The flexibility and usefulness of an integrated data base can be
limited by constraints inherent in the data base management
system. One such system, IBM’s Information Management
System (IMS), has been extended in terms of data independence,
access control, data integrity, and user communication by a
group of techniques integrated into an IMS application called
the Product Development Communication and Control (PDCC)
system. This paper describes the IMs extensions provided by
PDCC and discusses the system’s implementation.

PDCC is the prototype of the IMS Application Development
Facility, an 1BM Installed User Program.

Design techniques for a user controlled DB/DC system
by G. F. Heyne and C. J. Daniel

Most business organizations have a continuing and often critical
need for timely, accurate information. Management and opera-
tional personnel need information that is concise and appropriate
for the purpose at hand. To satisfy these requirements, a wide
range of information can be stored in a single, nonredundant
data base that is accessible to many users for a variety of applica-
tions. ! Access to such a data base is controlled by a data base
management system such as IBM’s Information Management
System (IMS),” which provides a structure for organizing data to
satisfy diverse requirements and has facilities for controlling
on-line access to and modification of the data.

With 1MS, as with most data base management systems, one or
more programs must be written to enable each application to gain
access to the data base or to update it. This requirement can
limit the flexibility and usefulness of the data base because of the
volatility and rapid change that are characteristic of today’s
business environment. There is a need for application systems
that can be implemented in anticipation of continuously changing
business needs.

The desired flexibility and responsiveness can be attained in a
system that provides comprehensive data base access control
and a high degree of data independence. IMS provides data in-
dependence at the segment level in the data base structure, giving
programs access to data on a segment by segment (that is, record
by record) basis. However, data independence is required at a
finer level —at the level that recognizes the location, attributes,
and content of each field within a segment.

HEYNE AND DANIEL IBM SYST J

Another requirement is for more positive control of access to the
data base to prevent erroneous or unauthorized updating. Also
needed is an automated facility for notifying operating depart-
ments in an organization when crucial modifications have been
made to the data base. Such notification should be the responsi-
bility of the data base system, not of each application program.

This paper describes a group of techniques developed at 1BM’s
General Systems Division laboratory in Rochester, Minnesota,
to provide data base flexibility, communication, and control in a
product development environment. The techniques are integrated
into an IMS data base/data communications (DB/DC) application
called the Product Development Communication and Control
(PDCC) system.

pDCC simplifies the interface to integrated data bases for both the
application programmer and the application user. Programming
and maintenance activity are reduced by removing from the
application code thosg portions, such as input verification rou-
tines and segment layouts, that are common to several applica-
tions or that are frequently changed.

In a conventional system, the user gains access to a data base by
means of transactions whose format is rigidly prescribed. The
pDCC user merely specifies the keys for segments at various
levels within a hierarchy. At the heart of the system is an archi-
tecture, transparent to the user, that allows applications to be
implemented and maintained quickly and easily by means of
rules that define application variables, and also by accommo-

dating different types of processing.

The pPDCC system was implemented for the development of com-
puter hardware at the Rochester facility in January 1974, and
the routines used in the system have been implemented since
then in other DB/DC applications at Rochester and oOther 1BM
locations. In addition, PDCC routines have been incorpordted into
an IBM Installed User Program called the IMS Application
Development Facility,” the objective of which is to simplify the
task of developing IMS/VS application programs and to extend the
capabilities of IMS/VS in terms of data independence, access con-
trol, data integrity, and communication among application sys-
tem users.

The techniques used in the PDCC routines give the user cus-
tomized data processing capabilities, authenticity and consistency
of data, and ease of use in a display terminal environment. The
system is adjustable to meet the user’s changing needs, and it can
be extended to new segments, data bases, and applications with-
out program modification. Thus, it can improve programmer pro-
ductivity and eliminate much maintenance activity.

No. 4 - 1977

Before pPDCC was implemented, application programs using IMS
frequently had to include substantial code to describe the layout
of the data to be accessed by the programs as well as the specifi-
cations of input and output data. These requirements caused
redundancies in data specifications and layout when many
programs had access to common data. The programs were
difficult to code, maintain, and modify because every audit
change, field respecification, and format change required re-
compilation.

These deficiencies demanded an environment in which data and
control variables would remain external to transaction process-
ing programs. The variables had to be bound during program
execution so the user would be able to modify his environment
with minimal programmer interface or support. This separation
of application and control variables could greatly reduce the
application system maintenance effort and the expense associated
with adapting complex systems to the dynamics of changing
business environments. The functions provided by data dic-
tionary/directories,’ query processors, and report generators’
could greatly reduce the development and maintenance effort
required of such application systems.

Extensions to IMS

The implementation techniques described in this paper are ex-
tensions to the IMS DB/DC facilities and are completely external

to IMS. The major areas of extended support are:

e Security and data base integrity. A user profile controls who
uses the system and what transactions the user can perform
without transaction passwords. The profile controls the type
of access or mode of operation (retrieve, update, add, re-
move) that the user can perform on the transactions.

Field level control. All actions within the system are con-
trolled at the field level with execution-time binding of data
and attributes. All data base input and output are handled
through 1MS by Data Language/I (OL/1)” even though the
PDCC system has field level control. No application module
contains the layout of a segment in its source code.

Process control. Transaction process control allows execu-
tion-time binding of modules, screens, keys, input, and audits
for each transaction for each user in either the batch or
display-work-station environment. In addition, PDCC mod-
ules control the chain of events by passing to IMS the trans-
actions required to complete the user’s requested selection.
This conversational processing provides for continuous
transaction processing in a work-station environment.

346 HEYNE AND DANIEL IBM SYST J

Figure 1 PDCC overview

DATA
BASE
MANAGER

PDCC
USERS PDCC SYSTEM

INTERFACE
DATA

OTHER
APPLICATION
PROGRAMS

—AUTOMAﬂCME%?AGES
—USER MESSAGE
—BATCH RETRIEVE HARD COPY APPLICATION
—TRANSACTION TRACE PROGRAMS

* Ease-of-use features. The user can generate transactions

through menu selection techniques and look-ahead determina-
tion of segment keys. To operate the system, therefore, he
does not have to know the IMS transaction codes or entire
segment keys. These features help experienced and in-
experienced users alike. Attribute byte setting of fields
through the IMS message format service® provides for dynamic
field-level control by the user.
Authenticity and consistency of data. Point-of-entry auditing
is provided for all input and related data by field. The entire
transaction is checked for completeness and validity before
any data are stored in the data bases. Duplicate data elements
and constants in the system are controlled and automatically
updated by the auditing facility. Data base integrity is ensured,
since only logically complete and consistent data are stored.
Message sending. This extension automatically detects
critical changes in data, generates the required messages, and
routes the messages to the functions and the users affected
by the changes.

System overview

Figure 1 presents an overview of PDCC. The system receives its
intelligence from rules (Figure 2) which govern the interactions
among user terminals, batch input, PDCC data bases, other
application data bases, and interface data. All access to the sys-
tem is governed by user profiles which describe the functions or

No. 4 - 1977

Figure 2 PDCC rule types

Rule types Storage form

User Profile Data Base
Field Load Module*
Transaction Process Load Module*
Option Menu Load Module*
Key Selection Load Module*
Text Processing Load Module*
Audit (Data Verification) Data Base
Message Sending Data Base
Transfer Load Module*

*Generated by user-controlied macros

capabilities each user is allowed. Users have access to the system
by means of 1BM 3277 Display Stations or batch input, and all
their interactions are controlled externally by rules. A rules-
driven system has the following advantages:

It provides data, data description, and processing information
at execution time. Thus, data and processing information are
independent of the application programs.

It allows the user to modify system processing as his workday
environment changes.

It supports many different users, yet meets the needs of each.
It allows the same processing modules to be used for both
batch and on-line versions of the system.

The rules are controlled by a data base manager (DBM), who is
responsible for all changes in rules that control transaction
authorization, field definitions, auditing, messages, and trans-
action processing. With this authority, the DBM can explore the
full processing potential of the system. Each user has some subset
of the DBM’s authority, tailored to the user’s specific needs and
authority.

The rules also govern input to the batch system. All non-PDCC
application programs interface with pPDCC through batch input.
PDCC generates one or more interface data files for processing
by these other application programs. This kind of interface helps
to guarantee the reliability, accuracy, and integrity of the system
within itself.

The major routines in the PDCC system are:

¢ Sign-on, the user’s entry point, which validates his authority
to use the system.

e Option menus, modules that provide individual users with

customized option lists for transaction selection.

HEYNE AND DANIEL IBM SYST J

Key selection, a module that guides the user to his target data
by making it unnecessary for him to enter the entire IMS key.
Transaction driver, a generalized module that handles stan-
dard or special processing of all transactions.

Segment handlers, a group of modules that perform all data
base input and output. A single module handles input and
output for each segment of the data base. Segment handlers
are the only modules in the system that contain segment
search arguments.

Screen formatter and deformatter, two modules that control
the formatting and interpreting of data on display screens.
Auditor, a module that verifies and validates data and
initiates automatic message sending.

Text processing, a module that allows the user to process
bulk textual data in a block-edit mode.

Data transfer, a module that accepts user definitions to con-
trol the transfer of data to or from the system, by field, to
agree with internal and external data maps.

Sign-off, a module that performs any housekeeping and ac-
counting required at the termination of a session.

Special processors, modules that perform special processing
for segment manipulation or that process multiple segment
types. These modules contain the application’s unique logic,
hence they contain the only application dependent code in the
PDCC system.

The rules provide the logic to direct the processing of a trans-
action using this modular structure. Thus the modules, by inter-
preting the rules, provide the means of implementing a viable

method of execution-time data binding in a user-controlled
system.

Implementation techniques

Some of the rules and techniques used in implementing a user-
controlled DB/DC system are described below. For details of the
techniques and on-line system flow, see References 7 and 8.

The key to the entire system is a set of capabilities that are bound
at execution time and tied together by rules. Variable data are
external to the modules; thus the modules process the data with .

, . Figure 3 Profile data base struc-
respect to rules. A summary of some of the system’s rules is given tuce
in the following paragraphs.

PROJECT/
User authorization rules, implemented by a user profile data base SrovP
(see Figure 3), verify that a user is authorized to sign on to the
system. If the user’s sign-on information is not in the profile, he | |

cannot sign on or perform any transactions. Once a user has ewpLovee || TRANSACTION| | yessaces

passed the sign-on validation, the profile is used to dynamically

No. 4 + 1977 PDCC 349

build his primary option menu, which shows only the major
functions that the user is authorized to perform.

The profile also provides security at the transaction level by
controlling the mode of operation a user can perform on a trans-
action. The modes of operation are so ordered that anyone who
has the authority to update a segment can also retrieve it, but
cannot add or remove it. For a survey of protection techniques
that can be used to provide controlled sharing of information and
user authentication, see Reference 9.

Message segments in the profile data base contain all messages
sent by individual users, or sent automatically by the system, to
particular projects or groups (that is, to any user-defined organi-
zational structure that is independent of the system). If a modifi-
cation to a specific field within a segment is critical to some other
project or group, a message is sent automatically to that project
or group. The user who makes the modification need not be
aware that the message is being sent.

A field rule, or segment map, provides a complete description
of each field in a segment. There is one field rule for each segment
in the data base. Data independence, security, and processing
are achieved by the field rule, as control is at the field level instead
of the segment level.

For each field within a segment type, the field rule contains the
field name, offsets, attributes, and a communication area. Each
field in the system is identified by a unique name.

The communication area within each field entry may contain
several types of data. For example, when a field is audited, the
area may contain the number of an error message if the field is in
error, or it may contain the message code for informative mes-
sages if message sending is required for the field and all audits
are successfully passed.

A transaction processing rule provides processing information
for a user transaction for both the terminal and batch drivers. It
describes to the driver the input to be processed and contains
control information indicating which resources are to be used in
that process. It provides transaction, screen, segment, and field
control, and it establishes the mode of operation by field. This
rule is uniquely identified by project or group and transaction,
allowing each project or group to have different processing
capabilities for the same transaction. Appended to the trans-
action processing rule are audit field entries that contain unique
audit control for the transaction, providing for individualized
auditing of the data in a given field.

HEYNE AND DANIEL IBM SYST J

The rule contains a field entry for each field required by the
transaction. The name used in the field and audit field entries is
identical to the name in the field rule for the segment. The mode
of operation specification at the field level in the transaction
processing rule allows different users to have different capa-
bilities by field. For a further discussion of privacy protection as
related to the control of a user’s access to data from the data
base, see Reference 10.

A transfer rule defines the mapping of data into or out of data
base segments and allows data to be transferred directly from
buffer to buffer. Thus data can be transferred from or to any seg-
ment in the data base, and the system can generate application
interfaces in the format defined in the transfer rule. This facility
is especially helpful in reading records or segments from another
system and then storing the data in a revised format.

A transfer control entry is generated for each field to be pro-
cessed. These entries can combine data from several records or
segments into one new record or segment. Information about the
field is found through the field name, which directs the routine
to the associated field rule. Changes in data values or character-
istics are also possible when processing in this mode.

In IMS applications, communication between modules and data
bases is at the segment level. Each type of segment has unique
data keys, the segment search arguments, which control access
to that segment type. In PDCC, however, the segment handler
takes care of all input and output activity (insert, delete, update,

retrieve) for a particular segment.

Thus the module requesting a particular segment does not need
specific information about segment input and output activity
(such as segment name, key field name, and segment search
arguments) since the segment handler contains that information.

Usually, many modules in a data base system work with the same
segment type, and each application module would build in the
specific data requirements for the segment. Thus a change in the
data requirements for a specific segment would require changes
in every application module that used the changed segment.
With the segment handler concept, modifications can be made
once, and only in one module. Further, the concept reduces the
education requirement for programmers working on the applica-
tion modules, since all the data base code is in the segment han-
dler. This concept significantly reduces the amount of main-
tenance required.

All data stored by the system in the data bases is verified for
authenticity and consistency by the auditor, if required by the

No. 4 -+ 1977 PDCC

segment
handlers

the auditor

Figure 4 Segment table format

SEGMENT 1
DATA

SEGMENT 1 FIELDRULE]
ADDRESS ADDRESS

SEGMENT 2 FIELD RULE 2
ADDRESS ADDRESS

SEGMENT 2
DATA

SEGMENT n FIELD RULE n
ADDRESS ADDRESS

SEGMENT n
DATA

user. No segment is stored in a data base unless all auditing re-
quirements have been met. In addition, the auditor indicates

diagnostic message numbers by field for each error or message.

The auditor has a built-in logical capability which is driven by
rules called descriptors, which are stored in a data base. This
data base can be updated dynamically by the pBM through the
text segment processor. Thus, an audit can be changed im-
mediately by the DBM without reassembling any modules or
rules. The auditor retrieves, from the audit data base, the de-
scriptors needed to audit the fields. The auditor does not update
either the audit data base or any other application data bases in
the system.

All segment data to be audited are passed to the auditor through a
segment table (Figure 4). This table contains the addresses of
the segments to be audited or referenced and their corresponding
field rule addresses. The table is used also to pass the same in-
formation to the transfer, message generating, and message
sending modules. The segment table is the communication ve-
hicle by which the auditor finds the data involved in the audit
and by which the auditor informs the calling program of fields
that are in error.

HEYNE AND DANIEL IBM SYST J

Figure 5 Audit data base structure

AUDIT GROUP
AND
FIELD NAME

AUTOMATIC FIELD FIELD
ASSIGNMENT AUDIT MESSAGE R
DESCRIPTORS DESCRIPTORS DESCRIPTORS

r

DESCRIPTOR DESCRIPTOR DESCRIPTOR
DATA DATA DATA

The logic of the auditor is controlled by descriptors, or logical
instructions, which control the sequence of operations in the
auditor. Examples of descriptor functions are field value must be
in a range of values, assign a value to a field from a related field,
and assign a current date.

Each unique descriptor has a corresponding subroutine in the
auditor. Subroutines are easily added. The only change in the
auditor when adding a new type of descriptor is the descriptor’s

program code and the extension of a table to include its identifier
and the address of its subroutine.

The audit data base consists of three dependent segment paths
(Figure 5). A descriptor is not restricted to one segment path
or another; all paths have the full processing capabilities of the
auditor. Each path has the following functions:

Automatic field assignment. This function is performed first
and is based on the transaction performed. Values are as-
signed to fields automatically if so specified in the trans-
action process rule. Field assignments also can be made or
not made, depending on other data or on specific data entered
into the segment.

Auditing. This path makes it possible to check the validity
of the data associated with the transaction. The data values
checked are those fields that the user is trying to update or
those values stored by automatic field assignment.

Message sending. This path determines whether messages
need be sent to the various users of the system. This part of
the auditor is interpreted only when a field has been changed,

No. 4 - 1977 PDCC

message
sending

when it has been flagged as a candidate for message sending,
and when all audits performed in the second path of the
auditor were successful.

If an error is determined by field in either of the first two func-
tions above, the code for that error message is stored in the
communication area for the field in error in the field rule, and the
message sending path of the auditor is not activated. If no errors
are determined, the message sending path is activated and the
message codes, if any, are stored by field in the communication
area of the field rule.

PDCC provides for the sending of two forms of messages, auto-
matic and user-to-user. Automatic messages are sent when the
system detects critical changes in data. The messages are routed
automatically to individuals and applications that might be af-
fected by the changes. User-to-user messages are those sent by
one user of the system to another.

Three general categories of messages can be sent automatically:
deleted segment messages, unconditional update messages, and
conditional update messages. Rules control the determination
that a message must be sent, which message is to be sent, and to
whom. Deleted segment messages and unconditional update
messages are controlled by transaction only; that is, they are
sent only when a transaction is completed successfully. The audi-
tor is not used to determine whether messages are to be sent,
since the auditor works on fields within a segment and not on in-
dividual transactions.

Conditional update messages are controlled both by transaction
and by the auditor. The auditor is used first to verify all the
changes and additions to a segment. If all audits are successful,
a message-sending check is performed by interpreting the mes-
sage sending path of the audit data base for those fields that were
changed and that are marked as candidates for message sending.

Like the auditor, the message sending module has a built-in
logical capability which is driven by descriptors stored in the
message rule data base. The application identification code and
the message code from the communication area in the field rule
are the means by which the message sending module determines
to whom and where the message is to be sent. Examples of
descriptor functions are SEND to one user a series of messages,
and ROUTE one message to a number of users.

The DBM can dynamically update the message rule data base on
line. Again, no modules need be modified for data or descriptor
changes, so maintenance is simplified. As in the auditor, new de-
scriptors are added as subroutines without affecting existing code.

HEYNE AND DANIEL IBM SYST J

Users can view the messages on line. In addition, all automatic
and user messages accumulated throughout the day from the
terminal system, as well as automatic messages generated during
batch processing, are printed and sent to the user daily. Ex-
perience at Rochester indicates that the user relies heavily on the
printed messages and does not use the on-line capability to a great
extent.

A conversation, as defined by IMS, allows a user to interact with
application programs in a message processing region and, be-
tween interactions, retain information in a scratch pad area. To
start the transaction, the user must enter the transaction code,
password, and data, and then he interacts with the transaction
until his processing is complete. At that time, both the transaction
and the conversation, which are of short duration, are terminated.
To process another transaction, the user must enter that trans-
action code, password, and data. Therefore, to process in this
mode, the user needs to know all the transaction codes, pass-
words, and data required to support the transactions.

The method implemented in PDCC expands the concept of con-
versational processing as supported by IMS. It maintains trans-
action security and eliminates the requirement that the user
know transaction codes and passwords. PDCC allows a con-
finuous IMS conversation while the user is interacting with
multiple IMS transactions.

The next IMS transaction to be executed is determined by the
use of the profile data base, option menus, rules, and user se-
lections. The programs take this information and build the 1MS
transaction code dynamically, and then pass the new code to
iMS. This technique provides a work-station environment in
which the user is not required to know IMS transaction codes
and passwords. Figure 6 illustrates different IMS transactions
involved in an IMS conversation.

Security is important in PDCC, as in most on-line systems. The
user should be identified when he first signs on, and he should be
limited to a specific set of transactions. In PDCC, these require-
ments are met with sign-on input consisting of employee serial
number, project code, group code, accounting information, and
a lockword. The profile data base, as described previously, is
used to validate the employee sign-on information and identify
the transactions the user may perform on the system. The non-
display feature of the 1BM 3277 Display Station is used for the
lockword, which is stored in a scrambled data set. In all, one data
base and two files are checked in the process of determining the
user’s validity.

NO. 4 - 1977

conversational
transaction
control

Figure 6 Multiple IMS transac-

tions

within an IMS

conversation

SIGN-ON

PRIMARY

OPTION "
MENU

Y

SECONDARY
OPTION
MENU

Y

CTION .

y

TRANSACTION
DRIVER

CONVERSATION
TERMINATION

dynamic
option menu

key selection

Normally in a display terminal environment, an option menu has
a fixed set of options from which a user can select. This fixed
option menu is adequate in many terminal applications if all
users are allowed to perform all options. In most DB/DC environ-
ments, however, the user is not allowed to perform all trans-
actions. Yet from a fixed option menu he might select a trans-
action not in his profile, thereby generating an error message and
causing frustration for the user. PDCC uses a more positive ap-
proach: individual option menus are generated through rules and
show the user only the options he can perform. Thus he does not
have to view options he does not understand or have a need to
know.

There are several advantages in using this dynamic option-menu
concept in an IMS environment. Option menus allow the user to
select the next 1Ms transaction (through user terminology) with-
out having to know the IMS transaction code. The option menu
module transforms the selected option to an IMS transaction
code through the use of rules, then passes the code to IMS. Add-
ing or deleting IMS transactions does not affect the module
generating the dynamic menus or the screen definition used in
displaying the options. Only the rules or the user’s profile need
be changed, again easing the job of maintenance.

In most data base systems there are thousands of segments, each
with a unique key. It is highly improbable that a terminal user
could remember the keys of all the segments to which access is
required without either writing them down or consulting a list.
To avoid this problem, pDCC includes a key selection module
that makes it easy for the user to supply the key information

needed for access to the segments required by a transaction. The
module:

Allows the user to dynamically build the primary keys needed
for access to any segment in any of an application’s data
bases.

Requires the user to know only the root level of any segment
in any data base.

Provides a look-ahead feature so the user can select the
dependent segments without prior knowledge of the keys.
Derives its processing direction from a rule, without regard
to segment type.

Provides a method of key selection that is easy for both ex-
perienced and inexperienced users.

Each transaction that requires the key selection process has a
unique rule, the key selection rule, which is processed by the key
selection module to prompt the user for generation of the con-
catenated key required by the transaction. The rule specifies the
screen definition to be used, and it specifies all the segment and
field information required to reach the target segment.

HEYNE AND DANIEL IBM SYST J

The key selection module requires no segment search arguments
or other segment data, as all segment input and output are ac-
complished through segment handlers. Thus the key selection
module is independent of any segment in the data bases, and new
segments can be added or deleted without modifying the module.
Only a rule is generated for a transaction, and a screen display
is defined describing the keys needed for access to the required
segment.

The initial key selection display gives the user the opportunity
to enter the concatenated key from the root segment to the target
segment. For our application, it was mandatory for the user to
enter the root segment key; however, this restriction is rule con-
trolled. All information on this and subsequent displays is in the
user’s terminology. Therefore data base structure and terminol-
ogy are removed from the user.

If the user does not know or want to enter the entire key on the
initial display, the key selection module determines the key auto-
matically if only one segment exists, or it gives the user a choice
of segments. When a choice is given, each segment’s primary key
and pertinent segment data familiar to the user are displayed.
Each key is preceded by a selection number, and the user need
enter only the number, rather than the entire key of the selected
segment.

Although the segment selection process was developed primarily
for the inexperienced user, it has been found that experienced
users, too, employ this technique rather than enter the entire
concatenated key on the initial display. The technique allows the
user to view all segment keys and pertinent data under some
parent segment, which sometimes is all the user wants to know.

Transaction processing in PDCC generally is done in either of two
modes:

The standard segment mode, in which the transaction works
with a single segment to delete, add, modify, or retrieve seg-
ments. It may have access to other segments, but it cannot
modify them. There is no unique application code for this
type of processing.

The special processing transaction mode, in which the trans-
action may involve several segments to complete its process-
ing, and the mode of operation upon the segment can be de-
lete, add, modify, or retrieve. This type of processing provides
computational capabilities, reports, and unique application-
dependent logic that are outside the scope of standard seg-
ment processing.

In the processing of single segments, the order and type of
processing are identical for each segment in the data base. For

NO. 4 - 1977 PDCC

transaction
driver

example, to update a segment, the segment must be retrieved,
the input data merged with the existing data, the input audited
for validity, error messages generated if there are input errors,
the data base updated if there are no input errors, and automatic
messages sent to specified users if required by the transaction.
This processing sequence is the same in both the on-line and
batch environments. Processing in the special transaction mode is
similar to processing in the standard mode except that special
logic, unique to the transaction, is required.

Major difficulties are encountered in this type of processing.
Unique modules for processing each segment require much
program duplication. Segment fields, audits, and messages are
coded within the module, thus requiring a change by the main-
tenance group every time one of the fixed data requirements is
changed. In an ever-changing environment, this type of system is
expensive to develop and maintain and soon becomes obsolete.

In developing PDCC, it became apparent that these limitations
required an innovative approach. Therefore a transaction driver
was implemented that:

Performs the processing on all the segments in all the data
bases used in the application.

Loads the transaction process rule and field rules required
for the transaction.

Invokes the auditor for added or updated segments.

Invokes the message generator and shows all error messages
for the segments.

Performs preprocessing for all special processing programs.
Displays all error messages generated by the special process-
ing programs.

Invokes message sending for the standard segment mode.

The functions listed above are available to both batch and on-
line systems. In addition, the transaction driver in an on-line
system invokes a screen formatter and a screen deformatter,
and it handles all interactions with IMS, including use of the
scratch pad area and transmission of data from and to the
terminal.

These capabilities were implemented by making the trans-
action driver rules-driven. The transaction process rule defines
the input and data required for a transaction, and the transaction
driver derives its processing from the rule. Segment handlers
are used for all data base access and updating. The rules and
segment data needed by the transaction are loaded by the trans-
action driver or by supporting modules. The screen formatter and
deformatter use the rules to format the screen display and inter-
pret any entries made by the user. During a segment update or

HEYNE AND DANIEL IBM SYST J

Figure 7 Transaction driver flow

BUILD RULES
TABLE IN

SCRATCH PAD AREA
FOR TRANSACTION

S—

SEGMENT

3277
DISPLAY
FORMATS SCREEN
FORMATTER
SCREEN MODULE
DEFORMATTER
MODULE

AUDITOR

A

MESSAGE
GENERATOR
AND SCREEN
Y SETUP MODULES

RETURN TO PRIMARY 4
OPTION MENU WHEN

FINISHED WITH
TRANSACTION SPECIAL
PROCESSING
MODULES

'

MESSAGE
SENDING
MODULE

addition, the transaction driver determines whether the audits
were successful. If so, the data base is updated by invoking the
proper segment handler. If errors were detected, the data base is
not updated and the user is given an opportunity to make cor-
rections. In all cases, the segment is not updated until all fields
have been verified.

Specialized code in the transaction driver is eliminated for an
individual transaction, reducing maintenance on the module and
allowing new transactions to be added to the system without
modification to modules. Only additional rules, audits, messages,
and screen definitions need be generated. The simplification of
these processes can be observed in the flow of the transaction
driver as illustrated in Figure 7.

User requirements determine to a great extent the types of rou-
tine that display segment data. First, the user must be able to
retrieve, update, add, or delete data in any segment to which his
profile allows him access. Second, field level security and control
are needed, since some users can update a field while others can-
not, and some fields might be confidential. Finally, the method
implemented must be easy to use.

No. 4 - 1977

HANDLER
MODULES

MESSAGE
DATA
BASE

terminal
screen
formatting

APPLICATION
DATA
BASES

PROFILE
DATA
BASE

new
transaction
entry

To meet these requirements, the screen formatter and screen
deformatter modules were written for pDCC. The field rules and
transaction process rule were used in conjunction with the field
attribute feature of the 1BM 3277 Display Station and the 1MS
message format service. The latter includes an option that allows
an application program to dynamically modify or replace the
attributes of a field described for the screen.

For each segment in the data base, there exists only one field
rule; however, there may be different transaction process rules
for different projects or groups. These rules describe the contents
of the segment in detail. The screen formatter, which generates
the attribute bytes and data for the screen, and the screen de-
formatter, which interprets only the modified data from the dis-
play screen, are driven by the needed field rules and the trans-
action process rule for the project or group.

The use of these rules provides field-level data independence
and security by user type. For example, all fields are protected
when the mode of operation on a segment is RETRIEVE. For up-
dating, the user follows the cursor on the display screen, which
moves only to those fields that can be updated. Fields that cannot
be updated are protected. This type of field level control by user
would be extremely cumbersome to achieve if coded physically
in the module.

Upon completion of either the standard segment mode or the
special processing transaction mode, the experienced user needs
some method of initiating another transaction without going
through the process of selecting the option, transaction identifier,
and primary keys. By eliminating this process, the user can skip
a number of screen interactions, and the total response time can
be improved.

This goal was accomplished in PDCC by placing the option, mode,
transaction identifier, and primary key in the control line of each
display, allowing the user to enter all the information he knows
about the transaction. For example, if a user enters the mode
and transaction identifier on the option menu display, the next
display —assuming that the user passes secyrity —will be the key
selection display. The secondary option menu display will be
skipped if the 1MS transaction determines that the user has al-
ready entered the required information. If the transaction iden-
tifier is incorrect, the secondary option menu module will show
all available transaction identifiers that the user is allowed to
select.

On the standard or special processing transaction input display,
the user can change the mode, transaction identifier, and primary

key as on the option menu. The user can then change one, two,

HEYNE AND DANIEL IBM SYST J

or all three control fields to initiate the next transaction. If the
data entered are valid, the user can view the next transaction
driver display without the three intervening displays for the
primary and secondary menus and for key selection.

THhis technique allows experienced users to move along at their
own pace and skip some screen interactions, while allowing the
inexperienced user to be prompted step by step through a series
of displays.

Summary

Implementation of PDCC at the Rochester laboratory has led to
an increase in programmer productivity because of a reduction in
application coding, easier program maintenance, and ease of
change. User response has been good. The user’s requirements
have been met in terms of customization of displays and capa-
bilities, authenticity and consistency of data, and ease of use in a
display-work-station environment. The system is extendable to
new segments, data bases, and applications. Instead of trying to
anticipate future requirements, PDCC defines variable data in
rules which are external to the processing modules. The system’s
application independent modules can interpret the various rules
to provide dynamic and flexible transaction processing. Rules
stored in data bases can be updated dynamically by an authorized
user and be effective immediately.

Compared with an estimate based on traditional programming
techniques, the first project to use the PDCC techniques in the
Rochester laboratory required about 40 percent less time for
designing and programming. Moreover, maintenance require-
ments were an estimated 30 to 50 percent less.

Aside from increased programmer productivity, the pDCC tech-
niques have led to application independence, and they have en-
hanced the authenticity and consistency of data. They have
proved viable in an environment characterized by a need for
communication and control in terms of both data and the user
organization.

ACKNOWLEDGMENTS

The authors wish to acknowledge Raymond G. Beard, Jerome E.
Bonkoski, John A. Noid, and Dave Olson, IBM General Systems
Division, Rochester, Minnesota, for their design and program-
ming effort in developing the techniques incoporated in PDCC.
Edward W. Hallbeck, John W. Justice, and Richard C. Peters,
the user team, helped define the product functions and system
features that led to the design of PDCC.

NO. 4 - 1977

362

CITED REFERENCES

1.

2.

3.

R. Ashany and M. Adamowicz, *‘Data base systems,” IBM Systems Journal
15, No. 3, 253-263 (1976).

W. C. McGee, “The Information Management System IMS/VS,” IBM Sys-
tems Journal 16, No. 2, 84-168 (1977).

IMS Application Development Facility—General [nformation Manual,
order number GB21-9869, IBM Corporation, Productivity Application
Development Department, 1501 California Avenue, Palo Alto, Cali-
fornia 94304.

. P. P. Uhrowczik, “Data Dictionary/Directories,” IBM Systems Journal

12, No. 4, 332-350 (1973).

. Generalized Information System GI8[360—Application Description

Manual, order number GH20-0892, IBM Corporation, Data Processing
Division, White Plains, New York 10604.

. IMS/|360 Version 2 — Utilities Reference Manual, order number SH20-0915,

IBM Corporation, Data Processing Division, White Plains, New York
10604.

. C. J. Daniel and G. F. Heyne, Design Techniques for a User Controlled

DB/DC System, Technical Report TR07.575, (1957), IBM Corporation,
Rochester, Minnesota 55901.

. G. F. Heyne and J. E. Bonkoski, Design Considerations for Display Term-

inals in a User Controlled System, Technical Report TR07.603, (1976),
IBM Corporation, Rochester, Minnesota 55901

. J. H. Saltzer, “Protection and the control of information sharing in Multics,”

Communications of the ACM 17, No. 7, 388-402 (1974).

. N. Minsky, “Intentional resolution of privacy protection in data base sys-

tems,” Communications of the ACM 19, No. 3, 148-159 (1976).

Reprint Order No. G321-5057.

HEYNE AND DANIEL IBM SYST J

