
A model of storage and access to a relational data base is pre-
sented. Using this model, four techniques f o r evaluating a gen-
eral relational query that involves the operations of projection,
restriction, and join are compared on the basis of cost of access-
ing secondary storage. The techniques are compared numerical-
ly and analytically for various values of important parameters.
Results indicate that physical clustering of logically adjacent
items is a critical performance parameter. In the absence of
such clustering, methods that depend on sorting the records
themselves seem to be the algorithm of choice.

Storage and access in relational data bases
by M. W. Blasgen and K. P. Eswaran

E. F. Codd has introduced a relational model of data that per-
mits a high degree of data independence by providing a logical
view of the data base.' Such a view avoids the details of physical
storage of data and the access paths, but places the burden of
determining efficient evaluation of methods for queries and up-
dates on the data base management system itself.

This paper describes four methods for evaluating a fairly general
query involving the operations of join, projection, and restric-
tion. (A more general treatment of this topic is given in Refer-
ence 2.) In References 1 and 2, comparisons are made to dis-
cover the method or methods that make the fewest accesses to
secondary storage. It is shown that the best method of evaluat-
ing such a query depends on the available access paths to the
relation (such as by indexes), the physical clustering of logically
adjacent items, and the characteristics of the query itself.

Although several relational data base systems have been imple-
mented,3-6 little has appeared on the performance of such sys-
tems. Of the references that have appeared in the literature, few
consider the implementation of relational operators. Gotlieb7
considers only the computation of joins in isolation. Pecherer8
discusses the evaluation of relational operators in an abstract
machine. However, the cost of accesses to secondary storage is
not considered by any of them. Since we think that these access-
es are the most critical performance parameter, this is the basis
of comparison. We consider neither the CPU time nor the cost of
virtual storage management. The work described here was initi-
ated during the design of an experimental relational data base
system that is known as System R.'

NO 4 ' 1977 RELATIONAL DATA BASES 363

~ ~~

Figure 1 Part relation and index on supplier number

PART RELATI, 3N

,UPPLIER NO

491

570

40 1

402

401

490

490

920

490

1030

490

401

1030

491

1030

920

491

WANTITY ON HANI

100

70

184

0

0

0

0

.
0

.

INDEX ON SUPPLIER
NUMBER FOR PART FILE

VPPLIER NO

920

1030

570

491

491

401

490

920

401

1030

490

402

490

401

920

1030

490

0

0

0

TID

TlDl

TIDI4

TID9

TIDZ

TID35

TID7

TID39

TID6

TID3

TID58

TID81

TID5

TID15

TlD4

TIDl

TID47

TI027

0

0

.

index A single column index on a column A of a relation R consists of
pairs whose first component is a value from column A of R and
whose second component is the TID of a tuple having that value.
We say that the index consists of the following pairs: (KEY, TID).
An index is stored in a special way to provide rapid access to it.
The model we adopt here is that of a VSAM-like tree" that is
similar to a B-tree.13 A supplier-number index on a PART rela-
tion is shown in Figure 1. Figure 2 shows the storage of the in-
dex in Figure 1. The storage design is that of a balanced tree
whose nodes are index pages. Leaf pages contain the (KEY, TID)
pairs in sorted order, and the higher-level pages contain pairs
that consist of the high key on a lower-level page with a pointer
to that page. These pairs are also sorted.

An index on column A permits rapid access to a single tuple that
has a desired value in column A. To find a TID, the number of
index pages referenced is equal to the height of the tree. An index
also permits all tuples to be retrieved in sorted order, i.e., the
order of increasing values of column A. Subsequences of tuples
may also be retrieved in sorted order, e.g., all tuples where
column A values are between 10 and 20. Note than an index can
provide the TIDS of the tuples that satisfy a simple predicate
without access to the data pages.

366 BLASGEN AND ESWARAN IBM SYST J

Figure 2 Underlying data structure for the index in Figure 1

The utility of an index in evaluating a query depends on whether
the relation is clustered or unclustered with respect to the index.
Suppose an index 1 is used to extract the tuples (possibly in
some range) of a relation R in sorted order. If each data page of
R is accessed at most once, then R is clustered with respect to
the index 1. The index I may be termed a clustering index with
respect to R. On the other hand, if the data pages of R are refer-
enced in a random, approximately uniformly distributed manner,
then R is unclustrred with respect to I. When the number of
buffer pages available in main storage is small compared to the
number of data pages for R, each fetch of a tuple using a non-
clustering index usually results in a secondary storage access to
fetch a data page.

To understand the importance of clustering, suppose we must
obtain a sequence of M tuples corresponding to an interval of
key values in index I of relation R. If I is a clustering index,
then this sequence can be obtained by accessing only (approxi-
mating to a first order) (M / \ RI) x D pages, where D is the num-
ber of data pages of relation R and IRI is the size of R. If it is a
nonclustering index, the M data pages will be accessed. The
difference in performance is considerable.

The sorting of tuples on the value in a column (the sort key) sorting
forms an important step in one of the algorithms described and
analyzed in this paper. For file sizes that are typical in a data base
environment, an internal sort is ruled out. Thus we consider an
external sort-merge, such as is discussed in Reference 14. The
magnitude of a sort-merge may be estimated as follows. Suppose
that a given sortlmerge algorithm uses a block of Q pages as the
unit of transfer between the main storage and secondary storage,
and uses a Z-way merge. Sorting a file of M pages requires
(2M/Q) log, (MIQ) secondary storage accesses.

Methods

Four methods for evaluating the general query given previously
in this paper are described in this section. The methods differ in

Table 1 Boolean variable is true when there is a n index on the ioin column

Boolean Corresponding access path
Variable

I

1 ~- -

VI Index on the join column of R
v2 Index on the join column of S
v3
v4 Index on the restriction column of S

Index on the restriction column of R

I Method 1: In this method, the indexes on the join columns of R and S are
indexes scanned to determine whether a pair of tuples has the same val-
on join ue in the join columns, and thus is present in the unrestricted

columns join. If it is, the tuple from, say, R, is obtained and checked to

have this key value are obtained, and the projections of tuples
from S that satisfy the restriction are placed in a temporary stor-

interest are projected. These are then joined with the subtuples
in the temporary storage, and the resultant tuples are placed in

relations spondiig to tuples of R(S) that satisfy the predicate, and con-
sists of columns of R(s) that are in the output or the join predi-
cate. Files W, and W, are sorted on the join column values. The

Method 3: A scan is used to obtain the tuples of S. If the access path is not

value in s is less than the current highest join column value in I

nificantly affect it. After these parameters have been determined
they must be measured or estimated. Finally, a model dependent
on these parameters must be developed that is useful for predict-
ing performance. A list of parameters that are used in our model
is now given. The following list is divided into two parameter
types: those that depend only on the data base and those that
depend on the query.

Data-base dependent (query independent) parameters:

N1(N2) Cardinality of relation R (S)
E,(E,) Average number of tuples from R(S) in a data

contains R(S) .
L Average number of (Key, TID) pairs in a leaf page of an
index.
C,(C,) Number of tuples of R(S) that fit in a page of a
(temporary) file, as obtained by dividing the size of a page in
the file by the average size of a tuple. C, may be different
from E, because a data page in data base may contain tuples
from more than one relation. (This is not the case for tempo-
rary files.)
P,(P,) Effectiveness of the join filter for R(S) , i.e., the
fraction of tuples of R that participate in the unconditional
equijoin.
G Ratio between the number of tuples in the uncon-
ditional equijoin and N, X N,.
I Number of TIDS that fit in a page of a temporary file.
K Number of (Key, TID) pairs that fit in a page of a

P Main storage space in page frames that are avilable for

Z Merge factor for sort-merge algorithms.
A Cost of a page transfer.
B Cost of a block transfer. A block is the unit of transfer

temporary file.

sort buffers, TID lists, TID pair lists, W,', etC.

for a file.

Query-dependent parameters:

H, (Hz) Ratio between the average size of the subtuple of
interest from R(S) and the average size of a tuple.
F,(F,) Effectiveness of the predicate filter for R(S) , i.e.,
the ratio between the number of tuples that satisfy the
predicate and the cardinality of the relation.

The data-base dependent parameters can be estimated at load
time, and they need be updated only when the data base is
reorganized. Although this condition adds an overhead each
time the data base is reorganized, the cost is recovered as quer-

370 BLASGEN AND ESWARAN IBM SYST J

ies are made. The query-dependent parameters can also be esti-
mated. For example, F, can be estimated as follows: If the pred-
icate is of the form “column = constant,” and there is an index
on that column, then estimate F, as the ratio between number of
distinct values in the index and N,. If the predicate involves an
interval of key values, F, can be estimated by using information
in the root page of the index tree. In this way, a query evaluator
can have estimates of the critical performance parameters.

Cost analysis

Considered in this section are expressions for the cost that some
of the methods incur in accessing secondary storage (or, alterna-
tively, the number of accesses to secondary storage). The per-
formance of a method depends strongly on the clustering of rela-
tions with respect to access paths. For example, in Method 1
there are two cases. If R is unclustered with respect to the index
on the join coiumn of R, then fetching the tuples of R using the
index requires N, accesses. If, however, the relation is clustered,
then it requires N,/E, accesses.

An index can be on the join column, on the restriction column,
or on some other column. A relation may be clustered or unclus-
tered with respect to the index. In this way, each of the four
methods may have many cases, resulting in a large number of
situations to be analyzed. Fortunately, the cost analysis is
straightforward when the cost computations for the basic steps
are understood. We now illustrate cost analysis for a few
methods and cases to exemplify the cost calculation procedure.

In Method 1, if both R and S are clustered on the join column
indexes, the cost of scanning the join column index of R is A X
N,/L, and the cost of obtaining the tuples of R is A X PI X
N,/E,. Similarly, the cost of scanning the join column index of S
is A x N,/L. The cost of scanning S is A x P, x F, x N,/E,.
(We know that P, X N, tuples of S qualify for the unconditional
join, F, X N, of R satisfy the predicate, and we fetch only those
tuples of S that have the same join value.) Thus the total cost of
joining is A x (N,/L + PI x N,/E, + N,/L + P, X F, X N,/E,) .

On the other hand, if Method 1 is used when both relations are
unclustered on the join column indexes, the cost of scanning and
obtaining tuples from R is A X (N, /L + PI X N,) , and the cost
of obtaining the tuples from S is A X (NJL + P, X F, X N,).
Thus the total cost of Method 1 in this case is A X (N,/L +
N,/L + P, X N, + P, X F, X N,).

~ We now consider Method 2, in the case where a clustering index
on column X (Y) is used to scan R(S) . X (Y) is neither a col-

NO 4 * 1977 RELATIONAL DATA BASES 371

umn in the prediate not the join column. The cost of obtaining
tuples of R is then A X (N,/L + N,/E,) , and the cost of forming
a file that consists of subtuples of R is B X (N, X F, X Hl/(C, X
Q)) , where Q is the size of the block (in number of pages for
the file). The cost to sort the file is 2 X B X (N , X F, X H,/(C, X
Q) X (log(N, X F, X H,/(C, X Q)) - 1). The term -1 arises
because the first pass of the sort-merge can be done when the
file is formed. The cost of scanning the sorted file is B X (N, X

F, X H,/(C, X Q)) . Thus the total cost is A X (N,/L + N,/E, +
N,/L + N,/E,) + 2 X B X (N, X F, x H, X log (N, X E, X HI/(C ,
x Q)) + N, X F, x H, X log (N, X F, X H,/(C, X Q) 1)).

For Method 4, if R and S are clustered with respect to the join
column indexes, the total cost is the sum of the following four
costs: (1) the cost to form R’ and S’; (2) the cost to scan join
column indexes, which is A X (NJL + N,/L); (3) the cost to
check R’ and S’; and (4) the cost to fetch tuples to form the
output, which is A x F, x F, x (P, x N,/E, + P, x NJE,). The
costs of (1) and (3) depend on whether R’ and S‘ fit in main
storage. If they do, the cost for (1) is A X (F, X N/L + F, X
N,/L) , and for (3) the cost is zero. If R’ and Sf do not fit in main
storage, the cost for (1) is A X (F, X N,/L + F, X N,/L) + B X
(2 X a,) X log (a,) + 2 X a, X log (a,)) , where a, is N, X
FJ(1 X Q) and a, is N, X FJ(1 X Q) , and the cost for (3) is
B X (N, X F,/(I X Q) + N, X F,/(I X Q)) , since both the probes
are sequential.

In Method 4, if neither R nor S is clustered with respect to the
join column indexes, then both R‘ and S’ are randomly probed.
The total cost is then the following sum: (1) the cost to form R’
and S’ as above: (2) the cost to scan the join column indexes,
which is A X (N,/L + N,/L); (3) the cost to search randomly
both R’ and S‘, which is B x G X N, X N, X (Min(1, (1 - P/(2
X N, X F , / I)))) + F, X Min(1, (1 - P/(2 X N, X F J I)))) ; and
(4) the cost to fetch the tuples to form the output, which is A X
(F , x F , x P , x N , x F , x F , x P , x N ,) .

Comparisons of the four methods

In this section, comparisons are made of the four methods under
various conditions. The comparisons take the following form. A
certain situation is postulated and the methods and cases that
apply in the assumed situation are determined. (For example, if
unclustered join column indexes are available, then some case of
Method 1 applies.) The cost expressions are then evaluated for
the relatively small number of methods that apply. The graphs in
Figures 3 to 5 , which describe the costs of the applicable

Figure 3 Comparison of the costs of the appl icable methods in Situation A

1

S J 100 100 1000 10.000 100.000

100.000

10,000

1000

100 I
100 1000 10,000 100.000

100 1000 10,000 100.0

NUMBER OF TUPLES INS

The situations that we believe are typical and are explored in the
graphs are the following:

A. There are join column indexes, and indexes on irrelevant
columns X and Y . R and S are not clustered on the join col-
umn indexes; instead they are clustered on indexes on col-
umns X of R and Y of S.

B. There are join column indexes, restriction column indexes
and indexes on irrelevant columns X and Y . R and S are not
clustered on the join column indexes or on the restriction
column indexes. They are clustered on columns X and Y .

C. There are join column indexes, and indexes on the restric-
tion columns. R and S are clustered on the join column in-
dexes, and not clustered on the restriction columns.

The costs of evaluating the general query in these three situa-
tions are indicated in the three figures. For each of the situa-
tions, we graph the number of secondary storage accesses as a
function of relation size, with the other systems parameters con-
stant. The graphs in a figure show the sensitivity to F, and F,,

Figure 4 Comparisons of the costs of the applicable methods in Situation B

y 100.000

K
v)

100 1000 10.000 100,000

100.000 - - - -

F 1 = F p = 0.5

100 1000 10,000 100,0(
1
)O

100,000 ’ 100,000,

100 1000 10,000 100,000 100 1000 10,000 1uu.uuu

NUMBER OF TUPLES IN S

each graph are the appropriate method numbers. When more
than one case of a method applies to a situation, only the case
with minimum cost is shown.

Observations

We have introduced the notion of clustering of indexes with re-
spect to relations, and have observed that this clustering plays an
important role in the choice of query evaluation algorithms. Per-
haps the most interesting conclusion we can draw from this
study is that there are circumstances under which each method
is the best. As shown in Figures 3-5, each of the methods is
best, given certain conditions. Also, the cost difference between
the best method and the second best method is appreciable in
most situations.

All methods described in this paper scan a relation to obtain tu-
ples that satisfy some predicate. If several access paths are
available, it is possible to determine which is best.

Suppose, for example, that both a clustering index and an index
on the restriction column are available. By simple analytical
comparisons, the following observations can be made. Use the

374 BLASGEN AND ESWARAN IBM SYST J

Figure 5 Comparison of the costs of the appl icable methods in Situation C

100 1000 1o.ono 1oo.000

1n.ooo - - 2 - -

looo-,",,,L 100 10 100 1000 10.000 FI = (C) F2 100.00' = 0.1

100.000

10,000

1000

100 L
,

100 1000 10.000 100,0(

10,000
- - -

l o o o / o j

2

ion

10
100 1000 10,000 100.0

Otherwise, if F, > 1/E, and F, > l/E,, then Method 3 is preferred
with the clustering X and Y indexes as access paths, and in the
remaining circumstances, Method 4 is best. Although it is not
shown in the figure, if the relations are clustered with respect to
the restrictioh column indexes, the conclusions are similar.
Again Method 3 (using the clustering indexes as access paths)
is optimal if the number of scans on relation R is one; otherwise
Method 2 (also using the clustering indexes) is best. In Figure
4, N, = 4 X N,, E, = E, = 20, I = 1000, C, = C,= 20, L = 200, K
= 300, P, = P, = 1.0, H, = H, = 0.5, G = 7/N,, P = 25, A = B =
1.0, z= 3 .

In situation C, graphed in Figure 5, we assume that both rela-
tions are clustered with respect to the join column indexes, and
there are nonclustering indexes on the restriction columns.
Method 4 is a good choice for situation C. In Figure 5 , N, = 4

P, = P, = 1.0, H, = H, = 0.5, G = 7/N,, P = 25 , A = B = 1.0,
and Z = 3 .

As a general conclustion, when there are clustering indexes on
the join columns and there are no restriction column indexes,
Method 1 is uniformly the best.

Concluding remarks

Using the observations in this paper, a query translator could
operate in the following manner. From the available access
paths, determine the applicable methods and cases, eliminate
any obviously bad methods, discard any methods that fail to
pass certain simple tests (such as, for example, F, < l/E,) , and
then evaluate the cost estimates for the remaining methods.
Choose the method with minimum cost. A query evaluator
based on these principles of simple analytic calculations and
numeric cost computations could be part of relational data base
query systems or other system that uses indexes. A complete
model to analyze the cost of various methods that apply to any
given situation has been implemented in APL. The time to ana-
lyze a particular situation is of the order of a few milliseconds.

In practical implementations, the approach taken here is prefera-
ble to solving an analytic model under simplified assumptions,
which are usually invalid in practice.

Any higher-level optimization techniques in evaluating queries
should take into account the existing access paths and their prop-
erties (which are reflected at the low storage level). It is our
belief that general high-level transformation techniques such as
those applied in programming language compilers may not be of

376 BLASGEN AND ESWARAN IBM SYST J

much use in query language processors unless the access path
characteristics and system parameters are taken into considera-
tion.

ACKNOWLEDGMENTS

We thank Professor Rudolf Bayer of the Technical University
of Munich, Germany and Dr. E. F. Codd of the IBM Research
Laboratory at San Jose for their suggestions. We gratefully ack-
nowledge the many members of the Computer Science Depart-
ment at the IBM Research Laboratory at San Jose who have con-
tributed their ideas, programming, and critique to our work.

CITED REFERENCES
1. E. F. Codd, “A relational model for data for large shared data banks,”

Communications of the A C M .13, No. 6, 377- 397 (June 1970).
2. M. W. Blasgen and K. P. Eswaran, O n the Evaluation of Queries in a Data

Base System, IBM Research Report FJ 1945, IBM Research Laboratory,
San Jose, California 95 193 (April, 1976).

3. J. Mylopoulos, et a!., “A multi-level relational system,” Proceedings q f rhe
AFIPS National Computer Conjerence, May 1975 44, 403-408, AFIPS
Press Montvale, New Jersey (1975).

4. S. J. P. Todd, “The Peterlee Relational Test Vehicle-a system overview,”
IBM Systems Journal 15, No. 4, 285 - 308 (1976).

5. M. M. Astrahan and D. D. Chamberlin, “Implementation of structured En-
glish query language,” Communications of the A C M IS, No. 10, 580- 588
(October 1975) .

6. G. D. Held, et al., “INGRES: A relational data base system,” Proceedings
of the National Computer Conference, Anaheim, California. M a y 1975,
409-416, AFIPS Press, Montvale, New Jersey (1975).

7. L. Gotleib, “Computing joins of relations,” Proceedings qf the A C M - S I G -
M O D Conference, San Jose, California, May 1975, 53-63, Association for
Computing Machinery, New York, New York (1975).

8. R. M. Pecherer, “Efficiency evaluation of expressions in a relational alge-
bra,” Proceedings o j the A C M Pacijic 75 Regional Conjerence, April 1975,
44-49, Association for Computing Machinery, New York, New York
(1975).

9. M. M. Astrahan et al.. “System R: A relational approach to data base man-
agement,” A C M Trunsactions on Duta Base Management 1, No. 2, 97-
137 (June 1976).

IO. Planning,for Enhanced V S A M under OSlVS, Form No. GC26-3842, IBM
Corporation, Data Processing Division, White Plains, New York 10604
(1975).

1 1 . R. Bayer and E. M. McCreight, “Organization and maintanence of large
ordered indexes,” A C T A Informatica 1, No. 3, 173 - 189 (1972).

12. D. Knuth, The Art ojComputer Programming, Volume 3, Addison-Wesley,
Reading, Massachusetts.

13. Injormation Managernent System, General InJormution Manual, Form
GH20-0765, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

14. C O D A S Y L D a t a Base Task Group Report, April I97 I , available from the
Association for Computing Machinery, New York, New York.

GENERAL SEFERENCE
1. D. D. Chamberlin, “Relational data-base management system,” Computing

Surveys 8, No. 1,43 - 66 (March 1976).

Reprint Order No. G321-5058.

NO 4 * 1977 RELATIONAL DATA BASES 377

