
A broad range o j commercial and research data base systems
are analyzed. Common characteristics are discussed. These
systems, which have roots in olderfiling systems and in punched
card systems, are grouped into the three categories ofhierarchic,
netw-ork, and single-lc~vel models. Also presented is work on
the standardization o j data base systems. Research toward the
discovery of new commonalities is also discussed. This paper is
based on an extrnsive published literature.

Data structures and data accessing in data base systems
past, present, future

by M. E. Senko

During the time since the publication in this Journal of a paper on
the history and status of existing data base systems,' much has
been written about data base systems in the periodical literature
and in the proceedings of conferences. However, there has not
been time to compile this information into a critically written
book. This article cannot replace such a book, but it is hoped that
it will aid the reader in developing a critical viewpoint of general
trends. In addition, it provides a large number of references for
one who wishes to become acquainted with recent trends in
greater detail.

recent Depending on point of view, there has been either little or great
progress progress during the past four years. From a qualitative viewpoint,

there has been very little progress in commercial data base tech-
nology. The four-year period has been a time of consolidation and
incremental improvement. From a quantitative viewpoint, on
the other hand, there has been very great progress -the number
of installed generalized data base systems has increased from a
few hundred to several thousand.

During this time, data base systems have become a main topic of
discussion in the computer industry. The interest is, however,
not due simply to the large number of installations. The fastest
computers and the largest storage devices are barely able to
meet the requirements posed by recent integrated systems for
reservations and for management control. Much of the present
interest has arisen because effective and efficient implementation
of these systems represents an outstanding technical challenge
in all phases of computer systems work. Finally, in the research
area, a greater understanding has been developed. Significant
problems, however, must still be solved to assure a worthwhile,
compatible transfer of this knowledge to installed systems.

208 SENKO IBM SYST J

The early sections of this review place each of these points in a
long-term perspective by discussing the technical evolution of
the data base systems area. Later sections provide an introduc-
tion to current publications in the area, along with comments
designed to guide the reader in correlating the sometimes diverse
terminology. The Data Independent Accessing Model (DIAM) is
used to provide a focus for this material. The review ends with a
discussion of possible future developments.

There are many proposed definitions for ir$ovmution systems,
none of which satisfies all people. We simply note that a major
purpose of any information system is to provide a relatively exact
and efficient model of the significant resources of a real world
enterprise. In this description, the criterion of efficiency is
particularly important because it provides the driving force be-
hind much of the work on computerized information systems. In
the case of computerized information systems, there are at least
three components in the efficiency criterion. One is the efficient
use of the resources modeled by the system, such as the parts,
the airline seats, the money, the people, and so forth. In recent
years, one of the main places where efficiency has been gained
is in the timely use of expensive resources (for example, airline
seats). In many instances, timely use generates a requirement
that the enterprise models follow the real-world situation second
by second.

In the computer industry proper, efforts on data base systems
have been directed primarily at the other two components of
efficiency; computer efficiency and human efficiency. The in-
dustry has, of course, always emphasized the efficient use of
computing resources. However, there has been a continued
steady decrease in hardware prices and a parallel increase in
salaries. Boehm,2 for example, indicates that as much as seventy-
five percent of Air Force computing costs are in the cost of soft-
ware, and he estimates that this figure will rise to ninety percent
by 1985. In this environment, efficient utilization of human re-
sources is becoming a dominant issue.

Early data base systems

The first major step in the mechanization of information systems
came with the advent of punched card machines. The increased
efficiency and accuracy of machine-prepared reports was dra-
matic. These benefits, however, caused us to overlook the fact
that the systems required a new type of human effort - the effort
to design and implement an efficient machine accounting sys-
tem. Punched card machines can work on fixed-length fields
only, and are efficient only in sequential processing. To utilize
these machines, the user has to spend a considerable amount of

DB PAST, PRESENT, FUTURE

program. They provided algorithms for translating a user’s non-
procedural description of a report into machine language pro-
cedures for composing the report. Also, they made the searching
of tape files an implicit (or nonprocedural) process. That is, the
user could simply state the conditions for a record to be retrieved,
and the system would generate the algorithms to perform the
search efficiently.

The tape-oriented systems of the 1950s and early 1960s had to
generate algorithms for the search problem only within the re-
stricted and simplified structure of a sequential search. This
approach was, however, quite adequate until peripheral storage
with large-scale random access capability appeared. Random
access hardware removed the efficiency-based sequential batch
processing restriction and made possible the construction of
up-to-the-second real-world models. Real-time systems had thus
arrived. Random access systems brought with them the potential
for an increased range of complex file organizations. Again, to
take this major step forward in total system efficiency, a signifi-
cant additional housekeeping burden was placed on the user.

In the early and middle 1960s, commercial users began to ac-
cumulate a number of pragmatic techniques for shifting some of
the housekeeping burden back to the computing system. The
most primitive techniques were the direct, sequential, and in-
dexed sequential access methods. These access methods as-
sisted substantially in the housekeeping aspects of storing and
moving physical records. They also provided some assistance in

l locating a particular record with a unique identifier. ’ The next qualitative step arrived with the combination of a
procedural language (usually COBOL), the capabilities of early
tape systems for handling records with variable numbers of seg-
ments, and the random access capabilities of hardware. This line
of development, termed procedural language enhancement,
appeared in the General Electric Company Integrated Data Store
(IDS) and the IBM Data Language I (DLII). Systems such as these
process one record at a time and are the basis of essentially all
the major real-time information systems. They generally handle
real-time maintenance of the operational data of a corporation
and are, therefore, called “operational systems.”

Nonprocedural systems have followed a second path of evolu-
tion, by adding varying amounts of random access storage
capability. This path has led to random access oriented RPGS, the
MARK Iv System of Informatics Incorporated, the Generalized
Information System (CIS) of IBM, and the Time-shared Data
Management System (TDMS) of the System Development Cor-
poration. These executive systems, which are used primarily

Figure 1 Example of a generalized data base

PAYROLL INSURANCE

SALARY-AMT PREMIUM-PAYMENT

SALARY AMT DATE PREMIUM-PAYMENT DATE

BANKING

ACCOUNT-NO DEPOSITOR-NAME ADDRESS

DEPOSIT-AMT

DEPOSIT.AMT

INVENTORY

LOCATION

IN-STOCK QUANTITY

IN-STOCK-QUANTITY DATE

writing efficiency. For example, in one small, relatively in-
formal test for reporting applications, CIS was found to require
one to two orders of magnitude less programming time than
COBOL. This improvement in human efficiency was provided by
the executive systems with relatively small cost in computer
efficiency.

The first major thrust into the real-time information systems
area came about 1965. At that time each individual industry was
developing its own set of management information systems.
There existed approximately one hundred such IBM program
products or proposed program products, each with its own
specialized data management capabilities. Since the applications
were certainly different, it seemed necessary for each applica-
tion to have its own special code for handling its special informa-
tion files. However, the IBM Federal Systems Division’s For-
matted File System (FFS) experience indicated that seventy to
eighty percent of an application program’s code consisted of file
handling and data structure decoding. It demonstrated that these
tasks could be handled with reasonable computer efficiency by
a generalized program. It also indicated that systems could be
installed perhaps fifty percent more quickly and easily if gen-
eralized code were used for communications and data handling.

The utility of generalized data base systems becomes more
apparent if we look at Figure 1. In this figure, the main differences
between the several files shown are merely in the names of the
files and the names of the fields. Thus, such a transaction as

x could apply equally to each of the files. If the software allows
the definition of records with fields of different sizes and names,
and is capable of handling such a transaction with a name
appropriate to one file, then it can handle similar transactions on
files where the name in the blank space is different.

IF--NO = 012345, CHANGE ADDRESS (01. LOCATION) TO

Perhaps the only significant differences among systems for vari-
ous application areas have been the details of the computational
procedures that were applied to the stored information. For

7-12 SENKO 1BM SYST J

example, in the payroll case, the “salary amount” might be used
in an arithmetic calculation of taxes. In the inventory case, the
contents of a field similar to “in-stock-quantity” might be used
in a different arithmetic calculation to obtain the number of parts
to be ordered when restocking.

Realization of the fact that data handling and data communica-
tions were functions that could be generalized led IBM to empha-
size the Information Management System (IMS), Customer
Information Control System (CICS), and the Generalized Infor-
mation System (CIS) as its main data base/data communications
systems products for a wide range of industries. The historical
evolution of data base systems has recently been reviewed in
greater detail by Fry and S i b l e ~ . ~

Evolution of data base terminology

One of the outstanding aspects of data base studies is the com-
plex, overlapping, shifting, and ill-defined terminology. This
situation is understandable, but its causes are not often recog-
nized. In the data base area, as opposed to the field of mathe-
matics, there has not been time to perfect and simplify concepts
so that they can be adequately defined. In order to make some
progress, complex, ill-defined concepts have been given capsule
descriptions and labels such as “the sequential access method”
or “secondary index” for reference. It is then hoped that the
reader has enough knowledge of actual systems to understand
what the label really stands for.

One of the reasons for so much overlapping terminology is that
it is relatively easy to recognize a particular distinctive property
of a system, assign a label to it, and then classify things accord-
ing to the label. Since more terms give the terminologist a com-
fortable feeling that he has covered all bases, he is led to a
proliferation of overlapping and inconsistent terms. Work is
progressing toward simplifying data base concepts and reducing
their overlap. For now, however, we shall use the labels as a
starting point, leavening them with an understanding of the
complex concepts in actual systems. For example, commercial
data base systems are generally classified into three major
categories, each labeled by a file structure, namely, the flat file,
the hierarchic and the network types. These categories are rather
loosely defined, and the assignment of a system to any one of
them has been dependent on the time at which the system be-
came generally known to the data base community, as can be
seen by looking at the long-term evolution of this categorization.

1 In the beginning, there were punched cards, a box of which with
the same field format provided the prototype for the flat file.

~ NO. 3 . 1977 DB PAST, PRESENT, FUTURE 213

It was also possible to extend this structure by substituting for
each card in the box two or more cards, each with a different
format. This was equivalent to extending the length of a single
card, because it introduced no major changes in the character
of the file structure. It was also possible to extend the format by
placing more than one field of a type on the card. Although this
“multivalued attribute” format is really a “hierarchic form,” it
did not change the character of the data structure very much.
Thus, these new structures were pragmatically included in the
category of flat files.

A second method of extending punched card data structures was
to place variable numbers of cards of a new format type after
cards of the first format. Cards of the first format were called
masters and cards of the second format were called details. Each
set of detail cards could be considered to be physically associated
with the master card that immediately preceded the set, and this
physical association was used to represent a parallel logical
association between the contents of the cards. This method
formed the prototype for the hierarchic jile, in which each detail
card could be associated with only one master card. This master-
detail characteristic distinguished hierarchic files from network
j i les, in which a particular detail card or record could be as-
sociated with more than one master.

When these data structures were moved to tape systems, the
physical card length constraint was removed. This new freedom
placed a strain on the existing terminology. Since the term “rec-
ord” could no longer stand for a physical card, what should it
stand for? By analogy with the card as a physical subdivision, the
physical subdivision on tape was marked by an end-of-record
gap. The fact that it was useful to place more than one hierarchic
record between record gaps brought up a problem that was re-
solved in some cases by calling each hierarchy a logical record
and the space between gaps a physical record. There was also
a problem as to what to call the logical equivalent of the single-
level card. Some systems continue to call these elements records,
whereas hierarchic systems frequently call them segments.
Clearly, the data base term “record” can mean many different
things.

When random access devices came into common use, the term
network appeared on the scene. For the first time, it became
useful to connect one record to a second by giving the storage
address of the second record. These structures were labeled
networks even though they were only a subset of the possible
mathematical networks. Limitations were imposed by difficulties
in storing physical records with varying numbers of pointers.

Considering the complexity underlying this simple three-part
classification -flat file, hierarchic and network - we can see why

I 214 SENKO IRM SYQT I

a label accompanied by a capsule description may not constitute
an adequate definition. There is clearly a need for better defini-
tions, and to some extent this need can be satisfied by appealing
to mathematics. Although there are many overlapping notations
in mathematics (sets, vectors, relations, etc.) , it is true that when
a particular notational is chosen, most users can agree on the
meaning of definitions and operations within the notation. Here
again one must be careful to leaven the definition with some
knowledge of the technological concept. For example, an early
relational definition for the term identijier was the following: any
set of columns in the relation that provides a unique identification
for each n-tuple. This definition implied that an identifier could
be discovered by scanning the relation. Under this incomplete
definition, weight of person would be termed an identifier when
each person in the relation happened to have a unique weight.

This situation was somewhat improved by saying that over all
time the set of columns must uniquely identify the n-tuples. This
is better, but it still leaves out an essential aspect of the techno-
logical concept of identifier - the intention of the user to control
the assignment of identifier values so that no two entities have
the same identifier. (At present, the latter is an extra-mathemati-
cal part. It is essential, however, because some set of columns
might by accident act like an identifier, but it would never be
considered by the users as an identifier.)

This brings to the fore the distinction between the definitions of
precision and accuracy. Physical scientists and statisticians know
that there is an enormous difference between the two concepts.
Mathematical formulations are almost always precise, but they
are not always accurate representations of complex concepts.
(It should be noted that it is usually better to be generally a,c-
curate than precisely wrong.) Although existing mathematical
definitions are attractive to the casual reader because of their
simplicity, they may not provide a useful and efficient repre-
sentation of the area we wish to discuss. This is exactly the
reason why new notational systems are invented in mathematics
and physics, and it is also a reason for pursuing new notations
in data base systems. Later in this paper, we discuss the char-
acteristics of some of these new notations.

On the whole, there has been some progress in improving the
quality of definitions in the data base area, but most concepts
have not been refined to the point where simple definitions are
adequate. The reader should always recognize that the concept
that underlies a particular term may be more complex than the
simple description that accompanies the term.

NO. 3 1977 DE PAST, PRESENT, FUTURE

Table 1 Classes of data base systems

System
Class

"" ~ ~

Hierarchic

Network

Single-
level

Operationcrl Executive
Duuc.loper Systems Systems

AS1
I BM lMS/VS GIS

DL11
PARS

~ ~ ~~~ ~~~ ~ ~- -~ ~

ASI-ST

Informatics Mark 1V
MRI System 2000

Cincom
Cullinane IDMS CULPRIT
Honeywell IDS

Philips PHOLAS
Software AG ADABAS ADAWRITER
Univac DMS/90

~~ ~ ~~~ ~~ ~ ~~~~~~

TOTAL

IDS-I1

DMS/llO0
~ ~ ~ ~~ ~~ ~ ~~ ~-

Dylakor DYL-250
DYL-260

I BM CICS IQRP

Present data base systems

To give an overall picture of the present-day environment, it
may be useful to mention and give a general correlation of the
characteristics of several commercially available data base sys-
tems. A deeper critical review of data base systems is available
in References 4- 6, and in the documentation provided by
system implementers. Listed in Table 1 are some examples of
commercially available single-level, hierarchic and network sys-
tems. These systems have been placed in the categories in which
the reader would usually find them in the literature.

To indicate the similarities and differences among the various
data structures, it is best to use some relatively neutral, hypo-
thetical representation as a starting point. In Figure 2, we present
a simple representation of the associations among important
types of entities in a corporation. The ovals contain identifier
values for entities and the lines indicate how the entities are
related. For example, the identifier values for employees are
contained in the oval labeled EMP-NO; the identifier values
for addresses are contained in the oval labeled ADDRESS. The
line between ADDRESS and EMP-NO indicates that there is a
relationship between employees and addresses. In this case,
employees live at addresses. In some cases, things are related
in more than one way, as indicated by the two lines between
DEPT-NO and EMP-NO. One of these lines stands for the relation-

216 SENKO IBM SYST J

LOGICAL
LEVEL

With regard to data accessing, there are two types of lan-
guage available: a segment-at-a-time CALL interface to COBOL,
FORTRAN, PL/I, and assembler language; and a set-oriented
language for accessing hierarchies. This latter language is based
on the original TDMS accessing language, which in its time was
one of the simplest languages available for accessing hierarchies.
Recently, MRI Systems Incorporated announced a link feature
that allows the user to connect multiple files by means of sym-
bolic pointers. This feature aids the System 2000 user in per-
forming network processing.

In using the IBM Information Management System/VS (IMS/VS),s
the application programmer writes his programs in terms of one
or more purely hierarchic logical files. The data base administra-
tor is then separately responsible for computer efficiency. He
may choose to map the logical files into actual physical files in a
variety of ways without affecting the user’s programs, as shown
schematically in Figure 4. As a start, the IMS/VS data base ad-
ministrator may choose from a spectrum of physical file organiza-
tions, depending on the ratio of sequential to direct key record
accessing anticipated for the file. If the processing does not
require direct accessing, insert, update, or delete calls, the ad-
ministrator may choose the Hierarchic Sequential Access
Method (HSAM), which relates the hierarchic segments of each
record by physical contiguity and places them in a sequential
file.

If some amount of direct accessing is required, but much pro-
cessing is done sequentially in primary key order, the administra-
tor may choose the Hierarchic Indexed Sequential Access Meth-
od (HISAM), which also relates record segments by contiguity,
but places the records in an indexed sequential file. Excess seg-
ments of records that exceed a specified length are placed in an
overflow file along with new records. In this case, the data base
administrator has an alternative in the Hierarchic Indexed Direct
Access Method (HIDAM), which relates subordinate segments by
direct pointers. The choice between this pair depends on the
amount of file reorganization that is anticipated and the speed
with which the user wishes to access subordinate segments in the
hierarchy. If direct key accessing predominates, but some
sequential processing occurs, the data base administrator may
choose the Hierarchic Direct Access Method (HDAM), supple-
mented by secondary indexes on the keys to be used for sequen-
tial processing. This choice can save system accesses through a
primary index. If there is only direct accessing, the administrator
might choose the pure Hierarchic Direct Access Method
(HDAM).

If various types of segments in the logical file are accessed at
greatly different rates, or if some of the lower-level segment

DB PAST, PRESENT, FUTURE

types are frequently processed as a separate logical file, then the
data base administrator may choose to support the logical file
with several separate physical files and have the system connect
the files together with either symbolic (key) or direct pointers.
The fact that these pointers can lead to other records gives
r~s lvs network-like storage structures and processing capabili-
ties. For example, a bill of materials for a particular part that is
often implemented by network functions can appear to the
I ~ s / v s application programmer as a logical hierarchic record.

If accesses are frequently based on a key other than the primary
key, the data base administrator may also choose to have the
system construct and maintain secondary index files based on
these keys. Finally, the data base administrator may accommo-
date the system to various rates of insert-update-delete activity
by varying the allocation of space in the primary and overflow
portions of the supporting physical files. With the exception of
secondary index changes, all these computer efficiency variations
can be made without affecting the user's application program.

In the data accessing area, the main language of IMS/VS is the
segment-at-a-time language, D L ~ . The nonprocedural or set-
oriented languages, Interactive Query Facility (I Q F) ~ and
Generalized Information System (CIS),'" supplement DL/] to give
IMS/VS executive system capability.

Finally, the IBM Programmed Airline Reservation System
(PARS) and Advanced Administrative System (AAS) provide a
limited-form hierarchic record structure. These extremely high-
performance systems can support thousands of interactive
terminals. Since, however, they are designed for special high-
performance environments we treat them no further in this
general review. AAS is discussed by Wimbrow," and PARS is
described by Siwiec.12

In the category of hierarchic executive systems, we place those
systems or languages that process sets of records rather than a
single record at a time. In addition to System 2000 with its set-
oriented language, there are a number of executive language sys-
tems that can either stand alone or process files maintained by
operational systems.

One well-known system in this category is MARK IV of Informa-
tics Incorporated. MARK I V can be run as an independent system
or it may be used to access files that are maintained by opera-
tional systems such as IMSIVS. When run as an independent
system, the MARK Iv data structures can be stored in sequential
or indexed sequential files. When indexed sequential files are
used, key fields may be used for direct access coordination of

SENKO IBM SYST J

Figure 5 Hypotheticol network information structure

\\ \ \
EMP-NO EMP-NAME COMM SALARY MGR

EMP PROJ STATUS

\ \
bL I PROJ-NO I PROJ-NAME I PROJ-MGR I

records in multiple files. The main data accessing language of
MARK I V is, like the report generator languages, based on a
series of forms. The user fills out these forms to specify nonpro-
cedural file scanning, testing, and production of reports that con-
tain totals, subtotals, etc. In recent years, Informatics Incor-
porated has provided a series of online terminal capabilities to
assist the user in interactive access to MARK IV.

A second system in this category is ASI-ST. Like MARK IV, the
ASI-ST system utilizes fixed-column forms for transaction speci-
fication in both batch- and terminal-oriented modes of inter-
action. It has been suggested that writing in ASI-ST could be used
as a substitute for the writing of IMSIVS-DLII procedural pro-
g r a m ~ . ~ Other executive systems like MARK I V and GIS might
also be used in this fashion to simplify the generation of r~s lvs
application programs.

The IBM Generalized Information System (CIS) has evolved from
the free-format languages of IBM Federal Systems Division’s
Formatted File Systems. Because of the way it evolved, CIS
provides a direct terminal language. In dealing with single-level
records and informal reports, GIS is relatively nonprocedural
in appearance, but it does require procedural-like statements for
accessing hierarchic structured records. Like MARK I V and
AS-IST, CIS can be used either as an independent system or it
can be used to access IMSlvs data structures. A survey of hier-
archic systems has recently been published by Tsichritzis and
Loch~vsky.’~

Presented in Figure 5 is one of a number of possible network
representations of the example information shown in Figure 2.
In Figure 5 , we show only single-level records, although some
network systems also allow the fixed format hierarchic structures
found in COBOL record definitions. Use of this feature is, how-
ever, redundant because the network structure itself allows the
specification of hierarchic structures. Since a different language

NO. 3 . 1911 DB PAST, PRESENT, FUTURE

Figure 6 Three operational net-

work systems (A) DBTG/
IDS (6) TOTAL (C)
ADABAS

\ DEPTHASH I= P1 DEPT ETC.

/ f \EMP HASH

V@ P1 EMP ETC

COUPLING
TABLE

2 2 2

is required for accessing the COBOL hierarchic record, this
introduces another form of data structure dependence into the
system.

The first major commercial network-oriented system was the
Integrated Data Store (IDS) of the General Electric Company.
This system was implemented in the early 1960s and was the
basis for the system proposed by the Data Base Task Group
(DBTG) of CODASYL. IDS has gone through many iterations of
development. In Figure 6A, we present a schematic of the
D B T G ~ D S major file organization features. The file organization
starts with a hash code accessing algorithm that assigns specified
types of records to page-sized buckets on physical devices. In
our example, both Departments and Employees can be accessed
by hash codes. These hash-coded records can then be joined
into application-oriented sets by single or bidirectional chains.
In our example, the set of Employees in a particular Department
are all on the same chain.

There could be two other types of pointers for this particular
set. One type would also start at a particular department and go in
the opposite direction, giving the second direction of a bi-
directional chain. The second type would point from each in-
dividual employee record back to its department record.

A processing program usually starts by entering on a hash-coded
record, and then follows chains to obtain other records as re-
quired. In our example, if the program requires information on
the employee of a department, it would hash the department
number to obtain the department record, and then use the chain
from the department record to obtain the appropriate employee
records. If the system users seldom have questions about in-
dividual employees, the data base administrator would not use a
hash code to store the employee records. He would instead tell
the system to have the employee records placed near (that is,
in the same bucket with) the appropriate department record.
Since an application programmer must know and use only the
available set of physical access paths in his programs, the pro-
grams have some data structure dependence.

There is a new Honeywell version of IDS called IDS-11 that con-
tains many of the features specified by the DBTG. The major
change is the addition of a subschema that allows the programmer
to gain data independence by describing an application-oriented
subset of the schema for his problem program. In the case of the
DBTG systems, the logical subschema is limited to mapping from
one schema. There are a number of other systems that are de-
signed to implement the specifications set forth by the DBTG.
These include ~Ms/90 and DMS/I 100 of Univac, IDMS of the
Cullinane Corporation, and PHOLAS of the Philips Corporation.

SENKO IBM SYST 1

With regard to technical aspects, a number of possibilities for
simplification of parameters have been pointed out with regard
to the DBTG specifications. Such a set of simplifications was
suggested at the IFIP TC-2 Conference at Wepion, Be lg i~m. '~ ' ' ~
A further simplifying process is being carried out by the
CODASYL Data Description Language Commitee (DDLC1.I'
This committee is classifying the complex of DBTG data descrip-
tion parameters into a data independent set and a set that is to be
used for the computer efficiency tuning of an installation. Ad-
ditional considerations with regard to the DBTG data structure
concern efficiency of access to the long chains of records. One
solution to the problem has been attained by including the
possibility that DBTG sets can be implemented by pointer arrays.
A survey of CODASYL DBTG systems has recently been pub-
lished by R. W. Taylor and R. L. Frank.17

Two other network systems of interest are TOTAL and ADABAS.
In Figure 6B, we give a simple TOTAL file organization.

Single-level records for identifier fields are stored in Single Entry
Files (SEF) using a hash addressing scheme. Each identifier field
value in a single entry file may have a forward address pointer to
any Variable Entry File (VEF) containing that field. This pointer
leads to the first record in the VEF that contains a corresponding
field value. A pointer chain from this record continues through
the VEF and connects all the records that contain the specific
field value. There is also a chain that points in the other direction,
starting with the SEF value and going to the last data record that
contains that value and progressing backward through all other
records that contain the same value. Records in the VEF are
placed close to other records that have the same primary linkage
path. The user can define this path by selecting a primary SEF
from among the SEFS that have chains to the vEF. Each variable
file entry also contains a symbolic (key) pointer that leads
directly back to a SEF value for each chain through it. This
amounts to three types of pointers for every index to the field.
These pointers are analogous to the three types of pointers that
may be optionally specified in the DBTG file organization, ex-
cept that the backward pointer is a symbolic (key) pointer in
TOTAL and a physical or logical address pointer in DBTG.

TOTAL provides hierarchic or network access paths by placing
additional pointer entries in its Single Entry File. For example,
if the user wants the equivalent of a master record for depart-
ment and to connect this to detail records for employees, then, as
in our hypothetical example in Figure 2 , his Department SEF also
has pointers to the Employee File. In the case of the Employee
File, the pointer chains connect all the employee records that
contain the same department number. To construct the hier-
archic record, the TOTAL programmer then accesses the SEF

NO. 3 * 1977 DB PAST, PRESENT, FUTURE

and makes as many separate calls to the employee file as there
are employees in the department. In a sense, the TOTAL file
organization may be compared with a DBTG organization,
where record types are either masters that are accessed by hash
code or details that are accessed by chains from one or more of
the master files. Masters are placed in separate files from details,
and no record is both a master and a detail.

ADABAS, shown in Figure 6C, handles what are essentially flat
fiks, but it does support multiple valued attributes and periodic
fields. Using these features, a programmer can construct and de-
code records with more complex formats. Unlike TOTAL, it
allows only one type of record per file. However, ADABAS
records and fields can be of variable length because ADABAS pro-
vides both compression and encyphering algorithms. As a
consequence, the programmer can gain the effect of multiple
record types of defining one large record that contains all fields
and then -for each particular record -entering only those fields
that are appropriate to its type. There is very little space penalty
for unused fields.

For each file, ADABAS maintains a list of descriptor fields, that is,
fields for which secondary indexes are to be built. Each entry
on this list points to a list of values for the corresponding field.
Each value on this second list has a pointer to a list of Internal
Sequence Numbers (ISNS) that are record numbers for records
containing that value. In essence, this structure-called an
associator-is a set of multilevel secondary indexes. Having
found an ISN, ADABAS goes to an address converter that supplies
the actual storage address for the ISN record.

The ADABAS coupling table provides a mechanism for network
and hierarchic retrieval. A coupling table essentially acts as a
connector between two files. To define a coupling table, the user
selects a descriptor field that appears in both files. The coupling
table for this field then provides a bidirectional mechanism for
going from a record in one file to all the records in the other file
that have the same value in their descriptor field.

Consider the example of hierarchic retrieval. For each depart-
ment number in the department file, ADABAS goes to the coupling
table to find the ISNS for records in the employee file that contain
that department number. The system can then go through the
address converter to obtain the addresses for the desired em-
ployee records. Here again, the system assembles hierarchic
records from more than one file. There are at least three soft-
ware language systems for set-oriented access to network

signed to access ADABAS data bases in a batch mode, and there is
to be a language for online interaction. ASI-ST can access both

Systems-ADAWRITER, ASI-ST, and CULPRIT. ADAWRITER is de-

224 SENKO IBM SYST J

Figure 7 Hypothetical example single-level file

EMP-NO EMP NAME COMM SALARY ADDRESS OEPTNO MGR

EMP PROJ STATUS

PROJ-NO PROI-NAME PROJ MGR

DEPT-NO ADDRESS MGR NO

TOTAL and IMsivs files. CULPRIT provides the capability for
accessing bill-of-material networks. For example, it has been
written to access IDMS (a DBTG-type system) and DBOMP files.
The CULPRIT language is very much like those of report program
generators, in that they have fixed column entry positions.

In addition to the technologically prominent hierarchic and net-
work systems, a number of systems operate solely with single-
level records. That is, they provide no physical file structure
assistance in relating flat files. Figure 7 illustrates a possible
single-level version of the example in Figure 2. Most single-
level systems would be classified as executive systems because
they process multiple records at a time. Although these systems
often provide simple, easy-to-use query languages, they have not
usually been considered for implementation as operational sys-
tems. This may result from the difficulty they present in dealing
with multiple-value relationships.

If we go back to the example of departments and employees in
Figure 2, there are three ways in which this multiple-value
relationship can be processed using single-level records. In
the first method, a fixed number of spaces for employee num-
bers can be set aside in the department record (EMPFIELDI,
EMPFIELD2, etc.); as many employee numbers may be entered
as there are employees in a specific department. This solution
has its difficulties if the user wishes to write queries with condi-
tions on the employee fields, because there must be a copy of the
condition for each field. In addition, each department record
must have enough spaces available to handle the maximum num-
ber of employees that can occur in a department. This results in
department records for small departments that have much waste
space.

A second way is to duplicate department information for each
employee. This is the solution used by the IBM ~1s/360'* and its
successors. The difficulty with this solution is that the depart-
ment data must be copied and maintained for each employee, a
difficulty that increases if there are multiple levels in the hier-
archy.

NO. 3 * 1977 DB PAST, PRESENT, FUTURE

A third solution is to have separate files for department and
employee records and to merge them by sorting and matching
records on the value of the department number. This is the
solution usually selected by report generators and relational sys-
tems. The difficulty with this solution is that it requires much pro-
cessing and sorting time to make matches each time a transaction
is processed. The hierarchic and network systems, of course,
also make these matches, but only once at the time of the
original storage of the hierarchic record. They can regain them
simply by bringing in the hierarchic record when a transaction
is processed.

In IBM, the most familiar terminal-oriented product for single-
level records is the Interactive Query and Report Processor
(IQRP)," which is an outgrowth of MIS/360. It has some language
resemblance to the Interactive Query Facility for IMSIVS.
~ 1 ~ / 3 6 0 is particularly interesting because of its easily used
language. This language has a formal basis, but it also has
several characteristics that make it appear much more English-
like than most procedural languages. The ~ 1 S / 3 6 0 system itself
was designed to operate primarily on files that had been extracted
from operational systems. These extracted files were then loaded
with a selected number of secondary indexes to be used solely
by M1S/360. The main difficulty with MIS/360 was that it could
obtain reports from only one file at a time. Nevertheless, in terms
of usability for this restricted domain, MIS/360 had an excellent
language.

Because of their extensive use, Report Program Generators
(RPGS) should be mentioned at this point. They are not particu-
larly terminal oriented, but they have provided the basic form-
oriented language that is a characteristic of a number of systems
such as MARK IV and CULPRIT. There are, of course, a number
of packages that retain the report generator philosophy and
record format. Two such systems are DYL-250 and DYL-260.
Finally, it should be noted that CICS, mentioned earlier, has some
primitive record handling capabilities. The main purpose of CICS
is, however, to handle data communications.

Standardization

There is general agreement that standardization in a stable
technology can be a very good thing because standardization
reduces the overall effort required to produce and use the re-
quired tools. There is also general agreement that standardiza-
tion in a rapidly evolving technology can retard the growth and
development of that technology because it may freeze the field in
a confused and undesirable state and thereby act to discourage
the development of proper tools. Each side of the issue of

SENKO IBM SYST J

whether data base systems have achieved the stability required
for standardization has advocates. To understand the issues of
standardization, it may be useful to mention some of the activities
that have entered into the standards debate.

The most prominently mentioned activity with regard to data
base standards is the Data Base Task Group of CODAWL,
which is an informal organization of users and producers of data
systems that works to develop techniques and languages to assist
in data systems analysis, design, and implementation. Reports
issued by the DBTG are advisory in nature. The history of DBTG
began in 1965, when an informal task group was formed to study
the subject of data bases. Instead of producing a general review
of the area, the committee developed specifications for an ex-
ample data base system. The specifications were based primarily
on two earlier systems with which the members had had experi-
ence - the General Motors Associative Programming Language
and the General Electric Integrated Data Store (IDS). When the
initial report was presented in 1969, IBM also submitted a pro-
posal of specifications that included data independence, security,
and integrity. The committee decided to improve the existing
specifications, rather than make fundamental changes, to achieve
the desired additional functions. In 1971, a revised DBTG re-
portz0 superseded the 1969 report. The CODASYL DBTG report
design has been suggested as an industry standard. In this con-
nection, an International Standards Organization (ISO) Study
Group has concluded that any standardization action in the area
of data base management systems based on existing proposals
is premature in the absence of criteria against which to measure
such proposals.21 On the DBTG question, I B M is not now im-
plementing a DBTG system. IBM has recognized the need for
network structures and, as we have previously noted, has pro-
vided a number of forms of support for them within data base
systems such as I M s l v s .

At the same time, there also exist two other organizations, the
International Standards Organization (ISO), and the European
Computer Manufacturers Association (ECMA). In contrast to
CODASYL, ECMA does in some instances generate standards. The
original charge to its Task Group Data Base (TGDB) was to
report on the DB standardization options and manpower/time
needed for them. TGDB, however, submitted a majority report
that focused on the standardization of CODASYL DBTG.

In addition to its conclusion on standardization, ISO has accepted
the Interim Report of the A N S I / X ~ / S P A R C Study Group on Data
Base Management Systems as an initial basis for discussion on a
gross architecture of data base management systems.

NO. 3 . 1977 DB PAST, PRESENT, FUTURE

ANSI SPARC In late 1972, the Standards Planning and Requirements Com-
Study Group mittee of the American National Standards Institute/x3 (ANSI/ I

X~/SPARC) established a study group to review the current state
of development in the data base systems field with the objective
of determining whether standardization activities were appro-
priate. The study group produced an overall architecture with
twenty-eight interfaces.” We cannot discuss all these interfaces,
but it might be useful to note the gross architecture for the data
representations between the end user and the internal storage
media. To make feasible the level of data independence and com-
patibility with various end user languages that it desired, the
committee recognized that it would have to specify at least three
major levels of data representation within its system architecture.
These three levels are presented in Figure 8.

Figure 8 ANSI SPARC proposal The most striking feature in the ANSI SPARC architecture is a
for base data conceptual schema level. This level is specified to provide a

“data structure independent description” of the real-world enter-
EXTERNAL prise. It is a formalization of an idea that could be seen in the

SHARE~GUIDE Report.23 One aspect of this idea is that the con-
ceptual schema level should be as stable as possible to changes in
the underlying physical file organizations. This gives the system
data independence in the sense that programs that are written
in terms of this level (or in terms of user views mapped from it)
should not have to be changed when the underlying stored
structures are changed for reasons of computer efficiency.

To accomplish this purpose, the conceptual-level architecture
proposes that the entity classes (employees, parts, departments,
etc.) that are recognized in an enterprise along with their attri-
butes and relationships be used as points of departure for the
entire data base system. A level based on such concepts should
be at least as stable as, and probably much more stable than, the
stored file organizations used to represent it in the computer.
Stored file organizations clearly have to change whenever the
entity classes and their relationships change (for example, when
employees became related to departments through projects). In
addition, they have to change to maintain efficiency in the face
of an evolving system load, even in cases where the entity rela-
tionships do not change.

As a second requirement, the system should be able to coordinate
and control all accesses to a particular stored fact (that, for
example, a particular employee had a particular salary). This is a
problem because there exists a recognized need to provide a
series of views of the system data to the end user, both in terms
of various programming languages and in terms of various
specialized views of the enterprise (the personnel view, the
payroll view, etc.). Mapping directly to a changing storage struc-
ture level from each of the many user views in an evolving sys-
tem would become very burdensome. Essentially, a new map

structures and mapping

INTERNAL SCHEMA 1

SCHEMA N

I 228 SENKO IBM SYST J

would have to be made for each affected user view every time
the structure changed. In addition, for each access request, the
system would have to look at all maps to determine whether
interference would occur.

The ANSI SPARC solution to both these problems is to have a
canonical conceptual level; that is, a level on which each fact
appears only once. In this solution, all the external views of a
particular fact are mapped from one stable place in the conceptual
level, and the system needs only to look at that place to deter-
mine whether another user is accessing the same fact. In sum,
there are two definite requirements for the conceptual level:
data structure stability and data sharing coordination. Steel of the
ANSI SPARC Committee has presented one proposalz4 for the
conceptual level that is firmly grounded in modern symbolic
logic. We shall discuss other proposals in a section on logical-
level models.

Existing commercial systems do not have anything that cor-
responds to a conceptual level. In fact, most systems have only
a single level where the user deals directly with what corresponds
to the ANSI SPARC internal schema. One early implementation
of a two-level system was the IMS implementation of logical and
physical hierarchies. The two levels in IMS correspond closely
to the Gxternal and internal levels of the ANSI SPARC proposal.
The DBTG schema and subschema levels also correspond closely
to the external and internal schema levels of ANSI SPARC, but
they do not allow the user to combine separate internal-level
files.

In summary, there is considerable interest from a number of
implementers for formal or informal standardization based on the
DBTG report. At the same time, there appear to be major new
capabilities in the offing, as exemplified by the basis for progress
on a broad front as laid down by the ANSI SPARC study group.

Recent research

There are presently two divergent paths of research on data base
systems - system functions and system performance. System
functions research deals with data models, data access languages,
and data dictionaries. System performance research deals with
workload description, and with the design, simulation, and
optimization of file organizations.

Present-day data base systems exhibit a strong tradeoff between system
simplicity and power. Either the system is simple and less power- functions
ful or it is powerful and less simple. It should be possible, how-
ever, to achieve simultaneous improvements in simplicity and

NO. 3 * 1977 DB PAST, PRESENT, FUTURE 229

power. The way to achieve this optimization is to break up the
data base problem into the right kinds of subproblems or com-
ponents. To divide and conquer is the technique often used to
solve complex everyday problems. In its best form, the idea is to
break a pi-oblem up into two or more levels of detail that are
often called “levels of abstraction.” If an appropriate set of
levels and components can be chosen, the user can solve certain
aspects of his problem at the first level without worrying about
all the details and then solve other aspects, one level at a time, by
adding the details embodied at each level.

Sometimes termed structured programming or abstract data
type definition, the technique has received much attention in the
computer science area. In structured programming and in ab-
stract data types, however, a new set of components is defined
for every problem. The new aspect of the work in the data base
systems area is that one set of components is designed to cover all
applications. If this work succeeds, then the study and use of data
base systems may acquire some of the discipline of chemistry
and physics. A student could learn a relatively simple set of
components and interaction rules- such as the elements and
valence rules in the periodic table-and use them to build appli-
cations throughout his career. He would not have to learn a new
complex, overlapping, inconsistent terminology for every new
system, and he would not have to invent a new set of components
to solve every new systems problem.

The logical and physical levels found in papers like those of
MadnickZ5 and Meltzer,26 as well as in the GuIDElSHARE Re-

are pragmatic examples of the abstract-level approach.
The essential idea, in data base terms, is to allow the user to
solve the logical aspects of his problem first, and then to take up
separately the physical storage structure details needed for
efficient support of his logical application structure.

Since the early papers, research has moved toward more funda-
mental and precise definitions of logical and physical levels and
their components, and toward a better separation of functions in-
to these levels. For example, the following four levels are defined
by the present author in the original DIAM paper.l

Data structure independent Entity Set Level.
Access Path Level.
Encoding Level.
Physical Device Level.

In DIAM, a major effort has been made to obtain a clean separa-
tion between the entity set level and the lower physical levels.
An explicit list of parameters is also given for each member of
the small set of component types defined for each level.

230 SENKO 1BM SYST J

A similar effort is being carried out by the Data Definition Lan-
guage Committee of CODASYL~‘ that has proposed categories that
include the following:

Schema, for those components that-for example-give the
name of a schema.
Structure, including components for describing data ele-
ments and their real-world relationships. (This category and
the succeeding category correspond roughly to the
DIAM entity set level.)
Validation.
Access control.
Tuning (which corresponds to the DIAM access path and

Resource allocation (which corresponds to the DIAM physi-
encoding levels).

cal device level).

Until recently, most other research under the name of “data
model studies” has focused on the logical level only. (In different
contexts, this is called the end-user level or the Conceptual
Schema Level.) In most cases, these models have retained ele-
ments from physical representations (e.g., single-level record
structures) and, therefore, have not made a clean separation
between logical and physical levels. Nonetheless, their intention
has been to define a logical-level model, and that is the basis on
which data base systems research is discussed here.

After much consideration and deliberation, it has been agreed evaluating
that it is possible to map field values from any one logical-level logical-level
model to field values in any other logical-level model (that is, models
between flat files, hierarchies, networks, etc.) . The main differ-
ences between models occur in the ways in which they relate
field values and in the number of physical structure elements they
contain. Differences in relationships are important because some
kinds of field relationships correlate well with relationships be-
tween entities in the user’s practical model, and other types of
field relationships do not. For example, in the single-level file
model, each field in a record is equally related to each other field,
simply by the fact that they are in the same record. In the real
world, some of the relationships represented in the record may be
more direct than others, and the equal representation is mis-
leading.

In an employee file record, there is no explicit distinction made
between the relationship of “salary” and “secretary” and the
relationship of “employee” and “salary.” Even though the users
of the system know that the relationship is “salary of employee,”
this may not be the real-world relationship that the placement of
salary in the record represents. The placement of salary in such a
record might equally represent “salary of secretary.” If no fur-

NO. 3 * 1977 DB PAST, PRESENT, FUTURE 2 3 I I

ther guidance is given, a user might come to the wrong conclusion
about the meaning of the field.

The use of the physical concepts of files and records also places
an added translation burden on the user because he must tell the
system how to find and search files and records, instead of simply
asking about the entities he is interested in. Finally, some types
of relationships lead to easy evolution of the system model when
a user’s picture of the real world changes and others do not.

At first glance, issues such as these seem relatively unimportant.
For example, it seems natural and necessary to translate prob-
lems into terms of files and records; therefore, we need not try to
get rid of this burden. Many assembly language programmers had
an analogous feeling about registers when compilers were being
proposed, yet compilers have been an extremely helpful develop-
ment. Similarly, making systems evolve gracefully over time is
important. It is frequently suggested that fifty to seventy percent
of programmer time is devoted to changing old programs to meet
new circumstances. In this situation, the important issue then
becomes that of how well a logical model provides the desired
relationship and system properties. For example: how faith-
fully does a logical-level model represent real-world relation-
ships? Does it imply spurious relationships that do not exist in
the real world? How stable is the match to changes in the real
world? Do the information structure and programs have to be
changed substantially when a small change occurs in the real
world? What is the ease of use of the accessing language?

To answer such questions, most recent work has focused on the
ability of the model to represent real-world relationships and on
the ease of use of possible accessing languages. Since there is
no mathematical formula for evaluating models, the work tests
the capabilities of models and compares different models by
judging how well they work with regard to examples of possible
queries and possible kinds of system evolution. Logical-level
model research has focused on models with simpler basic com-
ponents than the hierarchies and networks to be found in most
commercial systems. In particular, recent research on logical-
level models can be separated into the following two categories:
(1) single-level files (termed n-ary relational systems by many
authors), and (2) binary associations.

single-level While there has been great recent interest in relational data base
file systems, single-level logical models have roots in the use of the

logical punched card (which is a single-level record). One of the best-
models known data processing systems, the report program generator,

uses a single-level logical model. For example, the operation
“match” in report program generators is the same as the opera-
tion “join” in relational terminology. In effect, the basic logical
models for report generators and relations are almost exactly the

232 SENKO IBM S Y S T 1 I

same, except for terminology and accessing language.

Some of the earliest data base research work on single-level rela-
tional files was reported by McIntosh and Griffel" in 1968. A
paper on the Entity Set Model by Davies2' gave added impetus to
research on single-level files. This paper was followed by a paper
by Codd?' who discussed single-level files in terms of the mathe-
matical theory of relations. Codd added a number of terms that
made the theory more compatible with the properties of data
processing files. His paper led to a considerable amount of work
in universities and within IBM on relational data systems and
languages. In general, the relational work has focused on the
logical level and has not addressed the need for powerful physical
file organizations at lower abstract levels to obtain reasonable
system efficiency.

The initial basis for research in the single-level area was ex-
panded by the Data Independent Accessing Model (DIAM).'
This model more closely followed the terminology presented by
Davies, Meltzer, and the later SHARE~GUIDE reports. It provided
a basis for a general set of file organization techniques, including
hierarchic structures and indexes for efficiently supporting the
single-level entity set model. In essence, DIAM was a data model
that included a logical-level model as one of its levels. Addi-
tional work provided the set-oriented language RIL~' for access-
ing the entity set model and algorithms for selection of optimum
paths3' to satisfy set-oriented transaction statements.

The Entity-Relationship Model - another multilevel n-ary mod-
el- has been presented by Chen.32 Early publications on this
model were primarily concerned with the description of an
improved logical level, particularly, a more detailed and flexible
method of describing a network of relations. These publications
have not contained any detail on the components of the lower,
stored data structure levels.

Almost all research on implementation has been directed toward
implementing relational language systems. Noteworthy work
outside IBM has been done on the INGRES at the
University of California, the ZETA system34 at the University of
Toronto, the RDMS system35 and the RISS system36 at the Massa-
chusetts Institute of Technology. The underlying file organiza-
tions for these relational systems resemble the file organization
for the early ~ I S / 3 6 0 . That is, they allow for any number of
secondary indexes to a single level file. Although such organiza-
tions are useful for transactions that refer to a single relation,
they are often inefficient for processing matches between re-
lations. At present, interfile relationships must either be built
every time a transaction that requires them is executed or when
single-level files must be applied, such as when department in-
formation must be duplicated for every employee.

NO. 3 ' 1977 DB PAST, PRESENT, FUTURE

There is considerable work going on to improve efficiency. To
approach the efficiencies of hierarchic or network systems,
relational systems will have to have the ability to describe and
access stored hierarchic or network structures. A paper by
L. S ~ h n e i d e r ~ ~ has shown how this difficult capability can be
achieved in a general manner by using the DIAM model. There is,
in addition, work going on at the University of Toronto3* and the
University of Illinois39 to provide limited versions of this capa-
bility, starting directly from a relational context. The DIAM model
has not been implemented in the form of a data base system, but
a group from the Martin Marietta Corporation has implemented a
generalized system performance simulator based on its specifica-
tions. This simulator has been able to describe the System 2000
organization by using a set of DIAM parameter tables.40

accessing The second area where relational theory helps in understanding
languages data base systems is with regard to the structure of user lan-

guages. Either relational algebra or relational calculus can pro-
vide a formal mathematical basis for the construction of possible
user-oriented languages. The following is an example query
presented originally by Date.41

English:

“Get supplier names for suppliers who supply at least one red
part.”

For the relational tables:

SUPPLIER (SUP-NO, SUP-NAME, STATUS, CITY)

PART (PART-NO, PART-NAME, COLOR, WEIGHT)

SUP-PART (SUP-NO, PART-NO, QTY)

Relational calculus language:

RANGE PART PX
RANGE SUP-PART SPX

GET W (SUPPLIER.SUP-NAME):

3SPX (SPX.SUP-NO=SUPPLIER.SUP-NO A3PX (PX.PART-NO
=SPX.PART-NO APX.COLOR=’RED’))

Significant aspects of this statement are the phrases “SPX.SUP-

are required to interconnect the three relations. Phrases like these
appear in all record-oriented systems. It is shown later in this
paper that such phrases are not required in semantic networks,
thereby simplifying the writing of program statements.

NO’SUPPLIER.SUP-NO” and “PX.PART-NO’SPX.PART-NO”. These

234 SENKO IBM SYST J

It has been suggested that statements like these might be ex-
pressed in a more user-oriented relational language. Exactly what
form such a language might take and whether it might differ
significantly from existing nonprocedural languages -like those
for MIS/360, SYSTEM 2000 and GIs-is not clear at this time.
Until the projected relational language appears, it is difficult to 1 judge the practicality of relational principles.

One strikingly different approach to single-level file languages is Figure 9 Query-by-Example

Q~ery-by-Example.~’ This language, like the report generators,
employs a fixed column input form. However, it has many unique SUPPL ’ER~S”P~No~SUP~NAME~STATUS~ ‘ITY I
features. For example, the order of statements in a transaction
specification is immaterial. This relieves the user of the burden of PART IpART~NOIPART~NAMEICOLORIWEIGHT,

constructing his query in a sequential fashion. Instead, the user
constructs the query a line at a time in any order. The Query-by-

I..; P x y z j I I

I I I

I RED I I SEVEN i I
1 - 1 I I

Example statements for the previous English language and rela- SUP-PART ~ S U P - N O I PART-NO! QTY ‘
tional query are presented in Figure 9. I..;sE,,,; 1 I
In Query by Example, we can use any symbol as an example of
the element we want to talk about. Underlining indicates that the
element is an example. If an element is not underlined, the
symbol stands for itself. In our specification, “FIVE” is an ex-
ample of a number for a supplier, and “SEVEN” is an example of a
part number. Since “RED” is the actual color that the part must
have, it is not underlined. The “P.” before “XYZ” indicates that
the supplier’s name should be printed.

The Query-by-Example language has been the subject of a human
factors experiment to determine its ease of use with respect to
the Interactive Query Facility (I Q F) , ~ ~ Tests were run with sub-
jects who were both experienced and inexperienced in pro-
gramming. For those functions that Query-by-Example could
provide, it seemed easier to use. Such tests may guide us as to
desirable language features, from a human factors point of view.

I Much of the recent research on logical-level models has been semantics
concerned with making the models represent the semantics of
the real-world situation more closely and exactly. For example,
we would like to present the user with a model that will restrict
him from performing nonsensical operations. This approach is
to be contrasted with today’s systems that present the user with
a logical-level model in terms of computer stored files of records
that contain bits or bytes. In these systems, the user can add any
field to any other field and store the result. (For example, one
can create a nonfact by adding “age 24” and “weight 150”
together and storing “174” as an “address.” There are already
some compilers that forbid certain simple nonsensical operations
like adding a floating point number to a fixed point number with-
out conversion. Clearly, it would be useful if the system were to
forbid other meaningless operations.

NO. 3 . 1977 DB PAST, PRESENT, FUTURE 235 I

Figure 10 A meaningless relation

EMPLOYEE RELATION

EMPLOYEE NUMBER SALARY FRIEND NAME ADDRESS

As we mentioned earlier in this paper, the best way to evaluate
models is to use examples. Kent has presented examples of mean-
ingless operations in two recent papers.44 Another set was
presented in Bracchi, et al.45 Also, an early paper by Codd2’ noted
that certain relational operations produced results that were not
meaningful in the real world. The DIAM paper’ went further by
pointing out a need for restricting information system operations
to those that produced meaningful results, and also gave some
examples.

More recently, Schmid and S w e n ~ o n ~ ~ have discussed similar
examples in a relational framework and have pointed out a num-
ber of places where additional constraints should be placed on
the relational model. Figure 10 gives one of their examples. One
question posed by this example is what the appearance of
FRIEND and SALARY in the same relation implies. Does SALARY
imply “salary of the FRIEND” or “salary of the EMPLOYEE”?
Such a relation is without semantic meaning, and something must
be added to make the meaning clear to the user. In the Schmid-
Swenson approach, there is an attempt to define meanings in
terms of constraints as add-on features of the relational model.
When examined in detail, their proposals for describing these
constraints lead them to a model that is remarkably similar to the
binary models to be described in a later section.

natural Since other disciplines are also interested in the topic of se-
language mantics, it is useful to consider their experience. Two of the

models major disciplines are natural language processing and theorem
proving. In each of these disciplines, it is important to treat the
names for things in a manner that is meaningful in real-world
terms. In addition, these disciplines study better ways of char-
acterizing the data that they process and the operations they
allow to process it.

A natural language approach using a semantic network is being
followed by Roussopoulos and Mylopoulus at the University of
Toronto?’ in which they try to make constraints inherent parts
of their model. Their model is a semantic network, and their
work has been published both in the data base and the artificial
intelligence literature. In their proposed use of the model, the
user and the operations he applies to the stored data would be
constrained by meanings implicit in the semantic network.

236 SENKO IBM SYST J

At this point, it is appropriate also to mention data base related
work in natural language query systems. Much of the early work
in this area has been devoted to creating systems for purposes
of demonstration. In these demonstrations, many natural lan-
guage queries could be parsed and answered, but the fraction of a
set of queries posed by an inexperienced user that would be
interpreted correctly was not clear. Systematic work on applica-
tion-oriented data bases is continuing. For example, Woods4’ has
produced a system to answer natural language questions about
lunar rocks. Also, a group in the IBM Research Division is
working on a natural language query system for urban planning.4x
Petrick has recently published an excellent discussion of the use
of natural languages for communication with computer^.^'

A hint of the difficulty involved in semantics can be given by the
following query: “Print departments and their employees where
employees earn over $20000.” The question is whether the
system should print “all the employees in the department,” or
“only those that earn over $20000,” or “only departments where
the sum of all employee salaries is over $20000.” This query can-
not be answered without additional information.

It has been suggested by a number of authors that such a system
should have a dialogue with the user to obtain needed informa-
tion. If the system cannot understand English, then the user must
learn some formal language that the computer can deal with. This
defeats the reason for using natural language in the first place.
Fortunately, it appears that most queries have clearcut answers.
This means that there is hope that a system could answer a
sufficiently large fraction of possible queries to be useful and not
give seriously misleading answers in other cases. The truth of
this conjecture can only be determined in a real operating
environment.

’

I Noting that Figure 2 is also a representation of information, one binary
might ask whether there are any systems that use such a binary- logical-
association-oriented representation directly. The fact is that that level
representation has many similarities to the semantic networks models
that are used in natural language systems. There is also a long
history of work that uses binary associations in artificial intelli-
gence research. Some of the earliest work was done on the
Relational Data File by Levien and Maron.” Later work was
done by Ash and Sibley,sl Feldman and R ~ v n e r , ~ ’ and others who
were concerned primarily with question answering or theorem
proving systems. None of these early systems has been con-
sidered for commercial use, perhaps because they store each set
of binary relations in a separate file. Such a file organization is
particularly inefficient when the number of individual relations is
large. In this case, many accesses must be made to peripheral
storage devices to process the different files.

NO. 3 1977 DB PAST, PRESENT, FUTURE 237

Figure I 1 Five DlAM I I abstract
levels for mapping bi-

the ANSI SPARC con-
nary associations at

ceptual schema level
to hierarchic records
a t the external schema
I eve1

SYSTEM OVERVIEW

LIZ u3 u1

INFO LOGICAL

ENCODING -
PD LEVEL

t \ m/

With the recent study of abstract levels, it has now become clear
that an information representation can be supported by a stored
data representation of a completely different form. For example,
Figure 11 presents the five DIAM 11 abstract levels’:’ for mapping
binary associations at the ANSI SPARC conceptual schema level
to hierarchic records at the external schema level, and to indexes,
lists, and hierarchic records at the internal schema level. This
mapping flexibility means that binary information representations
need no longer be saddled with the inefficiencies of stored binary
file organizations.

Given the promise of efficiency through mapping, interest in
binary relations has been renewed. Much of this interest is be-
cause binary relations seem to be a fitting semantic representa-
tion of facts. That is, binary relations can represent only the
facts that the user wants in his real-world model, and do not carry
along spurious associations like FRIEND and SALARY in n-ary
relations that must be removed from consideration by some add-
on mechanism. Figure 12 shows a binary representation of the
information listed in Figure 10. In this case, it is clear that
SALARY is a direct attribute of EMPLOYEE, and it is only in-
directly related to FRIEND by way of EMPLOYEE.

Langef01-s~~ and S ~ n d g r e n ~ ~ have created renewed interest in the
area with their series of papers on structures for representing
the real world. Additional impetus came from Titman’ss6 and
B r a c ~ h i ’ s ~ ~ work on binary relations, and a major force was
Abrial’s paper on data semantics.58 This latter work was extended
in a paper by Senk~.’~ There have been few implementations of
binary systems since the work of Feldman and Rovner. Titman’s
paper presented one implementation, and Bubenko“ and Berild
and Nachmens“ describe a second running system.

Papers at the IFIP TC-2 Working Conference at Freudenstadt,
Germany, in 1976, seemed to agree that the network, hierarchic,
and single-level files brought the representation of too many
individual facts into their records and caused maintenance and
semantic difficulties. There was a movement expressed in papers
by Bracchi, Paolini and Pelagatti?’ Falkenberg,”” Hall, Owlett
and Todd: and Senko? toward a smaller binary form of fact
representation. At the Freudenstadt meeting and at succeeding
data base meetings, there has been increasing agreement that the
binary network form or some close approximation has much
more desirable technical properties than n-ary relations, tables,
hierarchies, or DBTG networks for use as a logical level. How-
ever, since past experience often plays a part, tables may be more
desirable from a human factors standpoint. The resolution of this
dilemma should cause much lively discussion in the next few
years.

238

A B C

QUERY SYS'I'EM- qual and

gtrequ not
lssthn ext I

terms of named relations, and effort must be expended to soecifv

This problem is alleviated to some extent in the FORAL language
for the- DIAM II system. FORAL operations are related to a FORAL
context, and this relationship allows the system to specify what
would normally be considered connections to other files in an
imPlicit fashion. In Figure 13 is shown a display screen for a

,P (Light Pen) .70 In this lan-
guage, the user enters statements by touching nodes and arcs in
the network and operations on the operations list. On the screen,
we reoresent the series of oen touches required to create the

The light pen language seems to require fewer artificial elements
(parentheses, commas, etc.) than a written language to render
it unambiguous. This particular light pen syntax also requires
little or no typing skill. Of the ten major words in the statement.

output
SUP-NO

SUP-NO STATUS QTY-of avg QTY-of
SUP-PART of SUP-PART of

STATUS 1 7
QTY-of-SUP-PART-of SUP-NO 9

avg QTY-of-SUP-PART_of..SUP-NO 14 10

2 G 2 3 2 3

multiple-valued attribute QTY-of-SUP-PART-of-SUP-No. In
a flat file system, the user could easily get STATUS out of the
SUP-NO file by asking for the appropriate field. But to get QTY-Of
~ s u P - P A R T ~ o f ~ S U P - N O , one would have to call for the
SUP-PART file and specify a match between the SUP-NOS in the
two files.

By using binary association networks, it is possible to design
languages that avoid the syntactic noise found in languages that
deal with flat files, hierarchic files, or DBTG networks. In doing
this, we can derive languages that are both formal and unambig-
uous and have many similarities with natural language.

Most of the work on data models has been restricted to the stored
logical level. There was, however, some excellent early work on data
formal models for stored data by Smithi2 and Taylor.i3 This work levels
has been recently followed up by the CODASYL Stored Data
Definition and Translation Task Group (SDDT~G), of which both
Smith and Taylor are members, and which is publishing an ex-
tensive work on data t r an~ la t ion~~ that has used and improved on
many of the DIAM concepts and components. A paper by
Nahourii, Brooks, and C a r d e n a ~ ~ ~ takes another approach to data
translation. They are concerned about dynamic access to in-
formation stored in different generalized data base management
systems. Their approach consists of describing the stored data
structure in each of the systems by a DIAM string catalog. If the
user specifies his query in a self-contained set-oriented language

, for his own system (like the set-oriented language for System
2000 or IQF for IMS~VS) , then a search path selection algorithm

1 can look at the string catalog and translate these statements into
segment-at-a-time language searches for any of the system nodes
that contain relevant information. Using each data base system's
own segment-at-a-time language avoids the writing of translation
algorithms that consider the encoding and access methods of
each individual system. In another improvement, DIAM 11, the
model has been revised to support a binary network logical level5"
and the physical device level has been better defined.i6

We have already mentioned several models for stored data that
are being worked on in the n-ary relational environment. These

I

NO. 3 . 1977 DB PAST, PRESENT, FUTURE 241

summary:
data models

and
accessing
languages

summary

data
dictionaries

242

include the models of Chen,"' Mylopoulos, Schuster, and
Tsichritzis? and Schmid and Bern~tein.~' Another model in
this area is that of C a b a n e ~ . ~ ~ These models tend to discuss
access path structures of greater generality than those found in
existing data base system implementations, but do not yet give
detailed, generalized parameters for access paths, encoding and
access methods. Finally, there is some recent work which uses
Abrial's binary model as a basis for describing both the logical
level and the access path level. A paper by Adiba and Del~bel ,~ '
like that of Nahourii, et al., attacks the problem of cooperation
between different data base systems. Both of these papers also
discuss access path selection algorithms like those described by
Ghosh.3' The paper by Hainaut7' focuses on the optimum search
path selection problem.

The main trend in logical level modeling is toward a more faithful
representation of the semantics of users' models of the real
world. This trend has brought with it emphasis on models with
simpler components than the networks and hierarchies found in
most commercial systems. If followed to its apparent conclusion,
the work will result in the definition of a basic data structure
component for representing a single fact in the real world, rather
than a complex structure containing many facts.

The main trend in stored data strucures is in the other direction -
away from simple tabular structures toward structures of more
generality and more efficiency. This topic can be worked on in an
incremental fashion, as we have seen, with the extensions of
relational data structures. Also, research can start with a very
general structure, as was done by Smith, Taylor, or in the DIAM
model.

In the area of accessing languages, most, of the work is directed
toward languages that access sets of elements rather than the
usual record-at-a-time languages. Here again there may be a
trend toward binary-oriented languages, although Query-by-
Example has demonstrated excellent usability and is a major
query language innovation.

The main obstacle to set-oriented languages and the simpler
logical-level models is the number of difficult research problems
yet to be solved, particularly in the area of shared update and
system efficiency. Although these problems will take time to
solve, the various systems mentioned give an indication of the
direction solutions will take.

In the best of possible worlds, the functions of current data
dictionaries would be integrated parts of a data base system
catalog. Clearly, specifications of data elements and real-world
relationships, along with their validity checks, should appear as

SENKO IBM SYST J

integrated parts of a logical-level catalog. Similarly, the sup-
porting physical-level file organization descriptions should appear
as part of an associated physical-level catalog.

It is often the case that a particular crucial need appears first in
actual systems in a business installation. This need is typically
met first by a special package, with research then following
afterward. This seems to be the case with data dictionaries. There
seems to be little direct research in the area of data dictionaries.
Most of the current work is driven by user requirements, in the
same way that user requirements generated development of data
base management systems like IDS, IMS/VS and CICs. For ex-
ample, early work in IBM on data dictionaries by Meyers on a
system called TAG" and the more recent DB/DC Data Dictio-
naryX1 have both grown from field experience. There are general
discussions of data dictionaries by Uhrowczik" and Canning.83
With regard to research, the primary need is a good data model.
An appropriate integrated data dictionary should be a natural
consequence of such a model.

System performance

Up to this point, we have been concerned with research on
functions, research designed to improve human efficiency. On
the side of the coin lie questions of machine efficiency. Questions
of machine efficiency will remain as long as hardware storage is
accessed by address rather than by content. The questions arise
because a well-designed file organization can often provide an
order-of-magnitude or greater access time reduction to desired 1 information than a straightforward one. Since we cannot expect

, to see content addressing hardware that is capable of storing large
data bases for an extremely long or an infinitely long time, these
order-of-magnitude economies through design should continue to
justify effort expended on research.

In the performance field, much of the early technology was
generated by workers with backgrounds in scientific computa-
tion. Digital system simulators exemplified by the IBM Computer
System Simulator (css)'~ and analytical simulatorsn5 fall into
this class. These simulators describe an access to information
simply by some small, fixed number of random device accesses.
This approximation is quite satisfactory for many types of opera-
tional systems, but it breaks down in dealing with retrievals from
complex file organizations. In a complex information system, an
information access (or query) usually requires varying numbers
of device accesses, depending on data base size, content, file
organization, etc. Clearly, additional techniques are required to
deal with performance in these types of data base systems.

NO. 3 * 1977 DB PAST, PRESENT, FUTURE 243

system
load

244

~~~ 

There  are  at least the following three main categories of work  on 
performance: ( 1) description of system  load; (2) simulation of 
proposed  system  hardware  and  software configurations; and 
(3)  synthesis and optimization of system  hardware  and  software 
configurations. 

There  are a number of ways of specifying system  load. In 
scientific computation,  various  instruction mixes, procedural 
program mixes, or  trace tapes  have been used. These descriptions 
are  not  quite  appropriate  for  the design of information systems. 
Instruction mixes do  not  represent  the workload on  mass 
storage  devices.  In  the  case of procedural  programs  and  trace 
tapes,  each  assumes  some fixed file structure. Such load specifica- 
tions  preempt  any possibility of studying different file organiza- 
tions  for the same  problem. 

Since file organization is an  important  consideration in the design 
of information systems, a system workload description should 
not  contain  any commitment to a particular  stored file organiza- 
tion. (In other  words, it must be data  structure  independent.) 
This  means  that  the  study of data-stricture-independent  data 
models and their  associated  accessing languages has  direct  ap- 
plication in the  area of load description.  However,  more load 
description is needed so that a simulator  can  calculate  the num- 
ber of records  to be retrieved during a  particular  query. For 
example, a simulator requires information on the number of 
instances of a particular  type,  such as the  number and size of 
fields, the  number of entity  descriptions,  types  and  numbers of 
transactions,  etc.  This information must  be  added  to  the  data 
element  type information to  be found in data model descriptions, 
e.g., the  names of the fields and  the  names of relationships. 

An even  more  important  measure of the utility of a workload 
description is a human factors  one. The workload descriptions 
collected  for  the tuning of existing file organizations may be 
extremely  complex, when such information can be collected 
by the  computer  without  human effort. On the  other  hand,  the 
workload description  for the initial design must be relatively 
simple because it must be  constructed by hand.  Rarely  can  a file 
designer  use a workload description  that  takes him weeks or 
months to specify; he might prefer  to  take his chances with an 
estimate of the file organization. 

In the proceedings of the 1972 Fall Joint  Computer  Conference, 
TeichrowS6 published an excellent review of the  work directly 
related to system workload description. He singled out  the 
papers of Young  and  Kent,  Lombardi,  Langefors,  and  the  In- 
formation Algebra, ADS, PSL, TAG, and SYSTEMATICS systems 
for  detailed  comparison.  A  more  recent review was  presented by 
C o ~ g e r ~ ~  in Computing Surveys. In recent  years,  there  seems  to 

SENKO IBM SYST J 







the owners. In the  second  case,  the  user would have  to  write a 
program that includes  a  test  to  determine  whether  a  particular 
entity  number is related to  another  entity  number by the relation- 
ship that it is owned by the second entity  number. 

In a  second  possible logical design, we  might guess  that it would 
be  better  to place the  entities  into  two different sets  for  the 
purpose of naming, say, OWNERS and FURNITURE. In this  case, 
the  second program would be easy to write,  since it would only 
have to  say LIST OWNERS. This is in contrast  to  the first one, 
which would become  more difficult, because it would have  to 
say LIST OWNERS and then LIST FURNITURE. 

As we can  see,  the relative efficiency  of the  two logical designs 
is measured in terms of the human efficiency  of writing the pro- 
grams  to  be used in the  system. To evaluate  this efficiency, we 
must first have  a  proposal  for  the  entity sets, and  then  we  must 
write  programs in terms of these  sets.  Clearly, a computer  cannot 
write  the  programs,  and, if it does  not  have  the  programs, it has 
no way  of calculating either  the human cost or  the  computer 
cost  for building and running the system. 

Of  course, a person could design a logical level and write all the 
required  programs. We might then  even  invent  a way to have 
the computer  calculate  an  absolute  evaluation of the logical level, 
but we still would not know whether  the design were  close  to 
optimal. We might also design and program two  or more alterna- 
tives  and  have  the  computer  compare  them,  but  that would al- 
most  certainly not be worth  the  trouble. What we should do,  and 
continue  to  do, is something that people do  better  than com- 
puters;  that is, look at  the real world and classify its ill-defined 
elements  for our particular ill-defined purposes. 

Looking at  the design problem in this  way, we can  see  that in the 
strictest  sense  a  computer  cannot  do logical design;  at  present,  we 
do not  even  have algorithms for  the  computer-comparison of 
logical designs. In effect, what a computer  does when it executes 
an algorithm that  groups  associated fields into  records is physical 
design. Many  workers call that logical design because  they 
believe that single-level or hierarchic  records are logical struc- 
tures.  Almost without exception,  however, design procedures 
start with given sets of entities  and binary associations  between 
them. 

1 Physical design 

Taken  at  its most exact  and  detailed  level, physical design is 
extremely complex. In  an  hour,  a large system may process 



accesses, and use billions of computer  instructions. The problem 
of physical design is to find a file organization  that is close  to 
optimal for periods of days  or months. We clearly cannot 
solve this problem by simulating each  computer  instruction 
for a wide variety of choices of physical file organization.  Each 
instruction-for-instruction simulation of a  proposed file organiza- 
tion would run  orders of magnitude slower  than  real  time,  and it 
might take  months  to  simulate only one choice. To approach 
this  problem,  we make simplifying assumptions  and/or localize 
area of optimization. (For example,  the data base  simulators 
previously mentioned all make the assumption that the  execution 
of computer  instructions in a transaction  can  be  represented by a 
fixed time for  execution, so that individual instructions need not 
be simulated. This  speeds  up  the simulation by at  least a factor of 
a  thousand.) It is even difficult to  make  reasonable simplifying 
assumptions.  A  change of one  percent in a  record  size or in 
internal execution  time  can result in a factor-of-two difference 
in total  processing time. These discontinuities make it virtually 
impossible to  use  mathematical optimization techniques in a 
straightforward  way.  Much ingenuity must  be  exercised to find 
useful equations. 

, 

Even  without using mathematical techniques, it is possible to 
make some useful simplifying assumptions. An example of 
extreme simplification may be found in the  paper of Severance 
and Duhne,’n3 entitled “A practitioner’s guide to  addressing 
algorithms.” Other simplifications are discussed  later in the 
section. 

In considering the localization of simplifications, we first discuss 
the  technique of hash addressing. It is possible to look for  an 
optimal design that is relatively independent of other file design 
considerations. In a series of papers,  Lum  and  coworker^'^^ have 
demonstrated  that division by a relatively prime number  is,  on 
the average,  the  best hashing technique,  and  therefore  the  best 
first choice  as a technique.  In  another  series of papers,  Van  der 

has provided guidance on the  selection of an optimal 
loading factor, considering both  storage  cost  and  access time 
cost.  The  area of hash addressing  techniques  has  been reviewed 
by Severance,1oG  and more recently by Mauer and Lewis.”’ 

Another  area of interest is design assistance in grouping as- 
sociated fields together  into  records or in deciding whether  cer- 
tain associations should be  represented by intersegment hier- 
archies or DBTC sets.  Since a large data base may contain 
thousands of possible  associations, it is extremely useful to have 
assistance in assuring  that all associations are  represented  and 
consistent.  This kind of assistance is provided by the IBM 
Data Base Design Aidlo8 described in this  issue by Raver  and 
Hubbard.log  Like most of the following design aids,  the  Raver 
and  Hubbard  data  base design aid begins with an input of the 

I 248 SENKO IBM SYST J 



required  binary  associations  for  the  system. From this informa- 
tion,  the  system designs a network  structure  to  support all the 
required relations and  checks  to  determine  that  there are no 
conflicts. It then  also  checks  to  see  that  hierarchic  structures  for 
supporting  user logical views can  be  derived from this  structure 
according to r~s lvs  rules  for  hierarchic  records. 

A  further  step has been  presented by Smith and  Mommens.l10 
Here, they  ask  for weightings of the  associations  to  indicate 
which associations are  traversed  most  frequently.  Their program 
then  performs a pruned  exhaustive  evaluation of all the  possible 
I M S / V ~  structures  that fulfill the  data  requirements. The pruning 
is done  on  the basis of allowing only valid IMS/VS Physical 
structures  and throwing away proposed  structures  that fall 
below an  already  calculated  structure in performance. Bubenko 
et al."' require  that the  user propose valid structures, and they 
then give an algorithm that  uses similar measures  to  compare 
structures. 

Finally,  there  are the studies  that  create  equations  that  can be 
used with mathematical optimization techniques. Hoffer and 
Severance"' use a cluster  analysis algorithm to perform alloca- 
tion of fields to  records  on  the basis of access  path  traversals. 
Mitoma  and Irani113 go one  step  further  than  previous  studies in 
load description by asking the  user  to  provide a sample of the 
programs (or run units) to be used against a DBTG data  base. 
There is then a process  that goes from these more data-indepen- 
dent  descriptions to  the providing of traversal  frequencies  for the 
proposed  paths. The Mitoma-Irani optimization techniques 
transfer the problem into  terms of the  shortest  path in a network. 

There  are also  a  number of studies  on  the  selection and design 
of indices. Yao  and  Merteng3 utilize a gradient  projection method 
to design a multilevel index  for a document  retrieval file. In  an 
earlier  paper, Lum and Ling114 present  analytical  equations  to 
help in the selection of multiple secondary  indices, and Schkol- 
nick115 presents  techniques  for a similar problem. 

In conclusion,  after a period during which little had been done  on 
file design algorithms, there emerged many new and  interesting 
techniques  that are currently being studied in research  and  devel- 
opment.  Some of these  techniques  have already seen  use,  and 
we can  foresee more successes in the  area of automatic design. 

Future developments 

Recently  the  National  Bureau of Standards  and  the  Association 
for  Computing  Machinery held a workshop  on Data  Base Di- 





systems will require high computer efficiency. The new force in 
the field, however, is the increasing demand  for data  base  sys- 
tems  that are efficient  in the utilization of human resources,  users, 
programmers  and  systems  analysts.  Considerable  research  and 
development is going on, and this work should contribute 
significantly to the evolution of easier-to-use, more powerful 
data base  systems. 

CITED  REFERENCES 

1. M. E.  Senko, E. B. Altman, M .  M.  Astrahan, and P.  L.  Fehder,  “Data 
structures and  accessing in data-base  systems,” IBM  Systems  Journul 12, 

2. B. W. Boehm,  “Software and its impact: a quantitative assessment,” Datu- 

3. J.  P.  Fry and E.  H. Sibley,  “Evolution of data-base management systems,” 

4. L.  J.  Cohen, Data  Base  Manugement  Systems, Q.E.D. Information 

5.  Datupro  70, Datapro  Research  Corporation,  Delran,  NJ ( 1976). 
6. Aurrbarh Computer  Technology  Reports:  Segment J .  Auerbach  Pub- 

lishers, Inc., Philadelphia, PA  (1976). 
7. R. E. Blier, “Treating hierarchical data  structures in the  SDC time shared 

data management system  (TDMS),” Proceedings  of  the  ACM 22nd Na-  
tional  Conference, p. 67,  41-49,  Thompson Book Co., Washington, D C  
(1967). 

8. W. C.  McGee,  “The  IMSlVS  system,” IBM  Systems  Journal 16, No. 2, 

9. Interactive  Query  Facility ( I Q F ) ,  General  Information  Manual, GH20- 
1074,  IBM  Corporation,  Data  Processing Division,  White  Plains, New 
York  10604. 

10. Generalized  Information  System,  Generul  Informution  Manual, GH20- 
9035, IBM Corporation,  Data Processing  Division,  White  Plains, New 
York 10604. 

11. J .  H.  Wimbrow, “A large-scale  interactive  administrative system,” IBM 
Systems  Journal 10, No. 4, 260-282  (1971). 

12. J.  E. Siwiec, “A high-performance DB/DC system,” IBM  Systems  Journal 

13. D.   C.  Tsichritzis  and F. H. Lochovsky,  “Hierarchical  data-base manage- 
ment,” ACM  Computing  Surveys 8, No. I ,  105-  124 ( 1976). 

14. B. C. M. Douque  and G .  M. Nijssen, “The Wepion recommendations  on  the 
CODASYL  DDL 1973,” Data  Base  Description, North-Holland Pub- 
lishing Co., Amsterdam  (1975),  pp.  369-372. 

15. T. B. Steel,  Jr.,  “Summary of recommendations,” Data  Base  Description, 
North-Holland Publishing Co.,  Amsterdam ( 1975),  pp.  373 - 376. 

16. F.  Manola, The CODASYL datu  description  languugr: status and  uctiu- 
ities,  April  1975, NRL Report 8038, Naval Research  Laboratory, Washing- 
ton, DC  (1976). 

17. R.  W.  Taylor and  R. L.  Frank,  “CODASYL  data-base management sys- 
tems,” ACM  Computing  Sumeys 8, No. 1, 67- 104 (1976). 

18. G. F. Duffy and F.  P.  Gartner,  “An on-line  information system  for manage- 
ment,” AFlPS  Conference  Procredings, Spring Joint  Computer  Conference 

19. Inteructiue  Query nnd Report  Processor,  General  Information  Manual, 
GB21-9903, IBM Corporation,  Data Processing  Division,  White  Plains, 
New York  10604. 

20. CODASYL  Data Base Task  Group, April  1971  Report, ACM,  New  York, 
NY  (1971). 

NO. I ,  30-93  (1973). 

mution 19, No. 5 ,  48-59  (1973). 

ACM  Computing  Surveys 8, No. I ,  7-42  (1976). 

Sciences,  Inc., Wellesley, MA  (1976). 

84-168  (1977). 

16, NO. 2, 169- 195 (1977). 

34, 339-3.50 (1969). 

DB  PAST, PRESENT,  FUTURE 



21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

, ISO/TC 97/SC 5 Study  Group  on  Data Base  Management Systems, Con- 
clusions q f  the  June 2 4 -  26 Meeting, Washington, DC ( 1975). 

, ANSI/X3/SPARC  Study  Group  on  Data Base Management Systems, 
“Interim  report,” FDT  Bulletin o f A C M   S I C M O D  7, No. 21,  140 ( 1975). 

, GUIDE-SHARE Database  Requirements  Group, Databuse  Manuge- 
ment  System  Requirements, SHARE Inc.,  New  York, NY ( 1970). 
T. B.  Steel,  Jr.,  “Formalization of conceptual schemas,” Proceedings ofthe 
PLII  Symposium,  Keystone,  CO,  February 1976, CIBAR  Corporation, 
Colorado Springs, CO, 1976;  also to appear in T.  B. Steel, Jr.  and  J.  M. 
Gallitano, A Proposal of u Language  for  the  Conceptual  Schemu, North- 
Holland Publishing Co., Amsterdam  (1977);  to be published. 
S. E. Madnick and  J. W. Alsop, “A modular approach  to file system design,” 
AFIPS  Conference  Proceedings, Spring Joint  Computer  Conference 34, 

H. S. Meltzer, Datu  Buse  Concepts  und  Architecture  for  Datu  Systems, 
IBM  Report  to SHARE Information Systems  Research  Project, SHARE 
Inc.,  New  York, NY (August 20, 1969). 
S. McIntosh and D. Griffel, “ADMINS from Mark 111 to  Mark V,” 
Proceedings of rhe IFIPS  Congress 68, North-Holland Publishing Co., 
Amsterdam ( 1969). 
C. T .  Davies, A Logical  Concept  for  Control  and  Management of Dutu, 
AR-0803-00, IBM Corporation,  System  Development Division,  Pough- 
keepsie, New York ( 1967). 
E. F. Codd,  “A relational model for large shared  data banks,” Communica- 
tions o f the   ACM 13, No. 6, 377-387  (1970). 
P. L. Fehder, The  Representation-Independent  Language.  Part I :  Intro- 
duction  und  Subsetting  Operations, Research  Report RJ I 121, IBM 
Research  Laboratory,  San  Jose, California ( 1972). 
S. P.  Ghosh and M. M.  Astrahan,  “A  translator optimizer  for  obtaining 
answers  to entity set  queries from  an arbitrary  access  path network,” 1n- 
formation Processing 71, North-Holland Publishing Co.,  Amsterdam 
(1974),  pp.  436-439. S. P. Ghosh  and  M.  E.  Senko,  “On the  analysis  of 
search  path  procedures in an  information system based  on  string paths,” 
IBM Journal of Research  und  Development 18, 408-422 ( 1974). 
P. P-S. Chen,  “The entity-relationship model-toward a unified view of 
data,” ACM  Trunsuctions  on  Database  Systems 1, No. 1, 9- 36  (1976). 
G .  M.  Held,  M. R. Stonebraker, and E. Wong, “INGRES-a relational 
data  base  system,” Proceedings o f  the AFIPS  National  Computer  Con- 
ference 44, 409-416  (1975). 
J .  Mylopoulos, S. Schuster, and D. Tsichritzis,  “A multi-level relational 
system,” Proceedings of the  AFIPS  National  Computer  Conference 44, 
403 - 408 ( 1975). 
V. K. M. Whitney, “RDMS: a  relational data management system,” Pro- 
ceedings  of  the  Fourth  International  Symposium on Computer  and  In- 

1 - 13 (1969). 

36. D. McLeod and M. Meldman, “RISS-A generalized  minicomputer  rela- 
tional data  base management system,” Proceedings ofthe  AFIPS  National 
Computer  Conference 44, 397- 402 ( 1975). 

37. L. S. Schneider, “A relational view of the  Data  Independent Accessing 
Model,” Proceedings  of  the ACM-SICMOD Internutionul  Conference on 
Management of Data (1976), pp. 75-90. 

38. H. A.  Schmid and  P.  A. Bernstein, “A multi-level architecture for  relational 
data  base  systems,” Proceedings o f the  Internutional  Conference on Very 
Large  Data  Bases,  Framingham,  MA, 1975, D. S. Ken, editor,  ACM, 
New  York,  NY, 1975, pp.  202-226. 

39. G.  K. Manacher,  “On  the feasibility of implementing  a large relational data 
base with optimal  performance  on  a mini-computer,’’ Proceedings  of  the 
International  Conference on Very  Large  Datu  Bases,  Framingham,  MA, 
1975, D. S. Kerr,  editor,  ACM,  New  York,  NY, 1975, pp. 175-201. 

252 SENKO IBM SYST J 



40. L. S. Schneider, Martin Marietta  Corp.,  Denver, CO; private  communica- 
tion ( 1976). 

41.  C. J. Date, A n  Introduction to Database  Systems,  70, Addison-Wesley 
Publishing Co., Reading, MA  (1975). 

42.  M. M. Zloof,  “Query-by-Example,’’ Proceedings of the  AFIPS  National 
Computer  Conference 44,431-438  (1975). 

43. J. C.  Thomas and J.  D.  Could,  “A psychological study of Query-by-Ex- 
ample,” Proceedings  of  the  AFIPS  Computer  Conference 44, 439-445 
(1975). 

44. W. Kent,  “New  criteria  for  the  conceptual model,” Systems  for  Large  Datu 
Buses, Preprints qf the  Conjerence  on  Very  Large  Datu  Buses,  Brussels, 
Belgium,  September,  1976, P. C.  Lockemann and E. J .  Neuhold,  editors, 
North-Holland Publishing Co.,  Amsterdam  (1976).  W.  Kent,  “Entities and 
relationships in information,” Modeling in Datu  Base  Management  Sys- 
tems,  Proceedings ojthe  IFIP-TC-2 Working  conference,  Nice,  France, 
January,  1977, IRIA,  78150  LeChesnay,  France  (1977). 

45. G .  Bracchi, P. Paolini, and G .  Pelagatti,  “Binary logical associations in data 
modeling,” Modeling  in  Data  Base  Management  Systems,  Proceedings  of 
the  IFIP-TC-2  Working  Conference,  Freudenstadt,  Germany,  January, 
1976, G .  M. Nijssen, editor, North-Holland Publishing Co., Amsterdam 

46. H.  A. Schmid and J .  R. Swenson,  “On  the  semantics of the  relational 
model,” Proceedings qf the  SIGMOD  Conference,  San  Jose,  CA,  1975, 
ACM,  New  York, NY (19751,  pp.  211-223. 

47. W. A.  Woods and R.  M. Kaplan, The lunar  sciences  natural  language  in- 
,formution  system, BBN Report 2265, Bolt Beranek and  Newmann, Inc., 
Cambridge, MA ( 197 1 ) .  

48. W. J .  Plath, “REQUEST: a  natural language question-answering system,” 
IBM  Journal of Research  and  Development 20, No. 4, 326-335  (1976). 

49. S. R. Petrick. “On natural  language  based computer  systems,” IBM 
Journal  ofRrsearch  and  Development 20, No.  4,3 14- 325 (1976). 

50.  R. E. Levien  and M. E. Maron, “A computer  system for  inference  execution 
and  data retrieval,” Communicutions of the ACM 10, 7 15 - 721 ( 1967 ). 

51. W. L. Ash  and E. H. Sibley, “TRAMP:  an  interpretive associative  pro- 
cessor with deductive capabilities,” Proceedings oj the  ACM 23rd  National 
conference, Brandon/Systems Press, Princeton, NJ  (1968),  pp.  144- 156. 

52. J.  A. Feldman and P. D. Rovner,  “An  ALGOL-based  associative lan- 
guage,” Communications  ojthe  ACM 12, No.  8,439-449  (1969). 

53. M. E. Senko,  “DIAM  as a  detailed  example of the  ANSI  SPARC architec- 
ture,” Modeling in Data  Buse  Management  Systems,  Proceedings  of  the 
IFIP-TC-2  Working  Conference,  Freudenstadt,  Germany,  January,  1976, 
G .  M.  Nijssen,  editor,  North-Holland Publishing Co., Amsterdam  (1976), 

54. B. Langefors, “Information  systems,” information  Processing  74, North- 
Holland Publishing Co.,  Amsterdam  (1974), pp. 937-945. 

55. B. Sundgren, A n  Infological  Approach to Data  Bases,  (Urual nr 7 ) ,  
National  Central Bureau of Statistics,  Stockholm, Sweden ( 1973). 

56.  P.  Titman,  “An  experimental  data  base  system using  binary  relations,” 
Data  Base  Management,  Proceedings of the  IFIP-TC-2  Working  Confer- 
ence,  Cargesr,  Corsica,  January,  1974, J. W. Klimbie and  K.  L. Koffeman, 
editors,  North-Holland Publishing Co.,  Amsterdam ( 1974). 

57. G .  Bracchi, A.  Fedeli,  and P. Paolini, “A multilevel relational model for 
data  base management systems,” Data  Base  Management,  Proceedings of 
the  IFIP-TC-2  Working  Conference,  Cargese,  Corsica,  January,  1974, 
J. W. Klimbie and K. L. Koffeman, editors,  North-Holland Publishing Co., 
Amsterdam ( 1974). 

5 8 .  J-R. Abrial, “Data  semantics,” Data  Base  Management,  Proceedings  of  the 
IFIP-TC-2  Working  Conference,  Cargese,  Corsica,  January,  1975, J. W. 

(1976),  pp.  125- 148. 

pp.  73 - 94. 



59.  M.  E.  Senko,  “The DDL in the  context of a multilevel structured  de- 
scription: DIAM I1 with FORAL,” Datu  Buse  Description,  Proceedings  of 
the  IFIP-TC-2  Working  Conference,  Wepion,  Belgium,  January,  1975, 
B. C. M.  Douque and G .  M. Nijssen, editors,  North-Holland Publishing 
Co.,  Amsterdam  (1975), pp. 239-258. 

60. J .  A. Bubenko  and S. Berild, CADIS  System 4: a  Tool  Incremental  De- 
scription  and  Analysis  ofSystems, Report  TRITA-IBADB-3082,  Depart- 
ment of Information  Processing, University of Stockholm, Sweden  (1974). 

61. S. Berild and S. Nachmens,  “Some practical  application of CS4-a  DBMS 
for  associative  data  bases,” Preprints,  Proceedings of the  IFIP-TC-2 
Working  Conference,  Nice,  Frunce,  January,  1977,  Modeling  in  Data  Base 
Munugement  Systems, IRIA, 78 150 Le  Chesnay,  France  (1977). 

62. E. Falkenberg,  “Concepts for modeling information,” Modeling in Data 
Base  Management  Systems,  Proceedings of the  IFIP-TC-2  Working  Con- 
ference,  Freudenstadt,  Germany,  January,  1976, G. M. Nijssen,  editor, 
North-Holland Publishing Co.,  Amsterdam ( l976) ,  pp. 95- 1 10. 

63. P. Hall, J. Owlett, and S. Todd,  “Relations  and entities,” Modeling  in  Datu 
Base  Management  Systems,  Proceedings  of  the  IFIP-TC-2  Working  Con- 
ference,  Freudenstadt,  Germany,  Junuary,  1976, G.  M.  Nijssen,  editor, 
North-Holland Publishing Co.,  Amsterdam  (1976), pp. 201 -220. 

64.  E.  Falkenberg,  “Design  and application of a natural language oriented  data 
base language,” Advanced  Course  on  Data  Base  Languages  and  Natural 
Language  Processing, H.  J .  Schneider, editor,  Technical University, Berlin, 
Germany  (1975). 

65. J .  A. Bubenko, “The temporal  dimension in information  modeling,” 
Modeling in Datu  Base  Management  Systems,  Proceedings  of  the  IFIP- 
TC-2  Working  Conference,  Nice,  France, JunuarJI,  1977, IRIA,  78150 
Le  Chesnay,  France  (1977)  pp. 41 -66. 

66. B. M.  Schueler,  “Update  Reconsidered,” Modeling in Data  Base  Manuge- 
ment  Systems,  Proceedings  of  the  IFIP-TC  Working  Conference,  Nice, 
France,  January,  1977, IRIA  78150  Le  Chesnay,  France  (1977). 

67.  L.  A. Bjork, Jr.  “Generalized audit  trail  requirements and  concepts for 
data base  applications,” IBM  Systems  Journal 14, No. 3, 229-245  (1975). 

68.  L.  Kerschberg,  A. Klug, and D .  Tsichritzis,  “A taxonomy of data models,” 
Systems  for  Very  Large  Data  Bases,  Preprints  of  the  Conference  on Very 
Large  Data  Bases,  Brussels,  Belgium,  1976, P.  C.  Lockemann  and E. J.  
Neuhold,  editors,  North-Holland Publishing Co.,  Amsterdam  (1976), 

69.  M. E. Senko,  “Conceptual  schemas,  abstract  data  structures,  enterprise 
descriptions,” Proceedings of ICS77, the A C M  International  Computing 
Symposium  1977,  Liege,  Belgium, North-Holland Publishing Co.,  Amster- 
dam ( 1977). 

70.  M.  E.  Senko,  “DIAM I1 with FORAL  LP: making pointed queries with 
light pen,” Proceedings of the IFIP  Congress  77,  Toronto,  Canada,  1977. 
FORAL  LP  for   DIAM 11: FORAL with  light  pen-a  lunguuge  primer, 
Research  Report RC-6328, IBM Thomas J .  Watson  Research  Center, 
Yorktown Heights, NY  (1976). 

71.  M.  E.  Senko,  “FORAL I I  for  DIAM 11, information structure  and  query- 
maintenance language,” may be obtained  from the  author,  IBM  Thomas J .  
Watson  Research  Center,  Yorktown Heights, NY  (1976). 

72. D. P. Smith, A n  Approach  to  Datu  Description  and  Conuersion, Moore 
School Report  No. 72-20, Moore School of Electrical  Engineering,  Uni- 
versity of Pennsylvania,  Philadelphia, PA ( 197 1 ) . 

73.  R. W. Taylor, Generalized  Data  Buse  Management  System  Data  Struc- 
tures  and  their  Mapping  to  Physical  Storage, Ph.D.  Thesis,  University of 
Michigan,  Ann Arbor,  MI  (1971). E. H. Sibley and  R.  W.  Taylor,  “A  data 
definition and mapping language,” ACM  Communications 16, No. 12, 

74.  The  Stored-Data Definition and  Translation  Task  Group of the  CODASYL 
Systems  Committee,  “Stored-data description and  data  translation: a model 

pp.  43 - 64. 

750-759  (1973). 

254 SENKO IBM SYST J 



and a language,” Injbrnzntion Systems 2, No. 3 ( 1977). 
75. E.  Nahouraii, L. 0. Brooks, and A.  F.  Cardenas,  “An  approach  to  data 

communication  between different generalized data  base  systems,” Systems 
for  Large  Datu Base.s, Proccedi~gs o f t h e  Conference on Very  Large Dato 
Buses, Bru.s.sel.7, Belgium, Sr,ptemher, 1976, North-Holland Publishing 
Co., Amsterdam ( 1976). 

76. M. E.  Senko,  “DIAM 11 and levels of abstraction: the  physical device 
level: a general model for  access  methods,” Systems.fi>r  Large  Data B a s r s ,  
Proceedings of the  Conference  on  Very  Large  Data  Bases,  Brussels, 
Belgium,  September, 1976, North-Holland Publishing Co., Amsterdam 
( 1976). 

77. A. Cabanes,  “Data  independence and  physical  implementation,” Datu 
Structure  Models  for  Information  Systems,  Travuux de I’lnstitut d‘lnfor- 
matique  No. 4 ,  Proceedings o f  the International Workshop, Namur,  Bel- 
gium,  May, 1974, Presses  Universitaires  de  Namur,  Namur, Belgium 

78. M. Adiba and C.  Delobel,  “The problem of the cooperation between dif- 
ferent  DBMS,” Modeling in Data  Base  Management Systcms, Proceed- 
ings  of  the  IFIP-TC-2  Working  Conference,  Nice, France, Junmtrry, 1977, 
IRIA, 78150 Le  Chesnay,  France (l977),  pp. 131- 156. 

79. F.  L.  Hainaut,  “Some tools  for data independence in multilevel data base 
systems,” Modeling in Data  Base  Management Systems, Procecviings qf‘ 
the  IFIP-TC-2  Working  Conference,  Nice,  France, Jtrnurrry, 1977, IRIA, 
78150 Le Chesnay,  France (1977), pp. 157- 188. 

80. J .  F. Kelly, Computerized Munugement Information  Systems, The Mac- 
millan Co.,  New  York,  NY (1970), p. 533. 

8 1. DBIDC  Datu  Dictionury,  General  Information  Manuul, GH20-9 104-0, 
1BM Corporation,  Data  Processing Division,  White  Plains, New York 
10604. 

82. P. P.  Uhrowczik,  “Data dictionaries/directories,” IBM  Systems Journcrl 

83. R. G. Canning, “The data  dictionary/directory  function,” E D P   A n u / w u  
12, No. I I  (1974). 

84. P.  H.  Seaman and R.  C.  Soucy, “Simulating operating  systems,” IBM 
Systems Journal 8, No. 4, 264- 279 ( 1969). 

85 .  P. H. Seaman. R. A. Lind,  and T. L. Wilson, “On teleprocessing system 
design, Part IV. An analysis of axuiliary-storage  activity,” IBM Systrms 
Journal 5 ,  No. 3, 158- I70  (1966). 

86. D. Teichroew,  “A  survey of languages for  stating requirements  for  com- 
puter-based information systems,” AFlPS  Conference  Proceedings, Fall 
Joint  Computer  Conference  Part 11 41, 1203 - 1244, ( 1972). 

87. J .  D.  Couger,  “Evolution of business system analysis  techniques,” ACM 
Computing  Surveys 5,  No. 3, 167- 198 (1973). 

88. M. E. Senko, V. Y.  Lum,  and P. J. Owens,  “A file organization  model 
(FOREM),” Information  Processing 68, Proceedings  of  the IFlP  Con- 

ference, North-Holland Publishing Co.,  Amsterdam, ( 19691, pp. 5 14- 5 19. 
M .  E.  Senko,  P. J. Owens,  and V. Y.  Lum,  “File  structure simulation model 
(FSSM) ,” Formatted  File  Organization  Techniques, Final Contract  Re- 
port,  Contract  (AF 30(602)-4088) ,  Rome  Air  Drvelopment  Center, IBM 
Thomas J. Watson Research  Center,  Yorktown Heights, N Y  ( 1967). 

89. L. S. Schneider and C. R. Spath, “Quantitative data  description,” Pro- 
ceedings  of  the SICMOD  Conference, Sun Jose, Calijiornia, 1975, ACM, 
New  York, NY (1975), pp. 167- 185. 

90. A. F. Cardenas,  “Evaluation  and selection of file organization-a model and 
a system,” ACM  Communications 16, No. 9, 540-548  (1973). A.  F. 
Cardenas  and  J.  P. Sagamag,  “Modeling and analysis of data  base organiza- 
tion, the doubly  chained tree  structure,” Information  Systems 1, 57-67 
(1975). . 

91. V. Y.  Lum, M. E. Senko, H. Ling, and J .  H.  Barlow, “Quantitative timing 
analysis and verification for file organization modeling,” Informcrtion S Y S -  

(l97S), pp. 169- 188. 

12, NO. 4, 332-350  (1973). 

NO. 3 * 1977 DB PAST, PRESEN’T, FUTURE 255 



256 SENKO 



108. Datu  Base  Design  Aid.  General  Information  Manual, GH20-1626, IBM 
Corporation,  Data  Processing Division,  White  Plains, New  York, NY 
10604. 

109. N.  Raver  and G. Hubbard,  “Automated logical file design: concepts  and 
application,” this issue. 

1 I O .  S. E. Smith  and J.  H.  Mommens,  “Automatic  generation of physical data 
base  structures,” ACM S I C M O D  International  Conference,  San Jose ,  C A ,  
1975, ACM,  New  York,  NY (1975).  

1 1 1 .  J. A.  Bubenko, Jr., S. Berild, E. Lindencrona-Ohlin, and S. Nachmens, 
“From information structures  to  DBTG  data  structures,” Proceedings oJ 
the Conference  on  Data:  Abstraction,  Definition,  and  Structure,  FDT 
Bulletin 8, No. 2, 73-85  (1976).  

112. J .  A. Hoffer and D. G. Severance,  “The use of cluster analysis in physical 
data base  design,” Proceedings of the  International  Confrrencr  on  Venl 
Large  Datu  Rases,  Framingham,  MA,  September,  1975, ACM,  New  York, 

113. M.  F. Mitoma  and K. B. Irani, “Automatic  data  base  schema design and 
optimization,” Proceedings  of  the  International  Conference  on  Very  Large 
Data  Bases,  Framingham, M A ,  September,  1975, ACM,  New  York, NY 

114. V. Y. Lum and H. Ling, “An optimization  problem in the selection of 
secondary keys,” Proceedings  of  the  1971 ACM National  Conference 26, 

115. M. Schkolnick,  “Secondary  index  optimization,” ACM S l C M O D  1975, 
International  Conference  on  Management of Data,  Sun Jose, C A ,  ACM, 
New  York, NY (1975).  

116. Data  Base  Directions,  The  Next  Steps, N B S  Special  Publication  451, 
John  L. Berg, editor, U.S. Department of Commerce, National Bureau of 
Standards, U.S. Government Printing Office, Washington, DC (1975).  

N Y  (19751, pp. 69-86. 

(1975), pp, 286-321. 

349-356,  (1972). 

GENERAL  REFERENCES 
1 .  A. Blaser and H .  Schmutz, Data  base  research:  a  survey, Research  Report 
TR75.10.009, IBM Heidelberg Scientific Center, Heidelberg, Germany (1975).  
2. C. J. Date, A n  Introduction  to  Database  Systems, Addison-Wesley  Publish- 
ing Co.,  Reading, MA ( 1975). 
3 .  J.  Martin, Computer Data  Base  Organization, Prentice-Hall,  Inc., Englewood 
Cliffs, NJ (1975).  

Reprint Order  No. (3321-5053. 

DB PAST,  PRESENT,  FUTURE 257 


