Query-by-Example:

Discussed is a high-level data base management language that
provides the user with a convenient and unified interface to
query, update, define, and control a data base.

When the user performs an operation against the data base, he
Sills in an example of a solution to that operation in skeleton ta-
bles that can be associated with actual tables in the data base.
The system is currently being used experimentally for various
applications.

a data base language
by M. M. Zloof

Query-by-Example'™ is a high-level data base management lan-
guage that provides a convenient and unified style to query,
update, define, and control a relational data base. The philoso-
phy of Query-by-Example is to require the user to know very lit-
tle in order to get started and to minimize the number of con-
cepts that he subsequently has to learn in order to understand
and use the whole language. The language syntax is simple, yet
it covers a wide variety of complex transactions. This is
achieved through the use of the same operations for retrieval,
manipulation, definition, and control (to the extent possible).
The language operations should mimic, as much as possible,
manual table manipulation, thus capturing the simplicity, sym-
metry and neutrality of the relational model.”® The formulation
of a transaction should capture the user’s thought process, there-
by providing freedom to formulate a transaction. The system
should allow the user to create and drop tables dynamically from
the data base; it must also provide the user with a dynamic capa-
bility for defining control statements and security features.

The architecture of the Query-by-Example language addresses
all the requirements just mentioned. The results of various psy-
chological studies of the language’ show that it requires less than
three hours of instruction for nonprogrammers to acquire the
skill to make fairly complicated queries. Such queries would
otherwise require the user to know first order predicate calculus.
Other nonprocedural languages that deal with the same topic are
SEQUEL® and QUEL.”

ZLOOF IBM SYST J

The first implementation of Query-by-Example was done by
K. E. Niebuhr and S. E. Smith."' It is currently being used experi-
mentally for various applications, including the management of
library files, computer resources, patent files, correspondence
files, and expense accounts. The formal syntax and semantics,
completeness, authority specifications, and integrity specifica-
tions of the language are given in Reference 12.

The following sections introduce the Query-by-Example facili-
ties through illustrative examples of retrieval, manipulation, and
definition.

Retrieval

The query part of the language is introduced through examples
on the following tables:

EMP (NAME, SAL, MGR, DEPT),
SALES (DEPT, ITEM),

SUPPLY (ITEM, SUPPLIER),
TYPE (ITEM, COLOR, SIZE),

where the EMP table specifies the name, salary, manager, and
department of each employee, the SALES table is a listing of the
items sold by each department, the SUPPLY table is a listing of
items supplied by each supplier, and the TYPE table describes
each item by color and size.

Two basic concepts are fundamental to Query-by-Example.
Programming is done within two-dimensional skeleton tables.
This is accomplished by filling in the appropriate table spaces
with an example of the solution. Also, the distinction is made
between a constant element and an example element. Example
elements (variables) are underlined, and constant elements are
not underlined.

With these two basic concepts, the user can express a wide vari-
ety of queries. Consider, for example, the TYPE table, which has
ITEM, COLOR, and SIZE as column headings. As an example the
user wishes to pose the following query: “Display the green
items.” Initially, the user is presented with a table skeleton on
the screen, as shown in Figure 1.

Figure 1 A table skeleton

pLd

TABLE NAME FIELD

QUERY-BY-EXAMPLE 325

Figure 2 Column headings and The user fills in the name of the table to be queried in the table
entries for display of . . .

green items name field; in this case, the name is TYPE. The user may now

either fill in the column headings or let the system generate them

ITEM color | size automatically. (This operation is explained later.) The user next

—} expresses the query by making the entries shown in Figure 2.

The p. stands for ‘print,” which indicates the desired output.

ROD~—which is an example element (variable)—is underlined,

and represents an example of a possible answer. GREEN is a

constant element that represents the required condition in the
query, and is therefore not underlined.

P.ROD GREEN

Figure 3 Alternate formulation The query may be paraphrased as follows: Print all items —such

ft"e'msdi”'“y of green as ROD —where the corresponding color is GREEN. ROD need not

' exist in the data base. Since the example element is an arbitrary

SizE [example, the user could equally correctly have specified X, 10,

‘ 11, or WATER without changing the meaning or the result of the

query. Later we shall see. that example elements are used to es-

tablish links between two or more rows of the same table or dif-

ferent tables. Where no links are necessary, one can entirely

omit the example element. It is therefore equally valid to make

an alternate formulation of the example query as shown in Fig-

ure 3. Thus, stand-alone p. is a default of p. ‘Example Element.’

In the following examples, we use either p. or p. ‘Example FEle-
ment’ arbitrarily.

Figure 4 Example output display After formulating a query, the user presses the Enter key to ex-

of green items hibit the answer. By using the example data base given in the
Appendix, the output to the query is obtained in the form shown
- in Figure 4. Only the item column is displayed because the user
INK has entered P. in the ITEM column in Figure 3. If a p. had also
been entered in the SIZE column, the system would have printed
both the items and their sizes.

ITEM

When a user expresses a query (or any other operation) in a
skeleton table, he perceives that behind this query skeleton
there is a real table, with the same headings as the query table,
that contains the actual data. In other words, to express a query
he mimics the operation of scanning tables manually. If a user
requires two or more tables to express a query, he may do so by
generating additional blank skeletons (through the use of a spe-
cial function key) and then filling in their headings.

A number of query types are now classified through the use of
illustrative examples. The answers to these queries are found in
the Appendix.

Figure 5 Simple retrieval Simple retrieval. Print out all colors. The formulation for this

“olon query is shown in Figure 5. Alternatively, WHITE may be omit-
P WHITE ted. Duplicates of colors are not repeated in this case. (A
method for displaying duplicates is shown later in this paper.) In

IBM SYST J

cases where the system automatically provides these column Figure 6 Sir:;pl'e retrieval with
headings, the user can (if it is desired) erase unused columns ereering

from the display. Thus the ITEM and the SIZE columns could -y P
have been erased. P.AC. RED

Simple retrieval with ordering. Print out all colors in alphabeti-
cal order. As shown in Figure 6, AO. stands for ascending order.
Similarly, DO. stands for descending order. When there is a need
for a major and a minor sort, AO(1). stands for a major sort and
AO(2). stands for a minor sort.

Figure 7 Simple retrieval with

Simple retrieval with multiple prints. Print out the entire TYPE multiple prints

table. This operation is shown in Figure 7. Example elements
could also have been used. A shorthand representation of the ITEM COLOR
same query is shown in Figure 8. Here the print operator Pp. is P P
applied against the entire row. Note that all systems operators,

such as p., I., and AO., end with a period. If a table contains

many columns, the user may print out all but a few by first eras-

ing the unwanted columns, and then placing p. against the row

that represents the remaining columns.

. . . A Figure 8 Shorthand simple re-
Retrieval of the table names. List the available table names in trieval with multiple

the data base. The formulation for this query is given in Figure prints
9. Here the print is placed in the table name field, thereby asking
the system to print out all the available table names. From the
example data base, the result of this query yields the following
display:

ITEM

EMP
SALES
SUPPLY
TYPE
Figure 9 Retrieval of

Again, the example element TAB is optional. names

Retrieval of column headings. Earlier we stated that instead of
the user’s filling in the column headings, the system can auto-
matically generate them. This is done as shown in Figure 10.
Find the column headings of the TYPE table. Here again, the
print operator is applied against the whole row of headings, and
is in fact a shorthand form for placing multiple prints in the col-
umn heading fields. Automatic generation of the column head- i)

. Figure 10 Retrieval of column
ings is useful in that it relieves the user of memorizing those headings
headings (or looking them up in a directory), and thereby pre-
vents typographical errors.

If the user places P. TAB P. (or P. P.) in the table name field, the
system lists the data base directory, i.e., all table names and
their corresponding column names.

No. 4 + 1977 QUERY-BY-EXAMPLE

Figure 11 Qualified retrieval Qualified retrieval. Print the names of the employees who work
in the toy department and earn more than $10000. This is shown
in Figure 11. Note the specification of the condition ‘“more than
$10000.” One has the option of using any of the following in-
equality operators: #, >, >=, <, <=, If no inequality operator is
useq’as a prefix, equality is implied. The symbol # can be re-
placed by 1 or 1=

EMP | NAME SAL MGR DEPT

P. >10000 TOY

Figure 12 Partially underlined Partially underlined qualified retrieval. Print the green items that
qualified retrieval start with the letter 1. This is found in Figure 12. The I in IKE is
not underlined, and it is a constant. Therefore, the system prints
all the green items that start with the letter 1. The user can par-
tially underline at the beginning, middle or end of a word, a sen-
tence, or a paragraph, as in the example, XPAY, which means
find a word, a sentence or a paragraph such that somewhere in
that sentence or paragraph there exist the letters PA. Since an
example element can be blank, then a word, a sentence, or a
paragraph that starts or ends with the letters PA also qualifies.

ITEM COLOR SIZE

P.IKE GREEN

The partial underline feature is useful if an entry is a sentence or
text and the user wishes to search to find all examples that con-
tain a special word or root. If, for example, the query is to find
entries with the word Texas, the formulation of this query is P. X
TEXAS Y.

Qualified retrieval using links. Print all the green items sold by
the toy department. This is shown in Figure 13. In this case, the
user displays both the TYPE table and the SALES table by gener-
ating two blank skeletons on the screen and filling them in with
headings and with required entries. The significance of the ex-
ample element is best illustrated in this query. Here, the same
@xample element must be used in both tables, indicating that if
an example item such as NUT is green, that same item is also
sold by the toy department. Only if these conditions are met
simultaneously does the item qualify as a solution. The manual
equivalent is to scan the TYPE table to find a green item and then
scan the SALES table to check whether that same item is also
sold by the toy department. Since there is no specification of
how the query is to be processed or where the scan is to start,
the formulation of this query is neutral and symmetric.

Figure 13 Qualified retrieval using links

TYPE ITEM ‘ COLOR SIZE SALES ITEM ‘

£ NUT GREEN NUT

Once the concept of a linking example element is understood,
the user can link any number of tables and any number of rows
within a single table, as in the following examples.

ZLOOF IBM SYST J

Example elements linked in the same table. Find the names and 14 Example elements
salaries of the employees who earn more than Lewis. This is :;",:lid in the same
shown in Figure 14. If Lewis earns S1, as an example, then what
are the name(s) of employees who earn more than s1? The or-
der of the rows is immaterial: the user is not forced to structure
the query in any one specific way. Instead, there is freedom to

formulate the query according to one’s thought process.

Another feature of Query-by-Example is the ability to make a Figure 15 Augmentation of the
complex query by augmenting an existing simpler one. This is an example in Figure 14
augmentatiofl of the previous example by an additional condi- o | wan T oemr
tion and is illustrated in Figure 15 as follows. Find the names and s Tor
salaries of the employees who earn more than Lewis and work B
in a department that sells pens.

Another query is to find the names of the employees who earn
more than their managers, as shown in Figure 16. This query
may be paraphrased as follows. Print the names of the employ-
ees whose manager may be JONES (as an example) and who
earn more than S1 (as an example) such that JONES earns S1.
Here the same example element is used to link the manager in
the first row to the name in the second row, and the same exam-
ple element is used to compare the salaries. Again, the order of
the rows is, of course, immaterial. On receiving the answer, the
user has the option of going back and modifying or expanding
the old query. If, for example, the user is not sure whether the

. . . Figure 16 Two links in the same
last query is correct, i.e., whether the question was correctly table
posed, it is possible to prefix every entry with the print operator,
thus getting the employees’ names, their salaries and their man-
agers’ names in the first row with these same managers’ names
and their salaries in the second row. In this way the user can
verify the accuracy of the query.

Retrieval using a negation. Print the departments that sell an
item not supplied by the Pencraft Company. This query is
shown in Figure 17. Here the not (1) operator is applied against
the entire query expression in the SUPPLY table. This query may
be paraphrased as follows. Print department names for items
INK such that it is not the case that PENCRAFT supplies INK. In
other words, the system is to look for (INK, PENCRAFT) through-
out thé entire table, and only if it does not find that entry is the
corresponding department printed. This query is different from
the following one.

Figure 17 Retrieval using a negation

SALES DEPT \TEM SUPPLY SUPPLIER

P. INK - INK PENCRAFT

Reétrieval using a negation. Print the departments that sell items
stipplied by a supplier other than the Pencraft Company. This

NO. 4 - 1977 QUERY-BY-EXAMPLE

query is illustrated by Figure 18. Here the system retrieves data
in the sUPPLY table with suppliers different from Pencraft, and
then retrieves the relevant departments. Note that (INK, PEN-
CRAFT) might also exist.

Figure 18 Retrieval using a negation

SALES DEPT ITEM SuUPPLY SUPPLIER

P. INK INK |7 PENCRAFT

Retrieval of collected output from multiple tables. Print out each
department with its corresponding suppliers. Since the output
must be a new table, the user must generate a third table skele-
ton, and fill it in with examples mapped from the two existing
tables that satisfy the stipulation of the query. Since it is a user-
created table —and, therefore, does not correspond to stored
data—the user can fill in the required descriptive headings or
leave them blank. This is shown in Figure 19.

Figure 19 Retrieval of collected output from multiple tables

777 THING XXX

PTOY | Pl

ITEM l SUPPLY SUPPLIER

INK 1 K 181

The use of zzzZ, THING, and XXX as headings illustrates the fact
that the user may choose his own headings. Only the linking
elements TOY and IBM are transferred from the other two tables
to the output table. INK in both the SALES and the SUPPLY ta-
bles indicates that TOY is a department supplied with INK by
1BM. The order of the tables is immaterial, i.e., the output table
need not be displayed first.

If the user does not generate a third table, but rather prefixes
TOY and IBM with P. in the original tables, the output is two sep-
arate tables, one containing the departments and one the sup-
pliers. Thus, the association between the departments and their
corresponding suppliers has been lost.

Consider the following table: EMP1 (NAME, SAL, COMMISSION).

Arithmetic operation. For each employee, list name and salary
plus commission. Here again the user creates an output table,
and performs the desired arithmetic operation in it, as shown in

Figure 20. In this case, the user creates the table OUTPUT and

ZLOOF IBM SYST J

calls the heading EARNINGS. The arithmetic expression (S1 +
S§2) sums the salary and commission of each employee. Any
arithmetic expression is valid as an entry in a table.

Figure 20 Arithmetic operations

QuUTPUT NAME EARNINGS

P. JONES P.(S1 +S2)

COMMISSION

§2

Retrieval using a condition box. In Query-by-Example there are
two two-dimensional objects. The first is the two-dimensional
table skeleton that has been described. The second is the condi-
tion box, which is a box with the heading CONDITIONS. A blank
condition box may be displayed at any time the user desires. A
condition box is used to express one or more desired conditions
difficult to express in the tables.

Get the names of the employees whose salaries are greater than
the sum of those of Jones and Nelson, as shown in Figure 21. Of
course, this simple condition could have been expressed by re-
placing S1 by > (52 + $3) in the first row of the EMP table.

Figure 21 Use of condition box

EmMP NAME CONDITIONS

P. S1 > (82 +83)
JONES
NELSON

An equality in a condition box is an equality condition and
should not be confused with an assignment statement. Assign-
ment statements imply a procedure, and Query-by-Example is
a nonprocedural language. Thus, assignment statements are not
allowed. The expression W = M + N, for example, can also be
stated as M + N = w or M = W — N. The expression M =M + 1 is
always false. Different expressions in a condition box are en-
tered on separate lines, but all must hold simultaneously, i.e., all
conditions in a condition box are ANDed together.

Retrieval using AND and OR. In Query-by-Example, the AND
and OR operations are expressed implicitly. In most of the
examples given so far, we ANDed conditions together either by
writing more than two entries in the same row (qualified
retrieval) or by linking different rows with the same example
element (qualified retrieval using links). Queries in Figures 22

NO. 4 - 1977 QUERY-BY-EXAMPLE

Figure 22

Implicit AND operation

EMP

SAL

>10000
< 15000
—113000

Figure 23 Implicit OR operation

EMP SAL

Figure 24 AND operation using
condition box

CONDITIONS

S1={>10000 & < 15000 & —113000)

Figure 25 OR operation using
condition box

CONDITIONS l

$1=(10000 | 13000 | 16000) ‘

Figure 26 OR operation on
ordered pairs

NAME SAL

P st

l CONDITIONS

(81, D1) = ((10000, TOY) | (20000, HARDWARE)}

Figure 27 Use of the function
CNT.

NAME

P.CNT. ALL. JONES

and 23 demonstrate the AND and OR operations as used implicit-
ly. The queries in Figures 24 and 235 are reformulations of these
queries using a condition box.

Print the names of employees whose salary is between $10000
and $15000, provided it is not $13 000, as shown in Figure 22.
The use of the same example element JONES in all three rows
implies that these three conditions are ANDed on the employee
JONES.

Print the names of employees whose salary is either $10000 or
$13000 or $16000. This is illustrated in Figure 23. Different
example elements are used in each row, so that the three lines
express independent queries. The output is the union of the
three sets of answers. (In this example, the p.’s alone would
have been sufficient.)

Reformulating AND and OR operations using a condition box.
Figure 24 illustrates the formulation of the AND operation using
a condition box; Figure 25 shows the formulation of the OR op-
eration. The ampersand & represents the AND operation and the
bar | represents the OR.

The user can also specify AND or OR on ordered pairs of entries,
as in the following example. Print the names of employees whose
salary and department is either ($10000, Toy) or ($20000,
Hardware). The salaries and departments are ordered pairs that
are to be ORed as shown in Figure 26.

Note that up to this point with the concepts of the example ele-
ment, constant element, print operator, and their use within the
table skeletons and condition box, the user can express quite
complicated queries. These cover a wide variety of relational
data base operations such as projections, selections, joins,
projection of joins, union, difference, intersection, and arithmetic
operations.

Retrieval using built-in functions and the ALL. operator. There
are six built-in functions in the Query-by-Example language,
which are the following: CNT. (count), SUM., AVG. (average),
MAX. (maximum), MIN. (minimum), and UN. (unique). The
function UN. can be attached to the function CNT., SUM., Or AVG.
Thus CNT. UN. means count only the unique values, etc. The
following examples illustrate their use.

Count the total number of employees. This is shown in Figure 27.
The expression ALL.JONES represents a multiset (a set that re-
tains duplicates) of all names in the EMP table, and the CNT.
function counts this set. Here again, one can use P.CNT.ALL.,
omitting the example element JONES.

ZLOOF IBM SYST J

Count the total number of departments in the SALES table. This Figure 28 Use of the functions
is illustrated in Figure 28. Since there are duplicate departments
in the DEPT column (in which DEPT is not a key), the function
UN. is attached to eliminate duplicates. ALL. does not automati-
cally eliminate duplicates since it is a multiset. Note that if one
enters P. ALL.TOY, a printout of all the departments and their
duplicates is obtained.

CNT. and Un.

DEPT

P.CNT. UN. ALL. TOY

Qualified retrieval using a built-in function. Print the sum of the Figure 29 Qualified retrieval
salaries in the Toy Department. This is shown in Figure 29. using built-in function
ALL.S1 is the multiset of all salaries that match TOY, i.e., the
multiset of all salaries in the Toy Department. Thus, if all fifty
employees have $12 000 as their salary, the printout is fifty times
$12000.

NAME SAL DEPT

P.SUM. ALL. S1 TOY

Retrieval with grouping. For each department, print the name Figure 30 Retrieval with group-
and the sum of the employees’ salaries. This is shown in Fig- ing

ure 30. The grouping is accomplished by double underlining TOY
for an explicit ‘group-by’ operator. This query can be para-
phrased as follows: for each department TOY (as an example),
sum all the salaries matching it. o

SAL

P.SUM. ALL. 81

Get the departments that have more than three employees. This
is shown in Figure 31. Built-in functions only operate on set
expressions, so they must be followed by the ALL. operator or a
bracketed set expression. Thus CNT.INK results in an error mes-
sage.

Figure 31 A condition on the set of items

EMP NAME CONDITIONS

ALL. JONES . TOY CNT. ALL. JONES >3

Retrieval involving ‘set links’ using ALL. Get the names of the
departments each of which sells at least all the green items. This
is shown in Figure 32. The expression ALL.INK in the TYPE ta-
ble represents a multiset (i.e., a set that retains duplicates) of all
green-colored items. Thus ALL.INK is a multiset of all the green
items. The row in the SALES table means that we are looking for
departments such as TOY that sell this set and possibly more.

The asterisk indicates that there may be additional items not in
the set.

Figure 32 Retrieval involving “set links”

SALES DEPT ITEM TYPE ITEM

P.TOY |:ALL. VNK:l ALL INK

QUERY-BY-EXAMPLE 333

Get the names of the departments such that all the items of each
department have to be green. This is shown in Figure 33. In this
example, ALL.INK in the SALES table represents the multiset of
all the items that match the department TOY. The asterisk in the
TYPE table indicates that although ALL.INK must be green, there
may also be additional green items.

Figure 33 Retrieval involving “set links”

SALES DEPT ITEM TYPE ITEM

P.TOY AL, INK |:ALL. MJ

Get the names of the departments each of which sells all the
green items, and nothing more. This is shown in Figure 34. Here
the sets on both tables are the same, which means no additional
items that are not green nor any different green items sold in a
different department.

Figure 34 Retrieval involving “set links”

SALES DEPT ITEM TYPE ITEM

P.TOY ALL. INK ALL. INK

Get the names of departments each of which sells all the items
supplied by the Hardware Department and possibly more. Ex-
clude the Hardware Department itself from the output. This is
shown in Figure 35.

Figure 35 Retrieval involving “set links” with a condition box

SALES DEPT l ITEM CONDITIONS

P.TOY l:ALL. M} TOY —= HARDWARE

HARDWARE ALL. INK

Although a simple link is achieved by using the same example
element in two or more entries, in a set link one has to distin-
guish between set equality and set containment. The former is
achieved by identical set link as in Figure 34, whereas the latter
is achieved by the use of an asterisk.

A general bracket expression may contain one or more sets and
any number of single example or constant elements, with or
without a single asterisk. For example, the following bracketed
entry is valid:

ZLOOF IBM SYST J

ALL.INK
ALL.PEN
PENCIL
DISH

Whereas the entry

[T PENCIL
DISH

— %

is not valid because it does not contain a set.

Insertions, deletions, and update

Insertions (1.) deletions (D.), and updates (U.) are done in the
same style as the query operations. The only major difference is
the use of I., D., and U. in place of the P. used in query expres-
sions. This section is broken down into the following two parts:
simple insertions, deletions, and updates, and those that are
query-dependent. The term ‘“‘simple” implies operations that
involve constant elements only.

Insert into the employee table a new employee of the Toy De- Figure 36 Simple insertion
partment named Jones, whose salary is $10000, and whose
manager is Henry. This is shown in Figure 36. As P. is used
against a whole row, the 1. also applies to the whole row. A
blank entry during the insertion operation is interpreted as a
null, with the restriction that null entries are not allowed in the
primary key field(s), as in the NAME field in Figure 36. This is
consistent with the Relational Model>® in that a primary key
field must uniquely identify the record (tuple). (The specification
of a primary key field is shown later in Figure 45.)

NAME SAL MGR

JONES

Simple deletion. Delete all information about employees in the Figure 37 Simple deletion
Toy Department. This is shown in Figure 37. All records having
Toy as a Department entry are deleted in this case. It is, of
course, optional to fill in the NAME, SAL, MGR with example
elements.

EMP | NAME SAL MGR

D.

Simple update. Update Henry’s salary to $50000. This is shown Figure 38 Simple update
in Figure 38. Query-by-Example does not allow the user to up-
date the primary key field(s). The expression in Figure 38 up-
dates Henry’s salary to $50000 regardless of its old value. The
primary key field(s) must be specified to ensure uniqueness.
Blank fields imply that no updating is required. If, however, the
user wants to update a field to a null value, the user must either
enter NULL or a special user-defined symbol such as is described
later in this paper.

NAME SAL MGR

HENRY

No. 4 - 1977 QUERY-BY-EXAMPLE

Figure 39 Query-dependent in- Query-dependent insertion. Insert into the employee table an

sertion employee in the Toy Department whose name is Henry, whose
manager’s name is Lee, and whose salary is the same as that of
Lewis. This is shown in Figure 39. This is a query-dependent
insertion because the system must first query the data base to
find Lewis’s salary and then duplicate it for Henry. Although the
sequence of the rows is immaterial, there is an implicit ordering
in the execution. The insertion cannot be completed until after
executing the query.

Figure 40 Query-dependent de- Query-dependent deletion. Delete all employees who work in
departments that sell pens. This is shown in Figure 40. Here the
filling in of the NAME, SAL, and MGR columns with example
elements is optional.

letion

Query-dependent updates. 1t is often desirable to update an en-
try with a value relative to its old value. This is done implicitly.
Raise the salaries of the employees in the Toy Department by
ten percent. This is shown in Figure 41. The salary expression
in the row that contains the U. is the value after the update, and
the second row retrieves the old salary values. This operation
can be paraphrased as follows: retrieve a record that has Toy as
a department, find the salary S1 and update that salary to 1.1
times S1.

Figure 41 Query-dependent up- Since an output of a relation or table in a relational data base is

dates itself a table, the user can operate directly on that table. As an
example, after retrieving as output all employees in the Toy
Department, the user may delete any specific record by placing
a D. against that record and pressing the ENTER key.

SAL

11

Table creation

In the Query-by-Example language, the creation of tables is
done in the same style as the previous operations. A table is
defined by using skeletons with constant and example elements.
The user has facilities that create a new table, extend an existing
table, create a snapshot table —that is, one that contains collect-
ed data from various tables at a particular point in time —or cre-
ate a dynamic view of data collected from various tables. All
such operations are done implicitly, without using special key
words as was required in an earlier version of the language.”

Figure 42 Creation of table Creation of a new table. Create a new table with table name

headings EMP and column headings: NAME, SAL, MGR, DEPT. Starting
with a blank skeleton on the screen (as though one were formu-
lating a query), the user fills in the headings by inserting the field
names, as shown in Figure 42. The 1. on the right of EMP.refers
to the whole row of column headings.

NAME SAL

ZLOOF IBM SYST J

Certain system row attributes (key words) are utilized to speci-
fy the data types, sizes, domains, and keys, etc. To aid the user,
thes€ attributes are attached to all skeletons, and the user need
not insert them. For example, the user can ask for the names of
the row attribute fields, as shown in Figure 43. This operation
creates a new table and then requests display of all the row attri-
butes in the system. The resultant output is as shown in the
lower part of Figure 44. The user then defines the attributes of
the table by filling in the corresponding rows, as shown in Figure
45. Since the row attributes are already imbedded in the table,
the user is not required to enter an I. on the left of these attri-
butes; no harm results, however, if the 1.’s are entered.

Figure 44 Display of row attribute names

EMP NAME SAL MGR DEPT

TYPE
LENGTH
KEY
DOMAIN
SYS NULL

Figure 45 Definition of row attributes

NAME SAL DEPT

1.| CHAR CHAR

1.]20 8 12

LK NK NK

). | NAMES DEPARTMENTS
\

SYSNULL

Row attributes of tables are described as follows:

TYPE specifies the data entry type, such as CHAR, FLOAT,
FIXED, etc.

LENGTH specifies the length of that field. (The default is the
length of the column heading.)

KEY specifies the fields that are to be considered as primary
keys. (K stands for Key and NK represents Nonkey.) As
stated earlier in this paper, primary key fields may not con-
tain null values, nor may they contain duplicate entries. The
specification of the key fields ensures that these constraints
are maintained. In addition, the system prevents the user
from updating key fields.

DOMAIN specifies the name of the underlying domain, the
value set from which data elements are drawn. For example,
the data in the columns NAME and MGR are both drawn from
the underlying domain of NAMES. The specification of the
DOMAIN is useful when the user needs to know which col-
umns are drawn from the same underlying domain. The col-
umn heading names are not always sufficient for this. For

NO. 4 ¢ 1977 QUERY-BY-EXAMPLE

Figure 43 Retrieval of row attri-
bute names

Figure 46 Retrieval of the row
attribute data

example, the NAME and MGR columns in the EMP table are
drawn from the same underlying domain. Thus the elements
of NAME and MGR may be linked.

SYS NULL (System Null) specifies an optional symbol to be
used in the system as null. In this example, the symbol (—)
is used.

Having specified all or part of the entries in Figure 45, the user
can enter data in the same skeleton table. After the data have
been inserted, queries may then be formulated against the data
definition directory, as well as against the data in the same
skeleton.

Table expansion. The owner of a table may expand an existing
table in the same fashion that the original table was created. For
example, add a column to be labeled COMMISSION to the EMP
table. The user first queries the EMP table to retrieve all the data
concerning the row attributes as shown in Figure 46. The
answer to this query is the whole table directory previously de-
fined. The user inserts a new column name and new entries in the
directory as shown in Figure 47. If data are currently present in
that table, the COMMISSION column is considered to have null
data until the user updates the table.

Figure 47 Defining a new column in a table

EMP NAME SAL MGR DEPT 1. COMMISSION

TYPE CHAR CHAR 1. FLOAT
LENGTH 20 12 .8

KEY K NK I NK
DOMAIN DEPARTMENTS 1. MONEY
SYS. NULL — L —

Update of the table directory. The operator U. updates the table
directory, be it the headings or the key word specifications, in
the same fashion as 1. For example, if we update the table name
from EMP to EMP1, we prefix the table name with the U. operator
and type in the new name on top of the old; pressing the ENTER
key then updates the table name.

Deletion of information in the table directory and dropping a
table. Here the D. operator is used to delete directory entries in
the same way in which it is used to delete normal data entry.
Thus placing a D. against a record that specifies the key and
nonkey fields causes the deletion of those key specifications.

To drop a whole column from the data base, the user prefixes
that column name with a D. This is actually a shorthand for de-
leting both the entire data in that column and the column name.

ZLOOF IBM SYST J

Similarly, prefixing a table name with a D. is a shorthand for de-
leting the entries, the directory information, the column head-
ings, and the table name.

Creating a snapshot. Previously we showed how the user can
obtain a new table that consists of data from other tables. This
table was displayed and not stored by the system. The user may
store that table by creating a heading for it (as though one were
creating a new table).

Redo the example illustrated in Figure 19 but store the resultant
table with table name ss and column headings DEPT, SUPPLIER.
This is shown in Figure 48. Table SS is a snapshot of the data
stored in the tables at the time of its creation. Because this is
now a table in the system, the user may insert, delete, or update
it at will.

Figure 48 Creating a snapshot

1.88 L DEPT SUPPLIER

L TOY [

SUPPLY SUPPLIER

18M

Creating a view. Often the user wishes to create one table from
several others, and further wants the new table to reflect
changes in the base tables dynamically. Such a table is called a
view, and changes made to the underlying tables are reflected in
the view. To create a view, the user has to prefix the table name
with the keyword VIEW, thus distinguishing it from a snapshot.

Redo the previous example but instead of a snapshot create a
view named ST, as shown in Figure 49. The data in a view are
not physically stored. Rather, the system stores pointers to its
parts and the data materialize when the user queries this view
for output.

Figure 49 Creating o view

LVIEWST I SUPPLIER

18M

SUPPLY SUPPLIER

1BM

QUERY-BY-EXAMPLE

339

Concluding remarks

This paper has presented an overview of retrieval, manipulation,
and definition by the Query-by-Example language. One of the
unique features of this language is that very few concepts need
be learned for one to start using the system.

Also, as opposed to English-like query languages by which the
user has to conform to the phrase structure of the language, the
Query-by-Example user may enter any expression as an entry as
long as it is syntactically correct. In other words, since the en-
tries are bound to the table skeleton, the user can only specify
admissible queries. In an English-like query language, on the
other hand, the user may formulate a query that does not con-
form to the phrase structure of the language.

Since the sequence of filling in the tables is immaterial, the user
enjoys many degrees of freedom in formulating a transaction.

It has been shown that the user can build up a query by aug-
menting it in a piecemeal fashion—each time adding a new con-
dition —thereby making a smooth transition to difficult queries.

Retrieval, manipulation, and definition are all similarly accom-
plished with minimum new syntax.
Appendix

The following tables give the data base that is used for the ex-
amples in this paper:

NAME MGR DEPT

JONES SMITH HOUSEHOLD
ANDERSON MURPHY | TOY

MORGAN LEE COSMETICS
LEWIS LONG STATIONERY
NELSON MURPHY | TOY

HOFFMAN MORGAN | COSMETICS
LONG MORGAN | COSMETICS
MURPHY SMITH HOUSEHOLD
SMITH HOFFMAN | STATIONERY
HENRY SMITH TOY

DEPARTMENT ITEM SUPPLY ITEM SUPPLIER

STATIONERY OISH PEN PENCRAFT
HOUSEHOLD PEN PENCIL FLIC
STATIONERY PENCIL INK PENCRAFT
COSMETICS LIPSTICK PERFUME | BEAUTEX
TOY PEN INK FLIC

TOY PENCIL DISH CHEMCO
TOY (NK LIPSTICK BEAUTEX
COSMETICS PERFUME DISH FLIC
STATIONERY INK PEN BEAUTEX
HOUSEHOLD DISH PENCIL PENCRAFT
STATIONERY PEN
HARDWARE INK

IBM SYSTJ

ITEM

DISH
LIPSTICK
PERFUME
PEN
PENCIL
fNK

iNK
PENCIL
PENCIL

rrwrEorcg

The following are the answers to the example queries in the
text:

Figure 5 Figure 6

TYPE COLOR

BLUE
GREEN
RED
WHITE

Figure 7 Figure 10

TYPE ITEM TYPE

DisSH
LIPSTICK

Figure 12

Figure 11

TYPE ITEM

INK
EmMP NAME

Figure 13 Figure 14

EmP NAME

TYPE

HOFFMAN

Figure 16

Figure 15

EMP NAME

LEWIS
EMP NAME HOFFMAN

Figure 17 Figure 18

SALES DEPT

SALES DEPT
STATIONERY
STATIONERY HOUSEHOLD
COSMETICS COSMETICS
HOUSEHOLD TOY
HARDWARE

Figure 19

THING XXX

STATIONERY FLIC Figure 20 This query is
STATIONERY CHEMCO -

HOUSEHOLD | PENGRAFT not part of this data base.

1977 QUERY-BY-EXAMPLE

Figure 21

EMP NAME

HOFFMAN

Figure 23

EMP NAME

MORGAN
HOFFMAN

Figure 27

EMP NAME CNT.

10

Figure 29

Figure 22

EmMP NAME

LEWI(S
SMITH

Figure 26

SALES DEPT

Figure 28

SALES DEPT CNT.

5

Figure 30

EMP SAL SUM. EMP SALSUM. DEPT

21000 16000 HOUSEHOLD

21000 TOY
33000 COSMETICS
24000 STATIONERY

Figure 31 Figure 32

SALES DEPT SALES DEPT

STATIONERY STATIONERY
TOY

Figure 33 Figure 34 Figure 35

SALES DEPT SALES DEPT SALES DEPT

HARDWARE STATIONERY
TOY

ACKNOWLEDGMENTS

The author is indebted to S. P. deJong and K. E. Niebuhr for
their helpful suggestions throughout the development of Query-
by-Example. The author also wishes to thank S. E. Smith, R. R.
Jones, and R. J. Byrd for their helpful discussions.

CITED REFERENCES

1. M. M. Zloof, “Query by Example,” AFIPS Conference Proceedings, Na-
tional Computer Conference 44, 431-438 (1975).

2. M. M. Zloof, “‘Query by Example, The Invocation and Definition of Tables
and Forms,” Proceedings of The International Conference on Very Large
Data Bases, Boston, Massachusetts, September 22-24, 1975, pp. 1-24.

. M. M. Zloof, Query-by-Example: Operations on the Transitive Closure,
Research Report RC 5526, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, 1975.

. M. M. Zloof, “Query-by-Example: Operation on Hierarchical Data Bases,”
AFIPS Conference Proceedings, National Computer Conference 45, 845 —
853 (1976).

. E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13, No. 6,377-387 (1970).

342 ZLOOF IBM SYST J

. E. F. Codd, “Further Normalization of the Data Base Relational Model,”
Courant Computer Science Symposia Vol. 6, Data Base Systems, Prentice-
Hall, Inc., New York, NY (1971).

. J. C. Thomas and J. D. Gould, “A Psychological Study of Query by Exam-
ple,” Proceedings of the National Computer Conference 44, 439-445
(1975).

. D. D. Chamberlin et al., “SEQUEL 2: A Unified Approach to Data Defini-
tion, Manipulation and Control,” IBM Journal of Research and Develop-
ment 20, 560-575 (1976).

. G. D. Held, M. R. Stonebraker, and E. Wong, “INGERS: A Relational
Data Base System,” Proceedings of the National Computer Conference 44,
(1975).

. C. J. Date, An Introduction to Data Base Systems, Addison-Wesley Pub-
lishing Co., Inc., Reading, MA (second edition, 1977).

. K. E. Niebuhr and S. E. Smith, “Implementation of Query-by-Example on
VM/370,” Research Report, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, in preparation.

. M. M. Zloof, “Query-by-Example: A Data Base Management Language,”
IBM Research Report available upon request from the author, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York.

GENERAL REFERENCES

1. M. M. Zloof and S. P. deJong, “The system for business automation (SBA):
Programming Language,” Communications of the ACM 20, No. 6, 385-396
(1977).

2. S. P. deJong and M. M. Zloof, “Application design within the system for
business automation (SBA),” Proceedings of the Twelfth Design Automation
Conference, Boston, Massachusetts, June, 1975, pp. 69-76.

Reprint Order No. G321-5056.

QUERY-BY-EXAMPLE 343

