
Discussed is a high-level data base management language that
provides the user with a convenient and unijied interface to
query, update, dejine, and control a data base.

When the user performs an operation against the data base, he
jills in an example of a solution to that operation in skeleton ta-
bles that can be associated with actual tables in the data base.
The system is currently being used experimentally for various
applications.

Query-by-Example: a data base language
by M. M. Zloof

Query-by-E~ample"~ is a high-level data base management lan-
guage that provides a convenient and unified style to query,
update, define, and control a relational data base. The philoso-
phy of Query-by-Example is to require the user to know very lit-
tle in order to get started and to minimize the number of con-
cepts that he subsequently has to learn in order to understand
and use the whole language. The language syntax is simple, yet
it covers a wide variety of complex transactions. This is
achieved through the use of the same operations for retrieval,
manipulation, definition, and control (to the extent possible).
The language operations should mimic, as much as possible,
manual table manipulation, thus capturing the simplicity, sym-
metry and neutrality of the relational The formulation
of a transaction should capture the user's thought process, there-
by providing freedom to formulate a transaction. The system
should allow the user to create and drop tables dynamically from
the data base; it must also provide the user with a dynamic capa-
bility for defining control statements and security features.

The architecture of the Query-by-Example language addresses
all the requirements just mentioned. The results of various psy-
chological studies of the language7 show that it requires less than
three hours of instruction for nonprogrammers to acquire the
skill to make fairly complicated queries. Such queries would
otherwise require the user to know first order predicate calculus.
Other nonprocedural languages that deal with the same topic are
 SEQUEL^ and QUEL.'

324 ZLOOF IBM SYST J

QUERY-BY-EXAMPLE 325

Figure 2 Column headings and
entries for display of
green items

TYPE ;Eo 1 COLOR 1 SIZE 1
GREEN

Figure 3 Alternate formulation
for display of green
items.

TYPE ITEM COLOR SIZE
I

Figure 4 Example output display
of green items

Figure 5 Simple retrieval

TYPE ITEM I COLOR i SIZE 1
P W

326

The user fills in the name of the table to be queried in the table
name field; in this case, the name is TYPE. The user may now
either fill in the column headings or let the system generate them
automatically. (This operation is explained later.) The user next
expresses the query by making the entries shown in Figure 2.
The P. stands for ‘print,’ which indicates the desired output.
ROD -which is an example element (variable) -is underlined,
and represents an example of a possible answer. GREEN is a
constant element that represents the required condition in the
query, and is therefore not underlined.

The query may be paraphrased as follows: Print all items-such
as ROD - where the corresponding color is GREEN. ROD need not
exist in the data base. Since the example element is an arbitrary
example, the user could equally correctly have specified x, l o ,
query. bater we shall see. that example elements are used to es-
tablish links between two or more rows of the same table or dif-
ferent tables. Where no links are necessary, one can entirely
omit the example element. It is therefore equally valid to make
an alternate formulation of the example query as shown in Fig-
ure 3. Thus, stand-alone P. is a default of P. ‘Example Element.’
In the following examples, we use either P. or P. ‘Example Ele-
ment’ arbitrarily.

- 11, or WATER without changing the meaning or the result of the

After formulating a query, the user presses the Enter key to ex-
hibit the answer. By using the example data base given in the
Appendix, the output to the query is obtained in the form shown
in Figure 4. Only the item column is displayed because the user
has entered P. in the ITEM column in Figure 3. If a P. had also
been entered in the SIZE column, the system would have printed
both the items and their sizes.

When a user expresses a query (or any other operation) in a
skeleton table, he perceives that behind this query skeleton
there is a real table, with the same headings as the query table,
that contains the actual data. In other words, to express a query
he mimics the operation of scanning tables manually. If a user
requires two or more tables to express a query, he may do so by
generating additional blank skeletons (through the use of a spe-
cial function key) and then filling in their headings.

A number of query types are now classified through the use of
illustrative examples. The answers to these queries are found in
the Appendix.

Simple retrieual. Print out all colors. The formulation for this
query is shown in Figure 5 . Alternatively, WHITE may be omit-
ted. Duplicates of colors are not repeated in this case. (A
method for displaying duplicates is shown later in this paper.) In

ZLOOF IBM SYST J

cases where the system automatically provides these column Figure 6 Simple retrieval with

headings, the user can (if it is desired) erase unused columns
from the display. Thus the ITEM and the SIZE columns could
have been erased. P.AO. E D

ordering

Simple retrieval with ordering. Print out all colors in alphabeti-
cal order. As shown in Figure 6, AO. stands for ascending order.
Similarly, DO. stands for descending order. When there is a need
for a major and a minor sort, ~ o (1) . stands for a major sort and
~ o (2) . stands for a minor sort.

Simple retrieval with multiple prints. Print out the entire TYPE
table. This operation is shown in Figure 7. Example elements
could also have been used. A shorthand representation of the
same query is shown in Figure 8. Here the print operator P. is
applied against the entire row. Note that all systems operators,
such as P., I . , and AO., end with a period. If a table contains
many columns, the user may print out all but a few by first eras-
ing the unwanted columns, and then placing P. against the row
that represents the remaining columns.

Retrieval of the table names. List the available table names in
the data base. The formulation for this query is given in Figure prints

9. Here the print is placed in the table name field, thereby asking
the system to print out all the available table names. From the
example data base, the result of this query yields the following
display:

Figure 7 Simple retrieval with
multiple prints

I
Figure 8 Shorthand simple re-

trieval with multiple

EM P
SALES
SUPPLY
TYPE

Again, the example element T ' r is optional.

Retrieval of column headings. Earlier we stated that instead of
the user's filling in the column headings, the system can auto-
matically generate them. This is done as shown in Figure 10.
Find the column headings of the TYPE table. Here again, the
print operator is applied against the whole row of headings, and
is in fact a shorthand form for placing multiple prints in the col-
umn heading fields. Automatic generation of the column head-
ings is useful in that it relieves the user of memorizing those
headings (or looking them up in a directory), and thereby pre-
vents typographical errors.

If the user places P. TAB P. (or P. P.) in the table name field, the
system lists the database directory, i.e., all table names and
their corresponding column names.

TYPE 1 ITEM I COLOR I SIZE I

Figure 9 Retrieval of table
names

Figure 10 Retrieval of '
headings

QUERY-BY-EXAMPLE 327 I

Figure 1 1 Qualified retrieval

EMP NAME SAL MGR DEPT

Figure 12 Partially underlined
qualified retrieval

328

Qualijied retrieval. Print the names of the employees who work
in the toy department and earn more than $10000. This is shown
in Figure 11. Note the specification of the condition “more than
$lQl&)O.” One has the option of using any of the following in-
equality operators: #, >, >=, <, <=. If no inequality operator is
used’ as a prefix, equality is implied. The symbol # can be re-
placed by 1 or I=.

Partially underlined qualijied retrieval. Print the green items that
start with the letter I . This is found in Figure 12. The I in IKE is
not underlined, and it is a constant. Therefore, the system prints
all the green items that start with the letter I . The user can par-
tially underline at the beginning, middle or end of a word, a sen-
tence, or a paragraph, as in the example, XPAY, which means
find a word, a sentence or a paragraph such that somewhere in
that sentence or paragraph there exist the letters PA. Since an
example element can be blank, then it word, a sentence, or a
paragraph that starts or ends with the letters PA also qualifies.

The partial underline feature is useful if an entry is a sentence or
text and the user wishes to search to find all examples that con-
tain a special word or root. If, for example, the query is to find
entries with the word Texas, the formulation’ of this query is P. x
TEXAS Y.

-
-

Qualijied retrieval using links. Print all the green items sold by
the toy department. This is shown in Figure 13. In this case, the
user displays both the TYPE table and the SALES table by gener-
3ting two blank skeletons on the screen and filling them in with
beadings and with required entries. The significance of the ex-
ample element is best illustrated in this query. Here, the same
example element must be used in both tables, indicating that if
an example item such as N U T is green, that same item is also
sold by the toy department. Only if these conditions are met
simultaneously does the item qualify as a solution. The manual
equivalent is to scan the TYPE table to find a green item and then
scan the SALES table to check whether that same item is also
sold by the toy department. Since there is no specification of
how the query is to be processed or where the scan is to start,
the formulation of this query is neutral and symmetric.

Figure 13 Qualified retrieval using links ‘“7-1
P . E T GREEN -

Once the concept of a linking example element is understood,
the user can link any number of tables and any number of rows
within a single table, as in the following examples.

ZLOOF IBM SYST J

Example elements linked in the same table. Find the names and
salaries of the employees who earn more than Lewis. This is
shown in Figure 14. If .Lewis earns x, as an example, then what
are the name(s) of employees who earn more than x? The or-
der of the rows is immaterial: the user is not forced to structure
the query in any one specific way. Instead, there is freedom to
formulate the query according to one’s thought process.

Another feature of Query-by-Example is the ability to make a
complex quei-y by augmenting an existing simpler one. This is an
augmentatioii of the previous example by an additional condi-
tion and is illustrated in Figure 15 as follows. Find the names and
salaries of the employees who earn more than Lewis and work
in a department that sells pens.

Another query is to find the names of the employees who earn
more than their managers, as shown in Figure 16. This query
may be paraphrased as follows. Print the names of the employ-
ees whose manager may be JONES (as an example) and who
earn more than x (as an example) such that JONES earns x.
Here the same example element is used to link the manager in
the first row to the name in the second row, and the same exam-
ple element is used to compare the salaries. Again, the order of
the rows is, of course, immaterial. On receiving the answer, the
user has the option of going back and modifying or expanding
the old query. If, for example, the user is not sure whether the
last query is correct, i.e., whether the question was correctly
posed, it is possible to prefix every entry with the print operator,
thus getting the employees’ names, their salaries and their man-
agers’ names in the first row with these same managers’ names
and their salaries in the second row. In this way the user can
verify the accuracy of the query.

Retrieuul using a negation. Print the departments that sell an
item not supplied by the Pencraft Company. This query is
shown in Figure 17. Here the not (1) operator is applied against
the entire query expression in the SUPPLY table. This query may
be paraphrased as follows. Print department names for items
INK such that it is not the case that PENCRAFT supplies INK. In
other words, the system is to look for (INK, PENCRAFT) through-
out the entire table, and only if it does not find that entry is the
corresponding department printed. This query is different from
the following one.
Figure 17 Retrieval using a negat ion

PENCRAFT

dktrieual using a negation. Print the departments that sell items
subplied by a supplier other than the Pencraft Company. This

NO. 4 * 1977 QUERY-BY-EXAMPLE

Figure 14 Example elements
linked in the same
tab le

P > s l
LEWIS -

Figure 15

f EMP NAME

LEWIS

Augmentation of the
example in Figure 14

P >a

Figure 16 Two links in the same
tab le

3 29

f ” JONES

I SAL I MGR I DEPT

Figure 23 Implicit OR operation

EMP NAME SAL

Figure 24 AND operation using
condition box

EMP NAME SAL

i p l S
I CONDITIONS I

and 23 demonstrate the AND and OR operations as used implicit- I
ly. The queries in Figures 24 and 25 are reformulations of these
queries using a condition box.

Print the names of employees whose salary is between $10000
and $15 000, provided it is not $13 000, as shown in Figure 22.
The use of the same example elemmt JONES in all three rows
implies that these three conditions are ANDed on the employee

Print the names of employees whose salary is either $10 000 or
$13 000 or $16000. This is illustrated in Figure 23. Different
example elements are used in each row, so that the three lines
express independent queries. The output is the union of the
three sets of answers. (In this example, the P.’S alone would
have been sufficient.)

Reformulating A N D and O R operations using a condition box.
Figure 24 illustrates the formulation of the AND operation using
a condition box; Figure 25 shows the formulation of the OR op-
eration. The ampersand & represents the AND operation and the
bar I represents the OR.

Figure 25 OR operation using
condition box

The user can also specify AND or OR on ordered pairs of entries,
as in the following example. Print the names of employees whose
salary and department is either ($10000, Toy) or ($20000,
Hardware). The salaries and departments are ordered pairs that
are to be ORed as shown in Figure 26.

I CONDITIONS I 1 a =(10000 1 13000 1 16000) 1

Figure 26 OR operation on
ordered pairs

EMP I NAME 1 SAL 1 DEPT I

I CONDITIONS I
I I

Figure 27 Use of the function
CNT.

P. CNT. ALL. JONES

3 3 2

Note that up to this point with the concepts of the example ele-
ment, constant element, print operator, and their use within the
table skeletons and condition box, the user can express quite
complicated queries. These cover a wide variety of relational
data base operations such as projections, selections, joins,
projection of joins, union, difference, intersection, and arithmetic
operations.

Retrieval using built-in functions and the ALL . operator. There
are six built-in functions in the Query-by-Example language,
which are the following: CNT. (count), SUM., AVG. (average),
MAX. (maximum), MIN. (minimum), and UN. (unique). The
function UN. can be attached to the function CNT., SUM., or AVG.
Thus CNT. uN. means count only the unique valces, etc. The
following examples illustrate their use.

Count the total number of employees. This is shown in Figure 27.
The expression ALL.JONES represents a multiset (a set that re-
tains duplicates) of all names in the EMP table, and the CNT.
function counts this set. Here again, one can use P.CNT.ALL.,
omitting the example element JONES.

ZLOOF IBM SYST J

Count the total number of departments in the SALES table. This
is illustrated in Figure 28. Since there are duplicate departments
in the DEPT column (in which DEPT is not a key), the function
UN. is attached to eliminate duplicates. ALL. does not automati-
cally eliminate duplicates since it is a multiset. Note that if one
enters P. ALL.TOY, ~ a printout of all the departments and their
duplicates is obtained.

Qualijied retrieval using a built-in function. Print the sum of the
salaries in the Toy Department. This is shown in Figure 29.
ALL.Sl is the multiset of all salaries that match TOY, i.e., the
multiset of all salaries in the Toy Department. Thus, if all fifty
employees have $12 000 as their salary, the printout is fifty times
$12 000.

Retrieval with grouping. For each department, print the name
and the sum of the employees’ salaries. This is shown in Fig-
ure 30. The grouping is accomplished by double underlining TOY
for an explicit ‘group-by’ operator. This query can be para-
phrased as follows: for each department TOY ~ (as an example),
sum all the salaries matching it.

Get the departments that have more than three employees. This
is shown in Figure 3 1 . Built-in functions only operate on set
expressions, so they must be followed by the ALL. operator or a
bracketed set expression. Thus CNT.E results in an error mes-
sage.

Figure 31 A condition on the set of items

1 ALL.- 1 P T o y CNT ALL.->3

Retrieval involving ‘set links’ using A L L . Get the names of the
departments each of which sells at least all the green items. This
is shown in Figure 32. The expression ALL.^ in the TYPE ta-
ble represents a multiset (i.e., a set that retains duplicates) of all
green-colored items. Thus ALLJNK is a multiset of all the green
items. The row in the SALES tablemeans that we are looking for
departments such as TOY that sell this set and possibly more.
The asterisk indicates that there may be additional items not in
the set.

-

Figure 32 Retrieval involving “set links”

SALES DEPT , lT.EM v i P TOY A L L . E ALL INK - -

Figure 28 Use of the functions
CNT. and Un.

SALES

Figure 29 Qualified retrieval
using built-in function

EMP 1 NAME I SAL I DEPT
1 I I I

I 1 P . S U M . A L L . S ~ TOY I
Figure 30 Retrieval with group-

i ng

EMP NAME 1 SAL 1 Dr 1
P SUM. ALL.% P.Toy

QUERY-BY-EXAMPLE 3 3 3

Get the names of the departments such that all the items of each
department have to be green. This is shown in Figure 33. In this
example, A L L . m in the SALES table represents the multiset of
all the items that match the department TOY. The asterisk in the
TYPE table indicates that although ALL.^ must be green, there
may also be additional green items.

~

Figure 33 Retrieval involving "set links"

Get the names of the departments each of which sells all the 1
green items, and nothing more. This is shown in Figure 34. Here
the sets on both tables are the same, which means no additional
items that are not green nor any different green items sold in a
different department.

Figure 34 Retrieval involving "set links"

SALES I DEPT I ITEM I TYPE 1 ITEM 1 COLOR I

Get the names of departments each of which sells all the items
supplied by the Hardware Department and possibly more. Ex-
clude the Hardware Department itself from the output. This is
shown in Figure 35.

Figure 35 Retrieval involving "set links" with a condition box

CONDITIONS I
TOY 7 = HARDWARE I

Although a simple link is achieved by using the same example
element in two or more entries, in a set link one has to distin-
guish between set equality and set containment. The former is
achieved by identical set link as in Figure 34, whereas the latter
is achieved by the use of an asterisk.

A general bracket expression may contain one or more sets and
any number of single example or constant elements, with or
without a single asterisk. For examde. the following bracketed
entry is valid:

334 ZLOOF IBM SYST J

ALLJNK :....I PENCIL
DISH

Whereas the entry

PENCIL
DISH

- * - 1
is not valid because it does not contain a set.

Insertions, deletions, and update

Insertions (I.) deletions (D .) , and updates (u.) are done in the
same style as the query operations. The only major difference is
the use of I . , D., and u . in place of the P. used in query expres-
sions. This section is broken down into the following two parts:
simple insertions, deletiofis, and updates, and those that are
query-dependent. The term “simple” implies operations that
involve constant elements only.

Insert into the employee table a new employee of the Toy De-
partment named Jones, whose salary is $10000, and whose
manager is Henry. This is shown in Figure 36. As P. is used
against a whole row, the I . also applies to the whole row. A
blank entry during the insertion operation is interpreted as a
null, with the restriction that null entries are not allowed in the
primary key field(s) , as in the NAME field in Figure 36. This is
consistent with the Relational in that a primary key
field must uniquely identify the record (tuple). (The specification
of a primary key field is shown later in Figure 45.)

Simple deletion. Delete all information about employees in the
Toy Department. This is shown in Figure 37. All records having
Toy as a Department entry are deleted in this case. It is, of
course, optional to fill in the NAME, SAL, MGR with example
elements.

Simple update. Update Henry’s salary to $50000. This is shown
in Figure 38. Query-by-Example does not allow the user to up-
date the primary key field(s) . The expression in Figure 38 up-
dates Henry’s salary to $50000 regardless of its old value. The
primary key field(s) must be specified to ensure uniqueness.
Blank fields imply that no updating is required. If, however, the
user wants to update a field to a null value, the user must either
enter NULL or a special user-defined symbol such as is described
later in this paper.

NO. 4 1977 QUERY-BY-EXAMPLE

Figure 36

EMP NAME

I JONES

Figure 37

f EMP NAME

Figure 38

335

Simple insertion

Simple deletion

SAL MGR DEPT

Simple update

SAL MGR DEPT

50000 I I I

Figure 39 Query-dependent in-
sertion

Figure 40 Query-dependent de-
letion

~

SALES f

SAL MGR DEPT

I / % I
DEPT ITEM

D l PEN -

Figure 41 Query-dependent up-
dates

EMP NAME SAL MGR DEPT

Figure 42 Creation of table
headings

I EMP I. NAME SAL MGR DEPT

336

Query-dependent insertion. Insert into the employee table an
employee in the Toy Department whose name is Henry, whose
manager’s name is Lee, and whose salary is the same as that of
Lewis. This is shown in Figure 39. This is a query-dependent
insertion because the system must first query the data base to
find Lewis’s salary and then duplicate it for Henry. Although the
sequence of the rows is immaterial, there is an implicit ordering
in the execution. The insertion cannot be completed until after
executing the query.

Query-dependent deletion. Delete all employees who work in
departments that sell pens. This is shown in Figure 40. Here the
filling in of the NAME, SAL, and MGR columns with example
elements is optional.

Query-dependent updates. It is often desirable to update an en-
try with a value relative to its old value. This is done implicitly.
Raise the salaries of the employees in the Toy Department by
ten percent. This is shown in Figure 41. The salary expression
in the row that contains the u. is the value after the update, and
the second row retrieves the old salary values. This operation
can be paraphrased as follows: retrieve a record that has Toy as
a department, find the salary s_1 and update that salary to 1 . 1
times a.
Since an output of a relation or table in a relational data base is
itself a table, the user can operate directly on that table. As an
example, after retrieving as output all employees in the Toy
Department, the user may delete any specific record by placing
a D. against that record and pressing the ENTER key.

Table creation

In the Query-by-Example language, the creation of tables is
done in the same style as the previous operations. A table is
defined by using skeletons with constant and example elements.
The user has facilities that create a new table, extend an existing
table, create a snapshot table-that is, one that contains collect-
ed data from various tables at a particular point in time-or cre-
ate a dynamic view of data collected from various tables. All
such operations are done implicitly, without using special key
words as was required in an earlier version of the language.’

Creation of a new table. Create a new table with table name
EMP and column headings: NAME, SAL, MGR, DEPT. Starting
with a blank skeleton on the screen (as though one were formu-
lating a query), the user fills in the headings by inserting the field
names, as shown in Figure 42. The I. on the right of ~ ~ p - r e f e r s
to the whole row of column headings.

ZLOOF I B M SYST J

Certain system row attributes (key words) are utilized to speci- Figure 43 Retrieval of row attri-
bute names fy the data types, sizes, domains, and keys, etc. To aid the user,

these attributes are attached to all skeletons, and the user need
not insert them. For example, the User can ask for the names of ~

the row attribute fields, as shown in Figune 43. This operation P.E

creates a new table and then requests display of all the row attri-
butes in the system. The resultant output is as shown in the
lower part of Figure 44. The user then defines the attributes of
the table by filling in the corresponding rows, as shown in Figure
45. Since the row attributes are already imbedded in the table,
the user is not required to enter an I. on the left of these attri-
butes; no harm results, however, if the I . ’S are entered.

Figure 44 Display of row attribute names

EMP NAME SAL MGR DEPT

TYPE
LENGTH I

Figure 45 Definition of row attributes

SYSNULL I.

SAL MGR DEPT

I - 1 - 1 -

Row attributes of tables are described as follows:

TYPE specifies the data entry type, such as CHAR, FLOAT,
FIXED, etC.
LENGTH specifies the length of that field. (The default is the
length of the column heading.)
KEY specifies the fields that are to be considered as primary
keys. (K stands for Key and N K represents Nonkey.) As
stated earlier in this paper, primary key fields may not con-
tain null values, nor may they contain duplicate entries. The
specification of the key fields ensures that these constraints
are maintained. In addition, the system prevents the user
from updating key fields.
DOMAIN specifies the name of the underlying domain, the
value set from which data elements are drawn. For example,
the data in the columns NAME and MGR are both drawn from
the underlying domain of NAMES. The specification of the
DOMAIN is useful when the user needs to know which col-
umns are drawn from the same underlying domain. The col-
umn heading names are not always sufficient for this. For

1 NAME I SAL ~ MGR ~ DEPT I

QUERY-BY-EXAMPLE 339

MURPHY

DEPARTMENT

STATIONERY
HOUSEHOLD

COSMETICS
STATIONERY

TOY
TOY
TOY
COSMETICS
STATIONERY
HOUSEHOLD
STATIONERY
HARDWARE

STATIONERY

ITEM

DISH
PEN
PENCIL
LIPSTICK
PEN
PENCIL
INK
PERFUME
INK
DISH
PEN
INK

SUPPLI ITEM
~

PEN
PENCIL
INK
PERFUME

DISH
INK

LIPSTICK
DISH
PEN
PENCIL

SUPPLIER

PENCRAFT
FLlC
PENCRAFT
BEAUTEX
FLlC
CHEMCO
BEAUTEX
FLlC
BEAUTEX
PENCRAFl

IBM SYST J

ITEM

DISH
LIPSTICK
PERFUME
PEN
PENCIL
INK
INK
PENCIL
PENCIL

~

COLOR

WHITE
RED
WHITE
GREEN
BLUE
GREEN

RED
BLUE

BLUE

~

~

SIZE

M
L
L
S
M
L
S
L
L

~

Figure 6

TYPE I COLOR I

Figure 10

Figure 12

Figure 14 - HOFFMAN 16000

Figure 16

SALES/ DEPT I
STATIONERY
HOUSEHOLD
COSMETICS

HARDWARE

Figure 20 This query is
not part of this data base.

QUERY-BY-EXAMPLE 34 1

EMP I NAME I EMP I NAME I
1 HOFFMAN I

Figure 23

LEWIS I SMITH 1 I
Figure 26

EMP I NAME I
MORGAN I HOFFMAN I

Figure 27

EMP I NAMECNT. I

SALES I DEPT 1
I I

Figure 28

SALES I DEPTCNT I
I lo I

Figure 29

EMP I SALSUM. I

I 21cQo I

Figure 3 1

SALES

Figure 33

SALES 1 DEPT 1
I HARDWARE I

Figure 34

1 5 1
Figure 30

EMP I SALSUM I OEPT I

Figure 32

=ti!= STATIONERY

Figure 35

I SALES I DEPT I

ACKNOWLEDGMENTS

The author is indebted to S. P. deJong and K. E. Niebuhr for
their helpful suggestions throughout the development of Query-
by-Example. The author also wishes to thank S. E. Smith, R. R.
Jones, and R. J. Byrd for their helpful discussions.

CITED REFERENCES
1 . M. M. Zloof, “Query by Example,” AFIPS Conference Proceedings, Na-

tional Computer Conference 44,431 -438 (1975).
2. M. M. Zloof, “Query by Example, The Invocation and Definition of Tables

and Forms,” Proceedings of The International Conference on Very Large
Data Bases , Boston, Massachusetts, September 22-24, 1975, pp. 1-24.

3. M. M. Zloof, Query-by-Example: Operations on the Transitive Closure,
Research Report RC 5526, IBM Thomas J . Watson Research Center,
Yorktown Heights, New York, 1975.

4. M. M. Zloof, “Query-by-Example: Operation on Hierarchical Data Bases,”
AFIPS Conference Proceedings, National Computer Conference 45, 845 -
853 (1976).

5 . E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the A C M 13, No. 6, 377-387 (1970).

342 ZLOOF IBM SYST J

QUERY-BY-EXAMPLE 343

