of our MvS Archival System (MARC) are as follows. A
range of storage devices are available for the storage of user
data. These vary in size and accessibility (and therefore, in
cost). There is more of the less accessible storage available than
that which is more accessible, as a cost reduction consideration.
Required is a tool for managing this hierarchy so that data move
from level to level in accordance with their usefulness. The qual-
ity usefulness has different meanings in different situations. In
any case, the gist is that the most useful data should be most
accessible. There are three levels in our hierarchy. The first is a

NO. 4 - 1977 MARC: ARCHIVAL STORAGE

definitions

level at which the data are always accessible with negligible de-
lays (the current on-line storage), called Level 0. Next there is a
somewhat less accessible level, possibly requiring some delay in
retrieval, which would contain data that have a significant proba-
bility of being referenced, but not as great as the probability of
the data on Level 0. This is Level 1. Finally, there is the third
level, which contains the archival data, data that go unrefer-
enced for extended periods of time. This we call Level 2. The unit
of data transfer is the data set. In the text, ‘“‘data” and “data
set(s)” are used synonymously.

Several definitions necessary to the understanding of MARC are
now presented. We use the word public to refer to any on-line
volume managed by MARC that contains user data sets. A migra-
tion volume is one that contains user data sets that have been
moved from public volumes under the control of MARC. Migra-
tion is the process by which data sets are moved selectively
from public to migration volumes. Restoring is the process that
brings the data set back to public residence. Backup is the dupli-
cation of a user data set on a volume other than that on which
the data set resides. (Backup volumes are usually off line.) Re-
trieval is the process of selecting or retrieving a specific backup
copy of a data set and copying it back to public storage. The
MARC Work Element (MWE) is a message block for communica-
tion between MARC and other tasks (users, jobs). The requesting
task inserts the specifications of a request for work to be done by
MARC, and sends it to MARC, which returns its MWE after
processing with the contents altered to reflect the results of the
processing.

The 1BM Research Division activities in storage management of
user files began in 1969, with a TSs/360 file migration and ar-
chiving system. Work continued in 1971 with an 08/360 data
migration and staging system, and led to a vM/370 filespace
(minidisk) migration and backup scheme in 1973. These three
systems are now described.”

755/360. The TSS/360 migration system treated the individual
data set or file as the unit of traffic.” The data sets were copied on-
to migration volumes from the on-line public storage, and the
public copy was then erased. In its migrated form, the data set
was accessible only by specific migration commands that were
essentially a restore command and an erase command. If a back-
ground (batch) job were to refer to a migrated data set, it would
fail. To use the data set in the ordinary way, the user had to
restore it to the public storage volumes by issuing a specific
command. While the user waited, the restoration process took
place under the control of his task.

CONSIDINE AND MYERS IBM SYST J

05/360. The 0s/360 data migration and staging work was done
at the 1BM Research Division laboratory at San Jose. One of the
major innovations introduced was the concept of data ownership
for all files, whether created by TSO interactive jobs or by batch
jobs. The concept was implemented in 05/360 and formed the
basis for the migration scheme. A series of utilities was created
to be invoked by data base administrators to control the size and
use of on-line storage in the 0S environment. Utilities were also
written to allow the user to have a migrated data set restored to
available on-line storage. These generally ran in background
mode with some time delays. As in the TSS/360 scheme, the user
was required to take specific action to restore the data, and a
batch (background) job would fail if it referred to a migrated
data set.

vm/[370. Undertaken next was the design and implementation of
a VM/370 minidisk migration scheme. A minidisk in the vM/CMS
system is an allocation of contiguous storage made available to a
specific user for the storage of files. These are typically one,
three, or ten cylinders of a direct-access storage device (DASD),
and represent a unit of system allocation to the user in question.
In the vM/CMS system, the CMS filespace or minidisk is the unit
of migration traffic. For many users —those who use the system
intermittently rather than every day —the normal state of mini-
disk is migrated rather than on line. The user need not be aware
that the minidisk in question has been migrated.

As part of the normal process of beginning work on the system,
certain of a user’s minidisks are automatically accessed by the
system. Other minidisks may be accessed specifically by com-
mand. In either case, if the minidisk is migrated, the reference
causes the restoration process to take place, and an estimate of
the expected time of availability to be given. The user need not
wait for the process to be completed, but can do any work that
does not require restoration of the minidisk. He can also choose
to suspend work until the minidisk in question is available. In a
background task, he can likewise specify that he will wait if the
minidisk is not available. If the minidisk is already restored, his
task proceeds immediately.

Instead of an environment in which on-line minidisk space is the
controlling factor in limiting user access to the vmM/370 system,
we have been able to establish an environment in which users
may gain access to the system as required, with the migration
system efficiently controlling the amount of on-line space.

Prior to the installation of MVS in 1975, storage management at
the 1BM United Kingdom Laboratory at Hursley, Hampshire,
England, had been accomplished by a combination of user fore-
casting of space requirements and manual checking by opera-

No. 4 -« 1977 MARC: ARCHIVAL STORAGE

case
history

functional
requirements

tions administration for enforcement of space allocations. After
installation of an on-line interactive MVS/TSO (MVS with Time
Sharing Option) system, that method quickly proved inadequate
because, as users tended to create new data sets, it became diffi-
cult for installation management to limit their creation. Manage-
ment therefore began to search for techniques to control the al-
location of on-line storage. Because of their experience in stor-
age management, the assistance of programmers at the IBM Re-
search Center at Yorktown Heights, New York was requested.

The availability of practical experience with MvS at the 1BM
Hursley laboratory and experience with other systems at the
IBM Research Center facility at Yorktown Heights led the
two locations to launch a joint project involving the design and
implementation of an effective tool for controlling on-line stor-
age under the new MVvS operating system. The project was di-
rected at solving problems that arise in both operating environ-
ments —the research-oriented one and the development- and
production-oriented one. The effort, like its predecessors, was
aimed at supporting the user’s growing dependence on on-line
files, while limiting the amount of hardware required and in-
creasing utilization of the direct-access space allotted to such
files.

Our experience with MvS has shown patterns of usage and data
generation among the users that are similar to those observed in
the past. The quantity of on-line data, beginning with the data
already on hand from previous systems and brought over to MVS
as part of the conversion process, has continued to grow as the
system is used.

We have thus designed and implemented a tool for the manage-
ment of the on-line storage resource based on the hierarchical
concept previously described. We now discuss what a storage
manager does to aid users of the system by reducing their con-
cern about on-line storage management.

Architecture of on-line storage management

The major goal of the storage management scheme is to make
storage available in a timely fashion as automatically as possible.
Since an operator or data base administrator is not able to moni-
tor on-line storage constantly, a non-automatic system would be
subject to errors or oversights, and critical shortages of storage
could result. The automatic migration system should include a
storage monitor for reporting problems to the data base adminis-
trator as they occur and correcting them as far as possible.

CONSIDINE AND MYERS IBM SYST J

Another key system requirement is data availability. A user
must not have access to data restricted or impeded because the
system moves them from one place to another. In addition, the
system must not lose data in the process. Whenever a data set is
moved, there is a possibility that the new copy may differ from
the original due to error. Care must be taken to minimize this
possibility and to avoid moving the data unnecessarily.

To maintain the usability of the system while attempting to im-
prove utilization of the on-line storage resource, the system
must have low impact on the user’s way of working. There are
acceptable penalties the user might have to pay for the addition-
al file storage resources made available by the file management
scheme. These include a finite additional delay in the allocation
of a data set that has been migrated, and perhaps the unavaila-
bility of certain information about that data set and its contents
without restoring it, such as the names of members of a parti-
tioned data set. However, the user should not experience a job
or request failure because a data set required for the request had
been migrated.

In justifying the existence of the migration system, two factors
are significant. The scheme must offer the installation control
over the on-line storage resource for maximum utilization of this
resource, and the operation of the migration system must not
place an undue burden on other system resources, such as CPU
or 1/0 devices. The migration system gives users and data base
administrators another place to put data. Rather than having to
erase files that can no longer remain on line, because the user
has received a certain allocation of space and has completely
used it and now needs to create new files, or because the entire
on-line storage resource is full, the user or administrator can
cause them to be migrated, thereby keeping them accessible
while freeing the critical on-line resource. Thus, users can
choose to erase at their leisure data they no longer need, similar
to the way in which they handle other job-related housekeeping
chores, rather than being forced into an unnatural daily activity
driven by on-line space limitations.

Also, when an installation provides convenient and capacious
storage for data, while providing data integrity, users come to
rely on that storage system to the exclusion of their previous
stand-by, the private tape or disk volume. With efficient migra-
tion and backup means available, users tend to employ private
volumes only for transporting data from one system to another,
thereby saving themselves and the installation time and re-
sources.

We now explore these requirements in further detail. First, a
centralized, very reliable, migration-restoration-backup proces-

No. 4 - 1977 MARC: ARCHIVAL STORAGE

migration

sor is required. Then, a simple user interface with automatic
migration and restoration is needed. Finally, for installation con-
trol, we must have tunable parameters to drive the process, and
for flexibility, a variety of devices and data types must be sup-
ported.

Several requirements present themselves. First, the migration
process should be continuously ready to respond to system
needs without having to be started to respond to a particular cri-
sis. Second, this task, which is always in existence and ready to
take action, should monitor storage. To enable the migration
function to evaluate system needs, the installation should be
able to define thresholds of utilization, such as the maximum
acceptable ratio of storage used to the total. The migration pro-
cess would then be triggered by these thresholds to take appro-
priate action.

The overall efficiency of the migration operation can have a dis-
tinct impact on system performance. It should anticipate needs,
in order to key such elective activities as the outward movement
of data as much as possible to periods of light system load, to
minimize its impact on users. Provision should be made to de-
tect any unusual use of the system during normally lightly
loaded periods. A judicious choice of thresholds and the availa-
bility to the migration process of valid measures of system load-
ing would facilitate such scheduling.

Another efficiency problem is that of unnecessary data move-
ment. The underlying assumption of the migration process is
that the user works his way from place to place in the files that
he has created and stored on the system. Experience indicates
that over a small period of time, one uses only a smail fraction of
all his files. The particular fraction in use changes as time pass-
es, but the changes are generally gradual. The migration process
attempts to determine the files that are not part of the group that
the user is currently working with, and move these to migrated
storage. Thus the process leaves more room for new files that
the user creates. To the extent that the estimate of the migration
process is accurate, the user in question can function for some
time without referring to the files that have recently been migrat-
ed. If the estimate is not accurate, or if there is simply not
enough on-line storage to satisfy the moment-to-moment needs
of the active users, the users will be constantly requesting data
sets to be restored soon after they have been migrated.

One of the most unfavorable situations in this kind of operation
is that in which, after a migration of several hundred files during
an off shift, half the migrated files are restored to on-line storage
through user requests during the first few hours of the next
prime shift. Given that there is in fact enough on-line storage for

CONSIDINE AND MYERS IBM SYST J

the users, then this situation represents an obviously inefficient
selection of files for migration. A key problem in the migration
process is to predict future usage from past usage. We currently
choose as a criterion of a data set’s usefulness the length of time
in days since it was last used. Experience has shown that this
can be an effective criterion but research is continuing. One of
the major problems in a choice of criteria is the evaluation by
the processing programs that select data sets for migration. The
up-to-date data necessary for the evaluation must be available to
the program on an individual data set basis at the time of the
selection. Another consideration is the expense incurred in col-
lecting the data for evaluation. The chosen criterion is based on
information that is easily collected and readily available to the
processing program. It also seems to reflect usage in a research
environment adequately.

Restoring a data set from migrated storage space to on-line
space should not require prior knowledge on the part of the user
that the data set has been migrated. Thus restoration must be
triggered by a reference, whether by job control language of a
background job or by an allocation request from TSO. The user
should, however, also be able to request a restoration directly if
it is known that the data set has been migrated and the need for
it is anticipated. The user may wait for the restoration if the data
are needed immediately. Otherwise, notification is given when
restoration has been completed.

The backup facility should be easy to use, reliable, and efficient.
To improve the reliability of the operation, the backup process
can be integrated with the migration process, so that these inher-
ently similar functions can be carried out in an economical way
by common programs. For the sake of economy, efficiency, and
feasibility, only data sets that have been changed since the last
backup should be copied into the current backup. The installa-
tion also should be able to specify the frequency at which this
backup process is to take place, with provision having been
made for specific data sets for which handling might vary from
the system norm. In addition to a global outlook for purposes of
system-wide integrity, the backup function should also afford the
user the opportunity for timely backup of files at more frequent
intervals. There would be management-defined upper limits on
the number and size of copies a user could keep in the backup
system.

Control and ease of use are needed in any function that affects
one’s data. To this end, the migration process should afford the
ability to restore and migrate by command in a knowledgeable
planned way, in addition to letting the system operate on one’s
data. The fact that the user need not wait while the actual data
movement is carried out would make it convenient to plan one’s

No. 4 - 1977 MARC: ARCHIVAL STORAGE

restoration

reliability

instailation
management

work and, knowing the patterns of usage of one’s own files, to
position the data in a way that minimizes some cost function.
This might be as simple as taking advantage of lower costs for
off-line (migrated) storage or attempting to operate in an envi-
ronment of limited on-line storage availability.

The system should maintain the necessary information to sup-
port the user’s interest in his files. This would include at least
the identity of the files, their characteristics, and their current
status.

So that one may plan one’s time efficiently, migrated files are
organized in such a way as to minimize the waiting time for files
to be restored. Our experience confirms that the most recently
migrated files are most likely to be requested on an individual
basis. On the other hand, over time, users are likely to request
their files in groups, without regard for the date of last use, such
as all the files for a particular project or source and test data for
a program. Such patterns suggest that files should be arranged in
reverse chronological order for a period of time and then be
sorted by owner.

In addition to automatic operation, a key requirement in any
data handling facility is reliability. A reliable restore function is
required to make data available.

In Mvs, the unit of work processing is the rask. If a task experi-
ences severe difficulties in carrying out a request—difficulties
from which the system cannot determine how to recover —the
task will be terminated. To maintain reliability and availability,
therefore, the actual execution of individual requests should be
carried out on a one-request-per-task basis. These tasks are
under the observation and control of a dispatching task that is
aware of tasks failing. The dispatching task then tries to correct
the problem, or at least prevent it from interfering with the pro-
cessing of other requests.

An emergency mode of operation allows the system to operate
with current on-line files. This enables the system programmers
fixing a migration or other on-line storage problem to use the
system.

Having considered the user, we now discuss installation man-
agement. The installation must be controlled to maintain a sys-
tem with acceptable cost for equipment. To that end, the instal-
lation should be able to select devices on which to locate the
data base. These devices would be the various disk drives —IBM
3330, 3340, and 3350 —with the IBM 3850 Mass Storage System
as a data reservoir and archive. In addition to device flexibility,
the installation requires control of the operating characteristics

CONSIDINE AND MYERS IBM SYST J

of the migration and backup processes. To that end, the individ-
ual installation must be able to specify certain parameters, such
as thresholds of available space on the on-line volumes, frequen-
cy with which the migration process is carried out, criteria for
determining currency or lack thereof, and frequency and number
of concurrent backup copies. By choosing its own values for
these variables, an installation can tune the migration process to
its needs.

In addition to contrel and flexibility, the installation must have
information, both for billing purposes and for evaluating policies
and strategies. The migration processor must provide statistics
on data usage, including accounting information such as on-line
and migrated storage residencies and the amount of data being
moved for various purposes (e.g., backup, restore, migrate).
The costs incurred by the migration process itself must be accu-
rately assessed and charged back to the functions and users be-
ing served.

Design and implementation

The design of MARC was undertaken to meet the following spec-
ifications. Reliability and availability are essential. Operational
flexibility, as provided by user and installation-specified con-
trols, is important. The functions should be easy to use, and data
on the operation of the facility must be accumulated and pre-
sented in intelligible form. A final practical consideration is that
there should be as few changes to the Mvs system as possible to
provide the needed functions.

MARC is a system that runs in its own address space. For relia-
bility, processing is divided into units that are assigned to sub-
tasks. In addition, most of the processing is carried out in prob-
lem state, i.e., without using the privileges of system code. This
reduces the possibility of overall system damage due to a MARC
malfunction, and reduces the probability of a global MARC fail-
ure due to an error in processing a particular request. The sepa-
rate address space with subtasking is probably the most signifi-
cant design feature. In addition, the code is designed in modular
fashion, with specific functions assigned to specific modules, and
an overall hierarchical approach has been taken in specifying the
flow of control.

Bearing in mind the definitions presented earlier, we examine
the structure of the MARC facility installed in the MVS system, as
shown in Figure 3. The center of the facility is the combination
of MARC address space, public volumes, migration volumes, and
backup files. This combination represents the site of data move-
ment and the control of processing. Tasks that operate in the

No. 4 - 1977 MARC: ARCHIVAL STORAGE

migration

operator/user
interface

Figure 3 MARC in the MVS system

(USER
SYSTEM MARC

CATALOG CATALOG

OPERATOR

COMMANDS
J0B/
[SESSION J—-h ALLOCATION AR
] \ -
i O MIGRATE

UPDATE DATES IN DSCB PUBLIC RESTORE MIGRATION
VOLUMES VOLUNES/

BACKUP
FILES

MARC address space move data from one location to another in
a public-migration-backup storage volume triangle. Data are
moved in response to requests either by MARC (with reference
to installation-specified criteria) or from outside the MARC
address space.

The results of the processing that takes place under MARC con-
trol are recorded in both the system catalog and the MARC cata-
log. The means of communication between other address spaces
(users) and the MARC address space is the MARC Supervisor
Call (svC), which verifies MARC Work Elements (MWES), com-
municates them to MARC, and transfers the results back to the
user.

It is possible for the installation, through either the system oper-
ator or the designated data base administrator, to define thresh-
olds of occupancy called ‘‘high-water mark” and ‘“low-water
mark” for each of the public volumes that are managed by
MARC. The high-water mark is the maximum fraction of the vol-
ume that should be occupied before MARC takes corrective ac-
tion (migration). The low-water mark is the amount to which
the fraction occupied should be reduced before MARC migration
processing terminates. It is possible to instruct MARC to check
the public volumes for compliance with these specifications ei-
ther at a specific time of day or at regular intervals throughout
the day, and take action as required.

In addition to those data movements that are automatically initi-
ated by MARC, data are also moved in response to specific re-
quests for processing.

Explicit or implicit requests for MARC processing originate ei-
ther with the operator or with the user. Only explicit requests
are discussed.

CONSIDINE AND MYERS IBM SYST J

The operator commands fall into the following categories:

Operational control: specification of operating parameters to
MARC (migration criteria, frequency of migration, etc.); sus-
pension and resumption of specific MARC operations, for
example migration; management of entries in the MARC LOG
data sets.

Information listing of the contents of the MARC catalog and
the values of various parameters set by the operational
commands.

Data base specification: description of the volumes to be
managed by MARC, e.g., on-line or migration volumes; spe-
cific MARC requests, e.g., MIGRATE data set or RESTORE da-
ta set.

The TSO user has analogous functions for specifying data set
movement. Specifically, he can migrate on-line data sets (MDS),
restore (RMDS), or erase (EMDS) migrated data sets. He can also
create (DUPLEX) and retrieve (RBC) backup copies on a data-set
basis, and obtain information about his migrated data sets
(LISTM). From a TSO CLIST, a QDS command returns a condition
code that indicates whether a specific data set has been migrated
or not. In addition, when previously authorized to be a data base
administrator from the operator’s console, a user may specify
any of the operator commands from any TSO terminal (MCMD).

The MARC catalog is the repository of all information specific to
MARC processing. It is a VSAM key-sequenced data set; i.e., the
catalog is indexed and records can be retrieved by specifying a

unique key. Among the records contained in the catalog are the
following:

Data set entries —contain information about migrated data
sets, including name, size, organization, date last referenced
and date migrated. Information about available backup
copies for a data set is also recorded.

Backup copy entries —give the names of the copied data sets
and the date of each copy.

Volume records —describe all the volumes for which MARC
is responsible. The data recorded include volume serial num-
ber, type of volume (public or migration), and the thresholds
(high- and low-water marks).

User record —contains information specific to the users, e.g.,
whether a user has been granted operator privileges (desig-
nating him as a data base administrator).

Backup volume records —identify the volumes that are used
for backup.

Control records—contain information that controls the ac-
tion of MARC, e.g., time of day for automatic migration, back-
up, etc.

NOo. 4 - 1977 MARC: ARCHIVAL STORAGE

catalog

migration
volumes

MARC address
space

Figure 4 The MARC address space and control structure

CONTROL TASK

I
I I I | 1

MIGRATION RESTORE

COMM, |

ANDTAPSF:PCESS NG CONTROL CONTROL B/i’&_(/ig}l(JP LOG TASK
TASK TASK

f—‘——l

VOLUME DATASET
SAEIAS MIGRATION MIGRATION R ar
TASK TASK

e Statistics records —include records of MARC processing
{(number of data sets migrated and/or restored, number of
unsuccessful requests) on a daily basis and per volume.

The design of MARC includes two basic types of migration vol-
umes. The first is the real direct-access storage device (DASD),
as exemplified by 1BM 3330 and 3350 disk storage systems. The
second is the virtual DASD, provided by the 1BM 3850 Mass
Storage System (MSS).”

When a real or virtual DASD volume is to receive migrated data,
access to that volume is through the MARC processor only, and
the user has no contact with data on the migration volume. We
therefore organize the data on the migration volume in the most
efficient manner. The first record is a data set descriptor that
contains the information in the system Data Set Control Block
(DSCB) for the public data set. Small data sets (containing less
than two tracks of data) are packed into a large vSAM data set.
Thus several data sets can be packed onto one track. For
example, a data set with twenty 80-byte records would occupy
the minimum unit of space allocation—one track. Packed, it
occupies only one record in the VSAM data set, a fraction of a
track.

The MARC address space is the heart of the MARC facility, and
carries out all the data movement. Figure 4 shows organization
of MARC tasks. A control task initializes and terminates MARC
processing in response to operator commands. At other times
the control task functions primarily as a dispatcher. It receives
the requests for service from other tasks (users/jobs) and from
the operator and dispatches them to appropriate subtasks. The
control task monitors any subtasks that terminate abnormally.
Because it does no data movement and relatively little other
processing, the control task is isolated from the problems that
might occur in the handling of specific data sets and is able to
maintain the operation of the function as a whole.

CONSIDINE AND MYERS IBM SYST J

A migration control task responds either to specific requests or
to installation-specified criteria, and initiates migration tasks as
required. Migration can take place on either a data set or volume
basis. In migration, a data set is copied to a migration volume.
The system catalog is then updated to reflect the migrated status,
and the public copy is deleted.

A restore control task performs the analogous function for re-
store requests. Here, a number of simultaneous restore tasks can
be active. In restoration, the data set is copied back to a public
volume. The system catalog is updated to include the new loca-
tion, and the migrated copy is deleted.

A backup control task supervises the backup and retrieval func-
tions of the MARC facility. Automatic backup on a volume-by-
volume basis is governed by installation criteria of frequency
and time of day. At the specified time on those days on which
automatic backup is to be done, the control task requests the
copying of the changed data sets from each installation-specified
volume by a backup volume function. The control task also re-
sponds to requests for backing up individual data sets by means
of the DUPLEX command, and retrieval requests that originate in
the command to retrieve backup copies.

A log task writes records of MARC processing to the MARC log
data set, and if the installation specifies, also records all changes
to the MARC catalog in a journal for catalog recovery purposes.
The records to be written are prepared by the parts of MARC

that are doing the processing and are sent to the log task for re-
cording.

A command processing task processes operator commands that
do not require actual data movement. Commands that require
data movement are sent from this task to the appropriate migra-
tion, restore, or backup/retrieve control task for processing.

Mass Storage Systems in the MARC environment

The 1BM 3850 Mass Storage System (MSS) is a large capacity
direct-access storage device® in which data are stored on car-
tridges. Then, for purposes of access, pairs of these cartridges are
linked into logical units, called virtual volumes, which appear in
every way to the programming system as 3330-1 DASD storage
volumes. A process called staging is used to move data from the
MSS tape cartridges to real 3330 DASDs, called staging vol-
umes, for access by the central processor. Destaging returns the
data sets to the MSS cartridges when they are no longer in use,
thereby transferring any modifications back to the cartridges.

No. 4 - 1977 MARC: ARCHIVAL STORAGE

storage
hierarchy

The MSS is a reservoir of storage capacity that the MARC func-
tion uses in a number of ways. First, virtual volumes are used as
migration volumes for Level 2. Data sets are moved to MSS vol-
umes after a period of residence on Level 1, which may be bound
virtual volumes or real DASD, without being used. Level 2 vol-
umes are sorted by owner, such that a given user’s files are put
on the same MSS volume. The availability of Level 2 migration
volumes that do not require operator mounting has greatly im-
proved the responsiveness of MARC to requests for data sets
that have not been used for a long time. In addition the large
reservoir of volumes available in the MSS enables a fine degree of
sorting in allocating Level 2 volumes. Instead of assigning one
Level 2 volume to all users whose user 1Ds begin with a letter be-
tween A and C, for example, we can allocate individual volumes
to each letter of the alphabet individually. This increases the
amount of space set aside for a particular user’s data sets and re-
duces the number of volumes on which his data sets are stored.

In this first phase of our MSS activity, access to data on MSS vol-
umes that are managed by MARC is still exclusively through
MARC. Upon allocation of a migrated data set resident on an
MSS volume, the data set is copied to real DASD for access by
the requesting program.

In addition to its use as a source of migration volumes, the MSS
is especially valuable as a source of backup storage space. The
incremental backup system creates copies of changed data sets
on a regular basis, with an installation-specified upper limit on
the number of copies of an individual data set to be simulta-
neously maintained. Our installation value is currently set at 4.
If an average of between five and ten percent of the on-line data
sets are changed per day, after ten to twenty days, on the aver-
age, the backup storage reaches the size of the on-line storage.
Beyond that point it continues to grow. Since the same data sets
continue to be changed and old copies are deleted, the growth
rate slows down and —at some steady state—grows only with
the amount of new data being generated. The MSS provides the
capacity to retain backup copies for long periods of time.

MARC is designed to improve the utilization of the storage com-
ponents of the system configuration. MARC seeks to establish a
hierarchy of data set storage devices among which data move as
required to improve the efficiency of the whole configuration.
All the DASD devices used as MVS storage volumes are seen as
components of a continuum of storage, with varying values of
capacity and access time. These values range from milliseconds
(to access a data set residing on a permanently mounted real
3330 DASD) to minutes (to stage completely a large data set
that is resident on an MsSS cartridge). The capacities range from
100 million bytes for a 3330-1 DASD volume to 472,000 mil-

CONSIDINE AND MYERS IBM SYST J

lion bytes on the MsSS. Algorithms have been developed to
evaluate the placement of data sets in such a hierarchy, depend-
ing on such variables as device access time, data transmission
rate, mean number of bytes transferred per access, mean num-
ber of access per day, cost of the various devices, and size of the
data set.’ Factors that appear to be significant in an interactive
environment and are not generally addressed in these algorithms
are the cost of the time of the interactive user waiting for a re-
sponse, and the effect on user productivity of unforeseen delays
in processing. Truly effective use of the storage hierarchy re-
quires that data be collected on the variables that are observable
within the machine, and that algorithms be tested as they are
developed.

For the present, there are some immediate gains from even rudi-
mentary observation of data set usage patterns, using simply the
information that is contained in the date last referenced. This
criterion has been adequate to make the vast majority of data
references to data sets that are stored on real DASD. The selec-
tive copying of data sets to the MSS, based on the length of time
since last use, reduces the amount of real DASD space occupied
by inactive data sets and allows room for the creation and use of
active data.

There are several areas in which MARC can make more effective
use of the MSS as a device than is currently being done. In the
backup process, MARC issues an MSS ACQUIRE instruction that
requests that a large block of space be staged from the cartridge
to the staging drive. This space can then be used to make copies

of several different changed data sets without having to access
the cartridge for each individual copy. This can also be done
during migration.

In summary, the Mass Storage System offers MARC a very large
number of available volumes whose access is completely under
program control. Eliminating the wait for volume retrieval from
a library and physical device mounting by an operator has great-
ly improved the responsiveness of MARC to requests for either
Level 2 migrated data sets or backup copies. Such requests
might be even better handled if MARC could be extended to
use expected patterns of reference to arrange data on the MSS
volumes. Such a logical arrangement would result in more data
accessed per cartridge accessed and more efficient use of the
system.

On-line storage management
In addition to the functions previously described, other func-
tions should be performed by an on-line storage manager. We

have discussed the selecting of data sets for migration based on

NO. 4 + 1977 MARC: ARCHIVAL STORAGE

criteria of permanent usefulness. There might be many tempo-
rary data sets for the duration of a job or terminal session that
should included in the migration process. Since system and utili-
ty temporary data sets are often created but not always deleted
when their use has ended, MARC provides for installations to
describe automatically deleted data sets. The automatic deletion
category includes system temporary data sets (created by the
system for scratch space) and uncataloged or improperly cata-
loged data sets. Also, other data sets may have a defined useful-
ness of short duration. For example, listings produced by lan-
guage processors (such as FORTRAN and PL/1) might be consid-
ered expendable. MARC, therefore, allows the installation to
specify data sets to be scratched after an installation-specified
period of time. These two features help to free on-line storage
from the debris of processing.

Another situation that impedes the full use of on-line storage in
an MVS environment is the fragmentation of available storage
into small pieces. As an example, if a volume has 2900 tracks
available, but the largest contiguous grouping (extent) is 18
tracks, a request to allocate one cylinder (19 contiguous tracks
on a cylinder boundary) will fail. If the available storage space
had been less fragmented, the request could easily be satisfied.
As a first step toward avoiding excessive fragmentation, we
have implemented a measure of fragmentation for disk volumes.
MARC can thus detect severe cases of fragmentation in the
course of its space monitoring.

A significant problem for the owner of many migrated files has
been that of determining the contents of a file'without having to
restore it. A possible solution has been suggested by our work on
vM/370. Provision could be made in the MARC catalog for ap-
pending to each data set entry a set of keywords that describe
the contents of the data set. A search facility on keywords could
present to the user a list of his migrated data sets whose key-
words match the keywords of the search. The user could then
decide whether or not to restore the data sets.

Concluding remarks

MARC has been operating at IBM Hursley and Yorktown Heights
since early 1976, and at the 1BM facility in Burlington, Vermont
since September, 1976. As of January, 1977, there were about
eleven thousand migrated data sets at Hursley, and about twelve
thousand at Yorktown Heights. The Level O on-line storage at
Yorktown Heights, for example, contains approximately two
thousand three hundred data sets.

CONSIDINE AND MYERS IBM SYST J

Implementation problems that we have experienced are mainly
those of understanding the MvS system and the interfaces be-
tween it and our code. In addition, as a result of the number of
subtasks that execute in the MARC address space, we have had
problems in correctly sharing serially reusable resources. To
avoid a deadlock between two tasks whose needs might be inex-
tricably entwined, we have had to pay close attention to the
order and type of enqueuing of the data sets and other resources
that are used by MARC tasks.

ACKNOWLEDGMENTS

We are grateful for valuable discussions with A. Katcher in the
design phase of this project, and for the constant encouragement
and support of A. Weis, I. W. L. Jones, and L. Brown of the
IBM United Kingdom Laboratories in Hursley, England, and
that of N. Pass and Helen C. Dietrich of the IBM Thomas J.
Watson Research Center at Yorktown Heights, New York. We
also acknowledge the useful suggestions of the reviewers.

CITED REFERENCES

1. SHARE Systems Group, White Paper on Future Systems, SSD 227, 43-46
(October 1, 1972).

2. R. C. Daley and P. G. Neumann, “A general-purpose file system for secon-
dary storage,” Proceedings of the Fall Joint Computer Conference, Novem-
ber 1965, 213-29, Thompson Book Co., Washington, D.C. (1965).

3. R. P. Kelisky, “Managing interactive systems for user effectiveness,” Lecture
Notes in Computer Science, Interactive Systems, 93— 107, Springer-Verlag,
Heidelberg (1977).

4.). P. Considine and A. H. Weis, “Establishment and maintenance of a storage
hierarchy for an on-line data base under TSS/360,” Proceedings of the Fall
Joint Computer Conference, November 1969, 433 - 40, Thompson Book Co.,
Washington, D.C. (1969).

5. IBM System Reference Library, IBM 3850 Mass Storage System (MSS)
Installation Guide, Order No. GA32-0030, IBM Corporation, Data Process-
ing Division, White Plains, New York 10604.

IBM System Reference Library, IBM 3850 Mass Storage Systems (MSS)
Principles of Operation, Order No. GA32-0029, IBM Corporation, Data
Processing Division, White Plains, New York 10604.
IBM System Reference Library, OS/VS Mass Storage System (MSS) Ser-
vices, General Information, Order No. GS35-0016, IBM Corporation, Data
Processing Division, White Plains, New York 10604.
IBM System Reference Library, OS/VS Mass Storage System (MSS) Ser-
vices, Reference Information, Order No. GC35-0017, IBM Corporation, Data
Processing Division, White Plains, New York 10604.

. V.Y. Lum, M. E. Senko, C. P. Wang, and H. Ling, “A cost oriented algorithm
for data set allocation in storage hierarchies,” Communications of the ACM
18, No. 6,318 -322 (June 1975).

Reprint Order No. G321-5059.

MARC:. ARCHIVAL STORAGE

397

