
A broad  range o j  commercial  and  research  data  base  systems 
are  analyzed. Common characteristics  are  discussed.  These 
systems, which have  roots  in  olderfiling  systems  and  in  punched 
card  systems,  are  grouped  into  the  three  categories  ofhierarchic, 
netw-ork,  and  single-lc~vel  models. Also presented  is  work  on 
the  standardization o j  data  base  systems.  Research  toward  the 
discovery  of  new  commonalities  is  also  discussed.  This  paper  is 
based  on an extrnsive  published  literature. 

Data  structures  and data accessing in data base systems 
past,  present,  future 

by M. E. Senko 

During the time since  the publication in this  Journal of a  paper on 
the  history and status of existing data  base  systems,' much has 
been written about  data  base  systems in the periodical literature 
and in the proceedings of conferences.  However,  there  has  not 
been time to compile this information into a critically written 
book. This  article  cannot  replace  such a book,  but  it is hoped that 
it  will aid the  reader in developing a critical viewpoint of general 
trends. In addition, it provides a large number of references  for 
one  who wishes to become  acquainted with recent  trends in 
greater detail. 

recent Depending on point of view, there  has been either little or  great 
progress progress during the past four  years.  From  a  qualitative viewpoint, 

there  has been very little progress in commercial data base tech- 
nology. The four-year period has been a time of consolidation  and 
incremental  improvement.  From  a  quantitative  viewpoint, on 
the  other  hand,  there  has been very great  progress -the number 
of installed generalized data base  systems has increased from a 
few hundred to  several  thousand. 

During  this  time,  data  base  systems  have  become  a main topic of 
discussion in the  computer  industry. The interest is, however, 
not due simply to the large number of installations. The fastest 
computers and the largest storage  devices are barely able  to 
meet  the  requirements  posed by recent integrated systems  for 
reservations and for management control. Much of the  present 
interest has arisen  because effective and  efficient implementation 
of these  systems  represents  an  outstanding technical challenge 
in all phases of computer  systems  work.  Finally, in the research 
area,  a  greater  understanding  has been developed. Significant 
problems, however, must still be solved to assure  a  worthwhile, 
compatible transfer of this knowledge to installed systems. 
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The early sections of this review place each of these  points in a 
long-term perspective by discussing the technical evolution of 
the  data  base  systems  area.  Later  sections  provide  an  introduc- 
tion to current publications in the  area, along with comments 
designed to guide the  reader in correlating  the  sometimes  diverse 
terminology. The  Data Independent  Accessing Model (DIAM) is 
used to provide a focus  for this material. The review  ends with a 
discussion of possible future  developments. 

There  are many proposed definitions for ir$ovmution systems, 
none of which satisfies all people. We simply note  that  a major 
purpose of any information system is to provide a relatively exact 
and efficient  model of the significant resources of a real world 
enterprise. In this description,  the  criterion of  efficiency  is 
particularly important  because it provides the driving force be- 
hind  much  of the work on computerized information systems.  In 
the  case of computerized information systems,  there  are  at  least 
three  components in the efficiency criterion. One is the efficient 
use of the  resources modeled by the  system,  such  as  the  parts, 
the airline seats,  the money, the  people, and so forth. In recent 
years,  one of the main places where efficiency has been gained 
is in the timely use of expensive  resources  (for  example, airline 
seats). In many instances, timely use generates  a  requirement 
that  the  enterprise models follow the real-world situation  second 
by second. 

In the computer  industry proper, efforts on data base systems 
have been directed primarily at  the  other  two  components of 
efficiency; computer efficiency and human efficiency. The in- 
dustry  has, of course,  always  emphasized  the efficient use of 
computing resources.  However,  there  has been a  continued 
steady  decrease in hardware prices and  a parallel increase in 
salaries. Boehm,2 for  example,  indicates  that as much as seventy- 
five percent of Air Force computing costs  are in the  cost of soft- 
ware,  and he estimates  that this figure will rise to ninety percent 
by 1985. In this environment, efficient utilization of human re- 
sources is becoming a  dominant  issue. 

Early data  base systems 

The first major step in the mechanization of information systems 
came with the  advent of punched card machines. The increased 
efficiency and  accuracy of machine-prepared reports was dra- 
matic. These benefits, however, caused us to  overlook  the  fact 
that  the  systems  required  a new type of human effort - the effort 
to design and implement an efficient machine accounting  sys- 
tem. Punched card machines can work on fixed-length fields 
only, and are efficient only in sequential processing. To utilize 
these  machines,  the  user has to  spend  a  considerable  amount of 
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program. They provided algorithms for translating a user’s non- 
procedural  description of a  report  into machine language pro- 
cedures  for composing the  report. Also, they made the searching 
of tape files an implicit (or  nonprocedural)  process.  That is, the 
user could simply state  the  conditions  for  a  record  to be retrieved, 
and the  system would generate  the algorithms to perform the 
search efficiently. 

The tape-oriented  systems of the 1950s and early 1960s had to 
generate algorithms for the  search problem only within the  re- 
stricted and simplified structure of a  sequential  search.  This 
approach was, however, quite adequate until peripheral  storage 
with large-scale random  access capability appeared.  Random 
access  hardware  removed  the efficiency-based sequential  batch 
processing restriction  and made possible the  construction of 
up-to-the-second real-world models. Real-time systems had thus 
arrived. Random access  systems brought with them the potential 
for  an  increased range of complex file organizations. Again, to 
take  this major step forward in total system efficiency, a signifi- 
cant additional housekeeping  burden was placed on the  user. 

In the early and middle 1960s, commercial users began to  ac- 
cumulate  a  number of pragmatic techniques  for shifting some of 
the  housekeeping  burden back to  the computing system. The 
most primitive techniques were the  direct,  sequential,  and in- 
dexed  sequential  access  methods. These  access  methods  as- 
sisted substantially in the  housekeeping  aspects of storing and 
moving physical records.  They  also provided some  assistance in 

l locating a  particular  record with a unique identifier. ’ The next  qualitative  step  arrived with the combination of a 
procedural language (usually COBOL), the capabilities of early 
tape  systems  for handling records with variable numbers of seg- 
ments,  and  the random access capabilities of hardware.  This line 
of development,  termed  procedural language enhancement, 
appeared in the  General  Electric  Company  Integrated  Data  Store 
(IDS) and  the IBM Data Language I (DLII). Systems  such  as  these 
process  one  record at a time and are  the basis of essentially all 
the major real-time information systems.  They generally handle 
real-time maintenance of the  operational data of a corporation 
and are, therefore, called “operational  systems.” 

Nonprocedural  systems  have followed a  second  path  of  evolu- 
tion, by adding varying amounts of random  access  storage 
capability.  This path has led to  random  access  oriented RPGS, the 
MARK Iv System of Informatics  Incorporated,  the  Generalized 
Information System (CIS) of IBM, and the Time-shared Data 
Management  System (TDMS) of the System  Development  Cor- 
poration. These executive  systems, which are used primarily 



Figure 1 Example of a  generalized  data base 

PAYROLL INSURANCE 

SALARY-AMT PREMIUM-PAYMENT 

SALARY AMT DATE  PREMIUM-PAYMENT  DATE 

BANKING 

ACCOUNT-NO  DEPOSITOR-NAME ADDRESS 

DEPOSIT-AMT 

DEPOSIT.AMT 

INVENTORY 

LOCATION 

IN-STOCK  QUANTITY 

IN-STOCK-QUANTITY  DATE 

writing efficiency. For example, in one small, relatively in- 
formal test  for reporting applications, CIS was found to  require 
one  to  two  orders of magnitude less programming time  than 
COBOL. This  improvement in human efficiency was provided by 
the  executive  systems with relatively small cost in computer 
efficiency. 

The first major thrust  into  the real-time information systems 
area  came  about 1965. At that time each individual industry was 
developing its own set of management information systems. 
There existed  approximately  one  hundred  such IBM program 
products or proposed program products,  each with its own 
specialized data management capabilities. Since  the applications 
were  certainly different, it seemed necessary  for  each applica- 
tion to  have its own special code  for handling its special informa- 
tion files. However,  the IBM Federal  Systems Division’s For- 
matted File System (FFS) experience indicated that  seventy to 
eighty percent of an application program’s code  consisted of  file 
handling and data  structure  decoding.  It  demonstrated  that  these 
tasks could be handled with reasonable  computer efficiency by 
a generalized program. It  also indicated that  systems could be 
installed perhaps fifty percent more quickly and easily if gen- 
eralized code  were used for  communications and data handling. 

The utility of generalized data base systems becomes more 
apparent if we look at  Figure 1. In this figure, the main differences 
between  the  several files shown are merely in the  names of the 
files and the  names of the fields. Thus, such a transaction as 

x could apply equally to each of the files. If the  software allows 
the definition of records with fields  of different sizes and  names, 
and is capable  of handling such a transaction with a name 
appropriate to one file, then it can handle similar transactions on 
files where  the  name in the blank space is different. 

IF--NO = 012345, CHANGE  ADDRESS (01. LOCATION) TO 

Perhaps  the only significant differences among systems for vari- 
ous application areas  have been the  details of the  computational 
procedures that were applied to  the  stored information. For 
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example, in the payroll case,  the  “salary  amount” might be used 
in an  arithmetic calculation of taxes.  In  the  inventory  case,  the 
contents of a field similar to  “in-stock-quantity” might be used 
in a different arithmetic calculation to  obtain  the  number of parts 
to be ordered when restocking. 

Realization of the  fact  that  data handling and data  communica- 
tions were  functions  that could be generalized led IBM to  empha- 
size the Information Management System (IMS), Customer 
Information Control  System (CICS), and the  Generalized Infor- 
mation System (CIS) as its main data  base/data  communications 
systems  products  for  a wide range of industries. The historical 
evolution of data  base  systems  has recently been reviewed in 
greater  detail by Fry and S i b l e ~ . ~  

Evolution of data  base terminology 

One of  the  outstanding  aspects of data base studies is the  com- 
plex, overlapping, shifting, and ill-defined terminology. This 
situation is understandable,  but its causes  are not often recog- 
nized. In the  data base area,  as  opposed to the field  of mathe- 
matics,  there has not been time to  perfect and simplify concepts 
so that  they can be adequately defined. In  order  to make some 
progress,  complex, ill-defined concepts  have been given capsule 
descriptions and labels such as  “the  sequential  access  method” 
or  “secondary index” for  reference.  It is then hoped that  the 
reader  has enough knowledge of actual  systems  to  understand 
what the label really stands  for. 

One of the  reasons  for so much overlapping terminology is that 
it  is relatively easy  to recognize a particular  distinctive  property 
of a  system, assign a label to it, and then classify things accord- 
ing to  the label. Since more terms give the terminologist a com- 
fortable feeling that he has  covered all bases, he  is  led to a 
proliferation of overlapping and  inconsistent  terms. Work is 
progressing toward simplifying data  base  concepts and reducing 
their overlap.  For  now,  however, we shall use  the labels as  a 
starting  point, leavening them with an understanding of the 
complex concepts in actual  systems.  For  example, commercial 
data  base  systems  are generally classified into  three major 
categories, each labeled by a file structure,  namely,  the flat file, 
the  hierarchic and the  network  types. These categories are  rather 
loosely defined, and  the assignment of a  system to any one of 
them has been dependent on the time at which the  system be- 
came generally known to  the  data base community,  as can be 
seen by looking at  the long-term evolution of this  categorization. 

1 In the beginning, there  were  punched  cards,  a box of  which with 
the  same field format provided the  prototype for the flat file. 
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It was also possible to extend this structure by substituting  for 
each  card in the box two  or more cards, each with a different 
format.  This was equivalent  to  extending  the length of a single 
card,  because it introduced no major changes in the  character 
of the file structure.  It was also possible to  extend  the  format by 
placing more than  one field  of a  type on the  card. Although this 
“multivalued attribute”  format is really a “hierarchic  form,” it 
did not  change  the  character of the  data  structure  very much. 
Thus,  these new structures  were pragmatically included in the 
category of flat files. 

A second method of extending  punched  card  data  structures  was 
to place variable numbers of cards of a new format  type  after 
cards of the first format. Cards of the first format  were called 
masters and cards of the  second  format  were called details. Each 
set of detail cards could be considered  to be physically associated 
with the  master  card  that immediately preceded  the  set,  and  this 
physical association  was  used  to  represent  a parallel logical 
association between the  contents of the  cards.  This method 
formed the  prototype  for  the hierarchic jile, in which each  detail 
card could be associated with only one  master  card.  This  master- 
detail characteristic distinguished hierarchic files from network 
j i les,  in which a  particular  detail  card or record could be as- 
sociated with more than one master. 

When these  data  structures were moved to  tape  systems,  the 
physical card length constraint was removed.  This new freedom 
placed a  strain on the existing terminology. Since  the  term  “rec- 
ord” could no longer stand  for a physical card,  what should it 
stand  for? By analogy with the  card  as  a physical subdivision, the 
physical subdivision on tape was marked by an end-of-record 
gap. The fact  that it was useful to place  more  than  one  hierarchic 
record  between  record  gaps  brought  up  a problem that was re- 
solved in some  cases by calling each  hierarchy  a logical  record 
and  the  space  between gaps a physical  record. There was also 
a problem as  to what to call the logical equivalent of the single- 
level card.  Some  systems  continue  to call these  elements  records, 
whereas  hierarchic  systems  frequently call them segments. 
Clearly,  the  data  base  term  “record” can mean many different 
things. 

When random  access  devices  came  into common use,  the  term 
network appeared on the  scene. For  the first time, it became 
useful to  connect  one  record  to  a  second by  giving the  storage 
address of the second record. These  structures  were labeled 
networks  even though they  were only a  subset of the possible 
mathematical networks.  Limitations  were imposed by difficulties 
in storing physical records with varying numbers of pointers. 

Considering  the complexity underlying this simple three-part 
classification -flat file, hierarchic  and network - we  can  see why 
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a label accompanied by a capsule  description may not  constitute 
an  adequate definition. There is clearly a need for  better defini- 
tions,  and  to some extent  this need can be satisfied by appealing 
to  mathematics. Although there  are many overlapping notations 
in mathematics (sets,  vectors,  relations,  etc. ) , it is true  that  when 
a  particular notational is chosen, most users  can  agree on the 
meaning of definitions and  operations within the notation. Here 
again one  must be careful to leaven the definition with some 
knowledge of the technological concept.  For example,  an early 
relational definition for  the  term identijier was  the following: any 
set of columns in the relation that  provides  a unique identification 
for  each n-tuple. This definition implied that an identifier could 
be discovered by scanning the  relation.  Under  this incomplete 
definition, weight of person would  be termed  an identifier when 
each  person in the relation happened  to  have  a unique weight. 

This situation was somewhat  improved by saying that  over all 
time the  set of columns  must uniquely identify the  n-tuples. This 
is better,  but it  still leaves  out an essential  aspect of the  techno- 
logical concept of identifier - the intention of the  user  to  control 
the  assignment of identifier values so that  no  two  entities  have 
the  same identifier. (At present,  the  latter is an  extra-mathemati- 
cal part.  It is essential,  however,  because  some  set of columns 
might  by accident act like an identifier, but it would never be 
considered by the  users  as an identifier.) 

This brings to the fore  the distinction between the definitions of 
precision and  accuracy. Physical scientists  and  statisticians know 
that  there is an  enormous difference between the  two  concepts. 
Mathematical  formulations are almost  always  precise,  but  they 
are  not  always  accurate  representations of complex  concepts. 
(It should be noted that it  is usually better  to be generally a,c- 
curate  than precisely wrong.) Although existing mathematical 
definitions are  attractive  to  the  casual  reader  because of their 
simplicity, they may not  provide  a useful and efficient repre- 
sentation of the  area we  wish to  discuss.  This is exactly the 
reason why new notational systems are invented in mathematics 
and  physics, and it is also  a  reason  for pursuing new notations 
in data  base  systems.  Later in this  paper,  we  discuss  the  char- 
acteristics of some of these new notations. 

On  the whole,  there has been some  progress in improving the 
quality of definitions in the  data  base  area,  but most concepts 
have  not been refined to the point where simple definitions are 
adequate.  The reader should always recognize that  the  concept 
that  underlies  a  particular term may be more complex than  the 
simple description  that  accompanies  the  term. 
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Table 1 Classes of data base systems 

System 
Class 

"" ~ ~ 

Hierarchic 

Network 

Single- 
level 

Operationcrl Executive 
Duuc.loper Systems Systems 

AS1 
I BM lMS/VS GIS 

DL11 
PARS 

~ ~ ~~~ ~~~ ~ ~- -~ ~ 

ASI-ST 

Informatics Mark 1V 
MRI System 2000 

Cincom 
Cullinane IDMS CULPRIT 
Honeywell IDS 

Philips PHOLAS 
Software AG ADABAS ADAWRITER 
Univac DMS/90 

~~ ~ ~~~ ~~ ~ ~~~~~~ 

TOTAL 

IDS-I1 

DMS/llO0 
~ ~ ~ ~~ ~~ ~ ~~ ~- 

Dylakor DYL-250 
DYL-260 

I BM CICS IQRP 

Present  data  base systems 

To give an overall picture of the present-day  environment, it 
may be useful to mention and give a general correlation of the 
characteristics of several commercially available data base sys- 
tems. A deeper critical review of data base  systems is available 
in References 4- 6, and in the  documentation provided by 
system  implementers.  Listed in Table 1 are some  examples of 
commercially available single-level, hierarchic  and  network sys- 
tems.  These  systems  have been placed in the  categories in which 
the  reader would usually find them in the  literature. 

To indicate  the similarities and differences among the  various 
data  structures, it is best  to  use some relatively neutral, hypo- 
thetical  representation as a starting point. In  Figure 2, we present 
a simple representation of the associations among important 
types of entities in a  corporation. The ovals  contain identifier 
values  for  entities  and  the lines indicate how the  entities are 
related. For example,  the identifier values  for  employees are 
contained in the oval labeled EMP-NO; the identifier values 
for  addresses  are  contained in the oval labeled ADDRESS. The 
line between ADDRESS and EMP-NO indicates  that  there is a 
relationship between employees  and  addresses.  In  this  case, 
employees live at  addresses.  In  some  cases, things are related 
in more than  one way, as indicated by the two lines between 
DEPT-NO and EMP-NO. One of these lines stands  for  the  relation- 
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With regard to data  accessing,  there are two  types of lan- 
guage available: a segment-at-a-time CALL interface to COBOL, 
FORTRAN, PL/I, and  assembler language; and  a  set-oriented 
language for  accessing  hierarchies.  This  latter language is based 
on  the original TDMS accessing language, which in its time was 
one of the simplest languages available for  accessing  hierarchies. 
Recently, MRI Systems  Incorporated  announced  a link feature 
that allows the  user  to  connect multiple files by means of sym- 
bolic pointers.  This  feature aids the System 2000 user in per- 
forming network processing. 

In using the IBM Information Management System/VS (IMS/VS),s 
the application programmer  writes his programs in terms of one 
or more purely hierarchic logical files. The  data base  administra- 
tor is then  separately  responsible  for  computer efficiency. He 
may choose  to map the logical  files into  actual physical files in a 
variety of ways without affecting the user’s programs, as shown 
schematically in Figure 4. As a  start,  the IMS/VS data  base  ad- 
ministrator may choose from a  spectrum of physical file organiza- 
tions,  depending on the  ratio of sequential to  direct key record 
accessing  anticipated  for  the file. If  the processing does  not 
require  direct  accessing,  insert,  update, or delete  calls,  the  ad- 
ministrator may choose  the  Hierarchic Sequential Access 
Method (HSAM), which relates  the  hierarchic  segments of each 
record by physical contiguity and places them in a sequential 
file. 

If some amount of direct  accessing is required, but much pro- 
cessing is done  sequentially in primary key order,  the  administra- 
tor may choose  the  Hierarchic  Indexed Sequential Access  Meth- 
od (HISAM), which also  relates  record  segments by contiguity, 
but places the  records in an indexed sequential file. Excess seg- 
ments of records  that  exceed  a specified length are placed in an 
overflow file along with new records. In this case, the data base 
administrator has an  alternative in the  Hierarchic  Indexed  Direct 
Access  Method (HIDAM), which relates  subordinate segments by 
direct  pointers. The choice between this pair  depends  on  the 
amount of  file reorganization that is anticipated  and  the  speed 
with which the  user  wishes  to  access  subordinate  segments in the 
hierarchy. If direct key accessing  predominates,  but  some 
sequential processing occurs,  the  data  base  administrator may 
choose  the  Hierarchic  Direct  Access Method (HDAM), supple- 
mented by secondary  indexes on the keys to be used for  sequen- 
tial processing. This choice  can  save  system  accesses through a 
primary index. If there is only direct  accessing,  the  administrator 
might choose  the pure Hierarchic  Direct  Access  Method 
(HDAM). 

If various  types of segments in the logical  file are  accessed at 
greatly different rates,  or if some of the lower-level segment 
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types  are  frequently  processed as a  separate logical  file, then  the 
data base administrator may choose to support  the logical  file 
with several separate physical files and have  the  system  connect 
the files together with either symbolic (key) or  direct  pointers. 
The  fact that  these  pointers  can lead to  other  records gives 
r~s lvs  network-like storage  structures  and processing capabili- 
ties. For example,  a bill  of materials for  a  particular  part  that is 
often implemented by network  functions  can  appear to the 
I ~ s / v s  application programmer as  a logical hierarchic  record. 

If accesses  are  frequently based on a key other than the primary 
key, the  data base administrator may also  choose  to  have  the 
system  construct and maintain secondary index files based on 
these keys. Finally, the  data base administrator may accommo- 
date  the  system  to  various  rates of insert-update-delete  activity 
by varying the allocation of space in the primary and overflow 
portions  of  the supporting physical files. With the  exception of 
secondary index changes, all these  computer efficiency variations 
can be made without affecting the  user's application program. 

In  the  data  accessing  area,  the main language of IMS/VS is the 
segment-at-a-time language, D L ~ .  The nonprocedural or set- 
oriented languages, Interactive  Query  Facility ( I Q F ) ~  and 
Generalized  Information  System (CIS),'" supplement DL/] to give 
IMS/VS executive  system capability. 

Finally,  the IBM Programmed Airline Reservation  System 
(PARS) and Advanced  Administrative  System (AAS) provide a 
limited-form hierarchic record  structure.  These  extremely high- 
performance  systems can support  thousands of interactive 
terminals.  Since,  however,  they  are designed for special high- 
performance  environments we treat them no further in this 
general  review. AAS is discussed by Wimbrow," and PARS is 
described by  Siwiec.12 

In the  category of hierarchic  executive  systems, we place those 
systems or languages that  process  sets of records  rather  than  a 
single record  at  a time. In  addition to  System 2000 with its set- 
oriented language, there are a  number of executive language sys- 
tems  that  can  either  stand  alone  or  process files maintained by 
operational  systems. 

One well-known system in this  category is MARK IV of Informa- 
tics Incorporated. MARK I V  can be run as an independent  system 
or it  may  be used to access files that are maintained by opera- 
tional systems such as IMSIVS. When run as an  independent 
system,  the MARK Iv data  structures can be stored in sequential 
or indexed sequential files. When indexed sequential files are 
used,  key fields may  be used for  direct  access  coordination of 
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Figure 5 Hypotheticol  network  information structure 
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records in multiple files. The main data  accessing language of 
MARK I V  is, like the  report  generator languages, based on a 
series of forms. The  user fills out  these  forms  to specify nonpro- 
cedural file scanning,  testing, and production of reports  that  con- 
tain totals,  subtotals,  etc. In recent  years,  Informatics  Incor- 
porated  has provided a  series of online terminal capabilities to 
assist  the  user in interactive  access to MARK IV. 

A second system in this category is ASI-ST. Like MARK IV, the 
ASI-ST system utilizes fixed-column forms  for  transaction  speci- 
fication in both  batch-  and terminal-oriented modes of inter- 
action. It has been suggested that writing in ASI-ST could be used 
as a  substitute  for  the writing of IMSIVS-DLII procedural pro- 
g r a m ~ . ~  Other  executive  systems like MARK I V  and GIS might 
also be used in this  fashion to simplify the  generation of r~s lvs  
application programs. 

The IBM Generalized Information System (CIS) has evolved from 
the free-format languages of IBM Federal  Systems Division’s 
Formatted File Systems. Because of the way it evolved, CIS 
provides a  direct terminal language. In dealing with single-level 
records  and informal reports, GIS is relatively nonprocedural 
in appearance, but it does  require procedural-like statements  for 
accessing hierarchic structured  records. Like MARK I V  and 
AS-IST, CIS can be used either as an  independent  system or it 
can be used to  access IMSlvs data  structures. A survey of hier- 
archic  systems  has recently been published by Tsichritzis and 
Loch~vsky.’~ 

Presented in Figure 5 is one of a  number of possible network 
representations of the  example information shown in Figure 2. 
In  Figure 5 ,  we show only single-level records, although some 
network  systems also allow the fixed format  hierarchic  structures 
found in COBOL record definitions. Use of this  feature is, how- 
ever,  redundant  because  the  network  structure itself allows the 
specification of hierarchic  structures.  Since  a different language 
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Figure 6 Three  operational  net- 
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is  required  for  accessing the COBOL hierarchic  record, this 
introduces  another form of data  structure  dependence into the 
system. 

The first major commercial network-oriented  system was the 
Integrated Data  Store (IDS) of the  General  Electric  Company. 
This  system  was implemented in the  early 1960s and  was  the 
basis for  the  system  proposed by the  Data Base Task  Group 
(DBTG) of CODASYL. IDS has  gone through many iterations of 
development. In Figure 6A, we present  a  schematic of the 
D B T G ~ D S  major file organization features. The file organization 
starts with a  hash  code  accessing algorithm that assigns specified 
types of records to page-sized buckets on physical devices.  In 
our  example, both Departments  and  Employees  can be accessed 
by hash  codes.  These  hash-coded  records  can  then be joined 
into application-oriented sets by single or bidirectional chains. 
In  our example,  the  set of Employees in a  particular  Department 
are all on the  same  chain. 

There could be two  other  types of pointers  for  this  particular 
set. One  type would also start  at  a  particular  department  and go in 
the  opposite  direction, giving the second direction of a bi- 
directional  chain. The second  type would point from each in- 
dividual employee  record back to its department  record. 

A processing program usually starts by entering on a hash-coded 
record, and then follows chains  to  obtain  other  records as re- 
quired. In our example, if the program requires information on 
the  employee of a  department, it would hash the  department 
number  to  obtain  the  department  record,  and  then  use  the  chain 
from the  department  record  to  obtain  the  appropriate  employee 
records. If the  system  users seldom have  questions  about in- 
dividual employees,  the data base  administrator would not  use a 
hash code  to  store  the employee  records. He would instead tell 
the  system  to  have  the  employee  records placed near  (that is, 
in the  same  bucket  with)  the  appropriate  department  record. 
Since an application programmer  must know and  use only the 
available set of physical access  paths in his programs,  the pro- 
grams  have  some  data  structure  dependence. 

There is a new Honeywell version of IDS called IDS-11 that  con- 
tains many of the  features specified by the DBTG. The major 
change is the  addition of a subschema  that allows the  programmer 
to gain data  independence by describing an  application-oriented 
subset of the schema  for his problem program. In  the  case of the 
DBTG systems,  the logical subschema is limited to mapping from 
one  schema. There  are a number of other  systems  that are de- 
signed to implement the specifications set  forth by the DBTG. 
These include ~Ms/90  and DMS/I 100 of Univac, IDMS of  the 
Cullinane Corporation,  and PHOLAS of the Philips Corporation. 
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With regard  to technical aspects,  a  number of possibilities for 
simplification of parameters  have been pointed out with regard 
to  the DBTG specifications. Such  a  set of simplifications was 
suggested at  the IFIP TC-2  Conference at Wepion, Be lg i~m. '~ ' ' ~  
A further simplifying process is being carried  out by the 
CODASYL Data Description  Language  Commitee (DDLC1.I' 
This  committee is classifying the complex of DBTG data  descrip- 
tion parameters  into  a  data  independent  set  and  a  set  that is to be 
used for  the  computer efficiency tuning of an installation. Ad- 
ditional considerations with regard to the DBTG data  structure 
concern efficiency  of access  to  the long chains of records. One 
solution to  the problem has been attained by including the 
possibility that DBTG sets  can be implemented by pointer  arrays. 
A survey of CODASYL DBTG systems has recently been pub- 
lished by R. W.  Taylor  and R. L. Frank.17 

Two  other network  systems of interest are TOTAL and ADABAS. 
In  Figure 6B, we give a simple TOTAL file organization. 

Single-level records for identifier fields are stored in Single Entry 
Files (SEF) using a  hash  addressing  scheme.  Each identifier field 
value in a single entry file  may have a forward address  pointer  to 
any Variable  Entry File (VEF) containing that field. This  pointer 
leads  to  the first record in the VEF that  contains a corresponding 
field value. A pointer  chain from this record  continues  through 
the VEF and  connects all the  records  that  contain  the specific 
field value. There  is also a chain  that  points in the  other  direction, 
starting with the SEF value  and going to  the  last  data  record  that 
contains  that value and progressing backward through all other 
records  that  contain  the  same value. Records in the VEF are 
placed close  to  other  records  that  have  the  same primary linkage 
path. The user  can define this path by selecting  a primary SEF 
from among the SEFS that  have  chains to the vEF. Each variable 
file entry  also  contains  a symbolic (key) pointer  that  leads 
directly  back  to a SEF value for  each  chain through it. This 
amounts  to  three  types of pointers  for  every  index  to  the field. 
These pointers  are analogous to  the  three  types of pointers  that 
may be optionally specified in the DBTG file organization,  ex- 
cept  that  the  backward  pointer is a symbolic (key) pointer in 
TOTAL and a physical or logical address  pointer in DBTG. 

TOTAL provides  hierarchic or network  access  paths by placing 
additional pointer  entries in its Single Entry  File. For example, 
if the  user  wants the equivalent of a  master  record  for  depart- 
ment and  to  connect  this  to  detail  records  for  employees,  then, as 
in our  hypothetical  example in Figure 2 ,  his Department SEF also 
has  pointers to the  Employee  File. In the  case of the  Employee 
File, the pointer chains  connect all the  employee  records  that 
contain  the  same  department  number. To construct  the hier- 
archic  record,  the TOTAL programmer then accesses  the SEF 
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and makes as many separate calls to  the  employee file as there 
are employees in the  department.  In a sense,  the TOTAL file 
organization may be  compared with a DBTG organization, 
where  record  types  are  either  masters  that  are  accessed by hash 
code or details  that  are  accessed  by  chains from one  or more of 
the  master files. Masters  are placed in separate files from details, 
and no record is both  a  master and a detail. 

ADABAS, shown in Figure 6C, handles what are essentially flat 
fiks, but it does  support multiple valued attributes  and periodic 
fields.  Using  these  features, a programmer  can  construct  and  de- 
code  records with more complex formats. Unlike TOTAL, it 
allows only one type of record  per file. However, ADABAS 
records  and fields can be of variable length because ADABAS pro- 
vides both  compression  and  encyphering algorithms. As a 
consequence,  the  programmer  can gain the effect of multiple 
record  types of defining one large record  that  contains all fields 
and then  -for  each  particular  record  -entering only those fields 
that are appropriate  to  its  type.  There is very little space penalty 
for unused fields. 

For each file, ADABAS maintains a list of descriptor fields, that is, 
fields for which secondary  indexes are  to  be built. Each  entry 
on this list points  to  a list of values  for the corresponding field. 
Each value on this second list has a pointer to a list of Internal 
Sequence  Numbers (ISNS) that  are record  numbers for records 
containing  that  value. In  essence, this  structure-called  an 
associator-is a  set of multilevel secondary  indexes.  Having 
found an ISN, ADABAS goes to an  address  converter  that supplies 
the  actual  storage  address  for  the ISN record. 

The ADABAS coupling table  provides a mechanism for network 
and hierarchic  retrieval. A coupling table  essentially  acts  as  a 
connector  between  two files. To define a coupling table,  the  user 
selects a descriptor field that  appears in both files. The coupling 
table  for  this field then  provides  a bidirectional mechanism for 
going from  a  record in one file to all the records in the  other file 
that  have  the  same value in their  descriptor field. 

Consider  the  example of hierarchic  retrieval. For each  depart- 
ment  number in the  department file, ADABAS goes  to  the coupling 
table  to find the ISNS for records in the  employee file that  contain 
that  department  number. The system can then go through  the 
address  converter to obtain  the  addresses  for  the  desired em- 
ployee  records. Here again, the  system  assembles hierarchic 
records from more than one file. There  are  at least  three soft- 
ware language systems  for  set-oriented  access  to  network 

signed to access ADABAS data  bases in a batch  mode,  and  there is 
to  be a language for online interaction. ASI-ST can access both 

Systems-ADAWRITER, ASI-ST, and CULPRIT. ADAWRITER is de- 
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Figure 7 Hypothetical  example  single-level  file 
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TOTAL and IMsivs files. CULPRIT provides  the capability for 
accessing bill-of-material networks. For example, it has  been 
written  to  access IDMS (a DBTG-type system) and DBOMP files. 
The CULPRIT language is very much like those of report program 
generators, in that they have fixed column entry  positions. 

In addition to the technologically prominent  hierarchic  and net- 
work systems,  a number of systems  operate solely with single- 
level records.  That is, they  provide no physical file structure 
assistance in relating flat  files. Figure 7 illustrates  a possible 
single-level version of the  example in Figure 2. Most single- 
level systems would be classified as executive  systems  because 
they  process multiple records  at  a time. Although these  systems 
often  provide simple, easy-to-use  query languages, they  have  not 
usually been considered  for implementation as operational  sys- 
tems.  This may result from the difficulty they  present in dealing 
with multiple-value relationships. 

If  we go back to the example of departments and employees in 
Figure 2, there are  three ways in which this multiple-value 
relationship can be  processed using single-level records.  In 
the first method, a fixed number of spaces  for  employee num- 
bers can be  set  aside in the  department  record  (EMPFIELDI, 
EMPFIELD2, etc.);  as many employee  numbers may be  entered 
as there are  employees in a specific department.  This solution 
has its difficulties if the  user  wishes  to  write  queries with condi- 
tions on the  employee fields, because  there  must  be  a  copy of the 
condition  for each field. In addition,  each  department  record 
must  have enough spaces available to handle the maximum num- 
ber of employees  that  can  occur in a  department.  This  results in 
department  records  for small departments  that  have much waste 
space. 

A second way is to duplicate  department information for  each 
employee.  This is the solution used by the IBM ~1s/360'* and its 
successors. The difficulty with this solution is that  the  depart- 
ment data must be copied and maintained for each  employee, a 
difficulty that  increases if there  are multiple levels in the hier- 
archy. 
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A third solution is to  have  separate files for  department and 
employee  records  and  to merge them by sorting and matching 
records on the value of the  department  number.  This is the 
solution usually selected by report  generators  and relational sys- 
tems. The difficulty with this solution is that it requires much pro- 
cessing and sorting time to make matches  each time a transaction 
is processed. The hierarchic  and  network  systems, of course, 
also make these  matches,  but only once  at the time of the 
original storage  of  the  hierarchic  record.  They  can regain them 
simply by bringing in the  hierarchic  record when a transaction 
is processed. 

In IBM, the  most familiar terminal-oriented product  for single- 
level records is the  Interactive  Query  and  Report  Processor 
(IQRP)," which is an  outgrowth of MIS/360. It has some language 
resemblance  to  the  Interactive  Query Facility for IMSIVS. 
~ 1 ~ / 3 6 0  is particularly interesting  because of its easily used 
language. This language has a formal basis,  but it also has 
several  characteristics  that  make it appear much more English- 
like than  most  procedural languages. The ~ 1 S / 3 6 0  system itself 
was designed to  operate primarily on files that had been  extracted 
from operational  systems. These  extracted files were  then loaded 
with a  selected  number of secondary  indexes  to be used solely 
by M1S/360. The main  difficulty with MIS/360 was  that it could 
obtain  reports from only one file at a time. Nevertheless, in terms 
of usability for  this  restricted  domain, MIS/360 had an excellent 
language. 

Because of their extensive  use,  Report Program Generators 
(RPGS) should be mentioned at this  point. They  are not  particu- 
larly terminal oriented,  but they have provided the  basic form- 
oriented language that is a  characteristic of a  number of systems 
such as MARK IV and CULPRIT. There  are, of course, a number 
of packages  that  retain  the  report  generator philosophy and 
record  format. Two such  systems  are DYL-250 and DYL-260. 
Finally, it should be noted that CICS, mentioned earlier, has some 
primitive record handling capabilities. The main purpose of CICS 
is, however,  to  handle data communications. 

Standardization 

There is general agreement  that  standardization in a  stable 
technology can  be a very good thing because  standardization 
reduces the overall effort required to  produce  and  use  the re- 
quired  tools. There is also general agreement  that  standardiza- 
tion in a rapidly evolving technology can  retard the growth and 
development  of  that technology because it may freeze  the field  in 
a  confused  and  undesirable  state  and  thereby  act to discourage 
the  development of proper tools. Each  side of the issue of 
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whether  data  base  systems  have achieved the stability required 
for  standardization  has  advocates. To understand  the  issues of 
standardization, it  may be useful to mention some of the  activities 
that  have  entered  into  the  standards  debate. 

The most prominently mentioned activity with regard to  data 
base  standards is the Data Base Task  Group of CODAWL, 
which is an informal organization of users and producers of data 
systems  that  works to develop  techniques and languages to  assist 
in data  systems  analysis, design, and implementation. Reports 
issued by the DBTG are advisory in nature. The history of DBTG 
began in 1965, when an informal task group was formed to  study 
the  subject of data  bases.  Instead of producing a general review 
of the  area,  the  committee  developed specifications for an  ex- 
ample data  base  system.  The specifications were based primarily 
on two  earlier  systems with  which the members had had experi- 
ence - the  General  Motors  Associative Programming Language 
and the  General  Electric  Integrated Data  Store (IDS).  When the 
initial report was presented in 1969, IBM also submitted a pro- 
posal of specifications that included data independence,  security, 
and integrity. The committee decided to  improve the existing 
specifications, rather than make fundamental changes, to achieve 
the  desired additional functions. In 1971, a revised DBTG re- 
portz0  superseded the 1969 report. The CODASYL  DBTG report 
design has been suggested as an industry standard. In this  con- 
nection, an International  Standards Organization (ISO) Study 
Group has concluded that any standardization action in the  area 
of data  base management systems based on existing proposals 
is premature in the  absence of criteria against which to  measure 
such  proposals.21  On  the DBTG question, I B M  is not now  im- 
plementing a DBTG system. IBM has recognized the need for 
network structures  and, as we have previously noted, has pro- 
vided a number of forms of support for them within data  base 
systems  such  as I M s l v s .  

At  the  same time, there also exist  two  other  organizations,  the 
International  Standards  Organization (ISO), and  the  European 
Computer  Manufacturers Association (ECMA). In contrast  to 
CODASYL, ECMA does in some  instances  generate  standards. The 
original charge  to its Task  Group  Data Base (TGDB) was to 
report on the DB standardization  options and manpower/time 
needed for them. TGDB, however, submitted a majority report 
that  focused  on  the  standardization of CODASYL  DBTG. 

In addition to its conclusion on standardization, ISO has  accepted 
the  Interim  Report of the A N S I / X ~ / S P A R C  Study  Group  on  Data 
Base Management Systems  as an initial basis for  discussion  on  a 
gross architecture of data base management systems. 
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ANSI SPARC In  late 1972, the  Standards Planning and  Requirements  Com- 
Study Group mittee of the  American  National  Standards  Institute/x3 (ANSI/ I 

X~/SPARC) established a  study  group  to review the  current  state 
of development in the  data  base systems field with the  objective 
of determining whether  standardization  activities  were  appro- 
priate. The study  group  produced  an  overall  architecture with 
twenty-eight interfaces.” We cannot  discuss all these  interfaces, 
but it  might be useful to  note  the  gross  architecture  for  the  data 
representations  between the end  user  and  the internal storage 
media. To make feasible the level of data independence  and com- 
patibility with various end user languages that it desired,  the 
committee recognized that it would have  to specify at least  three 
major levels of data representation within its system  architecture. 
These three levels are  presented in Figure 8. 

Figure 8 ANSI SPARC proposal The most striking feature in the ANSI SPARC architecture is a 
for base data conceptual  schema level. This level is specified to  provide a 

“data  structure  independent  description” of the real-world enter- 
EXTERNAL prise. It is a formalization of an idea that could be  seen in the 

SHARE~GUIDE Report.23  One  aspect of this  idea is that  the  con- 
ceptual  schema level should be as  stable  as  possible  to  changes in 
the underlying physical file organizations.  This gives the  system 
data  independence in the  sense  that programs that  are written 
in terms of this level (or in terms of user views mapped from it) 
should not have  to be changed when the underlying stored 
structures  are changed for  reasons of computer efficiency. 

To accomplish this purpose,  the  conceptual-level  architecture 
proposes  that  the  entity  classes  (employees,  parts,  departments, 
etc.) that are recognized in an  enterprise along with their  attri- 
butes  and relationships be used as points of departure  for  the 
entire  data  base  system. A level based  on  such  concepts should 
be  at  least  as  stable  as,  and probably much more stable  than,  the 
stored file organizations used to  represent it in the  computer. 
Stored file organizations clearly have  to  change  whenever  the 
entity  classes  and their relationships change  (for  example, when 
employees  became  related  to  departments through projects).  In 
addition,  they  have to change to maintain efficiency in the  face 
of  an evolving system  load,  even in cases  where  the  entity rela- 
tionships do not  change. 

As  a  second  requirement,  the  system should be  able  to  coordinate 
and  control all accesses  to  a  particular  stored  fact  (that,  for 
example, a particular  employee had a  particular salary).  This is a 
problem because  there  exists  a recognized need to provide a 
series of views of the  system data  to  the end user,  both in terms 
of  various programming languages and in terms of various 
specialized views of the  enterprise (the personnel view, the 
payroll view, etc.). Mapping directly to  a changing storage  struc- 
ture level from each of the many user views in an evolving sys- 
tem would become very burdensome.  Essentially,  a  new  map 

structures and  mapping 

INTERNAL SCHEMA 1 

SCHEMA N 
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would have  to be made for  each  affected user view every  time 
the  structure  changed. In addition,  for  each  access  request,  the 
system would have to look at all maps to  determine  whether 
interference would occur. 

The ANSI SPARC solution  to  both  these  problems is to  have  a 
canonical  conceptual  level;  that  is,  a level on which each  fact 
appears only once.  In this  solution, all the  external views of a 
particular  fact  are mapped from one stable place in the  conceptual 
level, and  the  system  needs only to look at  that place to  deter- 
mine whether  another  user is accessing  the  same  fact. In sum, 
there  are  two definite requirements  for  the  conceptual level: 
data  structure stability and  data sharing coordination.  Steel of the 
ANSI  SPARC Committee  has  presented  one  proposalz4  for  the 
conceptual level that is  firmly grounded in modern  symbolic 
logic. We shall discuss  other  proposals in a section on logical- 
level models. 

Existing commercial systems do not  have anything that  cor- 
responds  to a conceptual level. In  fact,  most  systems  have only 
a single level where  the  user  deals  directly with what  corresponds 
to  the ANSI SPARC internal schema.  One  early implementation 
of a two-level system was the IMS implementation of logical and 
physical hierarchies. The two levels in IMS correspond closely 
to  the Gxternal and internal levels of the ANSI  SPARC proposal. 
The DBTG schema  and  subschema levels also correspond closely 
to  the  external and internal  schema levels of ANSI  SPARC, but 
they do  not allow the  user  to  combine  separate internal-level 
files. 

In summary,  there is considerable  interest from a number of 
implementers  for formal or informal standardization  based on the 
DBTG report.  At  the  same  time,  there  appear  to  be major new 
capabilities in the offing, as exemplified by the basis for  progress 
on  a  broad  front  as laid down by the ANSI  SPARC study group. 

Recent  research 

There  are  presently  two  divergent  paths of research  on data  base 
systems - system  functions and system  performance.  System 
functions  research  deals with data models, data  access languages, 
and data dictionaries.  System  performance  research  deals with 
workload description, and with the design, simulation, and 
optimization of  file organizations. 

Present-day  data  base  systems  exhibit  a  strong tradeoff between system 
simplicity and  power.  Either the system is simple and  less power- functions 
ful or it is powerful and  less simple. It should be  possible, how- 
ever,  to achieve  simultaneous  improvements in simplicity and 
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power. The way to  achieve  this optimization is to  break  up the 
data  base problem into  the right kinds of subproblems or com- 
ponents. To divide and  conquer is the  technique  often used to 
solve complex everyday  problems. In its  best  form,  the  idea is to 
break a pi-oblem up  into  two or more levels of detail  that are 
often called “levels of abstraction.” If an  appropriate  set of 
levels and components  can  be  chosen,  the  user  can  solve  certain 
aspects of his problem at  the first level without worrying about 
all the  details  and  then  solve  other  aspects, one level at  a time, by 
adding the  details embodied at  each level. 

Sometimes  termed  structured programming or abstract  data 
type definition, the  technique  has  received much attention in the 
computer  science  area.  In  structured programming and in ab- 
stract  data  types,  however,  a new set of components is defined 
for  every  problem. The new aspect of the work in the  data  base 
systems  area is that  one  set of components is designed to  cover all 
applications. If this  work  succeeds,  then  the  study  and  use of data 
base  systems may acquire  some of the discipline of chemistry 
and  physics.  A  student could learn  a relatively simple set of 
components  and  interaction  rules-  such as  the  elements  and 
valence  rules in the  periodic  table-and  use  them to build appli- 
cations  throughout his career. He would not  have  to  learn a new 
complex,  overlapping,  inconsistent terminology for  every new 
system,  and  he would not  have  to  invent a new set of components 
to  solve  every new systems  problem. 

The logical and physical levels found in papers like those of 
MadnickZ5  and  Meltzer,26 as well as in the GuIDElSHARE Re- 

are pragmatic examples of the  abstract-level  approach. 
The essential  idea, in data  base  terms, is to allow the  user  to 
solve the logical aspects of  his problem first, and then  to  take  up 
separately  the physical storage  structure  details  needed  for 
efficient support of  his logical application structure. 

Since the early papers,  research  has moved toward  more  funda- 
mental and  precise definitions of logical and  physical levels and 
their  components,  and  toward  a  better  separation of functions in- 
to  these levels. For example,  the following four levels are defined 
by the present  author in the original DIAM paper.l 

Data structure  independent  Entity  Set  Level. 
Access  Path  Level. 
Encoding Level. 
Physical  Device Level. 

In DIAM, a major effort has  been made to  obtain  a clean separa- 
tion between the entity  set level and the lower  physical levels. 
An explicit list of parameters is also given for  each  member of 
the small set of component  types defined for  each level. 
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A similar effort is being carried  out by the  Data Definition Lan- 
guage Committee of CODASYL~‘ that has proposed  categories  that 
include the following: 

Schema,  for  those  components  that-for  example-give  the 
name of a  schema. 
Structure, including components  for describing data ele- 
ments  and  their real-world relationships.  (This  category  and 
the succeeding category  correspond roughly to  the 
DIAM entity  set  level.) 
Validation. 
Access  control. 
Tuning  (which  corresponds  to  the DIAM access  path  and 

Resource allocation (which  corresponds  to  the DIAM physi- 
encoding levels). 

cal device level). 

Until  recently,  most  other  research  under the name of “data 
model studies” has focused  on the logical level only. (In different 
contexts,  this is called the  end-user level or  the  Conceptual 
Schema  Level.)  In  most  cases,  these models have  retained ele- 
ments  from physical representations  (e.g., single-level record 
structures)  and,  therefore,  have  not made a clean  separation 
between logical and physical levels.  Nonetheless,  their  intention 
has  been to define a logical-level model, and  that is the basis on 
which data base  systems  research is discussed  here. 

After much consideration  and  deliberation, it has been agreed evaluating 
that it is possible to  map field values from any  one logical-level logical-level 
model to field values in any other logical-level model (that is, models 
between flat files, hierarchies,  networks,  etc.) . The main differ- 
ences  between models occur in the  ways in which they  relate 
field values  and in the  number of physical  structure  elements  they 
contain. Differences in relationships are important  because some 
kinds of  field relationships  correlate well with relationships  be- 
tween  entities in the  user’s practical model, and  other  types of 
field relationships  do  not. For example, in the single-level file 
model, each field  in a record is equally related  to  each  other field, 
simply by the fact  that  they  are in the  same  record. In  the real 
world,  some of the  relationships  represented in the  record may be 
more  direct  than  others,  and  the  equal  representation is mis- 
leading. 

In an employee file record,  there is no explicit distinction made 
between the relationship of “salary”  and  “secretary” and the 
relationship of “employee”  and  “salary.”  Even though the  users 
of the  system know that  the  relationship is “salary of employee,” 
this may not be the real-world relationship  that  the  placement of 
salary in the  record  represents. The placement of salary in such a 
record might equally represent  “salary of secretary.” If no fur- 
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ther  guidance is given, a user might come  to  the wrong conclusion 
about  the meaning of the field. 

The use of the physical concepts of files and  records  also places 
an  added  translation  burden  on  the  user  because  he  must tell the 
system how to find and  search files and  records,  instead of simply 
asking about  the  entities he is interested in. Finally,  some  types 
of relationships lead to  easy evolution of the  system model when 
a user’s picture of the  real world changes  and  others do not. 

At first glance,  issues  such  as  these  seem relatively unimportant. 
For example, it seems  natural  and  necessary to translate  prob- 
lems into  terms of files and  records;  therefore,  we need not  try  to 
get rid of this  burden.  Many assembly language programmers had 
an analogous feeling about  registers  when compilers were being 
proposed,  yet compilers have  been an extremely helpful develop- 
ment. Similarly, making systems  evolve gracefully over time is 
important. It is frequently suggested that fifty to seventy  percent 
of programmer time is devoted  to changing old programs to meet 
new circumstances. In this situation,  the  important  issue  then 
becomes that of how well a logical model provides  the  desired 
relationship  and  system  properties. For example: how faith- 
fully does  a logical-level model represent real-world relation- 
ships? Does it imply spurious  relationships  that do not  exist in 
the real world? How stable is the  match to changes in the real 
world? Do the information structure  and  programs  have  to  be 
changed  substantially  when a small change  occurs in the  real 
world?  What is the  ease of use of the  accessing language? 

To answer  such  questions,  most  recent  work  has  focused  on  the 
ability of the model to  represent real-world relationships  and  on 
the  ease of use of possible accessing languages. Since  there is 
no  mathematical  formula  for evaluating models, the work tests 
the  capabilities of models and  compares different models by 
judging how well they  work with regard to examples of possible 
queries  and possible kinds of system  evolution. Logical-level 
model research  has  focused  on models with simpler basic com- 
ponents  than  the  hierarchies  and  networks to  be found in most 
commercial systems. In particular,  recent  research on logical- 
level models can  be  separated  into  the following two categories: 
( 1 ) single-level files (termed n-ary relational systems by many 
authors), and (2)  binary associations. 

single-level While there  has  been  great  recent  interest in relational data  base 
file systems, single-level logical models have  roots in the use of the 

logical punched  card  (which is a single-level record).  One of the  best- 
models known data  processing  systems,  the  report program generator, 

uses a single-level logical model. For example,  the  operation 
“match” in report program generators is the same as the opera- 
tion “join” in relational terminology. In effect, the basic logical 
models for  report  generators  and  relations  are  almost  exactly  the 

232 SENKO IBM S Y S T  1 I 



same,  except  for terminology and  accessing language. 

Some of the  earliest  data  base  research work on single-level rela- 
tional files was reported by McIntosh  and Griffel" in 1968. A 
paper on the  Entity  Set Model by Davies2' gave  added  impetus to 
research  on single-level files. This paper was followed by a paper 
by Codd?' who  discussed single-level files in terms of the  mathe- 
matical theory of relations.  Codd  added  a  number of terms  that 
made the  theory  more  compatible with the properties of data 
processing files. His paper led to  a  considerable  amount of work 
in universities  and within IBM on relational data systems  and 
languages. In general,  the relational work has  focused  on the 
logical level and has not  addressed  the need for powerful physical 
file organizations at lower  abstract levels to obtain  reasonable 
system efficiency. 

The initial basis  for  research in the single-level area was ex- 
panded by the  Data  Independent Accessing  Model (DIAM).' 
This model more closely followed the terminology presented by 
Davies,  Meltzer,  and the later SHARE~GUIDE reports. It provided 
a basis for a general  set of  file organization  techniques, including 
hierarchic  structures  and  indexes  for efficiently supporting the 
single-level entity set model. In  essence, DIAM was a data model 
that included a logical-level model as  one of its levels.  Addi- 
tional work  provided the set-oriented language RIL~'  for  access- 
ing the  entity  set model and algorithms for  selection of optimum 
paths3' to satisfy set-oriented  transaction  statements. 

The Entity-Relationship  Model - another multilevel n-ary mod- 
el- has  been  presented by Chen.32 Early publications on this 
model were primarily concerned with the  description  of an 
improved logical level,  particularly, a more detailed  and flexible 
method of describing a network of relations. These publications 
have  not  contained  any detail on  the components of the  lower, 
stored data  structure levels. 

Almost all research on implementation has  been  directed  toward 
implementing relational language systems.  Noteworthy  work 
outside IBM has been done  on  the INGRES at  the 
University of California, the ZETA system34 at  the University of 
Toronto,  the RDMS system35 and  the RISS system36  at the Massa- 
chusetts  Institute of Technology. The underlying file organiza- 
tions for  these relational systems  resemble the file organization 
for  the early ~ I S / 3 6 0 .  That is,  they allow for  any  number of 
secondary  indexes to a single level file. Although  such organiza- 
tions are useful for  transactions  that  refer to a single relation, 
they are often inefficient for  processing  matches  between  re- 
lations. At present, interfile relationships must  either  be built 
every time a transaction  that  requires  them is executed or when 
single-level files must  be  applied,  such as when department in- 
formation  must be duplicated  for  every  employee. 
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There is considerable work going on to improve efficiency. To 
approach the efficiencies of hierarchic or network  systems, 
relational systems will have  to have  the ability to describe  and 
access  stored  hierarchic or network  structures. A paper by 
L. S ~ h n e i d e r ~ ~  has  shown how this difficult capability  can  be 
achieved in a general  manner by using the DIAM model. There is, 
in addition,  work going on  at  the University of Toronto3*  and the 
University of Illinois39 to  provide limited versions of this capa- 
bility, starting directly from a relational context. The DIAM model 
has  not  been implemented in the form of a data  base  system,  but 
a  group from the  Martin  Marietta  Corporation  has implemented a 
generalized system  performance simulator based on its specifica- 
tions. This simulator has  been  able  to  describe the System 2000 
organization by using a set of DIAM parameter  tables.40 

accessing The second  area  where relational theory helps in understanding 
languages data base  systems is with regard to  the  structure of user lan- 

guages. Either relational algebra or relational calculus  can  pro- 
vide a formal mathematical  basis  for the construction of possible 
user-oriented languages. The following is an  example  query 
presented originally by Date.41 

English: 

“Get supplier  names  for  suppliers  who supply at least one red 
part.” 

For the relational tables: 

SUPPLIER (SUP-NO,  SUP-NAME,  STATUS, CITY) 

PART (PART-NO, PART-NAME, COLOR, WEIGHT) 

SUP-PART  (SUP-NO,  PART-NO, QTY) 

Relational calculus language: 

RANGE PART PX 
RANGE  SUP-PART SPX 

GET W (SUPPLIER.SUP-NAME): 

3SPX (SPX.SUP-NO=SUPPLIER.SUP-NO A3PX (PX.PART-NO 
=SPX.PART-NO APX.COLOR=’RED’)) 

Significant aspects of this  statement are  the  phrases “SPX.SUP- 

are required  to  interconnect  the  three  relations.  Phrases like these 
appear in all record-oriented  systems. It is shown  later in this 
paper  that  such  phrases are not  required in semantic  networks, 
thereby simplifying the writing of program  statements. 

NO’SUPPLIER.SUP-NO” and “PX.PART-NO’SPX.PART-NO”. These 
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It has been suggested that  statements like these might be  ex- 
pressed in a more user-oriented relational language. Exactly  what 
form  such a language might take  and  whether it might differ 
significantly from existing nonprocedural languages -like those 
for MIS/360, SYSTEM 2000 and GIs-is  not  clear  at this time. 
Until  the projected relational language appears,  it is difficult to 1 judge  the practicality of relational principles. 

One strikingly different approach  to single-level file languages is Figure 9 Query-by-Example 

Q~ery-by-Example.~’  This language, like the  report  generators, 
employs a fixed column input form.  However, it has many unique SUPPL ’ER~S”P~No~SUP~NAME~STATUS~ ‘ITY I 
features. For example,  the  order of statements in a  transaction 
specification is immaterial. This  relieves  the  user of the  burden of PART  IpART~NOIPART~NAMEICOLORIWEIGHT, 

constructing his query in a  sequential fashion. Instead,  the  user 
constructs  the  query  a line at a time in any order.  The Query-by- 

I..; P x y z j  I I  

I I I 

I RED I I SEVEN i I 
1 - 1  I I  

Example  statements  for the previous English language and rela- SUP-PART ~ S U P - N O I  PART-NO! QTY ‘ 
tional query  are  presented in Figure 9. I..;sE,,,; 1 I 
In  Query by Example,  we  can  use any symbol as an  example of 
the element  we  want  to  talk  about. Underlining indicates  that  the 
element is an example. If an element is not  underlined,  the 
symbol stands  for itself. In  our specification, “FIVE” is an ex- 
ample of a  number  for a supplier,  and “SEVEN” is an  example of a 
part  number.  Since “RED” is the  actual  color  that  the  part  must 
have, it is not underlined. The “P.” before “XYZ” indicates  that 
the supplier’s name should be  printed. 

The Query-by-Example language has  been  the  subject of a  human 
factors  experiment  to  determine  its  ease of use with respect  to 
the  Interactive  Query  Facility ( I Q F ) , ~ ~  Tests were  run with sub- 
jects who  were  both  experienced  and  inexperienced in pro- 
gramming. For those  functions  that  Query-by-Example could 
provide, it seemed easier  to use. Such  tests may guide us as  to 
desirable language features,  from a human factors point of view. 

I Much of the  recent  research  on logical-level models has been semantics 
concerned with making the models represent  the  semantics of 
the real-world situation  more closely and  exactly. For example, 
we would like to present the  user with a model that will restrict 
him from performing nonsensical operations. This approach is 
to be contrasted with today’s systems  that  present the user with 
a logical-level model in terms of computer  stored files of records 
that  contain bits or bytes.  In  these  systems,  the  user  can  add  any 
field to  any  other field and  store  the result. (For example,  one 
can  create a nonfact by adding “age 24” and “weight 150” 
together  and storing “174”  as  an  “address.”  There  are  already 
some  compilers  that forbid certain simple nonsensical operations 
like adding a floating point number  to  a fixed point number with- 
out  conversion.  Clearly, it would be useful if the  system  were to 
forbid other meaningless operations. 
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Figure 10 A meaningless  relation 

EMPLOYEE RELATION 

EMPLOYEE NUMBER SALARY  FRIEND  NAME ADDRESS 

As  we mentioned earlier in this  paper,  the best way to  evaluate 
models is to  use  examples.  Kent  has  presented  examples of mean- 
ingless operations in two  recent papers.44 Another  set  was 
presented in Bracchi, et al.45 Also,  an early paper by Codd2’ noted 
that  certain relational operations  produced  results that were  not 
meaningful in the real world. The DIAM paper’ went  further by 
pointing out  a need for  restricting information system  operations 
to  those  that  produced meaningful results,  and  also  gave  some 
examples. 

More  recently, Schmid and S w e n ~ o n ~ ~  have  discussed similar 
examples in a relational framework  and  have pointed out  a num- 
ber of places where  additional  constraints should be placed on 
the relational model. Figure 10 gives one of their  examples. One 
question  posed by this example is what  the  appearance of 
FRIEND and SALARY in the  same relation implies. Does SALARY 
imply “salary of the FRIEND” or  “salary of the EMPLOYEE”? 
Such  a relation is without  semantic meaning, and something must 
be added  to make the meaning clear to  the user. In the Schmid- 
Swenson  approach,  there is an  attempt to define meanings in 
terms of constraints  as add-on features of the relational model. 
When examined in detail,  their  proposals  for describing these 
constraints  lead  them to a model that is remarkably similar to  the 
binary models to  be  described in a  later  section. 

natural Since  other disciplines are also interested in the  topic of se- 
language mantics, it is useful to consider  their  experience. Two of the 

models major disciplines are  natural language processing  and  theorem 
proving. In  each of these disciplines, it  is important  to  treat  the 
names  for things in a manner  that is meaningful in real-world 
terms. In addition,  these disciplines study  better  ways of char- 
acterizing the  data  that  they  process  and  the  operations  they 
allow to  process  it. 

A natural language approach using a  semantic  network is being 
followed by Roussopoulos  and Mylopoulus at  the University of 
Toronto?’ in which they  try to make constraints  inherent  parts 
of their model. Their model is a  semantic  network,  and  their 
work has been published both in the  data  base and  the artificial 
intelligence literature. In their  proposed  use of the model, the 
user  and  the  operations he applies to  the stored data would be 
constrained  by meanings implicit in the  semantic  network. 
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At this point, it  is appropriate also to mention data  base  related 
work in natural language query  systems.  Much of the early work 
in this area has been devoted  to  creating  systems  for  purposes 
of demonstration. In  these demonstrations, many natural lan- 
guage queries could be  parsed  and  answered,  but  the  fraction of a 
set of queries posed by an inexperienced user  that would be 
interpreted  correctly was not clear. Systematic work on applica- 
tion-oriented  data  bases is continuing. For example, Woods4’ has 
produced  a  system to  answer natural language questions  about 
lunar rocks.  Also,  a  group in the IBM Research Division is 
working on a natural language query  system  for  urban planning.4x 
Petrick has recently published an excellent  discussion of the  use 
of natural languages for  communication with  computer^.^' 

A hint of the difficulty involved in semantics  can be given by the 
following query:  “Print  departments  and  their  employees  where 
employees earn over $20000.” The question is whether  the 
system should print “all the  employees in the  department,”  or 
“only those  that  earn  over $20000,” or “only departments  where 
the  sum of all employee  salaries is over $20000.” This query  can- 
not be answered  without additional information. 

It has been suggested by a number of authors  that  such a system 
should have  a dialogue with the  user  to  obtain needed informa- 
tion. If the  system  cannot  understand English, then the user  must 
learn some formal language that the  computer can deal with. This 
defeats  the  reason  for using natural language in the first place. 
Fortunately, it appears  that most queries  have  clearcut  answers. 
This means that  there is hope that  a  system could answer a 
sufficiently large fraction of possible queries  to  be useful and  not 
give seriously misleading answers in other  cases.  The  truth of 
this  conjecture  can only be determined in a real operating 
environment. 

’ 

I Noting  that  Figure 2 is also a representation of information, one binary 
might ask whether  there are any systems  that  use  such  a binary- logical- 
association-oriented  representation  directly. The fact is that  that level 
representation has many similarities to  the semantic  networks models 
that  are  used in natural language systems.  There is also a long 
history of work  that  uses binary associations in artificial intelli- 
gence  research.  Some of the  earliest work was  done  on  the 
Relational Data File by Levien  and  Maron.” Later work was 
done by Ash and Sibley,sl  Feldman  and R ~ v n e r , ~ ’  and  others  who 
were  concerned primarily with question answering or theorem 
proving systems.  None of these early systems  has been con- 
sidered for commercial use,  perhaps  because  they  store  each  set 
of binary relations in a  separate file. Such a file organization is 
particularly inefficient when the  number of individual relations is 
large. In  this  case, many accesses must be made to  peripheral 
storage  devices to process  the different files. 
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With the  recent  study of abstract  levels, it has now become  clear 
that  an information representation  can  be  supported by a stored 
data representation of a completely different form. For example, 
Figure 11 presents  the five DIAM 11 abstract levels’:’ for mapping 
binary  associations  at the ANSI SPARC conceptual  schema level 
to  hierarchic  records  at the external  schema level, and  to  indexes, 
lists,  and  hierarchic  records at the internal schema level. This 
mapping flexibility means that binary information representations 
need no longer be  saddled with the inefficiencies of stored binary 
file organizations. 

Given  the promise of  efficiency through mapping, interest in 
binary relations  has  been  renewed.  Much of this  interest is be- 
cause binary relations seem  to be a fitting semantic  representa- 
tion of facts. That is, binary relations can  represent only the 
facts  that  the  user  wants in his real-world model, and  do not  carry 
along spurious  associations like FRIEND and SALARY in n-ary 
relations  that  must  be  removed from consideration by some  add- 
on mechanism. Figure 12 shows a binary  representation of the 
information listed in Figure 10. In this  case, it is clear  that 
SALARY is a  direct  attribute of EMPLOYEE, and it  is only in- 
directly  related to FRIEND by way of EMPLOYEE. 

Langef01-s~~ and S ~ n d g r e n ~ ~  have  created  renewed  interest in the 
area with their  series of papers on  structures  for representing 
the  real world. Additional impetus  came from Titman’ss6  and 
B r a c ~ h i ’ s ~ ~  work on binary  relations,  and a major  force was 
Abrial’s paper  on  data  semantics.58 This  latter work was  extended 
in a  paper by Senk~.’~  There have been few implementations of 
binary systems  since  the  work of Feldman and Rovner.  Titman’s 
paper  presented  one  implementation,  and Bubenko“ and Berild 
and  Nachmens“  describe  a  second running system. 

Papers  at  the IFIP  TC-2 Working Conference at  Freudenstadt, 
Germany, in 1976, seemed  to  agree  that  the  network,  hierarchic, 
and single-level files brought  the  representation  of  too many 
individual facts  into  their  records  and  caused  maintenance  and 
semantic difficulties. There was a  movement  expressed in papers 
by Bracchi, Paolini and Pelagatti?’ Falkenberg,””  Hall,  Owlett 
and Todd: and  Senko?  toward  a  smaller  binary  form  of  fact 
representation. At the  Freudenstadt meeting and  at  succeeding 
data  base meetings, there  has  been increasing agreement  that  the 
binary network form or some  close  approximation  has much 
more  desirable technical properties  than n-ary relations,  tables, 
hierarchies, or DBTG networks  for  use as a logical level. How- 
ever,  since  past  experience  often plays a part,  tables may be  more 
desirable  from a human factors  standpoint. The resolution of this 
dilemma should cause much lively discussion in the  next  few 
years. 
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This problem is alleviated to some extent in the FORAL language 
for the- DIAM II system. FORAL operations  are  related to a FORAL 
context,  and  this  relationship allows the system to specify what 
would normally be  considered  connections  to  other files in an 
imPlicit fashion. In Figure 13 is shown a display screen  for a 

,P (Light  Pen) .70 In this lan- 
guage, the  user  enters  statements by touching nodes  and  arcs in 
the network  and  operations on  the operations list. On  the  screen, 
we reoresent  the  series of oen touches required to create the 

The light pen language seems to require  fewer artificial elements 
(parentheses,  commas, etc.) than  a  written language to  render 
it unambiguous. This  particular light pen  syntax  also  requires 
little or no typing skill. Of the  ten major words in the statement. 



output 
SUP-NO 

SUP-NO STATUS QTY-of avg QTY-of 
SUP-PART of SUP-PART of 

STATUS 1 7 
QTY-of-SUP-PART-of SUP-NO 9 

avg QTY-of-SUP-PART_of..SUP-NO 14 10 

2 G 2 3  2 3  

multiple-valued attribute QTY-of-SUP-PART-of-SUP-No. In 
a flat  file system,  the  user could easily get STATUS out of the 
SUP-NO file  by asking for  the  appropriate field. But to get QTY-Of 
~ s u P - P A R T ~ o f ~ S U P - N O ,  one would have  to call for  the 
SUP-PART file and specify a  match  between  the SUP-NOS in the 
two files. 

By using binary  association  networks, it is possible  to design 
languages that avoid the  syntactic noise found in languages that 
deal with flat files, hierarchic files, or DBTG networks. In doing 
this,  we  can  derive languages that  are both  formal  and unambig- 
uous and  have many similarities with natural language. 

Most of the work on  data models has been restricted  to  the stored 
logical level. There  was, however,  some  excellent early work  on data 
formal models for  stored data by Smithi2 and Taylor.i3  This  work levels 
has been recently followed up by the CODASYL Stored  Data 
Definition and  Translation Task  Group (SDDT~G),  of which both 
Smith and  Taylor  are  members,  and which is publishing an ex- 
tensive  work on data t r an~ la t ion~~  that  has used and improved on 
many of the DIAM concepts  and  components. A paper by 
Nahourii, Brooks, and C a r d e n a ~ ~ ~  takes  another  approach  to  data 
translation.  They are concerned  about  dynamic  access  to in- 
formation  stored in different generalized data  base management 
systems.  Their  approach  consists of describing the  stored data 
structure in each of the  systems by a DIAM string catalog. If the 
user specifies his query in a self-contained set-oriented language 

, for his own system  (like  the  set-oriented language for  System 
2000 or IQF for IMS~VS) , then a search  path  selection algorithm 

1 can look at  the string catalog and  translate  these  statements  into 
segment-at-a-time language searches  for any of the system nodes 
that  contain  relevant information. Using each data base  system's 
own segment-at-a-time language avoids  the writing of translation 
algorithms that  consider  the encoding and  access  methods of 
each individual system. In  another improvement, DIAM 11, the 
model has been revised to  support a binary network logical  level5" 
and  the physical device level has  been  better defined.i6 

We have  already mentioned several models for  stored data  that 
are being worked  on in the n-ary relational environment. These 

I 
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include the models of Chen,"' Mylopoulos,  Schuster,  and 
Tsichritzis?  and Schmid and Bern~tein.~' Another model in 
this  area is that of C a b a n e ~ . ~ ~  These models tend to discuss 
access  path  structures of greater generality than  those  found in 
existing data  base  system  implementations,  but do not  yet give 
detailed, generalized parameters  for  access  paths, encoding and 
access  methods.  Finally,  there is some  recent  work which uses 
Abrial's binary model as  a basis for describing both  the logical 
level and  the  access  path level. A paper by Adiba  and Del~bel ,~ '  
like that of Nahourii, et al.,  attacks  the problem of cooperation 
between different data  base  systems. Both of these  papers also 
discuss  access  path  selection algorithms like those  described by 
Ghosh.3'  The paper by Hainaut7' focuses on  the optimum  search 
path  selection  problem. 

The main trend in logical level modeling is toward a more faithful 
representation of the  semantics of users' models of the real 
world. This  trend has brought with it emphasis  on models with 
simpler components  than the networks  and  hierarchies found in 
most commercial systems. If followed to its apparent  conclusion, 
the  work will result in the definition of a basic data  structure 
component  for  representing  a single fact in the real  world,  rather 
than a complex structure containing many facts. 

The main trend in stored  data  strucures is in the  other direction - 
away  from simple tabular  structures  toward  structures of more 
generality and  more efficiency. This  topic  can be worked  on in an 
incremental  fashion,  as we have  seen, with the extensions of 
relational data  structures. Also, research  can  start with a  very 
general structure,  as was done by Smith,  Taylor,  or in the DIAM 
model. 

In  the  area of accessing languages, most,  of the  work is directed 
toward languages that  access  sets of elements  rather  than  the 
usual  record-at-a-time languages. Here again there may be a 
trend toward binary-oriented languages, although Query-by- 
Example  has  demonstrated  excellent usability and is a major 
query language innovation. 

The main obstacle to set-oriented languages and  the simpler 
logical-level models is the  number of difficult research problems 
yet to be solved, particularly in the  area of shared  update  and 
system efficiency. Although  these  problems will take time to 
solve, the various  systems mentioned give an indication of the 
direction  solutions will take. 

In  the  best of possible worlds,  the  functions of current  data 
dictionaries would be  integrated  parts of a data  base  system 
catalog. Clearly, specifications of data  elements  and real-world 
relationships, along with their validity checks, should appear  as 
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integrated  parts of a logical-level catalog. Similarly, the  sup- 
porting physical-level file organization descriptions should appear 
as part of an  associated physical-level catalog. 

It is often  the  case  that  a  particular crucial need appears first in 
actual  systems in a  business installation. This need is typically 
met first by a special package, with research  then following 
afterward.  This  seems  to  be  the  case with data  dictionaries. There 
seems  to be little direct  research in the  area of data dictionaries. 
Most of the  current  work is driven by user  requirements, in the 
same way that  user  requirements  generated  development of data 
base management systems like IDS, IMS/VS and CICs. For ex- 
ample, early work in IBM on data dictionaries by Meyers on a 
system called TAG" and  the  more  recent DB/DC Data Dictio- 
naryX1 have  both grown from field experience. There  are general 
discussions of data  dictionaries by Uhrowczik" and Canning.83 
With regard  to  research,  the primary need is a good data model. 
An  appropriate integrated data  dictionary should be a natural 
consequence of such  a model. 

System performance 

Up to  this point, we  have  been  concerned with research  on 
functions,  research designed to  improve human efficiency. On 
the  side of the coin lie questions of machine efficiency. Questions 
of machine efficiency  will remain as long as  hardware  storage is 
accessed by address  rather than by content. The questions  arise 
because a well-designed file organization  can  often provide an 
order-of-magnitude or greater  access time reduction  to  desired 1 information than  a  straightforward  one. Since we  cannot  expect 

, to  see  content  addressing  hardware  that is capable of storing large 
data  bases  for an extremely long or an infinitely long time,  these 
order-of-magnitude economies through design should continue to 
justify effort expended on research. 

In the  performance field, much of the early technology was 
generated by workers with backgrounds in scientific computa- 
tion. Digital system  simulators exemplified by the IBM Computer 
System  Simulator (css)'~ and analytical simulatorsn5 fall into 
this class. These simulators  describe  an  access  to information 
simply by some small, fixed number of random  device  accesses. 
This  approximation is quite  satisfactory  for many types of opera- 
tional systems,  but it breaks  down in dealing with retrievals from 
complex file organizations.  In a complex information system,  an 
information access (or query) usually requires varying numbers 
of device  accesses, depending on  data  base  size,  content, file 
organization,  etc.  Clearly, additional techniques are required to 
deal with performance in these  types of data  base  systems. 
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There  are  at least the following three main categories of work  on 
performance: ( 1) description of system  load; (2) simulation of 
proposed  system  hardware  and  software configurations; and 
(3)  synthesis and optimization of system  hardware  and  software 
configurations. 

There  are a number of ways of specifying system  load. In 
scientific computation,  various  instruction mixes, procedural 
program mixes, or  trace tapes  have been used. These descriptions 
are  not  quite  appropriate  for  the design of information systems. 
Instruction mixes do  not  represent  the workload on  mass 
storage  devices.  In  the  case of procedural  programs  and  trace 
tapes,  each  assumes  some fixed file structure. Such load specifica- 
tions  preempt  any possibility of studying different file organiza- 
tions  for the same  problem. 

Since file organization is an  important  consideration in the design 
of information systems, a system workload description should 
not  contain  any commitment to a particular  stored file organiza- 
tion. (In other  words, it must be data  structure  independent.) 
This  means  that  the  study of data-stricture-independent  data 
models and their  associated  accessing languages has  direct  ap- 
plication in the  area of load description.  However,  more load 
description is needed so that a simulator  can  calculate  the num- 
ber of records  to be retrieved during a  particular  query. For 
example, a simulator requires information on the number of 
instances of a particular  type,  such as the  number and size of 
fields, the  number of entity  descriptions,  types  and  numbers of 
transactions,  etc.  This information must  be  added  to  the  data 
element  type information to  be found in data model descriptions, 
e.g., the  names of the fields and  the  names of relationships. 

An even  more  important  measure of the utility of a workload 
description is a human factors  one. The workload descriptions 
collected  for  the tuning of existing file organizations may be 
extremely  complex, when such information can be collected 
by the  computer  without  human effort. On the  other  hand,  the 
workload description  for the initial design must be relatively 
simple because it must be  constructed by hand.  Rarely  can  a file 
designer  use a workload description  that  takes him weeks or 
months to specify; he might prefer  to  take his chances with an 
estimate of the file organization. 

In the proceedings of the 1972 Fall Joint  Computer  Conference, 
TeichrowS6 published an excellent review of the  work directly 
related to system workload description. He singled out  the 
papers of Young  and  Kent,  Lombardi,  Langefors,  and  the  In- 
formation Algebra, ADS, PSL, TAG, and SYSTEMATICS systems 
for  detailed  comparison.  A  more  recent review was  presented by 
C o ~ g e r ~ ~  in Computing Surveys. In recent  years,  there  seems  to 
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the owners. In the  second  case,  the  user would have  to  write a 
program that includes  a  test  to  determine  whether  a  particular 
entity  number is related to  another  entity  number by the relation- 
ship that it is owned by the second entity  number. 

In a  second  possible logical design, we  might guess  that it would 
be  better  to place the  entities  into  two different sets  for  the 
purpose of naming, say, OWNERS and FURNITURE. In this  case, 
the  second program would be easy to write,  since it would only 
have to  say LIST OWNERS. This is in contrast  to  the first one, 
which would become  more difficult, because it would have  to 
say LIST OWNERS and then LIST FURNITURE. 

As we can  see,  the relative efficiency  of the  two logical designs 
is measured in terms of the human efficiency  of writing the pro- 
grams  to  be used in the  system. To evaluate  this efficiency, we 
must first have  a  proposal  for  the  entity sets, and  then  we  must 
write  programs in terms of these  sets.  Clearly, a computer  cannot 
write  the  programs,  and, if it does  not  have  the  programs, it has 
no way  of calculating either  the human cost or  the  computer 
cost  for building and running the system. 

Of  course, a person could design a logical level and write all the 
required  programs. We might then  even  invent  a way to have 
the computer  calculate  an  absolute  evaluation of the logical level, 
but we still would not know whether  the design were  close  to 
optimal. We might also design and program two  or more alterna- 
tives  and  have  the  computer  compare  them,  but  that would al- 
most  certainly not be worth  the  trouble. What we should do,  and 
continue  to  do, is something that people do  better  than com- 
puters;  that is, look at  the real world and classify its ill-defined 
elements  for our particular ill-defined purposes. 

Looking at  the design problem in this  way, we can  see  that in the 
strictest  sense  a  computer  cannot  do logical design;  at  present,  we 
do not  even  have algorithms for  the  computer-comparison of 
logical designs. In effect, what a computer  does when it executes 
an algorithm that  groups  associated fields into  records is physical 
design. Many  workers call that logical design because  they 
believe that single-level or hierarchic  records are logical struc- 
tures.  Almost without exception,  however, design procedures 
start with given sets of entities  and binary associations  between 
them. 

1 Physical design 

Taken  at  its most exact  and  detailed  level, physical design is 
extremely complex. In  an  hour,  a large system may process 



accesses, and use billions of computer  instructions. The problem 
of physical design is to find a file organization  that is close  to 
optimal for periods of days  or months. We clearly cannot 
solve this problem by simulating each  computer  instruction 
for a wide variety of choices of physical file organization.  Each 
instruction-for-instruction simulation of a  proposed file organiza- 
tion would run  orders of magnitude slower  than  real  time,  and it 
might take  months  to  simulate only one choice. To approach 
this  problem,  we make simplifying assumptions  and/or localize 
area of optimization. (For example,  the data base  simulators 
previously mentioned all make the assumption that the  execution 
of computer  instructions in a transaction  can  be  represented by a 
fixed time for  execution, so that individual instructions need not 
be simulated. This  speeds  up  the simulation by at  least a factor of 
a  thousand.) It is even difficult to  make  reasonable simplifying 
assumptions.  A  change of one  percent in a  record  size or in 
internal execution  time  can result in a factor-of-two difference 
in total  processing time. These discontinuities make it virtually 
impossible to  use  mathematical optimization techniques in a 
straightforward  way.  Much ingenuity must  be  exercised to find 
useful equations. 

, 

Even  without using mathematical techniques, it is possible to 
make some useful simplifying assumptions. An example of 
extreme simplification may be found in the  paper of Severance 
and Duhne,’n3 entitled “A practitioner’s guide to  addressing 
algorithms.” Other simplifications are discussed  later in the 
section. 

In considering the localization of simplifications, we first discuss 
the  technique of hash addressing. It is possible to look for  an 
optimal design that is relatively independent of other file design 
considerations. In a series of papers,  Lum  and  coworker^'^^ have 
demonstrated  that division by a relatively prime number  is,  on 
the average,  the  best hashing technique,  and  therefore  the  best 
first choice  as a technique.  In  another  series of papers,  Van  der 

has provided guidance on the  selection of an optimal 
loading factor, considering both  storage  cost  and  access time 
cost.  The  area of hash addressing  techniques  has  been reviewed 
by Severance,1oG  and more recently by Mauer and Lewis.”’ 

Another  area of interest is design assistance in grouping as- 
sociated fields together  into  records or in deciding whether  cer- 
tain associations should be  represented by intersegment hier- 
archies or DBTC sets.  Since a large data base may contain 
thousands of possible  associations, it is extremely useful to have 
assistance in assuring  that all associations are  represented  and 
consistent.  This kind of assistance is provided by the IBM 
Data Base Design Aidlo8 described in this  issue by Raver  and 
Hubbard.log  Like most of the following design aids,  the  Raver 
and  Hubbard  data  base design aid begins with an input of the 
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required  binary  associations  for  the  system. From this informa- 
tion,  the  system designs a network  structure  to  support all the 
required relations and  checks  to  determine  that  there are no 
conflicts. It then  also  checks  to  see  that  hierarchic  structures  for 
supporting  user logical views can  be  derived from this  structure 
according to r~s lvs  rules  for  hierarchic  records. 

A  further  step has been  presented by Smith and  Mommens.l10 
Here, they  ask  for weightings of the  associations  to  indicate 
which associations are  traversed  most  frequently.  Their program 
then  performs a pruned  exhaustive  evaluation of all the  possible 
I M S / V ~  structures  that fulfill the  data  requirements. The pruning 
is done  on  the basis of allowing only valid IMS/VS Physical 
structures  and throwing away proposed  structures  that fall 
below an  already  calculated  structure in performance. Bubenko 
et al."' require  that the  user propose valid structures, and they 
then give an algorithm that  uses similar measures  to  compare 
structures. 

Finally,  there  are the studies  that  create  equations  that  can be 
used with mathematical optimization techniques. Hoffer and 
Severance"' use a cluster  analysis algorithm to perform alloca- 
tion of fields to  records  on  the basis of access  path  traversals. 
Mitoma  and Irani113 go one  step  further  than  previous  studies in 
load description by asking the  user  to  provide a sample of the 
programs (or run units) to be used against a DBTG data  base. 
There is then a process  that goes from these more data-indepen- 
dent  descriptions to  the providing of traversal  frequencies  for the 
proposed  paths. The Mitoma-Irani optimization techniques 
transfer the problem into  terms of the  shortest  path in a network. 

There  are also  a  number of studies  on  the  selection and design 
of indices. Yao  and  Merteng3 utilize a gradient  projection method 
to design a multilevel index  for a document  retrieval file. In  an 
earlier  paper, Lum and Ling114 present  analytical  equations  to 
help in the selection of multiple secondary  indices, and Schkol- 
nick115 presents  techniques  for a similar problem. 

In conclusion,  after a period during which little had been done  on 
file design algorithms, there emerged many new and  interesting 
techniques  that are currently being studied in research  and  devel- 
opment.  Some of these  techniques  have already seen  use,  and 
we can  foresee more successes in the  area of automatic design. 

Future developments 

Recently  the  National  Bureau of Standards  and  the  Association 
for  Computing  Machinery held a workshop  on Data  Base Di- 





systems will require high computer efficiency. The new force in 
the field, however, is the increasing demand  for data  base  sys- 
tems  that are efficient  in the utilization of human resources,  users, 
programmers  and  systems  analysts.  Considerable  research  and 
development is going on, and this work should contribute 
significantly to the evolution of easier-to-use, more powerful 
data base  systems. 
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