
A newly  designed  and  implemented  automated  storage  hier- 
archy  management  system  that  operates  under M V S  is  de- 
scribed.  The  needs  for  economical  archival  storage  that  at  the 
same  times  makes  possible  the  eficient  retrieval of users’ data 
are  reviewed.  Discussed  in  detail  is  the  fuljillrnent of this  re- 
quirement  that  is  provided  by  the  automated  management of 
M V s l T s o  on-line  data  storage  space  that  includes  the  Mass 
Storage  System ( M S S )  and  other  storage  devices in a  hierarchy. 
Experience  with  the  system  is  summarized. 

MARC: MVS archival storage and recovery program 
by J. P. Considine and J. J. Myers 

Increased computing power, in the form of faster  processors  and 
faster  and  larger  storage  devices,  has led to  an increasing num- 
ber of users  served by computing installations, in batch  and in- 
teractive  modes. Use of the  increased  computing  power gener- 
ates  more  and  more  data  that  must  then  be  stored  and made 
available for  future processing. This  generates  increased demand 
for  storage, especially on-line storage.  Interactive  users  want 
their data  to be available in no more  than a few seconds,  and 
even  batch  users  try  to avoid the  delays  that  arise when process- 
ing unmounted  volumes. At the  same  time,  there are constraints 
on  the amount of hardware that  can  be installed to  support 
users.  As  an alternative, a programming tool might enable a sys- 
tem to make the  most efficient use  possible of the  resources 
available, while maintaining the  responsiveness  and availability 
that  users  depend  on.  This  paper  describes  such a tool. 

After discussing the problem further,  the  concepts underlying 
the  overall  approach  to a solution and definitions of some  key 
terms  are  presented. Then  there is briefly summarized previous 
work by members of the rBM Research  Division,  addressing this 
problem in the  context of a general operating  system  environ- 
ment. A detailed  description is then given of one  such solution 
that has  been implemented under  the IBM O S l v s 2  MVS operating 
system,  the MVS Archiver (MARC). The term MVS (Multiple Vir- 
tual Storage)  represents oslvs2 MVS throughout  this  paper. The 
description includes architecture  and  function, design and imple- 
mentation,  and  support of the  Mass  Storage  System. 

378 CONSIDINE AND MYERS IBM SYST J 





Figure 1 Zipf’s law for data set 
accesses 

CUMULATIVE  FRACTION OF DATA 
SETS  ACCESSED 

approach to 
a solution 

Figure 2 Storage hierarchy resi- 
dence times and corre- 
sponding problems 
addressed 

RESPONSE 

DRUM (10 MINUTES) 

:%%..E MANAGEMENT kt 
DISK (10 DAYS) 

USER GROWTH 
LIMITATION 

ARCHIVE (10 YEARS) 

7 

3 80 

ally, either  the installation management undertakes  the  responsi- 
bility for  creating  these  copies  on behalf of the  users  or  the  users 
are  required  to do it themselves. If the installation does  the  job, 
the approach is simply to  copy files on  a regular basis,  perhaps 
weekly, keeping the  copies off line, usually on  tape.  Because  the 
installation generally does  not  have good techniques  for knowing 
which data  sets  require new backup  copies  because of changes, 
the  usual  approach is to  copy all files. This  can involve much 
needless copying, and the whole process  can  require  hours- 
even  for a modest sized on-line data  base. 

On  the  other hand,  there are also difficulties if the  user is left to 
backup his own  files-even though he knows which files need 
backup. A user may make on-line copies of his data  sets with 
slightly different names,  thereby proliferating copies of the  same 
data  on on-line storage, or he may copy data  sets  to private 
tapes,  thereby requiring more  and  more  operator  intervention 
for mounting, or he may do nothing. Either  approach  has its 
costs in equipment and time, plus the  user’s difficulty  of keeping 
track of  all  of the copies. Doing nothing is potentially the  most 
expensive  method of all, since  the  user is exposed  to  the  conse- 
quences of lost  data. A number of these  concerns,  as  expressed 
by a large group of computing system  users, are included in a 
SHARE White Paper  on  future  operating  systems.l 

It has  been  observed in a number of different contexts  that  the 
usage of a  collection of objects is not uniformly distributed 
across  the collection. For instance, in the English language, 
some  one  hundred different words make up well over half the 
number of words  spoken. All the  rest of the language comes  to 
less  than half the  words  used.  This  observation, known as  Zipf’s 
law, as applied to  data  set references  and  accesses, is shown in 
Figure 1. A similar relationship  applies  for  various  components 
of computing systems if we choose  the time frame  appropriately. 
Consider  a computing system as depicted schematically in Fig- 
ure 2, which is structured hierarchically with different levels 
addressing different problems. Consider  processor  references to 
storage. The observation  that  successive  references  tend  to  be 
to  the same or nearby  storage  locations is behind the  successful 
use of high-speed cache  storage in current  processing  units. A 
cache is much faster  but much smaller than  the  rest of the  pro- 
cessor  storage. It is possible dynamically to  select the  contents 
of the  cache so that most of the  instructions  executed by the 
processor  refer to  the  cache  rather than  to  the slower main stor- 
age. When reference is made to main storage  the  contents are 
copied into  the  cache  and  remain  there  for  further  reference un- 
til displaced by new data  that  are  needed. The effect of this op- 
eration is to  enable  the  processor  to  function  almost as though it 
had a large amount of the high-speed storage. 

CONSIDINE AND MYERS  IBM  SYST J 



Similarly if we consider all the  instructions in a program, we find 
that many programs tend to  stay in the  same  part of their pro- 
gram space for significant portions of their  total  execution time. 
Thus it  is not  necessary to have a whole program accessible  to 
the processing unit at all times. Rather it  is possible  to  load por- 
tions of the program into main storage as required while holding 
the  rest of the program on some auxiliary storage  device,  such 
as a  drum or disk. This fact  about  most programs has  enabled 
virtual storage to share  a given amount of processor  storage 
among more programs than would have been possible if each 
program had to be loaded entirely. Thus a  greater  number of 
simultaneous  tasks  can  be  serviced,  thereby improving the  re- 
sponsiveness to the  interactive  user. 

The common  feature of these  two  examples  is that  because of 
patterns of usage it  is possible to design a  hierarchical  storage 
structure, such that  portions of the  data being used are moved 
between  more and less accessible  (and also more and less 
costly)  storage  locations. This enables  the overall system  per- 
formance  to  approach  that which it would attain using only the 
more accessible  (more costly) devices, while the  cost  tends  to 
approach  that of the  less  costly  (less  accessible)  devices. 

Observations  on  data  set usage lead to similar conclusions  about 
the manner in which data  sets  are  used.  The  pattern of reference 
to data  sets  has  the  same locality as a program's execution of its 
instructions.  A  user  works on a  subset of  files for  a period of 
time and then  stops. He may go on  to  some  other  project  or may 
enter  the program into  production  and no longer be working 
with the same  source  and  test files. In any  case, in an  uncon- 
strained  environment,  users  often  have  a significant number of 
files that are not in active  use, but which they do not wish to  dis- 
card immediately. This observation  leads to  the proposal of a 
hierarchical scheme for file storage  that is analogous - on a longer 
time scale-  to  that established by virtual storage  systems  for 
executing  programs  and data.' 

It is at  the  interface  between  active  data  and  archived data  that 
we  see  an  opportunity  to remove a significant barrier  to  the pro- 
ductivity of the user and  the  growth of applications. The basic 
principles of our MVS Archival System (MARC) are  as follows. A 
range of storage  devices are available for the storage of user 
data.  These vary in size and accessibility (and  therefore, in 
cost).  There is more of the less accessible  storage available than 
that which is more accessible, as a cost  reduction  consideration. 
Required is a tool for managing this hierarchy so that  data move 
from level to level in accordance with their usefulness. The qual- 
ity usefulness has different meanings in different situations. In 
any  case,  the gist is that  the  most useful data should be  most 
accessible. There  are  three levels in our  hierarchy. The first is a 

NO. 4 . 1977 MARC: ARCHIVAL STORAGE 381 



level at which the  data  are always accessible with negligible de- 
lays  (the  current on-line storage), called Level 0. Next  there is a 
somewhat  less  accessible  level, possibly requiring some delay in 
retrieval, which would contain  data  that  have  a significant proba- 
bility of being referenced,  but not as great as  the probability of 
the  data  on Level 0. This is Level 1. Finally,  there is the third 
level, which contains  the archival data,  data  that go unrefer- 
enced  for  extended periods of time. This  we call Level 2. The unit 
of data transfer is the data set. In  the  text,  “data”  and  “data 
set( s) ” are used  synonymously. 

definitions Several definitions necessary  to  the  understanding of MARC are 
now presented. We use the word public to refer to any on-line 
volume managed by MARC that  contains  user data sets. A rnigrcc- 
tion volume is one  that  contains  user data  sets  that  have been 
moved from public volumes  under  the  control of MARC. Migru- 
tion is the  process by which data  sets  are moved selectively 
from public to migration volumes. Restoring is the process  that 
brings the  data  set back  to public residence. Backup is the dupli- 
cation of a  user  data  set on a volume other  than  that  on which 
the  data  set resides.  (Backup volumes are usually off line.) Rr-  
trieuul is the  process of selecting or retrieving a specific backup 
copy of a  data  set  and copying it back to public storage. The 
MARC Work Element (MWE) is a message block for communica- 
tion between MARC and  other  tasks  (users, jobs).  The requesting 
task inserts  the specifications of a  request  for  work  to  be  done by 
MARC, and  sends it to MARC, which returns  its  MWE  after 
processing with the  contents  altered  to reflect the  results of the 
processing. 

The IBM Research Division activities in storage management of 
user files began in 1969, with a Tss/360 file migration and ar- 
chiving system. Work continued in 1971 with an Os/360 data 
migration and staging system, and led to  a v ~ / 3 7 0  filespace 
(minidisk) migration and  backup  scheme in 1973. These  three 
systems are now described” 

~ s s / j 6 0 .  The ~ S s / 3 6 0  migration system  treated  the individual 
data  set or file as  the  unit of t raff i~.~  The data  sets  were  copied  on- 
to migration volumes from the on-line public storage,  and  the 
public copy was then  erased. In its migrated for-, the  data  set 
was  accessible only by specific migration commands  that  were 
essentially  a  restore  command  and  an  erase  command. If a back- 
ground (batch)  job were  to  refer to a migrated data  set, it would 
fail. To use  the  data  set in the  ordinary  way,  the  user had to 
restore it to the public storage volumes by issuing a specific 
command. While the  user  waited,  the  restoration  process  took 
place  under  the  control of his task. 

382 CONSIDINE AND MYERS IBM SYST J 



OS/360.  The O s / 3 6 0  data migration and staging work was done 
at  the IBM Research Division laboratory  at  San  Jose. One of the 
major innovations  introduced  was  the  concept of data  ownership 
for all files, whether  created by TSO interactive jobs  or by batch 
jobs. The concept was implemented in O s / 3 6 0  and formed the 
basis for  the migration scheme. A series of utilities was  created 
to be invoked by data base  administrators to control the size  and 
use of on-line storage in the OS environment. Utilities were also 
written to allow the  user  to  have  a migrated data  set  restored  to 
available on-line storage. These generally ran in background 
mode with some time delays. As in the TSS/360 scheme, the  user 
was required to  take specific action  to  restore  the  data,  and  a 
batch  (background)  job would  fail if it referred  to  a migrated 
data set. 

v~/370. Undertaken  next was the design and implementation of 
a ~ ~ / 3 7 0  minidisk migration scheme. A minidisk in the VM/CMS 
system is an allocation of contiguous  storage  made available to a 
specific user for the  storage of files. These  are typically one, 
three, or ten  cylinders of a  direct-access  storage  device (DASD), 
and  represent  a unit of system  allocation  to the user in question. 
In the VM/CMS system,  the CMS filespace or minidisk is the unit 
of migration traffic. For many users-those  who use the  system 
intermittently  rather than every day- the normal state of  mini- 
disk is migrated rather  than on line. The  user need not be aware 
that  the minidisk in question  has been migrated. 

As part of the normal process of beginning work on the  system, 
certain of a user’s minidisks are automatically accessed by the 
system.  Other minidisks may be  accessed specifically by com- 
mand. In  either  case, if the minidisk is migrated, the  reference 
causes  the  restoration  process  to  take place, and  an  estimate of 
the  expected time of availability to be given. The user need not 
wait for  the  process  to be completed,  but  can  do  any work that 
does  not  require  restoration of the minidisk. He can also choose 
to suspend work until the minidisk in question is available. In a 
background task, he can likewise specify that he  will wait if the 
minidisk is not available. If the minidisk is already  restored, his 
task  proceeds immediately. 

Instead of an  environment in which on-line minidisk space is the 
controlling factor in limiting user  access  to  the v ~ / 3 7 0  system, 
we have been able to  establish  an  environment in which users 
may gain access  to  the  system  as  required, with the migration 
system efficiently controlling the  amount of on-line space. 

Prior  to  the installation of MVS in 1975, storage management at 
the IBM United Kingdom Laboratory  at  Hursley,  Hampshire, 
England, had been accomplished by a combination of user  fore- 
casting of  space  requirements and manual checking by opera- 

NO. 4 - 1977 MARC:  ARCHIVAL  STORAGE 

case 
history 

383 



tions  administration for enforcement of space  allocations.  After 
installation of an on-line interactive MvSlTSO (MVS with Time 
Sharing Option)  system,  that method quickly proved inadequate 
because,  as  users  tended to create new data  sets, it became diffi- 
cult for installation management to limit their creation. Manage- 
ment therefore began to search  for  techniques  to  control  the al- 
location of on-line storage. Because of their experience in stor- 
age management,  the  assistance of programmers at  the IBM Re- 
search Center  at Yorktown  Heights, New  York was requested. 

The availability of practical experience with MVS at the IBM 
Hursley  laboratory and experience with other  systems  at  the 
IBM Research  Center facility at  Yorktown  Heights led the 
two locations to launch a  joint project involving the design and 
implementation of an effective tool for controlling on-line stor- 
age under  the  new MVS operating  system. The project was di- 
rected at solving problems that  arise in both  operating  environ- 
ments - the  research-oriented  one and the development- and 
production-oriented  one. The effort, like its  predecessors,  was 
aimed at supporting  the user’s growing dependence  on on-line 
files, while limiting the  amount of hardware  required and in- 
creasing utilization of the  direct-access  space  allotted  to such 
files. 

Our  experience with MVS has  shown  patterns of usage and data 
generation among the  users  that  are similar to  those  observed in 
the  past. The quantity of on-line data, beginning with the  data 
already on hand from previous  systems  and brought over  to MVS 
as part of the  conversion  process,  has continued to grow as  the 
system is used. 

We have  thus designed and implemented a tool for  the manage- 
ment of the on-line storage  resource based on  the hierarchical 
concept previously described. We now discuss  what  a  storage 
manager does  to aid users of the  system by reducing their con- 
cern  about on-line storage  management. 

Architecture of on-line storage  management 

functional The major goal of the storage management scheme is to make 
,equirernents storage available in a timely fashion as automatically as possible. 

Since  an  operator  or  data  base  administrator is not  able  to moni- 
tor on-line storage  constantly, a non-automatic  system would be 
subject  to  errors or oversights, and critical shortages of storage 
could result. The automatic migration system should include a 
storage  monitor  for  reporting  problems to  the  data  base adminis- 
trator  as  they  occur  and  correcting them as  far as possible. 

384 CONSIDINE AND MYERS  IBM SYST 1 



Another key system  requirement is data availability. A user 
must not have  access to data  restricted  or impeded because  the 
system moves them from one  place  to  another.  In  addition,  the 
system  must not lose  data in the  process.  Whenever a data  set is 
moved,  there is a possibility that  the new copy may  differ from 
the original due  to  error.  Care must be taken  to minimize this 
possibility and to avoid moving the data unnecessarily. 

To maintain the usability of the  system while attempting  to im- 
prove utilization of the on-line storage  resource,  the  system 
must  have low impact on the user’s way of working. There  are 
acceptable penalties the  user might have to pay for the  addition- 
al  file storage  resources made available by the file management 
scheme. These include a finite additional delay in the allocation 
of a  data  set  that  has been migrated, and perhaps  the unavaila- 
bility  of certain information about  that  data  set  and its contents 
without  restoring  it,  such  as  the  names of members of a parti- 
tioned data set.  However,  the  user should not  experience  a job 
or request failure because  a data  set required  for  the  request had 
been migrated. 

In justifying the existence of the migration system,  two  factors 
are significant. The scheme  must offer the installation control 
over  the on-line storage  resource  for maximum utilization of this 
resource,  and  the  operation of the migration system must not 
place an undue burden on other  system  resources,  such as CPU 
or I/O devices. The migration system gives users and data  base 
administrators  another place to  put  data.  Rather  than having to 
erase files that  can no longer remain on line, because  the  user 
has  received  a  certain allocation of space  and  has completely 
used it and now needs  to  create new files, or because  the  entire 
on-line storage  resource is full, the  user or administrator  can 
cause  them  to be migrated, thereby keeping them  accessible 
while freeing the critical on-line resource. Thus, users  can 
choose  to  erase  at  their  leisure  data  they  no longer need, similar 
to the way in which they handle  other  job-related housekeeping 
chores,  rather  than being forced into  an  unnatural daily activity 
driven by on-line space limitations. 

Also, when an installation provides convenient and capacious 
storage  for  data, while providing data integrity, users  come  to 
rely on that  storage  system  to  the exclusion of their previous 
stand-by,  the private tape or disk volume. With efficient migra- 
tion and  backup  means available, users  tend  to employ private 
volumes only for  transporting  data from one  system  to  another, 
thereby saving themselves and the installation time and re- 
sources. 

We now explore  these  requirements in further detail. First, a 
centralized,  very  reliable,  migration-restoration-backup  proces- 

MARC:  ARCHIVAL  STORAGE 



sor is required. Then, a simple user  interface with automatic 
migration and  restoration is needed.  Finally, for installation con- 
trol, we  must  have  tunable  parameters to drive  the  process, and 
for flexibility, a  variety of devices  and data  types  must  be  sup- 
ported. 

migration Several  requirements  present  themselves.  First, the migration 
process should be continuously  ready  to  respond to system 
needs  without having to be  started to respond  to a particular  cri- 
sis. Second, this task, which is always in existence  and  ready  to 
take  action, should monitor  storage. To enable  the migration 
function  to  evaluate  system  needs,  the installation should be 
able to define thresholds of utilization, such as  the maximum 
acceptable  ratio of storage used to the  total. The migration pro- 
cess  would  then be triggered by these  thresholds  to  take  appro- 
priate  action. 

The overall efficiency of the migration operation  can  have  a dis- 
tinct  impact  on  system  performance. It should anticipate  needs, 
in order to key such  elective  activities as  the  outward  movement 
of data  as  much  as possible to  periods of light system  load,  to 
minimize its impact on users. Provision should be made to  de- 
tect  any unusual use of the  system during normally lightly 
loaded periods. A judicious  choice of thresholds  and  the availa- 
bility to  the migration process of  valid measures of system  load- 
ing would facilitate  such scheduling. 

Another efficiency problem is that of unnecessary data move- 
ment. The underlying assumption of the migration process is 
that  the  user  works his way from place to place in the files that 
he  has  created and stored  on  the  system.  Experience  indicates 
that  over  a small period of time,  one  uses only a small fraction of 
all his files. The particular  fraction in use  changes as time pass- 
es, but the  changes are generally gradual. The migration process 
attempts  to  determine  the files that  are  not part of the  group  that 
the  user is currently working with, and move these  to migrated 
storage. Thus the  process  leaves  more room for  new files that 
the user  creates. To the  extent  that  the  estimate of the migration 
process is accurate,  the  user in question can function  for  some 
time without referring to  the files that  have  recently  been migrat- 
ed. If the  estimate is not  accurate,  or if there is simply not 
enough on-line storage  to satisfy the moment-to-moment  needs 
of the  active  users,  the  users will be constantly  requesting  data 
sets  to  be restored  soon  after they have  been migrated. 

One of the  most  unfavorable  situations in this kind of operation 
is that in which,  after a migration of several  hundred files during 
an off shift, half the migrated files are restored  to on-line storage 
through  user  requests during the first few hours of the  next 
prime shift. Given  that  there is in fact enough on-line storage  for 

386 CONSIDINE AND MYERS IBM SYST J 



the  users, then this situation represents  an obviously inefficient 
selection of files for migration. A key problem in the migration 
process is to  predict  future usage from past usage. We currently 
choose as a criterion of a  data set’s usefulness the length of time 
in days  since it was  last used. Experience  has shown that this 
can be an effective criterion  but  research is continuing. One of 
the major problems in a choice of criteria is the  evaluation by 
the processing programs that  select  data  sets  for migration. The 
up-to-date  data  necessary  for  the  evaluation  must be available to 
the program on an individual data  set basis at the time of the 
selection. Another  consideration is the  expense  incurred in col- 
lecting the  data  for  evaluation. The chosen  criterion is based  on 
information that is easily collected and readily available to  the 
processing program. It also  seems  to reflect usage in a research 
environment  adequately. 

Restoring a data  set from migrated storage  space  to on-line 
space should not  require prior knowledge on  the  part of the  user 
that  the data set has  been migrated. Thus restoration  must be 
triggered by a reference,  whether  by job control language of a 
background job  or by an allocation request from TSO. The user 
should,  however,  also be able  to  request  a  restoration  directly if 
it is known  that  the data  set  has  been migrated and  the need for 
it is anticipated. The  user may wait for  the  restoration if the  data 
are needed immediately. Otherwise, notification is given when 
restoration  has  been  completed. 

The backup facility should be easy  to  use, reliable, and efficient. 
To improve  the reliability of the  operation,  the  backup  process 
can be integrated with the migration process, so that  these  inher- 
ently similar functions  can be carried out in an economical way 
by common programs. For the  sake of economy, efficiency, and 
feasibility, only data  sets  that  have been changed since  the  last 
backup should be copied into  the  current  backup. The installa- 
tion also should be able  to specify the  frequency at which this 
backup  process is to take  place, with provision having been 
made for specific data sets  for which handling might vary  from 
the  system norm. In addition to  a global outlook for purposes of 
system-wide integrity, the backup  function should also afford the 
user the opportunity for timely backup of files at more  frequent 
intervals. There would be management-defined upper limits on 
the  number and size of copies a user could keep in the  backup 
system. 

Control and ease of use are needed in any function  that affects 
one’s data. To this end,  the migration process should afford the 
ability to restore  and migrate by command in a knowledgeable 
planned way, in addition  to letting the  system  operate on one’s 
data. The fact  that  the  user need not wait while the  actual data 
movement is carried out would make it convenient  to plan one’s 

MARC:  ARCHIVAL  STORAGE 



work  and, knowing the  patterns of usage of one’s own files, to 
position the data in a way that minimizes some cost function. 
This might be as simple as taking advantage of lower  costs for 
off-line (migrated)  storage  or  attempting  to  operate in an envi- 
ronment of limited on-line storage availability. 

The system should maintain the  necessary information to sup- 
port  the user’s interest in his files. This would include  at  least 
the  identity of the files, their  characteristics, and their  current 
status. 

So that  one may plan one’s time efficiently, migrated files are 
organized in such  a way as  to minimize the waiting time for files 
to  be  restored.  Our  experience confirms that  the most  recently 
migrated files are most likely to  be  requested  on  an individual 
basis.  On  the  other  hand,  over time, users  are likely to request 
their files  in groups,  without regard for  the date of last  use,  such 
as all the files for a particular  project or source and test  data  for 
a program. Such  patterns suggest that files should be arranged in 
reverse chronological order  for a period of time and  then  be 
sorted by owner. 

reliability In addition to  automatic  operation, a key requirement in any 
data handling facility is reliability. A reliable restore  function is 
required  to  make data available. 

In MVS, the  unit of work processing is the tusk. If a  task experi- 
ences  severe difficulties in carrying  out  a request-difficulties 
from which the  system  cannot  determine how to  recover-  the 
task will be terminated. To maintain reliability and availability, 
therefore, the actual execution of individual requests should be 
carried  out  on  a  one-request-per-task  basis. These tasks are 
under  the  observation  and  control of a dispatching task  that is 
aware of tasks failing. The dispatching task  then  tries  to  correct 
the problem, or at least  prevent it from interfering with the pro- 
cessing of other  requests. 

An emergency  mode of operation allows the system  to  operate 
with current on-line files. This  enables  the  system  programmers 
fixing a migration or  other on-line storage problem to  use  the 
system. 

installation Having  considered  the  user,  we now discuss installation man- 
management agement. The installation must be controlled to maintain a  sys- 

tem with acceptable  cost  for  equipment. To that  end, the instal- 
lation should be  able  to  select  devices  on which to  locate  the 
data base. These devices would be  the various  disk drives-IBM 
3330,  3340,  and  3350-with  the IBM 3850  Mass  Storage  System 
as a data  reservoir  and  archive. In addition to  device flexibility, 
the installation requires  control of the operating characteristics 

388 CONSIDINE AND MYERS IBM SYST 1 







The operator  commands fall into  the following categories: 

Operational  control: specification of operating  parameters  to 
MARC (migration criteria,  frequency of migration, etc.); sus- 
pension and resumption of specific MARC operations, for 
example migration; management of entries in the MARC LOG 
data  sets. 
Information listing of the  contents of the MARC catalog and 
the values of various  parameters  set by the  operational 
commands. 
Data  base specification: description of the volumes to  be 
managed by MARC, e.g., on-line or migration volumes;  spe- 
cific MARC requests, e.g., MIGRATE data  set  or RESTORE da- 
ta  set. 

The TSO user has analogous functions  for specifying data set 
movement. Specifically, he can migrate on-line data sets (MDS), 
restore (RMDS), or  erase (EMDS) migrated data  sets. He can also 
create (DUPLEX) and  retrieve (RBC) backup  copies  on  a  data-set 
basis,  and  obtain information about his migrated data  sets 
(LISTM). From  a TSO CLIST, a QDS command returns  a  condition 
code  that  indicates  whether  a specific data  set  has been migrated 
or not. In addition, when previously authorized  to  be  a  data  base 
administrator from the  operator’s  console,  a  user may specify 
any of the  operator  commands from any TSO terminal (MCMD). 

The MARC catalog is the  repository of  all information specific to catalog 
MARC processing. It is a VSAM key-sequenced data  set; i.e.,  the 
catalog is indexed and records  can be retrieved by specifying a 
unique key. Among the  records  contained in the catalog are  the 
following: 

Data  set entries  -contain information about migrated data 
sets, including name, size,  organization, date last  referenced 
and date migrated. Information  about available backup 
copies  for  a  data  set is also recorded. 
Backup copy entries-give  the  names of the copied data  sets 
and the  date of each  copy. 
Volume records-describe all the volumes for which MARC 
is responsible. The  data recorded include volume serial num- 
ber,  type of volume (public or  migration), and  the  thresholds 
(high-  and low-water marks). 
User  record-contains information specific to  the  users, e.g., 
whether  a  user has been granted  operator privileges (desig- 
nating him as  a  data  base  administrator). 
Backup volume records-identify  the volumes that  are used 
for backup. 
Control  records  -contain information that  controls  the  ac- 
tion of MARC, e.g., time of day for automatic migration, back- 
up, etc. 

NO. 4 . 1977 MARC:   ARCHIVAL STORAGE 391 



Figure 4 The MARC address space and control structure 

CONTROL TASK 

I 
I I I I I 

Statistics  records  -include  records of MARC processing 
(number of data  sets migrated and/or  restored,  number of 
unsuccessful requests) on a daily basis and  per volume. 

migration The design of MARC includes two basic types of migration vol- 
volumes umes. The first is the  real  direct-access  storage  device (DASD), 

as exemplified by ISM 3330  and  3350  disk  storage  systems. The 
second is the virtual DASD, provided by the IBM 3850  Mass 
Storage  System (MSS).’ 

When a real or virtual DASD volume is to receive migrated data, 
access  to  that volume is through  the MARC processor  only,  and 
the  user  has  no  contact with data on the migration volume. We 
therefore  organize  the data  on  the migration volume in the most 
efficient manner. The first record is a data  set  descriptor  that 
contains  the information in the  system Data Set  Control Block 
(DSCB) for  the public data  set. Small data  sets  (containing  less 
than  two  tracks of data)  are packed  into  a large VSAM data  set. 
Thus several data  sets  can  be  packed  onto  one  track. For 
example,  a  data  set with twenty  80-byte  records would occupy 
the minimum unit of space  allocation-one  track.  Packed, it 
occupies only one  record in the VSAM data  set, a fraction of a 
track. 

MARC  address The MARC address  space is the  heart of the MARC facility, and 
space carries  out all the  data movement. Figure 4 shows  organization 

of MARC tasks. A control tusk initializes and  terminates MARC 
processing in response  to  operator  commands. At other times 
the control  task  functions primarily as  a  dispatcher. It receives 
the  requests  for  service from other  tasks (users/jobs) and from 
the  operator  and  dispatches  them  to  appropriate  subtasks.  The 
control  task  monitors  any  subtasks  that  terminate  abnormally. 
Because it does no data movement  and relatively little other 
processing, the  control  task is isolated from the  problems  that 
might occur in the handling of specific data  sets  and is able  to 
maintain the  operation of the  function  as  a whole. 

392 CONSIDINE AND MYERS IBM SYST J 



A migration  control  task responds  either  to specific requests or 
to installation-specified criteria, and initiates migration tasks  as 
required. Migration can  take place on either a data set  or volume 
basis. In migration, a data  set is copied to a migration volume. 
The system catalog is then  updated  to reflect the migrated status, 
and the public copy is deleted. 

A restore  control  task performs the analogous function for re- 
store  requests. Here, a  number of simultaneous  restore  tasks can 
be active. In restoration,  the data  set is copied back to  a public 
volume. The system catalog is updated  to  include  the new loca- 
tion, and  the migrated copy is deleted. 

A backup  control  task supervises  the  backup  and retrieval func- 
tions of the MARC facility. Automatic  backup on a volume-by- 
volume basis is governed by installation criteria of frequency 
and time of day.  At  the specified time on those  days on which 
automatic  backup is to  be  done,  the  control  task  requests  the 
copying of the changed data  sets from each installation-specified 
volume by a  backup volume function. The control  task  also  re- 
sponds  to  requests  for backing up individual data  sets by means 
of the DUPLEX command,  and  retrieval  requests  that originate in 
the command to retrieve  backup  copies. 

A log  task writes records of MARC processing  to  the MARC log 
data  set,  and if the installation specifies, also  records all changes 
to the MARC catalog in a  journal  for catalog recovery  purposes. 
The records  to  be  written are prepared by the  parts of MARC 
that  are doing the processing and are  sent  to  the log task for re- 
cording. 

A command  processing  task processes  operator  commands  that 
do  not  require actual data  movement.  Commands  that  require 
data movement are  sent from this task  to  the  appropriate migra- 
tion, restore,  or  backup/retrieve  control  task  for processing. 

Mass Storage Systems in the MARC environment 

direct-access  storage  device5 in which data  are  stored on car- 
tridges. Then,  for purposes of access, pairs of these  cartridges  are 
linked into logical units, called virtual volumes, which appear in 
every way to  the programming system as 3330-1 DASD storage 
volumes. A  process called staging is used to move data from the 
MSS tape  cartridges to real 3330 DASDs, called staging vol- 
umes,  for  access by the  central  processor.  Destaging  returns  the 
data  sets  to  the MSS cartridges when they are no longer in use, 
thereby transferring any modifications back to  the  cartridges. 

NO. 4 . 1977 MARC:  ARCHIVAL  STORAGE 393 



The MSS is a  reservoir of storage  capacity  that  the MARC func- 
tion uses in a  number of ways. First, virtual volumes are used as 
migration volumes for  Level 2. Data  sets  are moved to MSS vol- 
umes  after a period of residence on Level 1, which may be bound 
virtual volumes or  real DASD, without being used.  Level 2 vol- 
umes are sorted by owner,  such  that a given user’s files are put 
on the  same MSS volume. The availability of Level 2 migration 
volumes that  do not  require  operator mounting has  greatly im- 
proved  the  responsiveness of MARC to  requests  for  data  sets 
that  have not been used for a long time. In addition  the large 
reservoir of volumes available in the MSS enables  a fine degree of 
sorting in allocating Level 2 volumes. Instead of assigning one 
Level 2 volume to all users  whose  user IDS begin with a letter be- 
tween A and C,  for  example,  we  can  allocate individual volumes 
to each  letter of the  alphabet individually. This  increases  the 
amount of space  set  aside  for  a  particular user’s data  sets and re- 
duces  the  number of volumes on which his data  sets  are  stored. 

In this first phase of our MSS activity,  access  to  data  on MSS vol- 
umes  that are managed by MARC is still exclusively through 
MARC. Upon allocation of a migrated data  set  resident  on  an 
MSS volume,  the data set is copied  to real DASD for  access by 
the  requesting program. 

In addition to its  use  as  a  source of migration volumes,  the MSS 
is especially valuable as a  source of backup  storage  space. The 
incremental  backup  system  creates  copies of changed data sets 
on a regular basis, with an installation-specified upper limit on 
the  number of copies of an individual data  set  to  be simulta- 
neously maintained. Our installation value is currently  set  at 4. 
If an  average of between five and  ten  percent of the on-line data 
sets  are changed per day,  after  ten  to  twenty  days,  on  the  aver- 
age,  the  backup  storage  reaches the size of the on-line storage. 
Beyond that point it continues  to grow. Since the same  data  sets 
continue  to  be changed and old copies are  deleted,  the  growth 
rate  slows  down and-  at some  steady  state-grows only with 
the amount of new data being generated. The MSS provides the 
capacity  to retain backup  copies  for long periods  of time. 

storage MARC is designed to improve the utilization of the  storage com- 
hierarchy ponents of the  system configuration. MARC seeks to establish a 

hierarchy of data  set storage  devices among which data move as 
required to improve  the efficiency of the whole configuration. 
All the DASD devices used as MVS storage volumes are seen as 
components of a continuum of storage, with varying values of 
capacity and access time. These values range from milliseconds 
(to access  a  data  set residing on a permanently mounted real 
3 3 3 0  DASD) to minutes (to stage completely a large data  set 
that is resident on an MSS cartridge).  The capacities range from 
100 million bytes  for  a 3330-  1 DASD volume to 472,000 mil- 

394 CONSIDINE AND MYERS IBM SYST J 



lion bytes on the MSS. Algorithms have been developed to 
evaluate  the placement of data  sets in such a  hierarchy,  depend- 
ing on such variables as device  access time, data transmission 
rate, mean number of bytes  transferred per access, mean num- 
ber of access per day,  cost of the  various  devices, and size of the 
data  set.6  Factors  that  appear to be significant in an  interactive 
environment and are  not generally addressed in these algorithms 
are  the  cost of the time of the  interactive  user waiting for  a re- 
sponse, and the effect on user productivity of unforeseen  delays 
in processing. Truly effective use of the  storage hierarchy re- 
quires  that  data be collected on the  variables  that  are  observable 
within the machine, and that algorithms be  tested as they are 
developed. 

For the  present,  there are some immediate gains from even rudi- 
mentary  observation of data  set usage patterns, using simply the 
information that is contained in the  date last  referenced.  This 
criterion has been adequate to make the  vast majority of data 
references to data  sets  that  are  stored on real DASD.  The selec- 
tive copying of data  sets  to  the MSS, based on the length of time 
since last  use,  reduces  the  amount of real DASD space  occupied 
by inactive  data  sets  and allows room for  the  creation  and use of 
active  data. 

There  are  several  areas in which MARC can make more effective 
use of the MSS as  a  device  than is currently being done. In the 
backup  process, MARC issues  an MSS  ACQUIRE instruction  that 
requests  that  a large block of space be staged from the  cartridge 
to  the staging drive.  This  space  can  then be used to make copies 
of several different changed data  sets  without having to access 
the cartridge for each individual copy.  This  can  also  be  done 
during migration. 

In summary,  the  Mass  Storage  System offers MARC a very large 
number of available volumes whose access is completely under 
program control. Eliminating the wait for volume retrieval from 
a library and physical device mounting by an  operator has great- 
ly improved the responsiveness of MARC to requests for either 
Level 2 migrated data sets or backup  copies.  Such  requests 

' might be even  better handled if MARC could be extended  to 
use  expected  patterns of reference  to  arrange data on the MSS 
volumes.  Such a logical arrangement would result in more data 
accessed per cartridge  accessed  and more efficient use of the 

~ system* 
' On-line  storage management 

In addition to  the functions previously described,  other  func- 
tions should be performed by an on-line storage manager. We 

1 have  discussed  the  selecting of data  sets €or migration based on 

NO. 4 * 1977 MARC:  ARCHIVAL  STORAGE 395 



criteria of permanent  usefulness. There might be many tempo- 
rary data sets  for  the  duration of a job  or terminal session  that 
should included in the migration process.  Since  system  and utili- 
ty  temporary data sets are often  created  but  not  always deleted 
when their  use  has  ended, MARC provides  for installations to 
describe automatically deleted data sets. The automatic deletion 
category includes system  temporary data  sets  (created by the 
system  for  scratch  space)  and  uncataloged or improperly cata- 
loged data  sets.  Also,  other  data  sets may have  a defined useful- 
ness of short  duration. For example, listings produced by lan- 
guage processors  (such  as FORTRAN and P L ~ )  might be consid- 
ered  expendable. MARC, therefore, allows the installation to 
specify data  sets  to be scratched  after  an installation-specified 
period of time. These  two  features help to free on-line storage 
from  the  debris of processing. 

Another  situation  that impedes the full use of on-line storage in 
an MvS environment is the  fragmentation of available storage 
into small pieces. As an  example, if a volume has 2900 tracks 
available,  but  the  largest  contiguous grouping (extent) is 18 
tracks, a request to allocate  one  cylinder (19 contiguous  tracks 
on  a  cylinder  boundary) will fail. If the available storage  space 
had been less fragmented,  the  request could easily be satisfied. 
As a first step toward avoiding excessive  fragmentation, we 
have implemented a measure of fragmentation  for  disk volumes. 
MARC can  thus  detect  severe  cases of fragmentation in the 
course of its space monitoring. 

A significant problem  for  the  owner of many migrated files has 
been that of determining the  contents of a file-without having to 
restore  it.  A possible solution has been suggested by our  work on 
v ~ / 3 7 0 .  Provision could be made in the MARC catalog for  ap- 
pending to  each  data  set  entry a set of keywords that describe 
the  contents of the  data  set.  A  search facility on keywords  could 
present  to  the  user a list of  his migrated data  sets  whose key- 
words match the  keywords of the  search. The user could then 
decide  whether  or not to  restore  the  data  sets. 

Concluding remarks 

MARC has been operating at IBM Hursley and Yorktown  Heights 
since early 1 9 7 6 ,  and  at  the IBM facility in Burlington, Vermont 
since  September, 1976. As of January, 1 9 7 7 ,  there  were  about 
eleven  thousand migrated data  sets  at  Hursley, and about twelve 
thousand  at  Yorktown  Heights. The Level 0 on-line storage  at 
Yorktown  Heights,  for  example,  contains approximately two 



Implementation  problems  that  we  have  experienced  are mainly 
those of understanding  the MVS system  and  the  interfaces be- 
tween it and  our  code.  In  addition,  as  a  result of the number of 
subtasks that  execute in the MARC address  space, we have had 
problems in correctly sharing serially reusable  resources. To 
avoid a deadlock  between  two  tasks  whose  needs might be inex- 
tricably entwined,  we have had to pay close  attention to  the 
order  and  type of enqueuing of the  data  sets and  other  resources 
that  are  used by MARC tasks. 

ACKNOWLEDGMENTS 

We are grateful for valuable discussions with A. Katcher in the 
design phase of this  project,  and  for  the  constant  encouragement 
and  support of A. Weis, I .  W. L. Jones,  and L. Brown of the 
IBM United Kingdom Laboratories in Hursley,  England,  and 
that of N. Pass and Helen  C. Dietrich of the  IBM  Thomas J .  
Watson  Research Center  at  Yorktown Heights,  New  York.  We 
also acknowledge the useful suggestions of the reviewers. 

CITED  REFERENCES 
1 .  SHARE Systems  Group, White  Paper on Future  Systems, SSD 227,  43 -46 

(October 1, 1972). 
2. R. C.  Daley  and  P. G. Neumann, “A general-purpose file system  for secon- 

dary storage,” Proceedings o j  the  Fall  Joint  Computer  Conference,  Nouem- 
ber 196.5, 213-29,  Thompson Book Co., Washington, D.C.  (1965). 

3. R. P. Kelisky,  “Managing  interactive systems for user effectiveness,” Lecture 
Notes  in  Computer  Science,  Interactive  Systems, 93 - 107,  Springer-Verlag, 
Heidelberg ( 1977). 

4. J .  P.  Considine  and  A. H. Weis, “Establishment  and  maintenance of a storage 
hierarchy for an  on-line data base under  TSSl360,” Proceedings o j  the  Fall 
Joint  Computer  Confirence,  November 1969,433  -40,  Thompson Book Co., 
Washington, D.C. ( 1969) . 

5. IBM System  Reference Library, I B M  38.50 Mass Storage  System ( M S S )  
Installation  Guide, Order  No.  GA32-0030,  IBM  Corporation,  Data  Process- 
ing Division,  White  Plains, New  York 10604. 
IBM  System  Reference  Library, I B M  38.50 Mass  Storage  Systems ( M S S )  
Principles of  Operation, Order  No.  GA32-0029,  IBM  Corporation,  Data 
Processing Division,  White  Plains, New York 10604. 
IBM  System  Reference Library, OSlVS Muss  Storage  System  (MSS)  Ser-  
uices,  General  Injormation, Order  No. GS3.5-0016, IBM  Corporation,  Data 
Processing Division,  White  Plains, New  York 10604. 
IBM  System  Reference Library, OSlVS Mass  Storage  System  (MSS)  Ser-  
uices,  Reference  Information, Order  No.  GC35-0017,  IBM  Corporation,  Data 
Processing  Division,  White  Plains, New York  10604. 

6. V. Y .  Lum, M. E. Senko,  C. P. Wang, and H. Ling, “ A  cost oriented algorithm 
for  data  set allocation in storage hierarchies,” Communications  of  the  ACM 
18, No.  6,318-322  (June  1975). 

Reprint Order  No.  G321-5059. 

MARC:  ARCHIVAL  STORAGE 397 


