A model of storage and access to a relational data base is pre-
sented. Using this model, four techniques for evaluating a gen-
eral relational query that involves the operations of projection,
restriction, and join are compared on the basis of cost of access-
ing secondary storage. The techniques are compared numerical-
ly and analytically for various values of important parameters.
Results indicate that physical clustering of logically adjacent
items is a critical performance parameter. In the absence of
such clustering, methods that depend on sorting the records
themselves seem to be the algorithm of choice.

Storage and access in relational data bases
by M. W. Blasgen and K. P. Eswaran

E. F. Codd has introduced a relational model of data that per-
mits a high degree of data independence by providing a logical
view of the data base.' Such a view avoids the details of physical
storage of data and the access paths, but places the burden of
determining efficient evaluation of methods for queries and up-
dates on the data base management system itself.

This paper describes four methods for evaluating a fairly general
query involving the operations of join, projection, and restric-
tion. (A more general treatment of this topic is given in Refer-
ence 2.) In References 1 and 2, comparisons are made to dis-
cover the method or methods that make the fewest accesses to
secondary storage. It is shown that the best method of evaluat-
ing such a query depends on the available access paths to the
relation (such as by indexes), the physical clustering of logically
adjacent items, and the characteristics of the query itself.

Although several relational data base systems have been imple-
mented,”® little has appeared on the performance of such sys-
tems. Of the references that have appeared in the literature, few
consider the implementation of relational operators. Gotlieb’
considers only the computation of joins in isolation. Pecherer®
discusses the evaluation of relational operators in an abstract
machine. However, the cost of accesses to secondary storage is
not considered by any of them. Since we think that these access-
es are the most critical performance parameter, this is the basis
of comparison. We consider neither the CPU time nor the cost of
virtual storage management. The work described here was initi-
ated during the design of an experimental relational data base
system that is known as System R.’

NOo 4 - 1977 RELATIONAL DATA BASES

relational
data
bases

queries

example

Concepts of relational data bases and queries

A relation is a table, the entries in which may be thought of as
members of a set of ruples, each of which consists of a number
of column values. A relation may also be thought of as a file, in
which case a tuple is a record and a column is a field. The size of
a relation R is the number of tuples in R and is denoted by |R|.
A relation R with columns A, B, and C is written R(A, B, C).
The expression P.R(A, B) represents the projection of R on (A,
B) and is a relation with two columns A and B. A projection
contains a tuple (x, y) if and only if the tuple (x, y, z) is con-
tained in B for some z. Let r be a tuple (entry) of a relation
(table) R and let s be a tuple (entry) of S. If A is a column in R,
then r(A) is the value of column A in entry r. The equijoin of
relations R and S on columns A in R and B in S is defined to be
{(r]]s) : r(A) =s(B)}, where (r||s) denotes the tuple formed by
concatenating r from R and s from S. If for every tuple r of R
there exists at most one tuple s of S such that r{A) =s(B), then
we say the join is one to many with respect to S. If the join, is
not one to many with respect to R or S, then the join is many to
many, i.e., there are distinct tuples r, r’, s, and s’ such that R(A
=1'(A) =s(B) =s'(B).

Given a predicate P, the restriction operation on a relation
R selects the set of tuples {r : r is a tuple of R and P(r) is
true}. In addition to arbitrary predicates, our analysis makes
reference to simple predicates, of the form COLUMN-NAME
op CONSTANT, where op is one of the following set of mathe-
matical operators: {=, 1=, <=, >=, <, >}. The column in-
volved in a simple predicate is called the restriction column.

The general query that is analyzed in this paper involves restric-
tion, projection, and join. The general query has the following
form: Apply a given restriction to a relation R, yielding R’, and
apply a possibly different restriction to a relation S, yielding S’.
Join R’ and S’ to form a relation (new table) T, and project
some columns from T.

This specification of the general query should be thought of as a
high-level query. We now consider a particular example and
several different methods of evaluating this query.

Consider the following relations: PART(PART __NO,SUPPLIER _
NO,QTY__ON_HAND,PRICE) and SUPPLIER(SUPPLIER __NO,SUP-
PLIER_CITY,SUPPLIER_RATING). A part may be supplied by
more than one supplier and a supplier may supply more than one
part. The example is as follows:

BLASGEN AND ESWARAN IBM SYST J

Find PART_NO, SUPPLIER_NO, and SUPPLIER_CITY from the
relations PART and SUPPLIER where PRICE is greater than 100
dollars, and the part is supplied by suppliers with SUPPLIER _
RATING less than 5.

The query is an equijoin of the two relations on SUPPLIER_NO,
and is of the many-to-many type in which the predicates in the
restrictions are simple predicates. The result required is a
projection of the relation that is a join of relations PART and
SUPPLIER, with restrictions applied.

Access and storage models

The speed of evaluation of a query depends on the performance
of the basic methods of representing and referencing the data
base. This section describes our model of storage and of access
to the data base.

The data base is assumed to reside on secondary storage, which
consists of direct access storage devices. Physical storage space
on secondary storage is divided into fixed-size blocks called
pages, which are the units of secondary storage allocation and
the unit of transfer between main storage and secondary storage.
Pages are divided into two categories: data pages and index
pages. Data pages are used to store the tuples of the relations in
the data base. A page may contain tuples from more than one
relation. Each tuple in the data base has a unique identifier
called the Tuple Identifier or TID. A TID is assumed to give di-
rect access to the tuple, so that at most one page is read if a tu-
ple is referenced using a TID. TIDs also have the property that
extracting a set of tuples using a sorted sequence of TIDs access-
es a data page at most once.

A segment is a large address space that contains one or more
relations. The segment is implemented as a set of pages.
Each stored tuple in a segment contains the name of the relation
of which it is a member. To obtain all the tuples of a relation, the
segment can be scanned by fetching the pages one at a time and
checking every tuple in the page for a membership in the desired
relation. Such a scan is called a segment scan, and references
each page in the segment once.

A segment scan is potentially slow, has no selectivity, and pro-
vides the tuples in a system-determined order. In many cases, it is
desirable to have other access paths. The type of path to be de-
scribed here is that of indexes.” Reference 2 also considers an-
other type of access path, termed links. IMS" and DBTG'' imple-
mentations use the concept of links as well as indexes.

No 4 - 1977 RELATIONAL DATA BASES

Figure 1 Part relation and index on supplier number

PART RELATION INDEX ON SUPPLIER
NUMBER FOR PART FILE

PART NO.| SUPPLIER NO. | QUANTITY ON HAND | PRICE SUPPLIER NO TID

491 100 40 920

570 70 30

401 184 85

402 []]

401

490

430

920

490

iREARRARAAN

A single column index on a column A of a relation R consists of
pairs whose first component is a value from column A of R and
whose second component is the TID of a tuple having that value.
We say that the index consists of the following pairs: (KEY, TID).
An index is stored in a special way to provide rapid access to it.
The model we adopt here is that of a vsaM-like tree' that is
similar to a B-tree.'” A supplier-number index on a PART rela-
tion is shown in Figure 1. Figure 2 shows the storage of the in-
dex in Figure 1. The storage design is that of a balanced tree
whose nodes are index pages. Leaf pages contain the (KEY, TID)
pairs in sorted order, and the higher-level pages contain pairs
that consist of the high key on a lower-level page with a pointer
to that page. These pairs are also sorted.

An index on column A permits rapid access to a single tuple that
has a desired value in column A. To find a TID, the number of
index pages referenced is equal to the height of the tree. An index
also permits all tuples to be retrieved in sorted order, i.e., the
order of increasing values of column A. Subsequences of tuples
may also be retrieved in sorted order, e.g., all tuples where
column A values are between 10 and 20. Note than an index can
provide the TIDs of the tuples that satisfy a simple predicate
without access to the data pages.

BLASGEN AND ESWARAN IBM SYST J

Figure 2 Underlying data structure for the index in Figure 1

Y

LN
lAmIT\D& TID4 T\D7‘—”402l TIDS,— ”—— 490] 1ID15, 11027, TID39, T\DBL—I PQIIT!DZ‘ TID35. TIDA9 — || ————— ”57o| Ting.— (XX

gzo|mm~||,,,,||maojmu,wuj,mj‘]]f\

The utility of an index in evaluating a query depends on whether
the relation is clustered or unclustered with respect to the index.
Suppose an index I is used to extract the tuples (possibly in
some range) of a relation R in sorted order. If each data page of
R is accessed at most once, then R is clustered with respect to
the index 1. The index I may be termed a clustering index with
respect to R. On the other hand, if the data pages of R are refer-
enced in a random, approximately uniformly distributed manner,
then R is wunclustered with respect to I. When the number of
buffer pages available in main storage is small compared to the
number of data pages for R, each fetch of a tuple using a non-
clustering index usually results in a secondary storage access to
fetch a data page.

To understand the importance of clustering, suppose we must
obtain a sequence of M tuples corresponding to an interval of
key values in index I of relation R. If 1 is a clustering index,
then this sequence can be obtained by accessing only (approxi-
mating 1o a first order) (M/|R}) X D pages, where D is the num-
ber of data pages of relation R and |R| is the size of R. If it is a
nonclustering index, the M data pages will be accessed. The
difference in performance is considerable.

The sorting of tuples on the value in a column (the sort key)
forms an important step in one of the algorithms described and
analyzed in this paper. For file sizes that are typical in a data base
environment, an internal sort is ruled out. Thus we consider an
external sort-merge, such as is discussed in Reference 14. The
magnitude of a sort-merge may be estimated as follows. Suppose
that a given sort/merge algorithm uses a block of Q pages as the
unit of transfer between the main storage and secondary storage,
and uses a Z-way merge. Sorting a file of M pages requires
(2M/Q) log, (M/Q) secondary storage accesses.

Methods
Four methods for evaluating the general query given previously
in this paper are described in this section. The methods differ in

the way they use TIDs, indexes, and sorting.

NO 4 - 1977 RELATIONAL DATA BASES

sorting

Method 1:
indexes
on join
columns

Method 2:
sorting
both
relations

Method 3:
multiple
passes

Table 1 Boolean variable is true when there is an index on the join column

Boolean Corresponding access path
Variable

Index on the join ¢olumn of R
Index on the join column of S
Index on the restriction column of R
Index on the restriction column of S

In this method, the indexes on the join columns of R and S are
scanned to determine whether a pair of tuples has the same val-
ue in the join columns, and thus is present in the unrestricted
join. If it is, the tuple from, say, R, is obtained and checked to
see whether it satisfies the restriction predicate. Then by con-
tinuing to scan along the index for S, all the tuples from S that
have this key value are obtained, and the projections of tuples
from S that satisfy the restriction are placed in a temporary stor-
age. By scanning along the index for R, all tuples with this key
value are obtained, the restriction is applied, and subtuples of
interest are projected. These are then joined with the subtuples
in the temporary storage, and the resultant tuples are placed in
the output reiation. The temporary storage must be sufficiently
large to hold the maximum number of restricted subtuples of
interest from S that participate in the join with a single tuple
from R.

Sorting is used as an aid in joining the two relations. By scan-
ning the relations R and S using some access path, two files W,
and W, are created. File W,(W,) contains subtuples corre-
sponding to tuples of R(S) that satisfy the predicate, and con-
sists of columns of R(S) that are in the output or the join predi-
cate. Files W, and W, are sorted on the join column values. The
resulting sorted files are scanned, and the join is performed.

A scan is used to obtain the tuples of S. If the access path is not
the restriction column index, the restriction predicate is applied
as each tuple is obtained. A qualified tuple is projected, and the
resulting subtuple s is inserted into a main storage data structure
W,' if there is space. If there is no space and if the join column
value in s is less than the current highest join column value in
W,’, the subtuples with the highest join column value in W, are
deleted and s inserted. If there is no room for s and the join
column value in s is greater than the highest join column value in
W,', s is not inserted at all. After forming W,’, R is scanned using
some access path, and a tuple T, of R is obtained. If T, satisfies
the predicate, then W,’ is checked for the presence of the join
column value of T,. If the join column is present, T, is joined to
the appropriate subtuples in W,'.

BLASGEN AND ESWARAN IBM SYST J

Table 2 Applicability of methods

Method When the following expression is true
the corresponding method is applicable

V, AND V,
Always applicable since a segment scan can be used

Always applicable since a segment scan can be used
V, AND V, AND V, AND V,

If there are more qualitifed tuples in S than can fit in main stor-
age for W,’, another scan of S is made to form a new W,’ that
consists of subtuples with join column value greater than the
current highest. R is scanned again and the process is repeated.
Duplicates need not be kept in W,’. The data structure for W,’
may be a binary tree, heap, or hash table.

This method is very fast if there is only a single pass: that is,
when there is enough main storage to hold all the qualified sub-
tuples of S.

This algorithm uses indexes and TIDs as much as possible, and
requires that join column and restriction column indexes exist.
Using the restriction column indexes, the TIDs of tuples that sat-
isfy the predicates are obtained, and the resultant TIDs are sort-
ed and stored in files R’ and S’. Scanning the join column index-
es, TIDs of tuples that jointly participate in the unconstrained
join are found. As they are found, each TiD pair (TID,, TID,) is

checked to see whether TID, is present in R’ and TID, is in §’. If
these conditions are met, the tuples are fetched and joined, and
the subtuple of interest is obtained.

Applicability of the methods

Whether or not a method can be applied depends on the exis-
tence of various access paths. For example, Method 4 is applic-
able only if there are indexes on the join column of R, on the
join column of S, and on the restrictions columns of R and of S.
Table 1 defines a boolean variable V, to be TRUE when there
exists an index on the join column of R, and to be FALSE other-
wise. Other variables are similarly defined. Table 2 indicates the
conditions under which each method is applicable. For example,
Method 1 is applicable when the expression V, and V, is true.

Systems parameters

One of the most difficult tasks in the analysis and enhancement
of system performance is to determine the parameters that sig-

No 4 - 1977 RELATIONAL DATA BASES

Method 4:
simple TID
algorithm

nificantly affect it. After these parameters have been determined
they must be measured or estimated. Finally, a model dependent
on these parameters must be developed that is useful for predict-
ing performance. A list of parameters that are used in our model
is now given. The following list is divided into two parameter
types: those that depend only on the data base and those that
depend on the query.

Data-base dependent (query independent) parameters:

e N,(N,) Cardinality of relation R (S)

* E(E) Average number of tuples from R(S) in a data
page.
M,(M,) Total number of data pages in the segment that
contains R(S).
L Average number of (Key, TID) pairs in a leaf page of an
index.
C,(C) Number of tuples of R(S) that fit in a page of a
(temporary) file, as obtained by dividing the size of a page in
the file by the average size of a tuple. C, may be different
from E, because a data page in data base may contain tuples
from more than one relation. (This is not the case for tempo-
rary files.)
P,(P,) Effectiveness of the join filter for R(S), i.e., the
fraction of tuples of R that participate in the unconditional
equijoin.
G Ratio between the number of tuples in the uncon-
ditional equijoin and N, X N,,.
1 Number of TIDs that fit in a page of a temporary file.
K Number of (Key, TID) pairs that fit in a page of a
temporary file.
P Main storage space in page frames that are avilable for
sort buffers, TID lists, TID pair lists, W,', etc.
V4 Merge factor for sort-merge algorithms.
A Cost of a page transfer.
B Cost of a block transfer. A block is the unit of transfer
for a file.

Query-dependent parameters:

e H,(H) Ratio between the average size of the subtuple of
interest from R(S) and the average size of a tuple.
F,(F,) Effectiveness of the predicate filter for R(S), i.e.,
the ratio between the number of tuples that satisfy the
predicate and the cardinality of the relation.

The data-base dependent parameters can be estimated at load
time, and they need be updated only when the data base is
reorganized. Although this condition adds an overhead each
time the data base is reorganized, the cost is recovered as quer-

BLASGEN AND ESWARAN IBM SYST J

ies are made. The query-dependent parameters can also be esti-
mated. For example, F, can be estimated as follows: If the pred-
icate is of the form ‘“‘column = constant,” and there is an index
on that column, then estimate F| as the ratio between number of
distinct values in the index and N,. If the predicate invoives an
interval of key values, F, can be estimated by using information
in the root page of the index tree. In this way, a query evaluator
can have estimates of the critical performance parameters.

Cost analysis

Considered in this section are expressions for the cost that some
of the methods incur in accessing secondary storage (or, alterna-
tively, the number of accesses to secondary storage). The per-
formance of a method depends strongly on the clustering of rela-
tions with respect to access paths. For example, in Method 1
there are two cases. If R is unclustered with respect to the index
on the join column of R, then fetching the tuples of R using the
index requires N, accesses. If, however, the relation is clustered,
then it requires N,/E, accesses.

An index can be on the join column, on the restriction column,
or on some other column. A relation may be clustered or unclus-
tered with respect to the index. In this way, each of the four
methods may have many cases, resulting in a large number of
situations to be analyzed. Fortunately, the cost analysis is
straightforward when the cost computations for the basic steps
are understood. We now illustrate cost analysis for a few
methods and cases to exemplify the cost calculation procedure.

In Method 1, if both R and S are clustered on the join column
indexes, the cost of scanning the join column index of R is A X
N,/L, and the cost of obtaining the tuples of R is A X P, X
N,/E,. Similarly, the cost of scanning the join column index of S
is A X N,/L. The cost of scanning S is A X P, X F, X N,/E,.
(We know that P, X N, tuples of S qualify for the unconditional
join, F, X N, of R satisfy the predicate, and we fetch only those
tuples of S that have the same join value.) Thus the total cost of
joining is A X (N,/L+ P, X N /E, + N,/L + P, X F, X N,/E,).

On the other hand, if Method 1 is used when both relations are
unclustered on the join column indexes, the cost of scanning and
obtaining tuples from R is A X (N,/L + P, X N,), and the cost
of obtaining the tuples from S is A X (N,/L + P, X F; X N,).
Thus the total cost of Method 1 in this case is A X (N,/L +
N,/L+P, XN, +P, X F xXN,).

We now consider Method 2, in the case where a clustering index
on column X(Y) is used to scan R(S). X(Y) is neither a col-

NOo 4 - 1977 RELATIONAL DATA BASES

umn in the prediate not the join column. The cost of obtaining
tuples of R is then A X (N,/L + N,/E,), and the cost of forming
a file that consists of subtuples of Ris B X (N, X F, x H,/(C, X
Q)), where Q is the size of the block (in number of pages for
the file). The cost to sort the fileis 2 X B X (N, X F, X H,/(C, X
Q) X (log(N, x F, x H,/(C, X Q)) — 1). The term —1 arises
because the first pass of the sort-merge can be done when the
file is formed. The cost of scanning the sorted file is B X (N, X
F, x H,/(C, X Q)). Thus the total cost is A X (N,/L +N,/E, +
N,/L+N,/E,) +2x B X (N, X F, xH, xlog (N, xE, x H,/(C,
X Q))+N,xXF,xH,Xlog (N, XxF, X H,/(C, X Q)))).

For Method 4, if R and S are clustered with respect to the join
column indexes, the total cost is the sum of the following four
costs: (1) the cost to form R’ and S’; (2) the cost to scan join
column indexes, which is A X (N,/L + N,/L); (3) the cost to
check R’ and S’; and (4) the cost to fetch tuples to form the
output, which is A X F, X F, X (P, X N,/E, + P, X N,/E,). The
costs of (1) and (3) depend on whether R’ and S’ fit in main
storage. If they do, the cost for (1) is A X (F, X N/L + F, X
N,/L), and for (3) the cost is zero. If R’ and S’ do not fit in main
storage, the cost for (1) is A X (F, X N,/L+ F, X N,/L) + B X
(2 X a) X log (a) +2 X a, X log (a,)), where a, is N, X
F /(I X Q) and «, is N, X F,/(I X Q), and the cost for (3) is
B x (N, xF,/(IxQ)+N,xF,/(I1xQ)), since both the probes
are sequential.

In Method 4, if neither R nor S is clustered with respect to the
join column indexes, then both R’ and S’ are randomly probed.
The total cost is then the following sum: (1) the cost to form R’
and S’ as above: (2) the cost to scan the join column indexes,
which is A X (N,/L + N,/L); (3) the cost to search randomly
both R" and S’, which is BX G X N, X N, X (Min(1, (1—P/(2
XN, X F,/1))))+ F, xMin(1, (1—P/(2x N, X F,/1)))); and
(4) the cost to fetch the tuples to form the output, which is A X
(F,xF,XP, XN, XF xF,xP,xN,).

Comparisons of the four methods

In this section, comparisons are made of the four methods under
various conditions. The comparisons take the following form. A
certain situation is postulated and the methods and cases that
apply in the assumed situation are determined. (For example, if
unclustered join column indexes are available, then some case of
Method 1 applies.) The cost expressions are then evaluated for
the relatively small number of methods that apply. The graphs in
Figures 3 to 5, which describe the costs of the applicable
methods in the three situations, illustrate this approach.

BLASGEN AND ESWARAN IBM SYST J

Figure 3 Comparison of the costs of the applicable methods in Situation A

100,000

NUMBER OF SECONDARY STORAGE ACCESSES

T

[

T TTTITm

FTTTTm

Fi=F=10
(A

AT R |

o

1000 10,000 100,000

T TTImr T 11T

Fi=F;=01
©

I

Ll

1 il
o]

1000 10,000 100,000

100,000

T TTrmm T T

Fi=Fy=05
(B)

N1 A T i

1000 10,000 100,000

T TTIT T T

T T

L LIt

Fy=Ff5=001
©)

IR A

-
Q
s}

1000 10,000 100,000

NUMBER OF TUPLES INS

The situations that we believe are typical and are explored in the
graphs are the following:

A. There are join column indexes, and indexes on irrelevant
columns X and Y. R and S are not clustered on the join col-
umn indexes; instead they are clustered on indexes on col-
umns X of R and Y of S.

There are join column indexes, restriction column indexes
and indexes on irrelevant columns X and Y. R and S are not
clustered on the join column indexes or on the restriction
column indexes. They are clustered on columns X and Y.

. There are join column indexes, and indexes on the restric-
tion columns. R and S are clustered on the join column in-
dexes, and not clustered on the restriction columns.

The costs of evaluating the general query in these three situa-
tions are indicated in the three figures. For each of the situa-
tions, we graph the number of secondary storage accesses as a
function of relation size, with the other systems parameters con-
stant. The graphs in a figure show the sensitivity to F, and F,,
the selectivity of the predicates. The number on the curves in

NO 4 -

1977

RELATIONAL DATA BASES

Figure 4 Comparisons of the costs of the applicable methods in Situation B

100,000 100,000

T TTTTm

TTTTI

T TTTIm
T TTTTIT

Fi=F=10 F1=Fy=05
Q)] (B)

e PR)l U1 T/ |-
1000 10,000 100,000 1000 10,000 100,000

IR
T TTITIT

NUMBER OF SECONDARY STORAGE ACCESSES

o
=3

—
Q@
-
153

100,000 100,000

T TTTHm

T TTTI

T T TTTI

TTTIT T TTTTAm

Fi=F,=01 Fy=F,=001
© (D)

T TTTmr

Ly 1 L 11l
10,000 100,000 1000 10,000 100,000

NUMBER OF TUPLESIN §

each graph are the appropriate method numbers. When more
than one case of a method applies to a situation, only the case
with minimum cost is shown.

Observations

We have introduced the notion of clustering of indexes with re-
spect to relations, and have observed that this clustering plays an
important role in the choice of query evaluation algorithms. Per-
haps the most interesting conclusion we can draw from this
study is that there are circumstances under which each method
is the best. As shown in Figures 3-35, each of the methods is
best, given certain conditions. Also, the cost difference between
the best method and the second best method is appreciable in
most situations.

All methods described in this paper scan a relation to obtain tu-
ples that satisfy some predicate. If several access paths are
available, it is possible to determine which is best.

Suppose, for example, that both a clustering index and an index
on the restriction column are available. By simple analytical
comparisons, the following observations can be made. Use the

BLASGEN AND ESWARAN IBM SYST J

Figure 5 Comparison of the costs of the applicable methods in Situation C

100,000 100,000

[T TTHT

T

T TTII

Fi=F,=10
A

b et bl
1000 10,000 100,000

Fi=Fy=05
®)

L iy
10,000 100,000

INEREALL
T TTTT

NUMBER OF SECONDARY STORAGE ACCESSES
T TTTI

o
=3
o
=3

T TTTTI

T TTTT

T TTTIIN
T 11T

Fi=F;=0.1 F1=F; =001
©) ©)

Lo i

T T T
TTTT

T TN O T i il

L
1000 10,000 100,000 1000 10,000 100,000

153
S

NUMBER OF TUPLESIN

restriction column index as the access path if it is the clustering
index. Otherwise, if M, < F, x (N, + N,/L) and M, < N, X
(1/L + 1/E,), then use a segment scan. If not, the nonclustering
index on the restriction column is the access path of choice
when F, X (1 +1/L) is less than (1/L + 1/E,), or approximately,
F, < 1/E, (i.e., when less than one tuple per page is retrieved).
Otherwise use any clustering index as the access path. This ob-
servation should be used in all circumstances to choose an ac-
cess path to scan a relation satisfying a predicate.

Numerical comparisons have led to the following observations.

Figure 3 illustrates the costs for situation A, where there are
nonclustering indexes on the join columns and clustering X and
Y indexes. Method 3 is the choice if all of W’ fits in main stor-
age. Otherwise we choose Method 2, which sorts the tuples.
Method 1 should never be employed in this situation. The join
column indexes are never used, and thus this conclusion applies
even if there are no join column indexes.

Figure 4 deals with situation B, in which there are nonclustering
join column indexes, nonclustering restriction column indexes,
and clustering X and Y indexes. For situation B, Method 3 is
the best (by a small margin) when the number of scans is one.

No 4 - 1977 RELATIONAL DATA BASES

Otherwise, if F, > 1/E, and F, > 1/E,, then Method 3 is preferred
with the clustering X and Y indeXes as access paths, and in the
remaining circumstances, Method 4 is best. Although it is not
shown in the figure, if the relations are clustered with respect to
the restriction column indexes, the conclusions are similar.
Again Method 3 (using the clustering indexes as access paths)
is optimal if the number of scans on relation R is one; otherwise
Method 2 (also using the clustering indexes) is best. In Figure
4, N,=4xN,, E =E,=20,1= 1000, C,=C,=20,L=200,K
=300,P,=P,=1.0,H=H,=05,G=7/N,,P=25,A=B=
1.0, Z=3.

In situation C, graphed in Figure 5, we assume that both rela-
tions are clustered with respect to the join column indexes, and
there are nonclustering indexes on the restriction columns.
Method 4 is a good choice for situation C. In Figure 5, N, = 4
X N,, E,=E, =20, 1= 1000, C,=C, =20, L= 200, K = 300,
P,=P,=10,H,=H,=05,G=7/N,, P=25, A=B= 1.0,
and Z = 3.

As a general conclustion, when there are clustering indexes on
the join columns and there are no restriction column indexes,
Method 1 is uniformly the best.

Concluding remarks

Using the observations in this paper, a query translator could
operate in the following manner. From the available access

paths, determine the applicable methods and cases, eliminate
any obviously bad methods, discard any methods that fail to
pass certain simple tests (such as, for example, F, < 1/E,), and
then evaluate the cost estimates for the remaining methods.
Choose the method with minimum cost. A query evaluator
based on these principles of simple analytic calculations and
numeric cost computations could be part of relational data base
query systems or other system that uses indexes. A complete
model to analyze the cost of various methods that apply to any
given situation has been implemented in APL. The time to ana-
lyze a particular situation is of the order of a few milliseconds.

In practical implementations, the approach taken here is prefera-
ble to solving an analytic model under simplified assumptions,
which are usually invalid in practice.

Any higher-level optimization techniques in evaluating queries
should take into account the existing access paths and their prop-
erties (which are reflected at the low storage level). It is our
belief that general high-level transformation techniques such as
those applied in programming language compilers may not be of

BLASGEN AND ESWARAN IBM SYST J

much use in query language processors unless the access path
characteristics and system parameters are taken into considera-
tion.

ACKNOWLEDGMENTS

We thank Professor Rudolf Bayer of the Technical University
of Munich, Germany and Dr. E. F. Codd of the 1BM Research
Laboratory at San Jose for their suggestions. We gratefully ack-
nowledge the many members of the Computer Science Depart-
ment at the IBM Research Laboratory at San Jose who have con-
tributed their ideas, programming, and critique to our work.

CITED REFERENCES

1. E. F. Codd, “A relational model for data for large shared data banks,”
Communications of the ACM 13, No. 6, 377-397 (June 1970).

2. M. W. Blasgen and K. P. Eswaran, On the Evaluation of Queries in a Data
Base System, IBM Research Report FJ 1945, IBM Research Laboratory,
San Jose, California 95193 (April, 1976).

. J. Mylopoulos, et al., ““A multi-level relational system,” Proceedings of the
AFIPS National Computer Conference, May 1975 44, 403-408, AFIPS
Press Montvale, New Jersey (1975).

. S.J. P. Todd, “The Peterlee Relational Test Vehicle —a system overview,”
IBM Systems Journal 15, No. 4, 285-308 (1976).

. M. M. Astrahan and D. D. Chamberlin, “Implementation of structured En-
glish query language,” Communications of the ACM 18, No. 10, 580- 588
(October 1975).

. G. D. Held, et al.,, “INGRES: A relational data base system,” Proceedings
of the National Computer Conference, Anaheim, California, May 1975,
409-416, AFIPS Press, Montvale, New Jersey (1975).

. L. Gotleib, “Computing joins of relations,” Proceedings of the ACM-S1G-
MOD Conference, San Jose, California, May 1975, 53-63, Association for
Computing Machinery, New York, New York (1975).

. R. M. Pecherer, “Efficiency evaluation of expressions in a relational alge-
bra,” Proceedings of the ACM Pacific 75 Regional Conference, April 1975,
44-49, Association for Computing Machinery, New York, New York
(1975).

. M. M. Astrahan et al., “‘System R: A relational approach to data base man-
agement,” ACM Transactions on Data Base Management 1, No. 2, 97~
137 (June 1976).

. Planning for Enhanced VSAM under OS/VS, Form No. GC26-3842, IBM
Corporation, Data Processing Division, White Plains, New York 10604
(1975).)

. R. Bayer and E. M. McCreight, “Organization and maintanence of large
ordered indexes,” ACTA Informatica 1, No. 3, 173-189 (1972).

. D. Knuth, The Art of Computer Programming, Volume 3, Addison-Wesley,
Reading, Massachusetts.

. Information Management System, General Information Manual, Form
GH20-0765, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

. CODASYL Data Base Task Group Report, April 1971, available from the
Association for Computing Machinery, New York, New York.

GENERAL REFERENCE

1. D. D. Chamberlin, “Relational data-base management system,” Computing
Surveys 8, No. 1, 43-66 (March 1976).

Reprint Order No. G321-5058.

NO 4 - 1977 RELATIONAL DATA BASES

