This paper describes the design effort for an integrated data
base and then develops techniques for automating significant
portions of the labor. These techniques have been incorporated
in a program to provide an effective data base design tool (Data
Base Design Aid) in current use. The processes involved with
this aid are discussed.

Automated logical data base design: Concepts and
applications

by N. Raver and G. U. Hubbard

Designing an integrated data base is currently a costly and time-
consuming activity. An integrated data base exists to serve
many application functions and its design must consider the re-
quirements of the functions it will serve. When inconsistencies
and redundancies exist in these requirements, design trade-offs
must be made. Once the data requirements have been identified
and récorded for all the application functions that will use the
data base, the designer must subject these requirements to
examinations and analyses which can be tedious and time-
consuming. The goal is to devise a data base having a controlled
number of redundant data elements connected only by those
relationships required to support each application function with
reasonable performance. The data base should also be extend-
able, without restructuring, to new functions. Automatic com-
putations can assist in this analysis, helping the designer produce
a better data base in a shorter period of time.

Data requirements are determined by listing all data elements
required by each application function and by defining how these
elements are related. The designer usually begins by examining
the specifications of the functions that will use the data base.
After collecting the names of the required data elements, the
designer studies a sorted list of these names to identify and re-
solve inconsistent usage. Frequently the same name (e.g.,
DATE) will have been used many times to mean different things
(homonyms). Also, where standardization is not sufficiently
developed, different names (e.g., EMPLOYEE and MAN-NO) may
have been used to mean the same thing (synonyms).

NOo. 3 - 1977

Next, the relationships defined on the data elements are exam-
ined, and the designer determines which elements will serve as
keys (sequence fields) and which will be attributes (nonkeys).
Then, depending on the rules of the data base handler to be
used, the designer organizes the data elements into storage pat-
terns for implementation. For the Information Management Sys-
tem (IMS/VS), the designer will group the elements into seg-
ments, group the segments into hierarchical trees, and determine
the locations and the nature of logical relationships and secon-
dary indexing.

The problems of data base design are twofold: (1) it can be a
lengthy and time-consuming process; and (2) the desired quality
is elusive. Automated methods are available, however, to provide
assistance in both areas. The designer using manual analysis
methods can be confused by the mass of detail, and mistakes
and rework often result. In an actual DL/1 (Data Language/I':?)
design study using these automated techniques, there were 1818
relationships defined on 1588 elements from which 105000 pos-
sible hierarchical paths were deduced. The procedure is quite
simple, but manual analysis becomes unwieldy when the number
of elements and relationships is large.

By automating certain parts of the logical design process, the
designer is relieved of much drudgery and is able to produce a
better final design. These automated techniques do not remove
the human from the design process; they merely reduce much of
the work of performing the routine and tedious tasks.

Quality in a data base design depends largely on the expertise of
the human designer. Automated methods can assist the designer
by identifying problems and design alternatives. They can help
in identifying homonyms and synonyms, and they can detect
ntany types of inconsistencies and incompletely defined require-
ments. In addition, nonessential (alternate) paths defined be-
tween the same pair of elements can be identified for possible
exclusion from the design. In all these areas, the designer is
provided with information that is needed and which is likely to
be more complete than if derived manually. Because the compu-
tations follow well-defined algorithms, the logical design suggest-
ed by these procedures may offer new perspectives or insights to
the designer. Initial experience with these techniques has shown
instances where the designer’s viewpoints have been clarified or
altered by the computed results.

An important by-product of using automated methods is the rig-
or imposed on data gathering. The designer must analyze the
requirements of the application functions thoroughly and record

RAVER AND HUBBARD IBM SYST J

Figure 1 Data base design effort

DATA BASE DESIGN AID

PERFORM LOGICAL DESIGN

DERIVE
CATHERING GENERATE SUGGESTED PERFORM

STRUCTURAL PHYSICAL
REQUIREMENTS MODEL L'SSEC&L DESIGN

"

DATA BASE

== e
P HEEFE g

DATA BASE
DESCRIPTION

\U

the requirements with completeness in a precise and consistent
format. A significant reduction of errors, omissions, and incon-
sistencies can be expected.

Automated logical data base design is addressed first as compu-
tational concepts with their associated algorithms, procedures,
and techniques. Following this discussion, a description of an
IBM program product, Data Base Design Aid® (DBDA), is pre-
sented. DBDA applies the concepts of automated logical data
base design to produce logical designs for DL/ structures. This
discussion also outlines how a designer would use DBDA reports
to obtain the final logical design.

The concept of automated logical data base design

The overall data base design effort, illustrated in Figure 1, can
generally be divided into the following three steps:

1. Gathering and Recording Data Requirements— Gathering
and recording data requirements involves analyzing the appli-
cation functions that will use the data base and determining
the data requirements of each function. The requirements
may be categorized as output, input, or processing. For each
function, the designer identifies and records the names of the
data elements required in the data base and the type of asso-
ciation defined on each pair of related data elements.

. Deriving a Logical Design—Logical design involves organiz-
ing the collected data requirements into a structural model,
which is a nonredundant network of the data elements and

- 1977

overall
data base
design
process

data
elements

their relationships, and then deducing a logical model of keys,
attributes, segments, hierarchical paths, logical relations, and
secondary indexing.

. Constructing a Physical Design—The logical design can be
physically implemented in a variety of ways in order to
achieve the normal access method trade-offs. These trade-
offs involve performance parameters such as retrieval vol-
ume, update volume, packing density, periodic reorganiza-
tion, load and processing time, etc. In a system such as
IMS/VS, this would involve the selection of options for a data
base design such as device type, access methods, pointer op-
tions and data set groups.

Once the data requirements are known and recorded, automated
procedures can be used to analyze them for duplications, incon-
sistencies, omissions, and alternatives. After the designer re-
solves these issues, further computations may produce a sug-
gested logical design. Some of the information derived in this
process can also be helpful to the designer when constructing his
physical design.

Since data base nomenclature and terminology is frequently
overlapping and conflicting, basic terminology requires defini-
tion. The following are defined aspects of data elements and
associations.

A data element is the smallest nondivisible data reference per-
mitted. A data element is the symbolic reference to all occur-
rences of that data element, and a data element occurrence is a
specific value.

There are two kinds of data elements: keys and attributes. A key
is a data element whose occurrences are unique and whose val-
ues are used to identify corresponding values of a related data
element. An attribute has values which are not necessarily
unique.

A segment is a group of data elements. Each segment occur-
rence is uniquely identified by a key or by its relative position.

A key that consists of more than one data element is called a
compound key. If A, B, and C form a compound key, then write
(A*B*C), where the * is the concatenation operator. A full
compound key is one in which every data element is a valid key
in its own domain, such as (STUDENT*CLASS). A qualified
compound key is one containing a member data element that is
not a unique identifier, such as (SALES-ORDER*LINE-ITEM-NO).
The line item numbers are needed but are not unique; however,
each line item needs the qualified compound key for unique
identity.

RAVER AND HUBBARD IBM SYST J

A synonym refers to two or more data element names used for
the same data. Synonyms should be detected and a consistent
terminology adopted. Automated techniques can provide assis-
tance in detecting synonyms.

A homonym refers to a data element name that actually means
two or more different things. Homonyms must be identified and
resolved. Automated techniques can significantly aid in detect-
ing them.

An association is a from-to relationship between two data ele- associations
ments A and B, and is specified as (A,B). Note that an associa-

tion is in one direction only. The “from” element serves as an

identifier, and each of its occurrences identifies one or more (or

no) occurrences of the “to” element.

Three basic types of associations will be considered: the simple Figure 2 Simple association
association, the complex association, and the conditional asso-
ciation.

[] L]
A simple association (Type 1) is one in which every occurrence . 2
of the “from” element identifies one and only only occurrence of *]
the “to” element. The association (PART-NUMBER, UNIT-
PRICE) is a simple association when a given part has only one
price. Note that several “from” occurrences may identify the PART-NO UNIT PRICE
same “‘to”” occurrence; that is, several parts may have the same
unit price, but each “from” occurrence always identifies one and
only one “to” occurrence. Figure 2 shows a simple association.

’.
[R —

[ey []

Figure 3 Complex association

A complex association (Type M) is one in which each occur-

rence of the “from” element can identify any number (including

zero) of occurrences of the “to” element. An example of a com-

plex association is (PART-NO, SUPPLIER) —a given part number i S i ¢
®

can be furnished by several suppliers. Thus, in a complex asso- . :><f:
ciation, a given occurrence of the ‘“from” element does not .//’.
uniquely identify an occurrence of the ““‘to” element but, in gen- R o
eral, identifies many *“to” occurrences. Figure 3 shows a com-

plex association.

PART-NO SUPPLIER

A conditional association (Type C), depicted in Figure 4, is a
special case of both the simple and complex associations. Each
occurrence of the “from” element identifies either one or no
occurrence of the ““to” element; i.e., the “to” occurrence may or
may not exist. A conditional association is illustrated by (EM-
PLOYEE, SPOUSE) —a married employee will have a spouse and
a single employee will not. Thus, under some conditions a
“from” occurrence will have a corresponding ‘‘to”” occurrence,
and under other conditions it will not. When the ““to” occurrence
exists, there is one and only one value associated with a “from” EMPLOYEE
occurrence.

Figure 4 Conditional association

1977

Figure 5 Multiple-meaning asso-
ciation

SELL

SALES-ORDER

Figure 6 Type 1 association

Figure 7 Parent-child relation-

ships

(M:1) mapping

Table 1 Six mapping cases

Forward Backward

Mapping 1
Mapping 2
Mapping 3
Mapping 4
Mapping 5
Mapping 6

When there is more than one relationship between a pair of data
elements, we call this a multiple-meaning association. For a
more mathematically oriented description of this concept, see
References 4 and 5. If multiple-meaning associations are defined
between A and B, then a label is used to distinguish the differ-
ence. It is denoted as (A,B):LABEL. Thus, in Figure Swe have

(SALES-ORDER,DIVISION):SELL
(SAiES-ORDER,DIVI SION):MFG
(SALES-ORDER,DIVISION):SHIP

which designate, respectively, the cbmpany divisions that sell,
manufacture, and ship items on a given sales order.

An essential association is a Type 1 association that provides
the only path between two data elements. An implied associa-
tion is a Type 1 association defined between two data elements
between which a path of essential associations already exists.
As shown in Figure 6, (A,B) and (B,C) are essential associa-
tions, and (A,C) is an implied association.

For every forward association, an inverse association can be
defined by reversing the “from” and “‘to” roles of the data ele-
ments. However, if the forward association is simple (Type 1),
the inverse association may be complex (Type M). There is no
real ordering; therefore, either association can be called forward
and the other becomes the inverse. An association and its in-
verse is called a mapping and is written as (X:Y), where X is
the type of the forward and Y the type of the inverse associa-
tion. Because mappings are symmetric, there are six cases to
consider as listed in Table 1. This discussion applies only to
mapping between keys.

The (M:1) mapping defines a parent-child relationship between
the pair of related keys. A parent may have many children (i.e.,
many occurrences of a child segment type); a child can have
only one occurrence of its physical parent. A series of keys con-
nected by (M:1) mappings may represent a multilevel hierarchi-
cal structure as shown in Figure 7.

RAVER AND HUBBARD IBM SYST J

The Type C association between keys can be considered a special
case of the Type M association. A parent may or may not have a
child, but if the child exists, it has only one physical parent; there-
fore, a parent-child relationship is defined in which the child
segment may or may not exist.

The (1:1) mapping is an identity in which an occurrence of each
element uniquely identifies an occurrence of the other. Although
a parent-child relationship can be implied (a parent segment
may have only a single occurrence of a child segment type), the
designer usually prefers to implement an identity by either dis-
carding one of the elements or by making one element an attri-
bute in the segment keyed by the other element. A secondary
index may be desired to access the element that has become the
attribute.

The (M:M) mapping defines candidates for logical relationships
as depicted in Figure 8. A given occurrence of one data element
may define many occurrences of the other, and vice versa.

(M:C) mapping indicates that while a parent may have many
children, a given child may or may not have a parent. Such
structures cannot occur in DL/I. This mapping is treated as an
(M:M) mapping because it can be implemented only in a logical
relationship.

Element A may or may not have a B. If element B exists, it may
or may not have an A. This (C:C) mapping is also treated as
(M:M) for implementation through a logical relationship.

Three levels (or views) of data are associated with an integrated
data base and its application functions:

. External View—The external view is visible data as pre-
sented on output reports, displays, etc., and on input sources,
and it therefore corresponds to the structure of data as it
appears to a user at a terminal or a user reading a report
printed by the system. The external views are normally de-
fined in the functional specifications of the applications.

. Local View—This view represents that portion of the inte-
grated data base required to support a particular application
function to generate the external view or, in the case of up-
date, to absorb the external view. The collection of local
views for the various application functions using the data
base determines the requirements of the external view.

. Internal View—This view is the complete data structure
maintained by the system to generate the multiple local
views. The internal view (sometimes called the associative
model) describes the integrated data base itself.

No. 3 - 1977

(C:1) mapping

(1:1) mapping

{M:M) mapping

(M:C) mapping

(C:C) mapping

Figure 8

(M:M) mapping

Figure 9 Five application functions

CUSTOMER

Figure 10 Composite network

Starting with the external views and considering special process-
ing requirements, the designer and application specialist deter-
mine the required local view for each application function. This
process is data gathering and recording. Once the local views
are obtained, automated processing can help in deriving the re-
quired content and structure of the internal view, which is the
end result of logical design. (The local view is analogous to the
application function’s psB (Program Specification Block); the
internal view is analogous to the data base’s DBD (data base
description) .)

An example of automated data base design

The concept of automated data base design is basically very
simple and involves using the computer to analyze and process
the data base requirements as an aid to the human designer. It is
an iterative process in which the designer (1) defines the data
requirements of each application function to use the data base,
(2) uses the computer to combine these requirements into a
structural model, analyze them, and derive a representation of a
logical design, and (3) tests the resulting representation against
each application’s requirements to see if its functional and per-
formance requirements are supported. When necessary, the data
requirements may be modified and the process repeated until a
suitable representation is obtained. This final representation is
the desired logical design of the data base.

This procedure is illustrated by an example in which a simple
data base for a trucking company is designed. (Even in this sim-
ple example, the final result is not initially obvious, and the read-
er is cautioned not to read ahead so that the complexity of small
networks and the simplicity of the procedures can be appreciat-
ed.) This example illustrates only the basic automated methods.
Editing functions such as resolving synonyms and homonyms
are not illustrated.

A data base is being designed for a trucking company that loads
its trucks with products for shipment to various customers.
Many trips are made each working day, and each trip is made by
a certain type of vehicle. Each component of a product is given
a package number. On a specific trip, all packages for a given
customer are grouped and given a single shipment number.

The data base is required to support five application functions
that provide operating information for the company. A schemat-
ic representation of each function is depicted in each part of
Figure 9. (For simplicity, only the output requirements of each
function are considered.)

RAVER AND HUBBARD IBM SYST J

Part A of Figure 9 shows the trip schedules (Local View 1) that Figure 11 Network essential as-
list each trip by date, and for each trip, give the vehicle type, sociations
weight, and volume. The customer shipment query (Local View

2) shown in Part B handles customer queries about the dates of

scheduled trips to a customer. Part C illustrates the customer

product query (Local View 3) that handles customer queries

such as, “When and what is the shipping information for given

products?”” The trip contents (Local View 4) lists each trip, the

customers to be served, and the packages and products to be

delivered as shown in Part D. The shipment history (Local

View 5) in Part E provides a history of each shipment.

A canonical representation of the logical design is derived by
combining the five local views into a single, composite network
(structural model) of data elements and associations and analyz-
ing this network. A glance at the network in Figure 10 shows a
confusing picture at first. Which elements are keys and which
are attributes? Can hierarchical trees (assuming a DL/I system)
be deduced? Which are the root keys? Are logical relationships
required?

The analysis will identify and eliminate nonessential associa- canonical
tions, determine keys and attributes, and derive a logical model representation
according to the rules of the data base handler to be used. At the

same time the procedure should reveal errors, omissions, and

inconsistencies in the data requirements and conditions that vio-

late some of the data base handler rules. In addition, design al-

ternatives are provided for resolution.

Physical hierarchies and segment content are deduced from es- Figure 12 Segment structure and
sential associations. To focus on the essential associations, the hierarchical relation-
complex associations and the implied simple associations are

marked for removal from the network in Figure 11.

After removal of those associations, keys and attributes are de-
termined. Keys are those elements from which a Type 1 associa-
tion originates, as indicated in Figure 11. Attributes are ele-
ments identified by a Type 1 association but which do not in
turn identify anything else with a Type 1 association. Three
keys are determined: TRIP-NO, SHIP-NO, and PACKAGE-NO. By
applying these concepts to the example at hand, the segment
structure and hierarchical relationships become recognizable

and can be explicitly depicted, as in Figure 12. | TR I ITR.(;:_IDATEIVEH.IVEH,lVEH_
N TYPE|] WT | VOL

This example‘ illustrates.tl‘le basic concepts of au‘toma'ted logi‘cal
data base design for deriving segments and physical hierarchies.
Later in this paper, it will be shown how Type M associations A | e R e
are analyzed to identify candidates for logical relations and for PARENT/

CHILD SEGMENT CONTENTS
GRAPH

secondary indexing.

No. 3 - 1977 295

testing the
canonical
representation

Figure 13 Automated logical data base design process

DATA GATHERING AND RECORDING
(COLLECTING THE LOCAL VIEWS)

® DETERMINE DATA ELEMENTS NEEDED BY EACH APPLICATION,

® DRAW SCHEMATIC DIAGRAMS OF THE DATA ELEMENTS AND THE(R
ASSOCIATIONS.

® RECORD DATA REQUIREMENTS IN A STANDARD FORMAT.

LOGICAL DESIGN LO'(\)/,EI?\,IFI:{WS

® COMBINE LOCAL VIEWS INTO A SINGLE NETWORK OF NONREDUNDANT
ELEMENTS AND THEIR ASSOCIATIONS.
@ EDIT FOR ERRORS, OMISSIONS, AND INCONSISTENCIES.
ERFORM BASIC COMPUTATIONS:
—ELIMINATE NONESSENTIAL ASSOCIATIONS.
—IDENTIFY KEYS AND ATTRIBUTES. ARE ALL
—DERIVE CANONICAL REPRESENTATION OF LOGICAL DESIGN. LOCAL VIEW
® PRODUCE DIAGNOSTIC AND DESIGN REPORTS. REGUIREMENTS

SATISFIED?

Having obtained the canonical representation of the logical de-
sign, the designer’s third task is to test that representation
against each of the local views to see if it contains the required
access paths and to see if reasonable performance can be ex-
pected. If yes is the answer in both cases, the logical design is
complete, and the designer can proceed with the physical design.
Otherwise, the designer must augment one or more local views
and repeat the process. The flowchart in Figure 13 shows the
process.

The original local views are termed “‘unrestrained.” Modified
local views are “restrained,” since limitations are imposed upon
them because of the data base handler rules, or by performance
and maintenance considerations.

We illustrate these concepts by testing the canonical representa-
tion against each of the original five local views from which it
was derived.

View 1 can be satisfied provided a secondary index is imple-
mented with DATE as source and TRIP-NO as target.

View 2 requires a secondary index with CUSTOMER as source
and TRIP-NO as target. Note that the entire TRIP-NO segment
will be presented to application Function 2.

View 3 is not efficiently supported by the canonical representa-
tion. One and possibly two sorts will be required to produce the

report. A secondary index with CUSTOMER as source and SHIP-

RAVER AND HUBBARD IBM SYST J

NO as target will avoid an additional sort. The designer may
wish to reconsider and modify View 3 (producing a restrained
load view) to avoid the sorting.

View 4 is directly supported by the canonical representation.

View 5 requires a secondary index on SHIP-NO and a backward
pointer from the SHIP-NO segment to the TRIP-NO segment.

Programming considerations

Automated data base design depends on the data model support-
ed by the data base handler. DL/l (IMS/VS or DOS DL/I) has the
following rules and restrictions. (This list is intended to be rep-
resentative and not exhaustive.)

1. A segment consists of a collection of fields (data elements),
one of which may be a key while the others are attributes
uniquely determined by the key.

. A segment (other than the root segment) has one physical
parent and may or may not have a logical parent. No more
than one of each parent is permitted.

. A logical relation between two segments requires at least a
third segment to relate their occurrences. The ‘‘intersec-
tion” segment is a physical child of one parent and a logical
child of the other.

. A logical child of a logical child is not permitted.

. DL/1 permits redundant data elements but not redundant
segments.

. Multiple-meaning associations are not permitted in DL/.
They can be implemented by creating separate “‘to” ele-
ments or by logical relations.

. The number of segments in a hierarchical path may not ex-
ceed 15.

. A segment may not be the physical parent of a superior
segment of its hierarchical path; i.e., loops cannot be imple-
mented without using at least one logical relation.

. An association is not declared explicitly in DL/i but is im-
plied by either the physical hierarchical paths or by logical
relationships.

10. Secondary indexes may allow any key or attribute to be
used as a point of entry to the structure.

The following are some of the diagnostics possible in automated
logical data base design:

1. Suppose we have two local views, all dealing with a key K1
and a single attribute, Quantity. Suppose further that the first
view calls the attribute QTY, and the second calls it Q. The

No. 3 - 1977 DBDA

automated
analysis

Figure 14 Two views with same basic computation will create a segment with K1 and contain-
attribute . . .
ing QTY and Q, shown in Figure 14.

oLy Because all three data item names appear together in the
P ! same segment, the system designer will have little difficulty in
noting inconsistencies within a single segment. A report of
each segment can be produced which lists each attribute in
close proximity. While more elaborate schemes can be de-
vised to handle synonym problems, they involve more labor
in collecting local views and are unwieldy in practice.

RESULTANT SEGMENT

Figure 15 Two views with dif- . Now suppose we have two local views dealing with two dif-
ferent attributes ferent attributes which are erroneously called the same data

° . @ @ item name, QTY, as shown in Figure 15. The. first view uses
. wi R.EALLY ! @ key K1 for its attribute QTY, and the second view uses K2. In
DIFFERENT this homonym problem, a report can be produced that gives a
(e (o)t diagnostic for QTY since it has more than one key. A number
RESULT of commonly used terms such as DATE, NUMBER, and COST

are likely to create a homonym problem.

. Inconsistent associations can also be detected. If one local
view contains (EMPLOYEE,DEPT) as Type M and another lo-
cal view contains (EMPLOYEE,DEPT) as Type 1, then one
must be wrong. For DL/1 implementation, either the associa-
tion must be of the same type, or two “to’’ elements must be
used.

A list of inconsistently defined associations (and the local
views in which they were specified) can be produced. This
listing may also help to identify any multiple-meaning asso-
ciations.

Figure 16 Implied association . Implied associations (the transitivity property) can be de-
tected and reported. Such associations will normally be con-
sidered nonessential and will be eliminated by the program.
In Figure 16, aside from the obvious question of throughput,
(EMP,DEPT) can be eliminated without loss of validity,
whereas (EMP,PHONE-NO) must be retained to get the em-
ployee’s correct phone number. Means must be provided to
retain selected implied associations in the model.

. A path of simple associations that loops back onto itself can-
not be implemented as such in DL/ structures. In some cases
(Bill of Materials is a simple example), this situation is valid,
but it should be reported. If it is valid, implementation re-
quires that at least one simple association be replaced with a
logical relation.

. Data element pairs related by (M:M) mappings can be im-
plemented in parent-child structures with possible redundan-

298 RAVER AND HUBBARD IBM SYST J

¢y or through logical relations. In the latter case, a logical
child (intersection segment) is required. This situation and
the presence or absence of a defined intersection can be re-
ported for review.

. If frequencies of use can be estimated for the associations
defined in each local view, relative frequencies of use can be
calculated for the resulting paths of the integrated data base
(internal view). This information can assist the designer in
decisions where performance is a factor.

The input editing of the data requirements, the analyses indicat- reports
ed above, and the basic computations of automated logical data

base design can be reported for review and for documentation.

The following reports will be useful:

. An edit listing of input to reveal errors, omissions, and in-
consistencies that can be detected before the analysis
begins.

. Lists of data element names alphabetically sequenced and in
keyword-in-context sequence containing, for each name,
sources, uses, and all supplied characteristics.

. A diagnostic list of attributes having multiple keys for essen-
tial associations.

. A diagnostic list of associations between keys for which the
mapping is incomplete; i.e., the association is known in only
one direction.

. A report of inconsistent associations.

. A report of “implied” associations to be eliminated by the
program.

. A report of (M:M) mappings that are candidates for logical
relations, that also show which intersections are already
defined.

. A report of the network showing all keys and their essential
associations.

. A report showing the relative frequencies of use of the paths
in the network.

. A list of segments with their contents.

. A diagram of the physical structures derived from the net-
work. In DL/1, this is the parent-child graph.

. A list of candidates for logical relations and secondary in-
dexing.

The methods previously discussed for automated logical data
base design have been implemented in the program product
Data Base Design Aid (DBDA). DBDA provides direct support
for DL/ data structures, but it can also be used in designing
structures for other data base handlers. It runs under both 0s/vs
and DOS/VS.

NO. 3 - 1977

phases and
iterations

DBDA executes as a batch program. It is organized in six phases,
with one or more job steps in each. The first phase edits the data
requirements, and the final phase produces a series of design
reports defining the suggested logical model. The intermediate
phases produce diagnostic reports that the designer may use to
suspend processing, modify the data requirements of the control
parameters, and restart the process at certain points.

There are two types of input to DBDA: the data requirements
(recorded on DBDA Requirement Specification Forms), and a set
of control parameters (specifying editing functions, special pro-
cessing requirements, and special characters for output for-
matting). Coding details are presented in Reference 6.

The following information must be provided in the data require-
ments.

. The names of the data elements required by each application
function using the data base.

. Designation of the identifier and the identified, for related
elements.

. Association type for each pair of related elements.

If information can also be provided regarding the frequency of
use of the application functions and the frequency and nature of
access to the data elements used by each function, DBDA can
calculate relative measures of the importance of the paths of the
resulting hierarchical structures.

DBDA can-also accept information regarding the characteristics
of the data elements, (e.g., data type, length, length type) for
use in consistency editing.

The design reports of DBDA describe the suggested logical mod-
el of the data base. The edit and diagnostic reports provide the
diagnostics mentioned earlier. All reports are fully described in
Reference 7. Brief descriptions of the design reports follow.

Parent/Child Graph— A graphical presentation of the physi-
cal hierarchical structures derived from the structural model.
Suggested Segments— A list of all keys and all attributes
clustered about each key. For each suggested segment, the
report shows key name, attribute names, indication of fixed
or variable lengths, and segment size.

Structural Model— A listing of the network of all keys and
their associations, showing all possible parent-child relation-
ships. For each key possible, alternate parents (candidates
for logical relationships) are listed. A summary of the asso-
ciation of weights is given for each path.

RAVER AND HUBBARD IBM SYST J

e Candidates for Secondary Indexes — Any data element that
appears as a root in the requirements of some application,
but is not a root in the suggested hierarchical structure, is
listed as a candidate for secondary indexing. Data elements
that were entered as identities but changed to attributes are
listed. Attributes that refer back to their keys or to other
elements with Type M associations are also listed.

e Association Weights — Association weights indicate the rela-
tive frequency of use and importance of the paths defined in
the structure. Results are given for batch and on-line envi-
ronments, and provision is made for special weighting of in-
sertions, replacements, and deletions. This report helps the
designer make decisions that involve performance consider-
ations.

DBDA processing

A path is defined to be two or more data elements in a linear
array such that adjacent element pairs are related by Type 1
associations all in the same direction. For example, this array is
a path of four elements:

The following array is not a path:

However, two paths can be constructed from it.

DBDA is interested in paths.of Type 1 associations because they
constitute the basis of physical hierarchical structures. The
(M:1), (C:1), and (1:1) (if properly implemented) mappings
constitute parent-child relationships, with Type 1 associations
(child to parent) being the essential ingredient. Thus DBDA
builds and analyzes all possible paths of element pairs connected

by Type 1 associations.

DBDA attempts to map the data elements into physical hierarch-
ies by joining paths of “essential” Type 1 associations. The
analysis begins by scanning all possible paths and categorizing
their associations into one of three groupings: Essential Associa-
tions, Implied Associations, and New Associations. From the
paths of Essential Associations, DBDA builds the physical hier-
archies. To illustrate, suppose the following association pairs are
among those specified in the data requirements:

No. 3 - 1977

building
paths

analyzing
the paths

Figure 17 Network of paths

deducing keys,
attributes,
and segments

Table 2 Summary of association groupings

Essential Implied New
Associations Associations Associations
(A, B)
(B, C)
(C, D)

From these pairs, DBDA deduces the network of paths in Figure
17. (A,B), (B,C), and (C.D) are the essential associations.
(A,C) and (A,D) are implied associations because their func-
tional capabilities are implied by the essential associations.
(B,D), although not specifically requested, is intrinsic to the
structure as a ‘“‘new’’ association. “New” associations indicate
queries that can be made against the data base. A list of “‘new”
associations is also useful for judging if the data base already has
the necessary associations for supporting new functions. Table 2
summarizes the association groupings of this example.

Data elements that identify other data elements with simple as-
sociations are classified as keys. Data elements that are not keys
and that are identified by simple associations are classified as
attributes. A key and the attributes it identifies are grouped into
suggested segments. (In DBDA, the name of the key is also used
as the segment name.)

Frequently a designer will specify only one association (called
the forward association) between a pair of data elements, so that
DBDA must assume the inverse association. These assumptions
affect the determination of keys, attributes, and segments. In the
following discussion, A in all cases is considered to be a key.
Case I.

(AB) =1 B is a key.

The inverse association is assumed to be Type M, and since B
(as a key) represents a segment, A and B are mapped into a par-
ent-child relationship.

Case 2.
(A,B) =1 B is not a key. °

RAVER AND HUBBARD IBM SYST J

The inverse association is not needed. B is treated as an attri-
bute and becomes a field in the segment keyed by A.

Case 3.
(A.B) =M B is a key.

If the inverse association is assumed to be Type M, the A and B
segments become candidates for a logical relationship, and
DBDA looks to see if an intersection segment is defined. If the
inverse is assumed to be Type 1, DBDA creates a parent-child
relationship. The designer may instruct DBDA to assume either
inverse.

Case 4.
(A,B) =M B is not a key. . .

B is considered to be a “multiply occurring” attribute (i.e, a giv-
en occurrence of A identifies many Bs). More information is
required for implementing this association. The designer has two
choices: (1) Implement B as a COBOL repeating group within A.
This may be specified by defining a Type 1 association from A
to B and by defining B as a variable-length field. (2)Implement
B as a dependent segment of A. This may be specified by explic-
itly defining a Type 1 association from B to A.

Case 5.

(AB) =C B is a key.

DBDA treats this association type as Type M. Thus, this case is
treated as in Case 3.

Case 6.

(A,B)=C B is not a key.

The Type C association is treated as a Type 1, and the inverse
association is not relevant. B becomes an attribute (which may
or may not have a value) in the segment keyed by A.

Hierarchical tree structures are built by combining paths. As an

example, the hierarchical tree in Figure 18 is formed by combin-
ing the following paths, in which all elements are assumed to be

o orYoYoro

Figure 18 Hierarchical tree

deducing
hierarchies

Figure 19 Hierarchies resulting
from selection of F as

parent

calculating
association
weights

analyzing
candidates
for logical
relations

However, for the following two paths, the resulting structure has
two parents, B and F, of C:

In DL/ hierarchies, there can be only one physical parent; there-
fore, a choice must be made between B and F as the physical
parent of C. If F is selected, the resulting hierarchies are shown
in Figure 19.

Thus, in producing the Parent/Child Graph, the segments having
more than one parent are identified and a dominant (physical)
parent selected. The designer may make these choices, or DBDA
can make the selection by choosing the parent on the path hav-
ing the highest association weight between candidate parent and
child, or, if the associations’ weights are absent or equal, by
selecting the parent whose name is first in the collating sequence.

Association weights are a relative measure of the frequency of
use (or importance) of the paths in the structural model. Such a
measure, if reasonably well-estimated, provides the designer
with valuable insight into performance-related questions such as:

* Which segments to place into the left-hand and into the right-
hand paths.
Whether to subdivide segments into frequently used fields
and occasionally used fields.
Whether to implement certain pairs of elements in a logical
relationship or in a parent-child relationship with possible
inverted searching.

The calculation of the association weights is described in Refer-
ence 5.

As has been stated, the (M:M) and (M:C) mappings are candi-
dates for logical relations. The incomplete Type M mapping
from A to B (where B is a key) may also be considered as a
candidate. For each candidate pair of elements, DBDA searches
for paths that will define the intersection for DL/ implementa-
tion. It searches first for paths defining a common child. The in-
tersection may be defined by a single data element as in Figure
20A, or it may be defined by multiple data elements, as in Fig-
ure 20B.

DBDA restricts this search to a single logical crossing between
physical structures; therefore, situations like that in Figure 21

RAVER AND HUBBARD IBM SYST J

are not analyzed. If a common child is not found, a search is
made for a common parent as shown in Figure 22.

A common parent may or may not define the intersection, de-
pending on the number of occurrences of B or C. It is presented
to the designer merely for evaluation. If neither a common child
nor a common parent is found, the logical relation cannot be
implemented without further definition.

A data element that appears as a root key in the requirements of
some application function, but does not become a key in the root
segment of the suggested logical model, is a candidate for secon-
dary indexing. As an example, an application function requires
data elements A, B, and C, and another application function
requires data elements B, D, and E. For the resulting hierarchi-
cal structure, element B is listed as a candidate for secondary
indexing as shown in Figure 23.

In addition, if an identity (i.e., two elements related by a (1:1)
mapping) is resolved by making one element an attribute of the
other (see DBDA’s IDENTITY command in References 6 and 7),
the new attribute is listed as a candidate for secondary indexing
as in Figure 24. Any attribute which refers back to its key or to
other elements with a Type M association is also listed.

Using the results of DBDA in logical design

While DBDA produces design reports showing a suggested logi-
cal design of the desired data base, the designer still must make
design decisions, some of which may involve reorganizing seg-
ments or rearranging suggested structures. This section indicates
how the designer proceeds from the DBDA design reports to the
final logical design. The designer controls the process, and
DBDA provides helpful information.

The example used is the trucking company described earlier in
this paper. In that exercise, a single data base of three segments
was derived, and CUSTOMER, a root key of two local views, was
not a root of the resulting structure. It was not even a key be-
cause no attributes had been defined for it.

Assume that one or two additional DBDA iterations have been
performed in which CUSTOMER and PROJECT now have attri-
butes and are keys of segments, and all diagnostics are resolved.
The resulting five design reports are Figures 25 through 29.
Because DL/ does not permit a logical child of a logical child,
the suggested logical design must be refined. This can be done in
several ways, and the choice belongs to the human designer.
The solution chosen for this iteration may not be the best solu-

- 1977 DBDA

determining
candidates for
secondary
indexing

Figure 20 Data element inter-

section

M

L]

¢
M
|
"
1

| L]

A

|
A
C

P

3
A)
L
)

(B

Nonanalyzed
tion

situa-

Figure 22 Search for common
parent

Figure 23 Secondary indexing
structure

Figure 24 New attribute in sec-
ondary indexing

EMPLOYEE-NO SOC-SEC-NO

S6b &b

IfMPLOYEE-NO | SOC-SEC-NO | A I B [c I D]

306

tion. The purpose of this example is (1) to show the value of the
reports of DBDA in helping the designer choose a solution and
(2) to indicate the value of DBDA in documenting the refined de-
sign and in reporting any further anomalies or alternatives cre-
ated by the refinement.

Clues for the refinement to be made are obtained by studying
the associations and the association weights for the paths in-
volved in the two sets of candidates for logical relations (Figure
30). The following observations are pertinent.

. The highest association weight, 41280, is for paths from
PRODUCT to PACKAGE-NO and from PACKAGE-NO to SHIP-
NO. These paths require the greatest accessing efficiency.

. The Suggested Segments report shows that SHIP-NO is in a
segment without any attributes. Perhaps SHIP-NO can be
moved into the PACKAGE-NO segment.

. The lowest association weight, 1, is from SHIP-NO to each of
its two parents, CUSTOMER and TRIP-NO, and there is no re-
quirement to go from either of these parents down to SHIP-
NO. A rearrangement will have relatively little impact on per-
formance.

. A complex mapping is defined between CUSTOMER and TRIP-
NO, and these two keys are strongly suggested to be parents
in a logical relationship. If SHIP-NO is moved, a new intersec-
tion must be defined.

The chosen solution, then, is as follows: The SHIP-NO segment
is to be removed from the structure, and SHIP-NO will be placed
as an attribute in the PACKAGE-NO segment. SHIP-NO will be
needed as the source of a secondary index to CUSTOMER, and
this should be reflected in the Candidates for Secondary Indexes
report. A new pointer segment will be created to define the in-
tersection between CUSTOMER and TRIP-NO.

Methods for communicating these refinements to DBDA are de-
scribed in Reference 6. An additional DBDA iteration will docu-
ment these refinements and determine whether additional errors
and alternatives are created. In this case, the desired design is
produced without diagnostics requiring remedy. The new Par-
ent/Child Graph and Suggested Segments report are illustrated
in Figures 31 and 32, and the finalized logical design is illustrat-
ed in Figure 33. The process is not finished until adequate sup-
port of the original data requirements is verified. In this case,
they are supported, and the logical design process is concluded.

When doing the physical design, the designer may receive addi-
tional clues from the Association Weights report. This report
shows the requirement to go in both directions or only in one

RAVER AND HUBBARD IBM SYST J

Figure 25 Parent/child graph

DATA BASE DESIGN AID PAGE 1-4A
TRUCKING COMPANY EXAMPLE PARENT/CHILD APR 141977
ITERATION 3

- CEBEE | 10

3
CUSTOMER | PACKAGE-NO
[}

|
|
1
i
!

f
1
I
1 |
| 1

Figure 26 Suggested segments

OATA BASE DESIGN AID
TRUCKING COMPANY EXAMPLE
ITERATION 3

UGGESTED SEGMENTS PAGE

1
APR 141977

KEY DF SEGMENT Frv LENGTH DATA FIELDS {C=CONDIT [ONAL, I=INTERSECTION}

3
CUSTOMER F LOCATION
10
PACKAGE-NO F MFGy PACK-VDL o PACK-WT
11
PRODUCT F DESCR

15
SHIP-NO

22
TRIP-NO SHIP~DATE,VEH-TYPE, VEH-YOL, VEH-WT

direction between parents of a logical relationship, suggesting the
need for a bidirectional or unidirectional relationship. In addi-
tion, the association weights values, by indicating the relative
traffic in both directions between the parents, may be helpful in
determining virtual or physical pairing. In this case study, a bi-
directional logical relationship is suggested between CUSTOMER
and TRIP-NO.

The iterative use of DBDA has been discussed. DBDA generates
a logical design that functionally supports the data requirements
but which may need refinement for performance or for other
reasons. The user should also consider the iterative use of DBDA
in another context.

1977

iterative
use

Figure 27 Structural model

DAYA BASE DESIGN AID
TRUCKING COMPANY EXAMPLE
ITERATION 3

KEY OF SEGMENT

3 CUSTOMER
11 PRODUCT
10 PACKAGE-NO
15 SHIP-NO

10 PACKAGE-NO

DATA BASE DESIGN AID
TRUCKING COMPANY EXANPLE
TTERATION 3

KEY OF SEGMENT

22 TRIP-NO

15 SHIP-NO

10 PACKAGE-NO

RUCTURAL

FREQUENCY
OF OCCURRENCE

ADDITIONAL PARENTS
00001
00020
00003

CUSTOMER
SHIP-NO

TRIP-NO

CUSTOMER
PRODUCT

RUCTURAL

FREQUENCY
ADDITIONAL PARENTS OF OCCURRENCE
00000

00000
CUSTOMER

00030
CUSTOMER
PRODUCT

Figure 28 Candidates for secondary indexes

DATA BASE DESIGN AID
TRUCKING COMPANY EXAMPLE
ITERATION 3

CANDIDATES FOR SECONDARY INDEXES

PAGE 1
APR 1,1977
WEIGHT
3 prc

Qe 000E+00 14 376E+04
14 590€402
0Os 000E+00
4e128E404

4a128E404
le 290E+02
3+000E+01

14 000E+00
14 000E+00

Qe 0QOE+00
0e 000E +00

49 128E404
Qe DO0E+00
1e 590E+02

34000E+01
1s290E402
%e 120E4+04

PAGE 2
APR 1,1977

WEIGHT
c/p P/C

14 000£400
le 000E+00

Oe 0OOE +00
Ce 000E+00

4e128E+04
Qe O0GE+00
14 590E+402

34 Q00E+0Q?
14 290E+402
4o 12ZBE+04

PAGE 1
APR 11,1977

#NOTE- THESE ASSOCIATIONS WERE SPECIFIED IN THE REQUIREMENYS BUT NEED SPECIAL ATTENTION TO IMPLEMENT.

(FROM)
INDEXING FIELD
SHIP-DATE
SHIP-NO
SHIP-NO
SHIP-ND
SHIP-NO
SHIP-NO

SHIP=-NO

TRIP-NO
CUSTOME
PACKAGE:
SHIP-DA
TR1P-NO
VEH-VOL

VEH-WT

INDEXED FIELD

R

~NO
TE

Rather than collecting all the data requirements and supplying
the entire collection to DBDA initially, the user may find it ad-
vantageous to select two or three of the more important applica-
tion functions, and process their requirements iteratively until a
clean design is obtained. He may then add the requirements for
some additional (but less important) functions, reprocess, and
note where the resulting design differs from the one originally

RAVER AND HUBBARD

IBM SYST J

Figure 29 Association weights summary

DATA BASE DESIGN AID
TRUCKING COMPANY EXAMPLE
ITERATION 3

ASSOCIATION (FROM)
CUSTOMER

CUSTOMER
CUSTOMER

PACKAGE-NO
PRODUCT
SHIP-DATE

TRIP-NO

END OF REPORT

(NDRMALIZING PERIOO:Z

1To)

PACKAGE-NO
PRODUCT
TRIP-NO

PACK-VOL
PACK~WT
PRODUCT
SHIP-DATE
SHiP-NO
PACKAGE-NO

SHIP-DATE
TRIP-NO
VEH-VOL
VEH-WT
CUSTOMER
SHIP~DATE
VEH=-TYPE
VEH-VOL
VEH-WT

ASSOCIATION WEIGHTS SUMMARY

MONTH

NORMALIZED
BATCH WEIGHT

1.290E+02
04 000E+00
0 000E+00
3.000E+01
34 000E+01
3,000E+01
1o 590E£+402
0¢ 000£+00
04 GOOE+Q0
s 000E+00
1e 07SE+02
1e000E+00
34 000E+01
12 000E+00
14000E+00

0 000E +00
1,075€402
1e075E+02
1.075E+02

Figure 30 Two sets of candidates for logical relations

TRIP-NO

SHIP-DATE, VEH-TYPE.
VER-VOL, VEH-WT

43

TN
m

CUSTOMER

ADDRS

NORMALIZED
ONLINE WEIGHT

0, 000E+00
1o 376E+04
6o 450E402
0.000E+00
04 000E+00
0. 000E+ 00
0.000E+00
4o 128E+04
4e128E+04
44 128E+04
Os DOOE+00
0, Q0OE+00
0Os BOOE+00
0. 000£+00
0e 0QCE+00
0« OOOE+00
0,000E+00
0¢ OOOE+00
6o 450E+02
0.000E+00
0, 000E +00
Q. 000E+00

SHIP-NO

PAGE 1
APR 141977

TOTAL

14 290E+02
Lo 376E+04
be4S0E+02
34 000E4+ 0L
34 000E+0O1
34 GOOE+0L
1e 590€+02
48 128E+04
4e 128E404
40 12BE+04
14 0T5E+02
1. 00QE+00
34 000E+0L
1o 0GCE+00
14 000E +00
1¢ 000E+00
1. 0O0E+ 0O
4e 300E+01
60450E+02
1. 075E+02
1e 075E402
14 075E402

PACKAGE-NO

MFG, PACK-YOL,
PACK-WT

obtained. This enables the user to focus attention on those areas
needing reconsideration or more detailed analysis, and if
changes are required, to intelligently judge whether to change
the specifications of the “more important” functions or of the
functions just added to the study.

Summary

A technique has been described that can be embodied in a pro-
gramming tool for reducing the labor of logical data base design.

No. 3 - 1977

Figure 31 New parent/child graph

DATA BASE DESIGN AID PAGE 1-4
TRUCKING COMPANY EXAMPLE PARENT/CHILD APR 1,1977
ITERATION &

- <Cheer

4 12 t 11
CUSTOMER i PACKAGE-NOD

|
1
|
1
t

Figure 32 New suggested segments

DAYA BASE DESIGN AID SUGGESTED SEGMENTS PAGE 1
TRUCKING COMPANY EXAMPLE APR 1,1977
ITERATION 4

KEY OF SEGHMENT FIv LENGTH DATA FIELODS (C=CONDIT IONAL, I=INTERSECTION)
4
CUSTOMER F LOCATION
1
PACKAGE-NO MFG¢ PACK~VOL yPACK~WT, SHIP-DATEC I} + SHIP-NC
12
PRODUCT DESCR
23
TRIP-NO SHIP-DATE(T), VEH-TYPE, VEH=VOL s VEH-WT

29
(CUSTOMER®TR] P=NO)

The techniques must be supplemented with the network re-
straints of the data base handler being used. For DL/ structures,
the technique has been implemented in a program product called
Data Base Design Aid (DBDA).

DBDA is a design aid in two senses. In one sense, it is a tool for
analyzing the data requirements and suggesting a logical design
of the data base. In another sense, it is a quality control tool for
the experienced designer.

In analyzing the data requirements and generating the logical
design, DBDA performs computations that generally are beyond
the capabilities of manual analysis. Regardless of his level of
experience, the designer is assisted by having this laborious
work done for him. The designer still controls the design pro-

RAVER AND HUBBARD IBM SYST J

Figure 33 Finalized logical design

TRIP-NO CUSTOMER

SHIP-DATE, VEH-TYPE, ADDRS
VEH-VOL, VEH-WT

CUSTOMER* TRIP-NO

SOURCE: SHIP-DATE
TARGET: TRIP-NO

PACKAGE-NO

MFG, PACK-VOL,
PACK-WT, SHIP-NO

SOURCE: SHIP-NO
TARGET: CUSTOMER

cess, but with DBDA, he is guided toward the design to be imple-
mented. For the inexperienced designer, this guidance is a spe-
cial advantage.

For the experienced designer who feels he can do an adequate
design manually, DBDA serves as a quality control function to
ensure that the design is consistent with the algorithms that
should be followed in producing a design, and to ensure that none
of the alternatives and design information that DBDA can report
are overlooked.

Initial experiences with automated logical data base design as
embodied in DBDA indicate that it can, indeed, be used as an aid
for improving the quality- of the design and for shortening the
design and implementation time of a data base and its applica-
tions.

CITED REFERENCES

1. IMSIVS Version 1, General Information Manual, GH20-1260, IBM Corpo-
ration, Data Processing Division, White Plains, NY.

2. DL/I DOS/|VS, General Information Manual, GH20-1246, 1BM Corpora-
tion, Data Processing Division, White Plains, NY.

. Data Base Design Aid, General Information Manual, GH20-1626; Data
Base Design Aid Program, 5784-XX4; 1BM Corporation, Data Processing
Division, White Plains, NY.

. C. T. Baker, Inherent Structures in Data, Technical Report TR 21.545, IBM
Corporation, Kingston, NY (April 1974).

. P. Suppes, Introduction to Logic, 229-240, D. Van Nostrand Co., Inc.,
Princeton, NJ (1957).

1977

312

6. Data Base Design Aid, Program Reference/Operations Guide, SH20-1651,
IBM Corporation, Data Processing Division, White Plains, NY.

7. Data Base Design Aid, Designer's Guide, GH20-1627, IBM Corporation,
Data Processing Division, White Plains, NY.

GENERAL REFERENCES
1. C.J. Date, An Introduction to Data Base Systems, Addison-Wesley Publish-
ing Co., Inc., Reading, MA (1975).

2. Information Management System, System|Application Design Guide for
IMS, SH20-9025, IBM Corporation, Data Processing Division, White Plains,
NY.

3. W. C. McGee, “The information management system IMS/VS,” IBM Sys-
tems Journal 16, No. 2, 84-168 (1977).

4. N. Raver and G. U. Hubbard, ““Automated logical file design,” ACM Confer-
ence on Very Large Data Bases, Framingham, MA (September 1975).

Reprint Order No. G321-5055.

RAVER AND HUBBARD IBM SYST J

