Evolution of the Customer Information Control System/[Virtual
Storage (Cics|VS) is discussed, along with a description of how
CICS|VS manages a pre-SNA teleprocessing network. Following
a brief review of SNA (Systems Network Architecture), the role
of cicS/vs within an SNA environment is described. The paper
concludes by outlining SNA’s advantages to C1CS|VS.

CICS/VS and its role in Systems Network Architecture

Figure 1

Remote terminal con-

nection

COMMUN}-
CATIONS

[COMPUTER

LINE .ﬂ

by D. J. Eade, P. Homan, and J. H. Jones

When on-line computer terminals were developed, so that input
and output operations could be performed remotely from the
computer, data could be entered into the system from the point
- of origin, and results transmitted directly to the place where they
were to be used.' This mode of operation employed telecom-

munications, in which terminals were connected to the computer
by a communications line as illustrated in Figure 1.

In 1BM’s System/360, an application program requested input
and output telecommunications operations by means of the
Basic Telecommunications Access Method (BTAM).” Through
BTAM’s application program interface, the application program
was responsible for managing the flow of data on each communi-
cations line.

Besides managing the communications lines, an on-line applica-
tion program had to allocate computer resources dynamically,
according to the input, in order to make efficient use of the com-
puter system. This need arose because the program did not con-
trol the timing of input operations, which were initiated by
terminal operators acting independently. A result of these re-
quirements was that application programs had to be designed to
control the on-line system as well as to process data. This over-
head inhibited the development of on-line applications for Sys-
tem/360.

EADE, HOMAN, AND JONES IBM SYST J

IBM’s Customer Information Control System (CICS) was devel-
oped to provide a simple programming interface for on-line
terminal applications and to relieve the application programmer
of the complex task of controlling terminals and communications
lines. Developed initially for System/360, cics was modified to
take advantage of the virtual storage facilities of System/370, and
its name was changed to cICS/vs.” Subsequently, CICS/VS was
extended to support IBM’s Systems Network Architecture
(SNA)." That evolution is the subject of this paper. Emphasis is on
the contrast between CICS support of pre-SNA terminals and the
role of CICS/vS in an SNA network. The paper concludes by out-
lining the advantages of SNA to CICS/VS.

Structure of CICS

cIcs runs under the operating system’ of System/360 or Sys-
tem/370 as if it were an application program. However, CICS in
fact provides an environment for on-line execution of the user’s
application programs, which actually process the transactions.
This concept is illustrated in Figure 2.

The basic components of CICS are designed to accommodate the
unpredictable rate of arrival of input messages. Messages may
arrive from several terminals in the time it takes to process one
transaction, so in order to provide a reasonable response time
for each message, the corresponding transactions must be pro-
cessed concurrently. A separate thread of control is maintained
for each transaction, and when one thread is delayed, as in wait-
ing for access to a disk file, another is given control. These
threads are called rasks and are managed by the CICS task con-
trol program.

cIcS storage is divided into buffers, which are allocated by the
storage control program to match the dynamically varying load.
Since each task exists only for the duration of a transaction, in-
dividual buffers soon become available again for other transac-
tions. Application programs are loaded, as required, by the pro-
gram control program.

The cICS terminal control program runs as a task, within the on-
line environment, just as if it were performing a transaction.
However, this program’s job is to manage the flow of messages
between the other tasks and the remote terminals. Each terminal
is solicited for input, and when a message is received, a task is
created to process the transaction. The transaction is identified
by a code typed by the terminal operator at the beginning of the
message. The application program has access to the message in
a storage buffer, and may generate a reply in the same buffer,

No. 3 - 1977 CICS/VS IN SNA

Figure 2 CICS on-line applica-

system
control

tion program environ-
ment within the operat-
ing system

' APPLICATION l

PROGRAMS

CICS

system
definition

then issue the simple request WRITE. The terminal control pro-
gram, having retained an exclusive link between the task and the
terminal, delivers the output message.

The application program may terminate at this point, or it may
continue a conversation with the terminal by issuing a READ
request. In either case the terminal control program solicits the
terminal for another input message —to begin another transac-
tion if the application program has terminated, or to satisfy the
READ request. This method of operation both provides a simple
READ/WRITE interface for the application programs and enables
the terminal control program to optimize the flow of messages.

Since CICS manages the multitasking of transactions, it must also
manage requests from the tasks for services of the operating sys-
tem. This requirement prevents a task from making a request
and then waiting for the operating system to complete it, thereby
delaying all CICS processing. When cICS has made a request on
behalf of a task, it gives ¢ontrol to another task to continue pro-
cessing. Only when requests have been issued on behalf of all
tasks does CICS wait for the operating system to complete them.
An example is the CICS file control program, which manages
task requests for access to disk files. This program further coor-
dinates the requests to prevent different tasks from updating the
same file record concurrently. ™

Other components perform ancillary functions that are common
requirements for an on-line application program. A queuing fa-
cility, transient data, enables several transactions to build a se-
quential set of records for off-line processing or for output to a
single terminal. A scratchpad facility called temporary storage
allows a transaction to build a record containing intermediate
results for processing by a later transaction. Interval control
provides functions based on the system timer, allowing transac-
tions to be initiated at a given time of day. Both the transient
data and interval control facilities use automatic task initiation,
which assigns a task to a terminal without the need for an input
message from that terminal. This facility enables transactions to
perform message switching.

Some of the components of 0s/vs (Operating System/Virtual
Storage)®” that are used by cCICs are shown in Figure 3. Similar
interfaces exist when CICS runs under DOS/VS (Disk Operating
System/Virtual Storage).* :

The cICS control programs conform to the configuration of the
application by interpreting system definition tables. These tables
describe the hardware configuration, such as terminals and
communications lines, and the logical configuration, such as
transactions and programs. They also define parameters that

EADE, HOMAN, AND JONES . IBM SYST J

Figure 3 Operating system interfaces

STORAGE STORAGE

TASK
-t MANAGE-
CONTROL CONTROL MENT

TIMER INTERVAL PROGRAM

FACILITY CONTROL CONTROL 1 PROGRAMS
TERMINAL FILE
CONTROL CONTROL FILES

HARD COPY ™ TRansiENT TEMPORARY SCRATCH-
DATA STORAGE PAD

INTERNAL
QUEUES

APPLICATION
PROGRAMS

determine the performance of the system, such as the number of
tasks that can run concurrently and the number of storage buf-
fers that can be allocated before the system becomes over-
loaded.

In addition to the fundamental components already described,
CICS provides a set of service transactions. These transactions
are invoked from terminals in the same way as application trans-
actions, but they operate on the system itself rather than on ap-
plication files. Most significant is the master terminal transac-
tion, which enables a terminal operator to examine or modify
control information in the system definition tables. The operator
can adapt the execution of the system to different operating
conditions. Because it is not desirable to allow all terminal oper-
ators to invoke the master terminal transaction, or indeed to
invoke certain application transactions, a security code is as-
signed to each transaction and to each operator. A sign on trans-
action enables an operator, by supplying a password, to invoke
these transactions that have security codes compatible with
his own.

The functions and structure of cicS are further described in
References 3 and 9.

1977) CICS/VS IN SNA

system
service

visual
displays

basic
mapping
support

system
improvements

Evolution of CICS

cIcS has evolved in a way that reflects advances in related areas
of computing technology. For example, the development of vi-
sual display terminals provided for more extensive commun-
ication between the application program and the terminal
operator. In the 1BM 3270 Information Display System, for
example, the display image is structured into fields, some of
which contain prompting information to guide the operator,
while others are reserved for data. The technique for exploiting
this medium required that the application program send a mes-
sage that defined the structure of the display image to the termi-
nal. This technique posed a new programming problem because
of the extra control information required in each message.

A new CICS component, basic mapping support (BMS), was de-
veloped to relieve the application program of having to provide
display control information. The application programmer defines
the desired layout of data on the screen in a description called a
map. During execution, the application program supplies BMS
with the map name and the output data in a format independent
fashion. BMS constructs a data stream that contains the output
data and fixed data from the map, and it inserts the control infor-
mation required to produce a display image matching the map
specification. The data stream is passed by BMS to the terminal
control program using the existing READ/WRITE interface.

To provide printed output, BMS was extended to support type-
writer terminals. Thus a program can now run on different types
of terminal, leaving BMS to construct the output data stream con-

taining the appropriate control information. This feature allows
the program to be independent of output format and data stream.
However, it is not strictly correct to say that the program has
device independence, since the program may exploit, and thus
be dependent on, the operational features of a particular type of
terminal.

Other changes in technology resulted in further enhancements to
cics. The introduction of virtual storage, for example, reduced
the dependency of programs on computer memory size. The
CICS storage control program took advantage of virtual storage
to provide application programs with a greater ability to react to
varying input loads. An interface to IBM’s DL/l data base
products'® was added, together with a unified logging, recovery,
and restart capability for both the DL/ and CICS files, thus pro-
viding a complete data base/data communications (DB/DC)
system.

The original cicS application program interface was dependent
on the internal structure of c1cS. The enhancements and exten-

EADE, HOMAN, AND JONES iBM SYST J

sions of CICS functions complicated this internal design and thus
the application interface. Recently a new command level pro-
gramming interface has been developed which enables applica-
tion programs written in COBOL or PL/I to invoke CICS functions
independently of the internal structure.

Terminal control

Because the cIcS terminal control program addresses many of
the network responsibilities of an on-line application, it illus-
trates many of the problems leading to the concept of Systems
Network Architecture (SNA). For this reason, terminal control is
discussed in more detail in the following paragraphs. Its logic
has two major themes. One is the management of communica-
tions lines as a set of input/output devices so as to optimize
throughput of the application’s messages. The other theme is
management of a dialogue between each application program
and the operator of a terminal. The main concern in this respect
is the convenience of the dialogue to both the application pro-
grammer and the terminal operator, without regard for the rest
of the application. The reconciliation of these two themes causes
some complexity in the implementation of terminal control.

There are three major communications line configurations— line
point-to-point, switched, and multipoint, —which are illustrated management
in Figure 4. The multipoint configuration is used most common-

ly, since it economizes on the line lengths required, but it has the

most complex control requirements. For each configuration, a
protocol ensures that transmissions sent onto the line are re-
ceived in their correct context. A line protocol defines certain
characters as link control characters, which delimit transmission
sequences authorized by the protocol. BTAM provides the termi-

nal control program with an interface to each line, in which each
request represents one of the authorized sequences.''

A cICS system definition table describes the configuration of the Figure 4 Communications
application’s communications lines and terminals. This descrip- configurations
tion enables the terminal control program to map the message COMMUNICATIONS
flow from each line into a separate flow for each terminal, there- e
by providing the application program with an interface to each L =
terminal rather than to the lines by which the terminals are at- conFicUraTion
tached. For each transaction output request, the terminal control
program determines the correct line and ensures that a valid link opu Tou
control sequence is used to implement the request.

CcPU

SWITCHED T
CONFIGURATION NE:\:[E/\%_{F?}Q‘E

The typewriter terminals initially used for on-line transactions . Soumun:
used start/stop, or asynchronous, line protocols, which were dis- T_Une
tinguished by the separate transmission of each character and a

simple set of link control characters. The terminal control pro-

MULTI-POINT
CONFIGURATION

No. 3 - 1977 CICcs/vs IN SNA 263

gram was designed to optimize the message traffic produced by
interactive use of these terminals. The basic logic of the program
is a periodic scan of the communications lines in the configu-
ration. For each line, the scan detects the completion of in-
put/output operations and chooses the next operation from among
the requests outstanding for terminals on that line. Precedence is
given to output requests, followed by input to satisfy specific
transaction requests. Input to initiate new transactions has low-
est priority. This scheduling algorithm minimizes the holding of
CICS resources by each transaction. In this interactive environ-
ment, a different terminal can be serviced during each scan, and
a similar response time provided for each terminal.

Subsequently, terminals were developed that used the Binary
Synchronous Communications (BSC) line protocol. BSC support-
ed high speed transmission of complete blocks of data and had a
wider set of link control characters, providing a greater choice of
line scheduling algorithms. Initially BSC terminals were designed
for batch functions, in which a large volume of data was trans-
mitted in one direction at a time, rather than for the interactive
input and output messages previously associated with cics
transactions. The terminal control program’s support for BSC
enabled these terminals to make optimal use of the lines when
operating in batch mode, but they were less efficient when used
in an interactive mode.

Later, the 1BM 3270 Information Display System was designed
to use BSC lines interactively. The terminal control program was
again modified so that the communications line was scheduled
in an appropriate manner for this type of operation. However,
prior to SNA, the terminal control program could not provide
efficient support for a variety of terminal types on the same line.

An on-line system must have logic to recover from data trans-
mission errors on the communications lines. Since the lines are
outside the controlled environment of the computer installation,
transmission errors can occur frequently but they are often tem-
porary. The system should be able to distinguish between transi-
tory and permanent errors in order to select an appropriate re-
covery action. When a transitory error occurs, the message must
be retransmitted to override the error. When a permanent error
occurs, the system should disregard the affected line so that the
application, being composed of independent transactions, can
continue although in a degraded fashion.

cics provides for recovery from permanent errors in a manner
that again insulates application programs from the physical char-
acteristics of the terminal network. Line input/output operations
that are completed in error are processed by a separate routine,
the terminal abnormal condition program (TACP), which decides

EADE, HOMAN, AND JONES IBM SYST J

the number of retransmission attempts necessary to distinguish
permanent from transitory conditions. Once a communications
line is determined to have a permanent error, TACP modifies the
system definition tables so that the line is no longer used. TACP
also abnormally terminates any tasks that are processing trans-
actions for terminals on that line. An exit from TACP is supplied
to a user program that can override TACP actions according to
the requirements of a particular installation. Application pro-
grams therefore contain no error recovery logic, since they re-
gain control after making an input/output request only if that
request is completed satisfactorily.

The line management logic within the terminal control program
provides an interface by which the application can address each
terminal independently of its attachment configuration. Support-
ing this interface is further logic to control the data flow to each
terminal to meet the application requirements.

Each WRITE request results in the output of one logically com-
plete message, although it may not be possible to transmit the
message as a single block. If the terminal has a buffer, so that it
can accept data from the transmission line faster than it can be
printed, a large output message is divided into a number of
blocks, each of which fits into the terminal buffer. The trans-
mission of each block is delayed until the previous one has been
printed. For start/stop terminals, CICS calculates the required
delay according to the printing speed of the terminal. For BSC
terminals, the link protocol defines sequences used by the termi-
nals to indicate the completion of printing. This arrangement
makes efficient use of multipoint lines, since the printing of a

message at one terminal can proceed concurrently with trans-
mission to another on the same line, and it illustrates how, prior
to SNA, the terminal control program had to provide one func-
tion in diverse ways, depending on the terminal type and the line
protocol.

Each block of a message is framed by link control characters. In
the BSC protocol, different block termination characters are de-
fined to distinguish intermediate blocks from the final one of
each message. These characters are equivalent in terms of their
link control function. The terminal control program chooses the
frame characters on the assumption, stated above, that each
WRITE is a complete message. This type of control, which does
not regulate the communications line itself, is termed end-to-end
control.

Some BSC batch terminals have several output devices, for ex-
ample a printer and a card punch, that use the same line buffer.
The final output device may be selected by the application pro-
gram in the computer and specified during data transmission.

No. 3 - 1977 CICS/VS IN SNA

terminal
data flow

The method of selection depends on the line configuration by
which the terminal is attached. On a multipoint line, the terminal
control program selects the output device as part of the process
of selecting the terminal itself. On point-to-point and switched
lines, this selection information is carried as part of the output
message. Thus an end-to-end control function can have different
implementations, a situation in which CICS does not insulate the
application program from the attachment configuration of its
terminal. One of the features of SNA is to separate end-to-end
control completely from the link protocol and thereby remove
program dependence on the attachment configuration of termi-
nals.

The practice of having several devices share a single line buffer
is extended in the 3270 System, in which several display termi-
nals use one control buffer for line input/output and also for op-
erating the end-to-end controls that determine the display image
format. Such an arrangement is termed a cluster. The terminal
control program uses the link protocol to determine the origin in
the cluster of each input message, and to select the correct ter-
minal for each output message.

The automatic task initiation facility may lead to contention
when the initiated task writes a message just as the terminal
operator tries to invoke a different transaction. The terminal
control program attempts to resolve contention by using the link
protocol to prevent a terminal from sending input while output is
pending from an automatically initiated task. Whenever the link
control is insufficient for this aim, any conflicting input, unsolic-

ited by the transaction, is discarded. Again, the terminal control
program implements this function in any of several ways, ac-
cording to the link protocol.

The link control is further used to make the flow of messages
between terminal and application program match the program’s
sequence of READ and WRITE requests. With start/stop termi-
nals, this function relies on the terminals’ being used in the inter-
active fashion for which they were designed. With BSC termi-
nals, which can be used in either batch or interactive mode, the
link protocol defines a link control character that allows the
direction of transmission to be reversed. In either case, this
manipulation of the data flow is said to give the program direct
control over the terminal. However, since the mechanism used
is the link protocol, this level of control may not make the most
efficient use of line capacity, particularly in multipoint configura-
tions.

Control of the data flow permits CICS to assign each terminal a
service status, such as OUTPUT ONLY or INPUT ONLY, or OUT

EADE, HOMAN, AND JONES IBM SYST J

OF SERVICE, in which case no transmission at all is allowed. The
service status can be changed by means of the master terminal
transaction.

Faults in terminal hardware can be detected through the line
protocol in a fashion similar to the detection of transmission €r-
rors. The same CICS error handling mechanism is used, since
hardware errors are not related to the logic of any particular
transaction. The only difference is that TACP restricts the recon-
figuration to the removal of the failing terminal, rather than the
whole line, from the active configuration.

The advent of SNA

cIcS had provided an appropriate system for interactive transac-
tion processing, using typewriter terminals manipulated solely
through their start/stop link protocols. This approach had not
proved ideal, however, when more sophisticated terminals were
developed with more complex protocols, so that device control
interfered with optimal line usage. Other on-line systems had
encountered similar problems.

In planning for terminals and controllers that would take advan-
tage of advances in hardware technology, it became clear that a
single, common line control was required throughout the net-
work, along with standardized device controls separate from the
line control. The application program must have a view only of
the terminal with which it is to operate. Terminal message flow
and control must be independent of network management con-
siderations and configuration. The separate functions required to
transmit a message from an application program to a terminal
must be defined clearly, so that new terminal types could be
added to the network without disrupting any functions not di-
rectly involved with terminal characteristics.

Systems Network Architecture addresses these problems by
defining three distinct functional layers: the application layer,
function management, and the transmission subsystem.’ These
layers are present in each end point of a communication system,
forming a symmetric division of function with clearly defined
interfaces, as illustrated in Figure 5. The following discussion is
an overview of those parts of SNA that have particular relevance
to the CICS/VS environment. A full discussion of SNA is beyond
the scope of this paper and is provided elsewhere.'* "

The application layer is concerned only with application pro-
cessing and not with the formats, protocols, or procedures re-
quired to route a message through the network. An application
program in a computer is an end user of the communication sys-
1977

NO. 3 - cIcs/vs IN SNA

Figure 5 SNA functional areas

APPLICATION LAYER

(TRANSACTION)

FUNCTION MANAGEMENT
LAYER
TRANSMISSION SUBSYSTEM
LAYER

PHYSICAL Loaic

DATA FLOW FLOW

TRANSMISSION SUBSYSTEM
LAYER

FUNCTION MANAGEMENT
LAYER

___/

INFORMATI!

~ -1
!

nil
!

|
|
|
ALl }
[¢]

|
!
!
|
|
|

N

|
|
|
|
lee

APPLICATION LAYER

layered
structure

transmission
subsystem
layer

tem and maintains a dialogue with another end user of the sys-
tem. The other end user can be either a terminal operator or
another application program in a computer or programmable
controller.

The function management layer accepts requests from the appli-
cation layer above it and transforms those requests into a form
suitable for processing by the function management layer of the
end user to which the request is directed. The function manage-
ment layer thus is concerned with the presentation of informa-
tion from one end user to another. The transmission subsystem
layer is responsible solely for passing messages from origin to
destination, without examining or changing their content. The
fundamental difference between SNA and pre-SNA systems is the
enforcement in SNA of the division of function between the func-
tion management and transmission subsystem layers.

The transmission subsystem'” takes full responsibility for trans-
mitting messages through the network, for reconfiguring the
network, and for establishing logical connections between the

‘end points of the communication system, which are described in

SNA as network addressable units.

In the SNA implementation used by CICS/VS, the transmission
subsystem is composed of the Virtual Telecommunications
Access Method (viam)™ in the host computer and the Network
Control Program (NCP)"* in a communications controller at-
tached to the computer. The network’s terminals are attached to
the communications controller using an SNA line control disci-

pline called synchronous data link control (SDLC)."

The Network Control Program contains two data link control
elements, one of which supports communication with the host
while the other communicates, using SDLC, with other attached
controllers or terminals. An NCP path control eiement deter-
mines to which link (host computer or teleprocessing line) a
message must be directed to continue toward its destination.
The NCP takes on the line management functions, for which the
terminal control program was responsible in CICS/VS, so moving
them out of the host altogether.

VTAM provides network control and configuration services, and
it contains a data link control element that communicates with
communications controllers and device controllers attached lo-
cally (that is, directly) to the host computer. Application pro-
grams running under VTAM are not affected by changes in the
physical network, such as the addition of lines and terminals,
because they are provided with a network independent, terminal
oriented interface. ‘

EADE, HOMAN, AND JONES IBM SYST J

VTAM presents its application programs with a logical interface
to the transmission subsystem that allows full duplex transmis-
sion of data. vTAM also controls the flow of data through the
transmission subsystem, ensuring, for example, that a program
does not send data faster than the communications controller
can dispose of it. This pacing of the data flow is similar to that
performed by the CiCS terminal control program for pre-SNa
buffered terminals. VTAM’s application interface can be interrup-
tion driven via application exits that gain control when a request
has been executed. CICS/VS, as a VTAM application program,
benefits from this feature by no longer having to scan control
blocks representing network lines to determine what requests
have been executed.

The application layer consists of the communication system’s
end users —the application programs and terminal operators that
wish to exchange information. CICS/vS transactions, for exam-
ple, are such end users. When interfacing with the transmission
subsystem through vTAM, CICS/VS contains both the application
layer and the function management layer.

The function management layer is the interface by which applica-
tion program requests are sent through the transmission subsys-
tem to the specified end user. The end user replies, through a
complementary function management layer, to the originating
application program. Each of these function management ele-
ments is represented to the transmission subsystem as a network
addressable unit.

SNA defines three types of network addressable unit: a physical
unit, a system services control point, and a logical unit. Each
node in the network contains a physical unit responsible for the
management of its resources, while the system services control
point is responsible for overall management of the SNA network.
CICS/VS is represented in the network as a logical unit through
which other logical units in the network have access to all the
CICS/VS application programs. An application program in the
IBM 3600 Finance Communication System, for example, is also
represented in the network as a single logical unit, although such
a program may control several terminals attached to the 3600
System. In contrast, the 1BM 3767 Communication Terminal is a
simple keyboard printer represented by a logical unit. CICS/VS is
concerned only with communication between it and other logical
units, rather than with physical units.'

Before a dialogue can commence between two logical units, a
session, or logical connection, must be established between
them. Establishment of a session includes selecting a physical
path over which all messages will flow between the logical units.

No. 3 - 1977 cics/vs IN SNA

application
layer

function
management
layer

sessions

When a session is created, parameters are exchanged between
the two logical units describing the SNA protocols to be used
during the session. The parameters are passed by means of the
SNA BIND command. If BIND is accepted, both logical units fol-
low the indicated protocols, which govern such procedures as
the way messages are sent, error recovery, and data formatting
considerations. These protocols apply to the logical flow of mes-
sages between the two function management layers and are in-
dependent of the physical characteristics of the links over which
the messages flow. The BIND sender is referred to as the pri-
mary logical unit, and the BIND receiver is called the second log-
ical unit.

The intelligence of a terminal’s function management layer dic-
tates the level of function exhibited by the logical unit represent-
ing that terminal. Some function management layers have little
variability, while others can tailor themselves to explicit require-
ments of the subsystem with which they are to communicate.
For example, the 1BM 3770 Data Communication System can
tailor its operation to the differing requirements of both Remote
Job Entry and CICS/vS. The session parameters on the BIND
command dictate the way in which a logical unit is to behave
during the session.

CICS/VS requires that all logical units with which it is to commu-
nicate be identified to it at CICS/VS system definition time. It also
requires a description of specific features of those logical units
and a definition of the CICS/VS security and priority levels to be
used by transactions communicating with them. CICS/VS uses
this information to chose BIND parameters that suit its transac-
tion processing environment. It is the function management lay-
er that is responsible for enforcing and supporting the rules of its
particular logical unit.

The following function management responsibilities are essential
to communication between two logical units:

Data flow control

Control of half-duplex and full-duplex message transmission,
message chaining, and responses.

Resolving contention when both logical units attempt to
transmit messages simultaneously.

Orderly shutdown of a session or temporary suspension of
message traffic.

Recovery of messages rejected because of data errors.

EADE, HOMAN, AND JONES IBM SYST J

Presentation services

Transformation of application requests into data formats for
specific logical units.

Control sequences, such as output component selection, be-
tween function management layers.

Communication between function management layers in SNA is
by means of request units, which may contain either data or SNA
commands. Request units are qualified by indicators in a request
header associated with each unit. The maximum length of a re-
quest unit within a particular session is dictated by storage and
buffer constraints in the sending and receiving logical units and
is specified in the BIND parameters.

CICS/VS as a function management layer

Figure 6 illustrates the three SNA layers and the CICS/VS compo-
nents responsible for their functions. Part of the data flow con-
trol within the CICS/vS terminal control program is in support of
messages being sent by a CICS/VS transaction. Other data flow
control and session control functions in CICS/vS provide system
services on behalf of the CICS/vS transactions.

CICS/VS retains its simple interfaces for basic mapping support
and terminal control when communicating with SNA terminals.
CICS/VS transmits a message from the transaction as a chain of
one or more request units, the number depending on the length
of the message and the maximum request unit length defined in
the session’s BIND parameters. This chain is the unit of error
recovery in the event that an error is detected in any of the re-
quest units containing the message. Each request unit is passed
to VTAM for transmission, together with parameters for the asso-
ciated request header.

Messages to be transmitted to CICS/VS also can exceed the buff-
er capabilities of the sending logical unit, and thus have to be
broken into multiple request-unit chains. CICS/VS issues receive
requests to VTAM to obtain each request unit, and only when the
whole chain has been assembled will it be passed to the CICS/VS
application program to satisfy an outstanding READ request.

SNA chains carry with them a response indicator. Definite-re-
sponse chains require the receiver to inform the sender either
that the chain was processed successfully or that an error oc-
curred. Exception-response chains do not require a response
unless the receiver detected an error. CICS/VS handles these re-
sponses on behalf of its transactions. If a definite-response chain
is received to satisfy an application READ request, then CICS/VS

No. 3 - 1977 CICS/VS IN SNA

Figure 6 CICS/VS components
within the SNA layer
structure

e

APPLICATION LAYER

END
USER
TRANS-
ACTION

. ——]
FUNCTION MANAGEMENT
LAYER

BASIC
MAPPING
SERVICE

(PRESENTATION SERVICES)

CICS/VS

(DATA FLOW CONTROL)

NETWORK
ADDRESSIBLE
UNIT
/

TERMINAL
CONTROL
PROGRAM

L

TRANSMISSION SUBSYSTEM
LAYER

VTAM
&NCP

T

data flow

bracketing

delays responding until the transaction issues its next READ or
WRITE request, thereby indicating that the request has been re-
ceived successfully by the CicS/vs transaction program. Chains
sent by CICS/VS normally request exception responses only, un-
less overridden by the transaction.

When two application programs are in direct communication, as
when a CICS/VS transaction is communicating with an applica-
tion program in a device controller, they must maintain synchro-
nization to ensure that messages are sent in the order expect-
ed by the receiver and that the sender does not transmit more
messages than the receiver expects. In particular, it is essential
to know that the complementary application program has not
terminated prematurely.

CICS/VS addresses this problem in SNA communication by delim-
iting the bounds of each transaction using the SNA concept of
bracketing, in which the first and last messages of each transac-
tion are uniquely identified. The first request unit sent by either
logical unit must have a begin bracket indicator set in its request
header so that the receiving logical unit can recognize it explicit-
ly as the first message of a bracket. Similarly, the request header
of the last message contains an end bracket indicator.

Both the cics/vs and the terminal logical units initially are in
contention once a session has been established and messages are
allowed to flow. This contention state, termed between brackets,
allows both logical units to send requests. Through bracketing,
CICS/VS can recognize contention situations and resolve them by
enqueuing one transaction until transmission of the contending
bracket is completed. An additional benefit of bracketing trans-
actions is that spurious messages, such as those resulting from
premature termination of a transaction and those received be-
tween transactions, can be recognized and purged until a mes-
sage is received that contains the begin bracket indicator.

CICS/vS employs the BID data flow control command to request
permission from the secondary logical unit to commence a
bracket for a CICS/vS automatically-initiated transaction. If the
secondary cannot accept a CICS/VS-initiated bracket, it can re-
spond negatively to the BID command and in turn send the first
message of a bracket that it wishes to initiate. If the secondary
logical unit is a program in a device controller, it may choose not
to accept a bracket because it is engaged on some local function,
causing CICS/VS to queue the transaction for later initiation.
When the local function is complete, the program sends the SNA
READY TO RECEIVE data flow control command to signify that
CICS/VS can now attempt to initiate the queued transaction. This
definition of BID and READY TO RECEIVE in SNA recognizes the

EADE, HOMAN, AND JONES IBM SYST J

general requirement for contention resolution in communica-
tions systems and provides a consistent approach across all logi-
cal units in which contention may arise.

SNA defines bracket rules to cover all the situations that can
arise when both logical units are permitted to start and end brack-
ets. CICS/VS has simplified the use of brackets by stipulating that
only CICS/VS can terminate brackets, whereas a bracket can be
started by either CICS/VS or any of its secondary logical units. In
this way, the management of bracket protocols by CICS/VS is
transparent to its transactions, and bracket control is simplified
for programs in device controllers that communicate with
CICS/VS transactions.

The transmission subsystem interface is defined for full duplex
flow of data, although the program logic for most sessions be-
tween logical units calls for a more restricted data flow than full
duplex. Any of three data flow protocols can be specified in the
BIND parameters for a session: half duplex flip-flop, half duplex
contention, and full duplex.

Half duplex flip-flop transmission when in a bracket is ideally
suited to the existing CICS/VS application program interface. It
can be used for interactive transactions, which are the most
common in the CICS/VS environment, as well as batch. With half
duplex flip-flop operation, the flow of data is constrained so that
only one logical unit can send at a time, and the receiving logical
unit must continue to receive until granted permission to send
by the current sender. Permission to send is indicated by a
change direction indicator in the request header. Once a logical
unit has sent the change direction indicator, it must be prepared
to read until it receives a chain marked either change direction
or end bracket.

In half duplex flip-flop mode, a secondary logical unit designed
for interactive applications sends each chain with the change
direction indicator set on, thus passing control of data flow to
CICS/VS. The transaction may write many messages to the logi-
cal unit, and only when the transaction issues a read request
will CICS/VS return control to the secondary logical unit. Thus
CICS/VS does not release control of the data flow until the appli-
cation program dictates it.

Even a simple SNA terminal, such as the 1BM 3767 Communica-
tion Terminal, supports both the end bracket and change direc-
tion indicators. The keyboard unlocks to allow operator input
only when a CICS/VS transaction issues a read request (change
direction) or when a transaction terminates (end bracket). It
locks whenever it sends a message to CICS/VS containing the
change direction indicator. This common support of the SNA

NOo. 3 - 1977 cIcs/vs IN SNA

data flow
protocols

CICS/VS
system
services

indicators allows CICS/VS to control terminal operation on behalf
of its transactions in a terminal independent manner.

Batch logical units can transmit large amounts of data in a single
direction without interruption, as for bulk printer output and
diskette input. However, SNA permits the receiving logical unit
to interrupt the sending logical unit in order to transmit an ur-
gent message. If the application program attempts to write data
before a batch logical unit has sent the change direction indica-
tor, CICS/VS sends the SNA SIGNAL command to the logical unit
to request change of direction. Only after the change direction
indicator has been sent will CICS/vS honor the WRITE request.
This protocol is analogous to the support provided by CICS/vs
for binary synchronous batch terminals through BTAM. How-
ever, use of the SIGNAL command does not halt all transmission
on a multipoint line until the urgent message is sent, as did the
equivalent pre-SNA reverse interrupt function.

In half duplex contention operation within a bracket, either logi-
cal unit can send data when the other is not sending. If the other
logical unit also is trying to send a message, one of them (the
primary logical unit, under CICS/VS) is required to receive the
other’s data before attempting to send. This protocol permits an
application to send or receive at will, but recognizes that the
secondary logical unit has limited buffer resources and cannot
actually support a full duplex mode of operation. It is best suited
to systems that can accept input messages and stack them for
later processing, such as TSO, since with terminals like the I1BM
3767 Communications Terminal, the keyboard is unlocked after
every transmission when operating in this mode.

The full duplex protocol allows either logical unit to send at will.
It depends on the function management layer or the application
layer of each logical unit to control the relation, if any, between
consecutive chains flowing in either direction. This transmission
protocol provides scope for more sophisticated logical unit sup-
port, as exemplified by the CICS/vS pipeline facility discussed
later.

With BTAM-attached terminals, CICS/VS was responsible for
network configuration, which it accomplished by means of the
master terminal operator services. It was necessary, for exam-
ple, to be able to take a terminal out of service for maintenance
without also terminating CICS/VS. Also required was a facility
for shutting down the whole network in an orderly manner at the
end of a day. With the development of SNA, the responsibility
for physical network configuration passed to the vTAM network
operator. However, it is still necessary to control the logical
data flow within cICS, so the master terminal functions use the
appropriate SNA data flow control command.

EADE, HOMAN, AND JONES IBM SYST J

The cics/vs facility for taking a terminal out of service uses
SNA commands to stop the data flow. A programmed logical unit
can use the same commands to suspend the flow of data to it
from CICS/vS, as when application data cannot be handled im-
mediately because of operator intervention.

The CICS SHUTDOWN facility uses the SNA SHUTDOWN com-
mands followed by a request to VTAM for session termination.
The programmed logical unit can also request orderly shutdown
of a session by sending the SNA REQUEST SHUTDOWN com-
mand. By recognizing these functions as basic to the operation
of a teleprocessing network, and formalizing them as SNA com-
mands, it becomes a simple matter to support them consistently
for all logical units regardless of the characteristics of the appli-
cation layer within it.

The definition of explicit functional layers within the telepro-
cessing network leads naturally to a formal definition of the er-
rors that can occur in each layer, a consistent method of error
reporting and correction, and a definition of error responsibility
for each layer. The errors are divided into five categories: path
errors, request header errors, state errors, function interpreter
errors, and request rejection errors.

Path errors occur below the function management layer and es-
sentially are not recoverable, from the point of view of the logi-
cal unit, since all possible recovery actions will have been at-
tempted prior to reporting the errors. Request header and state
errors generally result from a lack of enforcement of the rules
agreed upon by the communicating function management layers
in establishing a session and arise from incorrect specifications
at system generation time. State errors denote that a message
has been lost or become garbled during transmission, or that one
of the function management layers has not accurately kept track
of data flow within the session. The errors so far described can
occur with any logical unit regardless of the application,-and so
can be handled independently of both the data content of the
failing chain and the logical unit in question.

Function interpreter errors result from a function management
layer’s sending a request that the receiving function management
layer cannot recognize. Usually such an error denotes a mis-
match in system specification, as when the features of a particu-
lar logical unit are described incorrectly at system generation.
Recovery depends on the data content of the chain in question.
The final category of errors, request rejection, occurs when the
function management layer recognizes a request but cannot car-
ry it out. A common example is rejection of a print request be-
cause the printer is out of paper.

NO. 3 ¢ 1977 CICS/VS IN SNA

SNA errors

CICS/VS
error
recovery

The reporting of request rejection errors depends on the capabil-
ities of the function management layer associated with the logi-
cal unit. For example, logical units supporting visual display
terminals will report different error conditions than will those
supporting keyboard printers. Yet both kinds of devices may
also share error conditions for which the recovery action is
common.

Every error condition that has a particular error recovery pro-
cedure is identified by a unique error code regardless of the
logical unit generating the error. Thus, the error recovery pro-
cedures are totally independent of the logical unit. This inde-
pendence allows CICS/VS to recommend default recovery actions
for each error, on behalf of the transaction, in such a way that
most users will not wish to modify this action via the CICS/VS er-
ror program exit. With BTAM support, in contrast, CICS could
handle only certain line errors; most other errors had to be han-
dled by the user’s error program exit because recovery action
depended on data content, device type, and line connection.
Rationalization of errors within SNA has allowed CICS/VS to take
much of the error recovery burden away from the user’s error
exit.

Within this error recovery framework, SNA also defines rules
for reporting errors and methods of terminating multiple request-
unit messages that are rejected by the receiving logical unit. This
common requirement led to definition of the SNA CANCEL com-
mand to terminate a chain, and the LUSTATUS command to re-
port asynchronous error conditions, so providing a consistent
error recovery mechanism that is independent of the logical unit

type.

CICS/VS uses an SNA error recovery protocol that ensures that it
gains control of the data flow regardless of whether CICS/vS or
the other logical unit reports the error in question. In most in-
stances, the end user communicating with a CICS/VS application
is a human operator, so when CICS/VS reports an error to the
logical unit, it is in fact the operator who must take recovery ac-
tion. The decision on what action to take depends on the
CICS/VS application program, the nature of the data base being
manipulated by that program, and the resources being utilised
within CICS/VS itself.

Thus the best way to give the operator sufficient information is
by means of an error message sent by CICS/VS. For example, an
operator’s input may be rejected either because CICS/VS tempo-
rarily lacks the resources to attach the requested transaction, or
because the transaction has terminated abnormally. In the first
case it is a simple decision to retry to the message, but in the
second case, CICS/vS will have backed out any partial data base

EADE, HOMAN, AND JONES IBM SYST J

changes so that the operator can continue submitting transac-
tions. Such decisions are beyond the capability of a simple ter-
minal designed to operate with many different subsystems.

When CICS/VS communicates with a programmed logical unit, it
is the complementary application program in the communica-
tions controller that is interfacing with the ultimate device oper-
ator. Textual error messages are not well suited to program anal-
ysis, so in this case CICS/VS uses the LUSTATUS command to
convey an error code to the logical unit to indicate the nature of
the problem. Again, the SNA error recovery protocol used by
CICS/VS permits the CICS/VS application program to take recov-
ery action, or CICS/vS itself to send the end bracket indicator
signifying transaction termination.

Presentation services are those functions that support the spe-
cific requirements of end-user to end-user communication. Part
of the function management layer, they are responsible for trans-
forming application layer requests into the appropriate format
for the designated end user.

Within CICS/VS, a transaction can either provide its own presen-
tation services or use those provided by cics/vs. If the transac-
tion provides its own services, it is written to use the CICS/VS
terminal control READ and WRITE interface, and the contents of
its message buffer must be formatted as required by the logical
unit with which it is communicating. Using this level of inter-
face, the application program is said to be device dependent and
must be aware of the type of data stream required by the logical
unit, whether an 1BM 3270 Information Display System or a
3767 Communication Terminal, for example.

CICS/VS presentation services are provided by the basic mapping
support (BMS) component, which in turn is built on the terminal
control READ and WRITE interface. A CICS/VS transaction using
BMS can be written independently of the device and data format,
relying on BMS to construct the correct device dependent data
stream.

The BMS interface also allows CICS/VS to select the appropriate
output device. Thus a transaction can be written for output ei-
ther to a card punch or to a printer, both represented by the
same logical unit, and selection of the specific device will be
transparent to the application. In SNA, the output device is se-
lected by means of a function management header that preceeds
the data and contains an identifier for the device required.

This selection mechanism is common across all logical units that
support multiple output media. BMS formats the application re-
quest for the appropriate data stream, then calls on the CICS/VS

NO. 3 - 1977 CICS/VS IN SNA

presentation
services

Figure 7 Responsibilities of the Jatq interchange program to append the appropriate function
CICS/VS function man- d The d . h] b
agement layer management header. The ata interchange program also can be

used directly by a transaction to format output for itself, as
when transferring records to a data set in a programmable termi-
nal controller. The data interchange program is responsible for
maintaining the correct function management header sequences

DATA STEAM FORMATS and for cancelling the device selection in case of abnormal ter-

mination of a transaction.

SERVICE
TRANSACTION | ROUTINES

i

END
USER

The SNA method of device selection is superior to pre-SNA
methods because it does not depend on the line attachment tech-
nique (point-to-point or multipoint). The CICS/VS transaction
was responsible for determining the appropriate technique for
pre-SNA devices, which sometimes required selection characters
in the data, and sometimes did not.

FUNCTION MANAGEMENT
HEADER SELECTION

|
CHAIN

|
MANIPULATION

RESPONSE
CONTROL

BRACKET
CONTROL

|
|
ERROR |
!

PRESENTATION SERVICES
BASIC MAPPING SERVICE

T

RECOVERY MANAGEMENT
CICS/VS

READY
TO RECEIVE

FUNCTION MANAGEMENT LAYER

DATA FLOW CONTROL

INTERFACE
TRANSMISSION
FORMAT
SIGNAL
LUSTATUS QUIESCE
CHASE I

CANCEL 1

VTAM

7

SHUTDOWN Figure 7 illustrates the CICS/vS components responsible for the

SNA function management activities discussed above.

TERMINAL CONTROL PROGRAM

CICS/VS session control services

L\
L]

SNA session control functions are contained within the transmis-
sion subsystem layer, and they communicate with session con-
trol services above the transmission subsystem interface. In ad-
dition to its function management layer responsibilities, CICS/VS
contains service routines for session initiation, termination, and
recovery in the event of abnormal termination. These services
communicate with the session control functions to supply the
BIND parameters for the session, as well as the message se-
quence numbers and control commands for reestablishing the
synchronization of sequence numbers between CICS/VS and a
logical unit, called message resynchronization.

session During a session, outbound messages sent by CICS/vS and in-
recovery bound messages sent by the logical unit are numbered sequen-
tially. They provide:

e a means by which the receiver of a message can ensure that
messages are not lost during transmission.
a means by which the sender can correlate a response with
the original message.
a means of identifying the last recoverable message, for re-
starting when a message is lost.

When a Cics/vs transaction makes changes to a protected re-
source, such as a data base, CICS/VS makes the changes condi-
tional upon the transaction’s having been executed successfully
to a synchronization point —that is, to a point at which a related
sequence of events is complete. Such a sequence, called an

EADE, HOMAN, AND JONES IBM SYST J

atomic unit of work, might be a data base read-and-update se-
quence initiated by a request for updating and terminated by a
reply. Once a synchronization point is reached, CICS/VS com-
mits the changes, thus making them permanent. If the transac-
tion fails before reaching a synchronization point, cics/vs will
undo (or back out) all changes made to protected resources dur-
ing the failed atomic unit of work.

A terminal message issued by a transaction during an atomic
unit of work is deferred by C1CS/vS until a synchronization point
is reached, at which time the message is said to be committed
and is transmitted to the terminal. If a session terminates abnor-
mally, CICS/VS employs message resynchronization to ensure
delivery of the committed message resulting from the latest
complete atomic unit of work. Atomic units of work in progress
at the time of session failure are defined as incomplete and are
backed out.

cics/vs performs resynchronization after an emergency restart,
when a previous session has terminated abnormally, or when the
logical unit requests it by means of the SNA REQUEST RECOV-
ERY command. In any of these cases, CICS/VS sends the SNA
set-and-test-sequence-numbers (STSN) session control command
while the session’s normal message flow is supended. The STSN
command carries the sequence numbers of the last inbound
message and the committed outbound message of the completed
atomic unit of work. The logical unit’s response to the STSN
command indicates whether the committed message has been
received. If not, CICS/vS sends the message again. The logical
unit also can determine from the sequence numbers in the com-
mand that an active atomic unit of work has been backed out,
and it can resume processing by sending the transaction-initiat-
ing message again.

Advantages of SNA to CICS/VS

In analyzing the advantages of SNA to CICS/VS, there are three
criteria to be considered:

existing functions that can be provided more effectively by
SNA

new functions that are available to, and being used by,
CICS/VS users as a result of SNA

ways in which SNA provides a base for the future evolution
of cics/vs.

The features of SNA discussed in the following paragraphs are
examined with reference to those criteria.

- 1977 CICS/VS IN SNA

transmission
subsystem

Figure 8 SNA network: logical
appearance to CICS/VS

i i AN
1]
S

function
management

280

A fundamental difference between SNA and pre-SNA communi-
cations systems is the clear division of responsibility in SNA
between the function management layer and the transmission
subsystem. Line management functions such as control of poll-
ing and recovery from line errors, which were performed for
pre-SNA networks by terminal control, are handled within SNA
by the transmission subsystem provided by VTAM and the Net-
work Control Program. In addition, the network control func-
tions performed by CICS/VS, such as modifying the status of a
line or control unit by the master terminal function, are consoli-
dated in SNA’s system services control point.

CICS is unaware of the physical structure of the communications
network. The advantages of this separation of function can be
seen by comparing the amount of network definition information
required by CICS/vS for SNA and pre-SNA networks. The termi-
nal control table for an SNA network contains a list of logical
unit definitions, each of which describes the characteristics of a
logical destination within the communications system. The defi-
nition is unaffected by the way in which the logical unit is physi-
cally connected to the network. Figures 8 and 9 show how logical
and physical SNA networks differ in their appearance to CICS/VS.
In contrast, a pre-SNA terminal control table contains a com-
plete definition of the communications network. Each terminal is
grouped with its associated line or pool of lines, and line man-
agement information is associated with each line.

The interface defined by SNA, and provided by the transmission
subsystem, for communication between two logical units, is in-
dependent of the characteristics of the network. The transmis-
sion subsystem is free to implement, in any way, the functions
for which it is responsible, as long as that interface is main-
tained. In the transmission subsystem provided by VvTAM and
the Network Control Program, the functions of controlling,
scheduling, and polling communications lines are implemented
not in the host computer but in a special purpose communica-
tions controller. NCP/VS uses synchronous data link control, a
line protocol more suitable to the requirements of SNA, to
communicate with remote nodes in the network. As a user of the
logical data paths provided by the transmission subsystem,
CICS/VS benefits from the improvements in system performance
brought about by the use of these network management func-
tions, without any extra programming investment. In pre-SNA
systems, on the other hand, cics/vs support for each type of
terminal depended on the type of connection, and implementa-
tion of a new line discipline required a separate programming
effort for each type of connection to be supported.

In pre-SNA networks, terminal control used communications line
protocols to provide end-to-end control of data flow between a

EADE, HOMAN, AND JONES IBM SYST J

CICS/vS application and a terminal. For example, contention for
control of a half-duplex communications line was used to re-
solve the logical contention addressed in SNA by the bracketing
protocol. This technique of mapping a logical function onto the
characteristics of a physical link led to multiple, connection de-
pendent implementations.

SNA clearly distinguishes the data flows within a session be-
tween two logical units from the physical data paths between
two network nodes in the transmission subsystem layer. The
function management protocols defined by SNA provide a gen-
eral set of end-to-end controls for these logical data flows. The
use of these protocols to support the CICS/vS application program
interface was discussed in the section on CICS/vS as a function
management layer. It is worth noting that a number of protocols
defined within function management by SNA, such as bracketing,
closely parallel particular functions in CICS/VS. They represent a
generalization of particular functions provided by cics/vs for
pre-SNA networks.

The advantage to CicS/vs of using these common function man-
agement protocols is that CICS need implement them only once.
A given protocol is the same, in terms of the request header in-
dicators and the data flow control and session control commands
used, for sessions between CICS/vS and many different types of
logical unit. When a session is initiated, CICS/VS chooses the
appropriate subset of function management protocols and com-
municates them to the other logical unit. This facility gives
CICS/VS a powerful way of dynamically tailoring the characteris-
tics of a logical unit to the needs of a session with CICS/VS.

SNA provides CICS/VS with a framework for supporting distribut-
ed processing systems like the 1BM 3600 Finance Communica-
tion System,'® 3650 Retail Store System,"” and 3790 Communi-
cation System."® Such systems allow the user to execute parts of
his application, and store some of the application data, in the
programmable controller at a location remote from a central
computer. The ability to operate independently of a host com-
puter, at least partially, allows the user extra flexibility in design-
ing his application. Terminals attached to a programmable con-
troller are under direct control of the application programs being
executed in the controller, giving the user a high degree of local
control over the interface between his application and the
terminal.

CICS views a programmable controller as a number of separate
logical units, each requiring a specific type of support. The func-
tions required for each logical unit are indicated to CiCs/vSs by
the terminal control table. CICS/vs support for each logical unit
is independent of the method by which the controller node is

NOo. 3 - 1977 CICS/VS IN SNA

Figure 9 SNA network: physical
appearance

LOCAL
PROGRAMMABLE
CONTROLLER

LOGICAL
UNIT

HOST
LOGICAL

UNIT
(IMS, TS0)

LOCALLY
ATTACHED
COMMUNI-
CATIONS
CONTROLLER

LOGICAL
UNIT

REMOTE
TERMINAL

REMOTE

COMMUNICATIONS
CONTROLLER

REMOTE PROGRAMMABLE

CONTROLLER

distributed
processing

programmed
logical units

connected to the network —in fact CICS/vS is not even aware of
which logical units are in the same controller node. Logical units
in which the application layer is a user-written application pro-
gram are referred to as programmed logical units. CICS/VS also
supports fixed function logical units, such as the 3270 data stream
compatibility logical unit in the 3790 System. The facilities
provided by cIcs/vs for fixed function logical units are less gen-
eral, since the extent of the function in the application layer of
the logical unit is limited.

Typically, an application in a programmable controller interacts
with a terminal operator and attempts to use local resources to
process operator-requests. When a particular request must be
processed by the host computer, the controller application in-
vokes a CICS/vS transaction, and they then exchange data until
the operator’s request can be satisfied. At that time the result of
the processing is passed to the terminal operator. The operator
is not directly involved in the programmed logical unit’s interac-
tion with CICS/vS. In some cases the operator may not even be
aware that a host interaction has occurred.

CICS/VS uses the same function management protocols to control
sessions both with programmed logical units and with other,
terminal oriented logical units. In a programmed logical unit, the
application program can use the data flow control protocols of
the function management layer to provide application function.
For example, CICS/VS uses the BID command to request permis-
sion to automatically initiate a transaction. The decision to allow
the cIcs/vs-initiated transaction may be made by the pro-
grammed logical unit on the basis of the state of the application’s
processing or the availability of resources at the programmed
logical unit, or the decision may be made by the terminal
operator.

The presentation services processing provided by basic mapping
support (BMS) for pre-SNA terminals is concerned with the crea-
tion of device dependent data streams that are suitable for deliv-
ery to a physical terminal. In a session with a CICS/VS ap-
plication in which the end user is an application program in a
programmed logical unit, the required presentation services may
be independent of device considerations. The functions provided
by the ciCs/vs terminal control interface allow applications to
exchange data without any restrictions on format. The applica-
tion layer in the programmed logical unit assumes responsibility
for any data stream formatting that is required for delivery of the
output to its final destination. This destination may be a terminal
operator, but it could be a data set or a line printer, depending
on the nature of the application.

EADE, HOMAN, AND JONES IBM SYST J

When communicating with a programmed logical unit, a C1CS/vS
application may choose to have device dependent processing
done in CIcs/vs to allow the application to operate compatibly
with either a programmed logical unit or a simpler, terminal ori-
ented logical unit. For a 3790 programmed logical unit, BMS
builds SNA character string data streams that are suitable for
presentation to devices controlled by the 3790 application.
When communicating with a programmed logical unit in the
3600, BMs allows the CICS/VS application to associate a logical
device with each output request. The logical device for the ap-
plication data is identified by a function management header,
thus allowing the Ci1Ccs/vS application to distinguish among many
logical destinations within a single programmed logical unit.

Associated with each logical device may be various properties
such as paging status and page size, and, optionally, a 3600 de-
vice type such as the 3618 Administrative Line Printer or the
3604 Keyboard Display. The logical device provides the com-
municating applications with a high degree of flexibility since a
logical device need not be associated with any physical destina-
tion within a logical unit, but could be used to identify particular
types of processing to be performed on the data.

The 3270 data stream compatibility logical unit of the 3790
Communication System is an example of a fixed function logical
unit within a programmable controller. Its device oriented level
of function allows existing CICS/vS 3270 applications to commu-
nicate with 3270 terminals attached to the 3791 controller. Since
it uses the same function management protocols (such as chain-
ing and bracketing) as other terminal oriented logical units, like
the 1BM 3767, there is no need for duplicate device dependent
logic within CICS/VS, as there was in pre-SNA terminal control
for two different types of terminal.

However, the application layer in the logical unit can use the
facilities of the function management layer to provide improved
or new application function, in a manner similar to that of a user
programmed logical unit. The compatibility logical unit uses
bracketing protocol to control the sharing of a single 3270 print-
er among several logical units. The printer is used mainly by
CICS transactions as a bulk printing device. Within a bracket,
which corresponds to a single CICS/VS transaction, a printer is
devoted to one logical unit. Between brackets, the bulk printing
logical unit releases control of the printer, which may then be
used by other compatibility mode logical units that control dis-
plays. These logical units use the printer to produce hard copy
of a display image. The printer is re-acquired by the bulk print-
ing logical unit when it receives a BID command, which informs
the logical unit that CICS/vS wishes to initiate a new bulk print-
ing transaction.

No. 3 - 1977 CICS/VS IN SNA

fixed function
logical units

batch
processing
logical units

full duplex
logical units

The presence of an intelligent presentation services layer within
a programmable controller means that some functions, previous-
ly resident in BMS, can be moved into the controller. In the
CICS/VS support for 3275 host conversational logical units at-
tached to the 3650 Retail Store System, BMS builds 3270 data
streams based on the map definition of the screen image, as it
does for other 3270 terminals. The fixed portion of the screen
image is not built by BMS. Instead, the map name, supplied to
BMS by the application program, is appended to the output data
sent to the 3650, where the fixed portion of the final screen im-
age is supplied by a presentation services layer within the 3650.
This distribution of function to the controller improves the use
of the communications network by avoiding the repeated trans-
mission of constant information.

Essential to the support provided by cics/vs for distributed
processing systems is the ability of CICS/vS applications to
communicate with logical units that operate in batch mode. The
programmable controller can be used for store-and-forward ap-
plications, allowing the user to exploit the ability of a distributed
system to function independently of the host computer. In this
case, the application in the controller consists of transactions
that store intermediate results, typically on disk. Subsequently
the results are transmitted to CICS/VS in a batch while local
transactions are being executed. In the 3790 Communication
System, the data are transmitted from the transaction data set by
the batch logical unit. Data sent to the 3790 from CICS/VS can
include updates to the application’s files in the controller, as well
as data for the print data sets maintained by the 3790.

Support for the batch logical unit like that available in the 3790
is achieved by extending the logical-device concept so that a
data set name can be associated with a logical destination. The
selection of destinations, or components, is managed by the
CICS/VS data interchange program using common function man-
agement headers, which provide for communication with batch
terminals of limited function, such as the 3771 Communication
Terminal, as well as with more sophisticated logical units like
the batch logical unit in the 3790 Communication System. With
batch logical units that have the appropriate level of function
management capability, CICS/VS applications can use the mes-
sage protection and resynchronization facilities in CICS/VS to
prevent the repeated transmission of complete data streams after
a session failure.

The flexibility of SNA’s function management protocols allows
CICS/VS and a program in a programmable controller to use a
single session to service many similar requests from a large pool
of identical terminals, thereby minimizing the use of the commu-
nications system’s resources. The secondary logical unit trans-

EADE, HOMAN, AND JONES IBM SYST J

mits requests and replies from a large number of terminals
through the single full-duplex session, referred to as the Cics/vs
pipeline session. CICS/VS takes each inbound message and at-
taches a task to it, as illustrated in Figure 10. Each task can is-
sue one WRITE request, which CICS/vS sends immediately. The
transaction can send only one reply before terminating. These
restrictions allow a high volume of simple one-in and one-out
transactions, all from a single logical unit, to be processed in
parallel. Typical applications for this type of logical unit include
credit validation transactions using point-of-sale terminals. The
cics/vs pipeline facility is available to any logical unit that
obeys the correct function management protocols and is inde-
pendent of any particular controller.

Summary

The explicit definition of the function management layer by SNA
allows CICS/VS to use a uniform set of protocols for controlling
communications between CICS/VS applications and destinations
in a telecommunications network. The definition of the communi-
cations system in terms of discrete functional layers in every node
means that the same protocols apply both to sessions with pro-
grammed logical units in distributed processing systems and to
sessions with simpler, terminal oriented logical units. The clear
division of function among the application, function manage-
ment, and transmission subsystem layers, together with the con-
cept of independent parallel conversations between paired lay-
ers, allows the capabilities of each layer to increase without
affecting the capabilities of the other layers. These aspects of
SNA have permitted CICS/vS to implement its data communica-
tions functions in a manner that can be logically adapted and
extended to meet the future needs of users’ application.

ACKNOWLEDGMENTS

The combined efforts of many people have contributed to the
development of Cics/vs. The authors wish to acknowledge the
principle contribution of the 1BM Programming Center in Palo
Alto, California, to the initial SNA implementation of CICS/VS,
the assistance provided by members of the 1BM Program Prod-
uct Center in Sindelfingen, West Germany, and the work of
those at the IBM Programming Centre in Hursley, England,
who extended the initial design and implementation. In addition,
the authors wish to thank their IBM colleagues who assisted in
critical reviews of this paper.

CITED REFERENCES

1. James Martin, Design of Real-Time Computer Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1967).

2. W. A. Clark, “The functional structure of OS/360—Part I1I: Data manage-
ment,” IBM Systems Journal 5, No. 1, 30-51 (1966).

© 1977 CICS/VS IN SNA

Figure 10 CICS/VS pipeline ses-

CiCcs
UNIT

sion

3650
PIPELINE
LOGICAL
UNIT

PIPELINE SESSION

3653
TER-
MINALS

. Customer Information Control System/Virtual Storage (CICS/VS) General
Information, order number GC33-0066, IBM United Kingdom Laboratories
Ltd., Publications Department, Hursley Park, Winchester, Hampshire SO21
2JN, England.

. J. H. McFadyen, “Systems Network Architecture: An overview,” /BM
Systems Journal 15, No. 1, 4-23 (1976).

. Herbert Hellerman and Thomas F. Conroy, Computer System Performance,
McGraw-Hill Book Company, New York (1975), Chapter 8: “The IBM
08/360 Operating System.”

. M. A. Auslander and J. F. Jaffe, “Functional structure of IBM virtual stor-
age operating systems — Part I: Influences of dynamic address translation on
operating system technology,” IBM Systems Journal 12, No. 4, 368-381
(1973).

. D. G. Keehn and J. O. Lacy, “VSAM data set design parameters,” IBM
Systems Journal 13, No. 3, 186-212 (1974).

. J. P. Birch, “Functional structure of IBM virtual storage operating sys-
tems — Part I1T: Architecture and design of DOS/VS,” IBM Systems Jour-
nal 12, No. 4, 401-411 (1973).

. Customer Information Control System/|Virtual Storage (CICS|VS) Applica-
tion Programmer’s Reference Manual, order number SC33-0077, IBM
United Kingdom Laboratories Ltd., Publications Department, Hursley
Park, Winchester, Hampshire SO21 2JN, England.

. W. C. McGee, “The information management system IMS/VS,” IBM Sys-
tems Journal 16, No. 2, 84— 168 (1977).

. For a description of the interface provided by BT AM, and the correspond-
ing link control sequences, see OS/VS BTAM, order number GC27-6980,
IBM Corporation, Programming Publications, Department 63T, Neighbor-
hood Road, Kingston, N.Y. 12401.

. P. G. Cullum, “The transmission subsystem in Systems Network Architec-
ture,” IBM Systems Journal 15, No. 1, 24-38 (1976).

. H. R. Albrecht and K. D. Ryder, ‘“The Virtual Telecommunications Access
Method: A Systems Network Architecture perspective,” IBM Systems
Journal 18, No. 1, 53-80 (1976).

. W. S. Hobgood, “The role of the Network Control Program in Systems
Network Architecture,” IBM Systems Journal 15, No. 1,39-52 (1976).

. R. A. Donnan and J. R. Kersey, “Synchronous data link control: A perspec-
tive,” IBM Systems Journal 13, No. 2, 140-162 (1974).

. Customer Information Control System/Virtual Storage (CICS|VS) IBM
3600 Guide, order number SC33-0072, IBM United Kingdom Laboratories
Ltd., Publications Department, Hursley Park, Winchester, Hampshire SO21
2JN, England.

. Customer Information Control System/Virtual Storage (CICS/VS) IBM
3650 Guide, order number SC33-0073, IBM United Kingdom Laboratories
Ltd., Publications Department, Hursley Park, Winchester, Hampshire SO
21 2JN, England.

. Customer Information Control System/Virtual Storage (CICS|VS) IBM
3790 Guide, order number SC33-0075, IBM United Kingdom Laboratories
Ltd., Publications Department, Hursley Park, Winchester, Hampshire SO21
2JN, England.

Reprint Order No. G321-5054.

286 EADE, HOMAN, AND JONES IBM SYST J

	ibmsj1603D285.pdf
	page 1

