A broad range of commercial and research data base systems
are analyzed. Common characteristics are discussed. These
systems, which have roots in older filing systems and in punched
card systems, are grouped into the three categories of hierarchic,
network, and single-level models. Also presented is work on
the standardization of data base systems. Research toward the
discovery of new commonalities is also discussed. This paper is
hased on an extensive published literature.

Data structures and data accessing in data base systems
past, present, future

recent
progress

by M. E. Senko

During the time since the publication in this Journal of a paper on
the history and status of existing data base systems,' much has
been written about data base systems in the periodical literature
and in the proceedings of conferences. However, there has not
been time to compile this information into a critically written
book. This article cannot replace such a book, but it is hoped that
it will aid the reader in developing a critical viewpoint of general
trends. In addition, it provides a large number of references for
one who wishes to become acquainted with recent trends in
greater detail.

Depending on point of view, there has been either little or great
progress during the past four years. From a qualitative viewpoint,
there has been very little progress in commercial data base tech-
nology. The four-year period has been a time of consolidation and
incremental improvement. From a quantitative viewpoint, on
the other hand, there has been very great progress —the number
of installed generalized data base systems has increased from a
few hundred to several thousand.

During this time, data base systems have become a main topic of
discussion in the computer industry. The interest is, however,
not due simply to the large number of installations. The fastest
computers and the largest storage devices are barely able to
meet the requirements posed by recent integrated systems for
reservations and for management control. Much of the present
interest has arisen because effective and efficient implementation
of these systems represents an outstanding technical challenge
in all phases of computer systems work. Finally, in the research
area, a greater understanding has been developed. Significant
problems, however, must still be solved to assure a worthwhile,
compatible transfer of this knowledge to installed systems.

SENKO IBM SYST J

The early sections of this review place each of these points in a
long-term perspective by discussing the technical evolution of
the data base systems area. Later sections provide an introduc-
tion to current publications in the area, along with comments
designed to guide the reader in correlating the sometimes diverse
terminology. The Data Independent Accessing Model (DIAM) is
used to provide a focus for this material. The review ends with a
discussion of possible future developments.

There are many proposed definitions for information systems,
none of which satisfies all people. We simply note that a major
purpose of any information system is to provide a relatively exact
and efficient model of the significant resources of a real world
enterprise. In this description, the criterion of efficiency is
particularly important because it provides the driving force be-
hind much of the work on computerized information systems. In
the case of computerized information systems, there are at least
three components in the efficiency criterion. One is the efficient
use of the resources modeled by the system, such as the parts,
the airline seats, the money, the people, and so forth. In recent
years, one of the main places where efficiency has been gained
is in the timely use of expensive resources (for example, airline
seats). In many instances, timely use generates a requirement
that the enterprise models follow the real-world situation second
by second.

In the computer industry proper, efforts on data base systems
have been directed primarily at the other two components of
efficiency; computer efficiency and human efficiency. The in-
dustry has, of course, always emphasized the efficient use of

computing resources. However, there has been a continued
steady decrease in hardware prices and a parallel increase in
salaries. Boehm,” for example, indicates that as much as seventy-
five percent of Air Force computing costs are in the cost of soft-
ware, and he estimates that this figure will rise to ninety percent
by 1985. In this environment, efficient utilization of human re-
sources is becoming a dominant issue.

Early data base systems

The first major step in the mechanization of information systems
came with the advent of punched card machines. The increased
efficiency and accuracy of machine-prepared reports was dra-
matic. These benefits, however, caused us to overlook the fact
that the systems required a new type of human effort — the effort
to design and implement an efficient machine accounting sys-
tem. Punched card machines can work on fixed-length fields
only, and are efficient only in sequential processing. To utilize
these machines, the user has to spend a considerable amount of

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

information
systems and
efficiency

time fitting information into fixed-length card fields and defining
the processing in terms of card sorts, reproductions, and tabula-
tions. Although this time is generally small when compared to the
time gained by mechanization, it has still been a significant new
cost.

With the appearance of the stored program computer, physical
and mechanical efficiency again increased dramatically. In addi-
tion, the computer had a potential for flexible and powerful
logical processing. This processing potential was not initially
realized because processing algorithms were lifted almost intact
from punched card systems.

While total system efficiency increased again, an additional
housekeeping burden for fitting the problem to the computer was
placed on the user. For example, the user had to write programs
in bit-oriented terms for the computer to understand them. In
many senses, the substantive information processing — which is
the real reason for the information system —became almost
completely submerged in the housekeeping details of program
loops and conditional transfers. Given the improvement in the
costs and capabilities of mechanical computing resources, it
became desirable to shift some of the burden of building informa-
tion systems from the human to the computer. All that was
needed were formalized algorithms that would allow the com-
puter to accomplish housekeeping tasks efficiently.

The initial attacks on excessive or inefficient housekeeping were
carried out by workers concerned with scientific computation.
Major advances included the symbolic assembler, the procedural
language compiler, and the operating system. With the possible
exception of the operating system, each of these developments
brought the description of the substantive processing back closer
to the surface of the housekeeping detail. These advances were
mainly concerned with reduction of housekeeping in the central
processor and in main storage.

Another major problem —the housekeeping associated with file
searching and processing—remained little affected. The attack
on housekeeping in file searching and processing was led by a
new group, people working on information systems in com-
mercial and military areas. Their work led to nonprocedural
systems like 9PAC, the Report Program Generators (RPG), and
the military Formatted Files Systems (FFS). These were im-
plemented as the 1BM 7090 FFS and the 1410 FFS, along with the
Control Data Corporation INFOL, and the Informatics Incor-
porated early versions of the MARK systems. These systems
made three major steps forward. In the first place, they separated
the description of the data structure from the processing program,
so that the data structure could be changed without changing the

SENKO IBM SYST J

program. They provided algorithms for translating a user’s non-
procedural description of a report into machine language pro-
cedures for composing the report. Also, they made the searching
of tape files an implicit (or nonprocedural) process. That is, the
user could simply state the conditions for a record to be retrieved,
and the system would generate the algorithms to perform the
search efficiently.

The tape-oriented systems of the 1950s and early 1960s had to
generate algorithms for the search problem only within the re-
stricted and simplified structure of a sequential search. This
approach was, however, quite adequate until peripheral storage
with large-scale random access capability appeared. Random
access hardware removed the efficiency-based sequential batch
processing restriction and made possible the construction of
up-to-the-second real-world models. Real-time systems had thus
arrived. Random access systems brought with them the potential
for an increased range of complex file organizations. Again, to
take this major step forward in total system efficiency, a signifi-
cant additional housekeeping burden was placed on the user.

In the early and middle 1960s, commercial users began to ac-
cumulate a number of pragmatic techniques for shifting some of
the housekeeping burden back to the computing system. The
most primitive techniques were the direct, sequential, and in-
dexed sequential access methods. These access methods as-
sisted substantially in the housekeeping aspects of storing and
moving physical records. They also provided some assistance in
locating a particular record with a unique identifier.

The next qualitative step arrived with the combination of a
procedural language (usually COBOL), the capabilities of early
tape systems for handling records with variable numbers of seg-
ments, and the random access capabilities of hardware. This line
of development, termed procedural language enhancement,
appeared in the General Electric Company Integrated Data Store
(aD$S) and the 1BM Data Language 1 (DL/I). Systems such as these
process one record at a time and are the basis of essentially all
the major real-time information systems. They generally handle
real-time maintenance of the operational data of a corporation
and are, therefore, called ‘“operational systems.”

Nonprocedural systems have followed a second path of evolu-
tion, by adding varying amounts of random access storage
capability. This path has led to random access oriented RPGs, the
MARK IV System of Informatics Incorporated, the Generalized
Information System (GIS) of IBM, and the Time-shared Data
Management System (TDMS) of the System Development Cor-
poration. These executive systems, which are used primarily
for data analysis, provide a major improvement in program

No. 3 -« 1977 DB PAST, PRESENT, FUTURE

Figure 1 Example of a generalized data base

PAYROLL INSURANCE

[EMP-NO EMP-NAME l ADDRESS lPOL(CY—NO INSURED-NAME l ADDRESS

SALARY-AMT DATE PREMIUM-PAYMENT DATE

SALARY-AMT DATE PREMIUM-PAYMENT DATE

BANKING INVENTORY |

[ACCOUNT-NO DEPOSITOR-NAME l ADDRESS [PART-NO PART-NAME LOCATION

DEPOSIT-AMT DATE IN-STOCK-QUANTITY

DEPOSIT-AMT DATE IN-STOCK-QUANTITY

writing efficiency. For example, in one small, relatively in-
formal test for reporting applications, G1s was found to require
one to two orders of magnitude less programming time than
COBOL. This improvement in human efficiency was provided by
the executive systems with relatively small cost in computer
efficiency.

The first major thrust into the real-time information systems
area came about 1965. At that time each individual industry was
developing its own set of management information systems.
There existed approximately one hundred such IBM program
products or proposed program products, each with its own
specialized data management capabilities. Since the applications
were certainly different, it seemed necessary for each applica-
tion to have its own special code for handling its special informa-
tion files. However, the IBM Federal Systems Division’s For-
matted File System (FFS) experience indicated that seventy to
eighty percent of an application program’s code consisted of file
handling and data structure decoding. It demonstrated that these
tasks could be handled with reasonable computer efficiency by
a generalized program. It also indicated that systems could be
installed perhaps fifty percent more quickly and easily if gen-
eralized code were used for communications and data handling.

The utility of generalized data base systems becomes more
apparent if we look at Figure 1. In this figure, the main differences
between the several files shown are merely in the names of the
files and the names of the fields. Thus, such a transaction as
IF -NO = 012345, CHANGE ADDRESS (0or LOCATION) TO
X could apply equally to each of the files. If the software allows
the definition of records with fields of different sizes and names,
and is capable of handling such a transaction with a name
appropriate to one file, then it can handle similar transactions on
files where the name in the blank space is different.

Perhaps the only significant differences among systems for vari-
ous application areas have been the details of the computational

procedures that were applied to the stored information. For

SENKO 1BM SYST J

example, in the payroll case, the *‘salary amount” might be used
in an arithmetic calculation of taxes. In the inventory case, the
contents of a field similar to ““in-stock-quantity” might be used
in a different arithmetic calculation to obtain the number of parts
to be ordered when restocking.

Realization of the fact that data handling and data communica-
tions were functions that could be generalized led 1BM to empha-
size the Information Management System (IMS), Customer
Information Control System (CICS), and the Generalized Infor-
mation System (GIS) as its main data base/data communications
systems products for a wide range of industries. The historical
evolution of data base systems has recently been reviewed in
greater detail by Fry and Sibley.”

Evolution of data base terminology

One of the outstanding aspects of data base studies is the com-
plex, overlapping, shifting, and ill-defined terminology. This
situation is understandable, but its causes are not often recog-
nized. In the data base area, as opposed to the field of mathe-
matics, there has not been time to perfect and simplify concepts
so that they can be adequately defined. In order to make some
progress, compilex, ill-defined concepts have been given capsule
descriptions and labels such as ““the sequential access method”
or “secondary index” for reference. It is then hoped that the
reader has enough knowledge of actual systems to understand
what the label really stands for.

One of the reasons for so much overlapping terminology is that
it is relatively easy to recognize a particular distinctive property
of a system, assign a label to it, and then classify things accord-
ing to the label. Since more terms give the terminologist a com-
fortable feeling that he has covered all bases, he is led to a
proliferation of overlapping and inconsistent terms. Work is
progressing toward simplifying data base concepts and reducing
their overlap. For now, however, we shall use the labels as a
starting point, leavening them with an understanding of the
complex concepts in actual systems. For example, commercial
data base systems are generally classified into three major
categories, each labeled by a file structure, namely, the flat file,
the hierarchic and the network types. These categories are rather
loosely defined, and the assignment of a system to any one of
them has been dependent on the time at which the system be-
came generally known to the data base community, as can be
seen by looking at the long-term evolution of this categorization.

In the beginning, there were punched cards, a box of which with
the same field format provided the prototype for the flat file.

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

It was also possible to extend this structure by substituting for
each card in the box two or more cards, each with a different
format. This was equivalent to extending the length of a single
card, because it introduced no major changes in the character
of the file structure. It was also possible to extend the format by
placing more than one field of a type on the card. Although this
“multivalued attribute” format is really a ‘‘hierarchic form,” it
did not change the character of the data structure very much.
Thus, these new structures were pragmatically included in the
category of flat files.

A second method of extending punched card data structures was
to place variable numbers of cards of a new format type after
cards of the first format. Cards of the first format were called
masters and cards of the second format were called details. Each
set of detail cards could be considered to be physically associated
with the master card that immediately preceded the set, and this
physical association was used to represent a parallel logical
association between the contents of the cards. This method
formed the prototype for the hierarchic file, in which each detail
card could be associated with only one master card. This master-
detail characteristic distinguished hierarchic files from network
files, in which a particular detail card or record could be as-
sociated with more than one master.

When these data structures were moved to tape systems, the
physical card length constraint was removed. This new freedom
placed a strain on the existing terminology. Since the term “‘rec-
ord” could no longer stand for a physical card, what should it
stand for? By analogy with the card as a physical subdivision, the
physical subdivision on tape was marked by an end-of-record
gap. The fact that it was useful to place more than one hierarchic
record between record gaps brought up a problem that was re-
solved in some cases by calling each hierarchy a logical record
and the space between gaps a physical record. There was also
a problem as to what to call the logical equivalent of the single-
level card. Some systems continue to call these elements records,
whereas hierarchic systems frequently call them segments.
Clearly, the data base term “‘record” can mean many different
things.

When random access devices came into common use, the term
network appeared on the scene. For the first time, it became
useful to connect one record to a second by giving the storage
address of the second record. These structures were labeled
networks even though they were only a subset of the possible
mathematical networks. Limitations were imposed by difficulties
in storing physical records with varying numbers of pointers.

Considering the complexity underlying this simple three-part
classification —flat file, hierarchic and network — we can see why

IBM SYST J

a label accompanied by a capsule description may not constitute
an adequate definition. There is clearly a need for better defini-
tions, and to some extent this need can be satisfied by appealing
to mathematics. Although there are many overlapping notations
in mathematics (sets, vectors, relations, etc.), it is true that when
a particular notational is chosen, most users can agree on the
meaning of definitions and operations within the notation. Here
again one must be careful to leaven the definition with some
knowledge of the technological concept. For example, an early
relational definition for the term identifier was the following: any
set of columns in the relation that provides a unique identification
for each n-tuple. This definition implied that an identifier could
be discovered by scanning the relation. Under this incomplete
definition, weight of person would be termed an identifier when
each person in the relation happened to have a unique weight.

This situation was somewhat improved by saying that over all
time the set of columns must uniquely identify the n-tuples. This
is better, but it still leaves out an essential aspect of the techno-
logical concept of identifier —the intention of the user to control
the assignment of identifier values so that no two entities have
the same identifier. (At present, the latter is an extra-mathemati-
cal part. It is essential, however, because some set of columns
might by accident act like an identifier, but it would never be
considered by the users as an identifier.)

This brings to the fore the distinction between the definitions of
precision and accuracy. Physical scientists and statisticians know

that there is an enormous difference between the two concepts.
Mathematical formulations are almost always precise, but they
are not always accurate representations of complex concepts.
(It should be noted that it is usually better to be generally ac-
curate than precisely wrong.) Although existing mathematical
definitions are attractive to the casual reader because of their
simplicity, they may not provide a useful and efficient repre-
sentation of the area we wish to discuss. This is exactly the
reason why new notational systems are invented in mathematics
and physics, and it is also a reason for pursuing new notations
in data base systems. Later in this paper, we discuss the char-
acteristics of some of these new notations.

On the whole, there has been some progress in improving the
quality of definitions in the data base area, but most concepts
have not been refined to the point where simple definitions are
adequate. The reader should always recognize that the concept
that underlies a particular term may be more complex than the
simple description that accompanies the term.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

Table 1 Classes of data base systems

System Operational Executive
Developer Systems Svystems

ASI
IBM IMS/VS
DL/1
Hierarchic PARS
Informatics Mark 1V
MRI

Cincom
Cullinane CULPRIT
Honeywell

Network
Philips
Software AG ADAWRITER
Univac

DMS/1100

DYL-250
DYL-260

Dylakor

1BM IQRP

Present data base systems

To give an overall picture of the present-day environment, it
may be useful to mention and give a general correlation of the
characteristics of several commercially available data base sys-
tems. A deeper critical review of data base systems is available
in References 4-6, and in the documentation provided by
system implementers. Listed in Table 1 are some examples of
commercially available single-level, hierarchic and network sys-
tems. These systems have been placed in the categories in which
the reader would usually find them in the literature.

To indicate the similarities and differences among the various
data structures, it is best to use some relatively neutral, hypo-
thetical representation as a starting point. In Figure 2, we present
a simple representation of the associations among important
types of entities in a corporation. The ovals contain identifier
values for entities and the lines indicate how the entities are
related. For example, the identifier values for employees are
contained in the oval labeled EMP-NO; the identifier values
for addresses are contained in the oval labeled ADDRESS. The
line between ADDRESS and EMP-NO indicates that there is a
relationship between employees and addresses. In this case,
employees live at addresses. In some cases, things are related
in more than one way, as indicated by the two lines between
DEPT-NO and EMP-NO. One of these lines stands for the relation-

IBM SYST J

Figure 2 Hypothetical information structure

EMP-PROJ

PRCJ OF-MGR

PROJ-NO
MGR-OF-PROJ _
DEPT-OF-MGR ~
MGR-OF-DEPT PROJNAME
EMP-MGR
ADDRESS

MGR-OF-EMP

ship between departments and their employees; the second
(uniquely labeled by DEPT-MGR) stands for the relationship
between departments and their department managers (who are
also employees). The next section shows the representation
of these relationships in commercial systems.

Many major systems use hierarchic data structures as their basic
building blocks. One of the main advantages of these structures
is their inherent computer efficiency with regard to storage space
and peripheral storage accesses. Another advantage is a cor-
respondence of hierarchic records to the report structures often
required by commercial enterprises. A user can frequently gain
human efficiency because there exists a close match between the
stored hierarchic record and the form he desires for his report.

Figure 3 gives one hierarchic view of the hypothetical structure
shown in Figure 2. The hierarchic view is most efficient for look-
ing at the data from the point of view of addresses. The EMP-NO
on the left is for listing employees who live at the address; the
EMP-NO on the right is for employees who work in departments
located at the address. In this hierarchic structure, information
about a single address can frequently be obtained with only one
access to the data file. Multiple accesses are often required in
other types of data structures. There are, of course, other pos-
sible hierarchic structures for the same information, some of
which might be more efficient for accessing information on
employees and less efficient in processing address transactions.
Since these other structures would have different record identi-
fiers and/or different segment relationships, the user would have
to write different transaction programs to access them, even
though he wished to obtain the same basic information.

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

hierarchic
systems

Figure 3 Hypothetical hierarchic information structure

| ADDRESS |
I EMP-NO I LDEPT-NO I MGR-NO]

| EMP-NAME J COMM I SALARY I MGR—l

I PROJ-NO l PROJ-NAME I STATUS I PROJ-MGR

Figure 4 Mapping logical files into physical files

LOGICAL
LEVEL

DATA INDEPENDENT
MAPPING

PHYSICAL
LEVEL

As we have mentioned, operational systems are usually used to
maintain large data bases in real time, typically with one-record-
at-a-time logic. Two noteworthy operational systems that are
often classified in the hierarchic system category are the IBM
IMS/VS and the MRI System 2000. In recent years, both com-
panies have added means for pointing between hierarchic struc-
tures, so that they might now also be classified as network
systems.

Looking more closely, we find that the System 2000 data struc-
ture —like that of its predecessor TDMS' —gives great considera-
tion to direct-pointer-based processing of secondary index
information. Both systems allow the user to define a selected
number of secondary indexes. The entries in these secondary
indexes point to tables that mimic the hierarchic structure of the
individual data records. Internal processing of these tables allows
the system to obtain a list of direct pointers to exactly those
hierarchic records that meet the conditions placed on the indexed
fields. The data file can then be accessed for testing on non-
indexed fields and for the processing of qualified information.

SENKO IBM SYST J

With regard to data accessing, there are two types of lan-
guage available: a segment-at-a-time CALL interface to COBOL,
FORTRAN, PL/I, and assembler language; and a set-oriented
language for accessing hierarchies. This latter language is based
on the original TDMS accessing language, which in its time was
one of the simplest languages available for accessing hierarchies.
Recently, MRI Systems Incorporated announced a link feature
that allows the user to connect multiple files by means of sym-
bolic pointers. This feature aids the System 2000 user in per-
forming network processing.

In using the 1BM Information Management System/V S (IMS/VS),”
the application programmer writes his programs in terms of one
or more purely hierarchic logical files. The data base administra-
tor is then separately responsible for computer efficiency. He
may choose to map the logical files into actual physical files in a
variety of ways without affecting the user’s programs, as shown
schematically in Figure 4. As a start, the IMS/VS data base ad-
ministrator may choose from a spectrum of physical file organiza-
tions, depending on the ratio of sequential to direct key record
accessing anticipated for the file. If the processing does not
require direct accessing, insert, update, or delete calls, the ad-
ministrator may choose the Hierarchic Sequential Access
Method (HsSAM), which relates the hierarchic segments of each
record by physical contiguity and places them in a sequential
file.

If some amount of direct accessing is required, but much pro-
cessing is done sequentially in primary key order, the administra-
tor may choose the Hierarchic Indexed Sequential Access Meth-
od (HISAM), which also relates record segments by contiguity,
but places the records in an indexed sequential file. Excess seg-
ments of records that exceed a specified length are placed in an
overflow file along with new records. In this case, the data base
administrator has an alternative in the Hierarchic Indexed Direct
Access Method (HIDAM), which relates subordinate segments by
direct pointers. The choice between this pair depends on the
amount of file reorganization that is anticipated and the speed
with which the user wishes to access subordinate segments in the
hierarchy. If direct key accessing predominates, but some
sequential processing occurs, the data base administrator may
choose the Hierarchic Direct Access Method (HDAM), supple-
mented by secondary indexes on the keys to be used for sequen-
tial processing. This choice can save system accesses through a
primary index. If there is only direct accessing, the administrator
might choose the pure Hierarchic Direct Access Method
(HDAM).

If various types of segments in the logical file are accessed at
greatly different rates, or if some of the lower-level segment

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

types are frequently processed as a separate logical file, then the
data base administrator may choose to support the logical file
with several separate physical files and have the system connect
the files together with either symbolic (key) or direct pointers.
The fact that these pointers can lead to other records gives
IMS/VS network-like storage structures and processing capabili-
ties. For example, a bill of materials for a particular part that is
often implemented by network functions can appear to the
IMS/VS application programmer as a logical hierarchic record.

If accesses are frequently based on a key other than the primary
key, the data base administrator may also choose to have the
system construct and maintain secondary index files based on
these keys. Finally, the data base administrator may accommo-
date the system to various rates of insert-update-delete activity
by varying the allocation of space in the primary and overflow
portions of the supporting physical files. With the exception of
secondary index changes, all these computer efficiency variations
can be made without affecting the user’s application program.

In the data accessing area, the main language of IMS/VS is the
segment-at-a-time language, DL/I. The nonprocedural or set-
oriented languages, Interactive Query Facility 1QpF’ and
Generalized Information System (G1s)," supplement DL/ to give
IMS/VS executive system capability.

Finally, the I1BM Programmed Airline Reservation System
(PARS) and Advanced Administrative System (AAS) provide a
limited-form hierarchic record structure. These extremely high-
performance systems can support thousands of interactive
terminals. Since, however, they are designed for special high-
performance environments we treat them no further in this
general review. AAS is discussed by Wimbrow."' and PARS is
described by Siwiec."

In the category of hierarchic executive systems, we place those
systems or languages that process sets of records rather than a
single record at a time. In addition to System 2000 with its set-
oriented language, there are a number of executive language sys-
tems that can either stand alone or process files maintained by
operational systems.

One well-known system in this category is MARK 1V of Informa-
tics Incorporated. MARK 1V can be run as an independent system
or it may be used to access files that are maintained by opera-
tional systems such as IMS/vS. When run as an independent
system, the MARK 1V data structures can be stored in sequential
or indexed sequential files. When indexed sequential files are
used, key fields may be used for direct access coordination of

SENKO IBM SYST J

Figure 5 Hypothetical network information structure

r ADDRESS J
DEPT-NO T MGR-NO]
I EMP-NAME l COMM | SALARY LMGLI
EMP-PROJ i STATUSJ
PROJ-NO | PROJ-NAME T PROJ-MGR

records in multiple files. The main data accessing language of
MARK 1V is, like the report generator languages, based on a
series of forms. The user fills out these forms to specify nonpro-
cedural file scanning, testing, and production of reports that con-
tain totals, subtotals, etc. In recent years, Informatics Incor-
porated has provided a series of online terminal capabilities to
assist the user in interactive access to MARK 1V.

A second system in this category is ASI-ST. Like MARK IV, the
ASI-ST system utilizes fixed-column forms for transaction speci-
fication in both batch- and terminal-oriented modes of inter-
action. It has been suggested that writing in ASI-ST could be used
as a substitute for the writing of IMS/VS-DL/l procedural pro-
grams.” Other executive systems like MARK Iv and GIS might
also be used in this fashion to simplify the generation of IMS/VS
application programs.

The 1BM Generalized Information System (GIS) has evolved from
the free-format languages of 1BM Federal Systems Division’s
Formatted File Systems. Because of the way it evolved, GIS
provides a direct terminal language. In dealing with single-level
records and informal reports, GIS is relatively nonprocedural
in appearance, but it does require procedural-like statements for
accessing hierarchic structured records. Like MARK IV and
AS-IST, GIS can be used either as an independent system or it
can be used to access IMS/vS data structures. A survey of hier-
archic systems has recently been published by Tsichritzis and
Lochovsky."

Presented in Figure 5 is one of a number of possible network
representations of the example information shown in Figure 2.
In Figure 5, we show only single-level records, although some
network systems also allow the fixed format hierarchic structures
found in COBOL record definitions. Use of this feature is, how-
ever, redundant because the network structure itself allows the
specification of hierarchic structures. Since a different language

No. 3 - 1977 DB PAST, PRESENT, FUTURE

network
systems

Figure 6 Three operational net-

work systems (A) DBTG/
IDS (B) TOTAL (C)
ADABAS

DEPT HASH

P1 |DEPT
o

\DEPT HASH EMP HASH

SEFS

KEY
POINTER

DEPT| P1 EMP
L]
[]

KEY
POINTER ///

-
-

DEPT] ETC. P2

DEPT

EMP

Of

COUPLING

TABLE

is required for accessing the COBOL hierarchic record, this
introduces another form of data structure dependence into the
system.

The first major commercial network-oriented system was the
Integrated Data Store (IDS) of the General Electric Company.
This system was implemented in the early 1960s and was the
basis for the system proposed by the Data Base Task Group
(DBTG) of CODASYL. IDS has gone through many iterations of
development. In Figure 6A, we present a schematic of the
DBTG/IDS major file organization features. The file organization
starts with a hash code accessing algorithm that assigns specified
types of records to page-sized buckets on physical devices. In
our example, both Departments and Employees can be accessed
by hash codes. These hash-coded records can then be joined
into application-oriented sets by single or bidirectional chains.
In our example, the set of Employees in a particular Department
are all on the same chain.

There could be two other types of pointers for this particular
set. One type would also start at a particular department and go in
the opposite direction, giving the second direction of a bi-
directional chain. The second type would point from each in-
dividual employee record back to its department record.

A processing program usually starts by entering on a hash-coded
record, and then follows chains to obtain other records as re-
quired. In our example, if the program requires information on
the employee of a department, it would hash the department
number to obtain the department record, and then use the chain
from the department record to obtain the appropriate employee
records. If the system users seldom have questions about in-
dividual employees, the data base administrator would not use a
hash code to store the employee records. He would instead tell
the system to have the employee records placed near (that is,
in the same bucket with) the appropriate department record.
Since an application programmer must know and use only the
available set of physical access paths in his programs, the pro-
grams have some data structure dependence.

There is a new Honeywell version of IDS called IDS-IT that con-
tains many of the features specified by the DBTG. The major
change is the addition of a subschema that allows the programmer
to gain data independence by describing an application-oriented
subset of the schema for his problem program. In the case of the
DBTG systems, the logical subschema is limited to mapping from
one schema. There are a number of other systems that are de-
signed to implement the specifications set forth by the DBTG.
These include DMS/90 and DMS/1100 of Univac, IDMS of the
Cullinane Corporation, and PHOLAS of the Philips Corporation.

SENKO IBM SYST J

With regard to technical aspects, a number of possibilities for
simplification of parameters have been pointed out with regard
to the DBTG specifications. Such a set of simplifications was
suggested at the IFIP TC-2 Conference at Wepion, Belgium.'*"
A further simplifying process is being carried out by the
CODASYL Data Description Language Commitee (DDLC).'
This committee is classifying the complex of DBTG data descrip-
tion parameters into a data independent set and a set that is to be
used for the computer efficiency tuning of an installation. Ad-
ditional considerations with regard to the DBTG data structure
concern efficiency of access to the long chains of records. One
solution to the problem has been attained by including the
possibility that DBTG sets can be implemented by pointer arrays.
A survey of CODASYL DBTG systems has recently been pub-
lished by R. W. Taylor and R. L. Frank.”

Two other network systems of interest are TOTAL and ADABAS.
In Figure 6B, we give a simple TOTAL file organization.

Single-tevel records for identifier fields are stored in Single Entry
Files (SEF) using a hash addressing scheme. Each identifier field
value in a single entry file may have a forward address pointer to
any Variable Entry File (VEF) containing that field. This pointer
leads to the first record in the VEF that contains a corresponding
field value. A pointer chain from this record continues through
the VEF and connects all the records that contain the specific
field value. There is also a chain that points in the other direction,
starting with the SEF value and going to the last data record that
contains that value and progressing backward through all other
records that contain the same value. Records in the VEF are
placed ciose to other records that have the same primary linkage
path. The user can define this path by selecting a primary SEF
from among the SEFs that have chains to the VEF. Each variable
file entry also contains a symbolic (key) pointer that leads
directly back to a SEF value for each chain through it. This
amounts to three types of pointers for every index to the field.
These pointers are analogous to the three types of pointers that
may be optionally specified in the DBTG file organization, ex-
cept that the backward pointer is a symbolic (key) pointer in
TOTAL and a physical or logical address pointer in DBTG.

TOTAL provides hierarchic or network access paths by placing
additional pointer entries in its Single Entry File. For example,
if the user wants the equivalent of a master record for depart-
ment and to connect this to detail records for employees, then, as
in our hypothetical example in Figure 2, his Department SEF also
has pointers to the Employee File. In the case of the Employee
File, the pointer chains connect all the employee records that
contain the same department number. To construct the hier-
archic record, the TOTAL programmer then accesses the SEF

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

and makes as many separate calls to the employee file as there
are employees in the department. In a sense, the TOTAL file
organization may be compared with a DBTG organization,
where record types are either masters that are accessed by hash
code or details that are accessed by chains from one or more of
the master files. Masters are placed in separate files from details,
and no record is both a master and a detail.

ADABAS, shown in Figure 6C, handles what are essentially flat
fites, but it does support multiple valued attributes and periodic
fields. Using these features, a programmer can construct and de-
code records with more complex formats. Unlike TOTAL, it
allows only one type of record per file. However, ADABAS
records and fields can be of variable length because ADABAS pro-
vides both compression and encyphering algorithms. As a
consequence, the programmer can gain the effect of multiple
record types of defining one large record that contains all fields
and then—for each particular record —entering only those fields
that are appropriate to its type. There is very little space penalty
for unused fields.

For each file, ADABAS maintains a list of descriptor fields, that is,
fields for which secondary indexes are to be built. Each entry
on this list points to a list of values for the corresponding field.
Each value on this second list has a pointer to a list of Internal
Sequence Numbers (ISNs) that are record numbers for records
containing that value. In essence, this structure-—called an
associator—is a set of multilevel secondary indexes. Having
found an ISN, ADABAS goes to an address converter that supplies
the actual storage address for the 1SN record.

The ADABAS coupling table provides a mechanism for network
and hierarchic retrieval. A coupling table essentially acts as a
connector between two files. To define a coupling table, the user
selects a descriptor field that appears in both files. The coupling
table for this field then provides a bidirectional mechanism for
going from a record in one file to all the records in the other file
that have the same value in their descriptor field.

Consider the example of hierarchic retrieval. For each depart-
ment number in the department file, ADABAS goes to the coupling
table to find the 1SNs for records in the employee file that contain
that department number. The system can then go through the
address converter to obtain the addresses for the desired em-
ployee records. Here again, the system assembles hierarchic
records from more than one file. There are at least three soft-
ware language systems for set-oriented access to network
systems —ADAWRITER, ASI-ST, and CULPRIT. ADAWRITER is de-
signed to access ADABAS data bases in a batch mode, and there is
to be a language for online interaction. ASI-ST can access both

SENKO IBM SYST J

Figure 7 Hypothetical example single-level file

, EMP-NO l EMP-NAME I COMM | SALARY T ADDRESS I DEPT-NO I MGRJ

I EMP-PRO.J L STATUS I

I PROJ-NO J PROJ-NAME l PROJ-MGR |
l DEPT-NO L ADDRESS I MGR-NO I

TOTAL and IMS/VS files. CULPRIT provides the capability for
accessing bill-of-material networks. For example, it has been
written to access IDMS (a DBTG-type system) and DBOMP files.
The CULPRIT language is very much like those of report program
generators, in that they have fixed column entry positions.

In addition to the technologically prominent hierarchic and net-
work systems, a number of systems operate solely with single-
level records. That is, they provide no physical file structure
assistance in relating flat files. Figure 7 illustrates a possible
single-level version of the example in Figure 2. Most single-
level systems would be classified as executive systems because
they process multiple records at a time. Although these systems
often provide simple, easy-to-use query languages, they have not
usually been considered for implementation as operational sys-
tems. This may result from the difficulty they present in dealing
with multiple-value relationships.

If we go back to the example of departments and employees in
Figure 2, there are three ways in which this multiple-value
relationship can be processed using single-level records. In
the first method, a fixed number of spaces for employee num-
bers can be set aside in the department record (EMPFIELDI,
EMPFIELD2, etc.); as many employee numbers may be entered
as there are employees in a specific department. This solution
has its difficulties if the user wishes to write queries with condi-
tions on the employee fields, because there must be a copy of the
condition for each field. In addition, each department record
must have enough spaces available to handle the maximum num-
ber of employees that can occur in a department. This results in
department records for small departments that have much waste
space.

A second way is to duplicate department information for each
employee. This is the solution used by the IBM M1s/360" and its
successors. The difficulty with this solution is that the depart-
ment data must be copied and maintained for each employee, a
difficulty that increases if there are multiple levels in the hier-
archy.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

single-
level
systems

A third solution is to have separate files for department and
employee records and to merge them by sorting and matching
records on the value of the department number. This is the
solution usually selected by report generators and relational sys-
tems. The difficulty with this solution is that it requires much pro-
cessing and sorting time to make matches each time a transaction
is processed. The hierarchic and network systems, of course,
also make these matches, but only once at the time of the
original storage of the hierarchic record. They can regain them
simply by bringing in the hierarchic record when a transaction
is processed.

In IBM, the most familiar terminal-oriented product for single-
level records is the Interactive Query and Report Processor
(1QrRP),"” which is an outgrowth of MiS/360. It has some language
resemblance to the Interactive Query Facility for IMS/vS.
MIS/360 is particularly interesting because of its easily used
language. This language has a formal basis, but it also has
several characteristics that make it appear much more English-
like than most procedural languages. The MI$/360 system itself
was designed to operate primarily on files that had been extracted
from operational systems. These extracted files were then loaded
with a selected number of secondary indexes to be used solely
by MIS/360. The main difficulty with M1S/360 was that it could
obtain reports from only one file at a time. Nevertheless, in terms
of usability for this restricted domain, M1S/360 had an excellent
language.

Because of their extensive use, Report Program Generators
(RPGS) should be mentioned at this point. They are not particu-
larly terminal oriented, but they have provided the basic form-
oriented language that is a characteristic of a number of systems
such as MARK IV and CULPRIT. There are, of course, a number
of packages that retain the report generator philosophy and
record format. Two such systems are DYL-250 and DYL-260.
Finally, it should be noted that CICS, mentioned earlier, has some
primitive record handling capabilities. The main purpose of CICS
is, however, to handle data communications.

Standardization

There is general agreement that standardization in a stable
technology can be a very good thing because standardization
reduces the overall effort required to produce and use the re-
quired tools. There is also general agreement that standardiza-
tion in a rapidly evolving technology can retard the growth and
development of that technology because it may freeze the field in
a confused and undesirable state and thereby act to discourage
the development of proper tools. Each side of the issue of

SENKO IBM SYST J

whether data base systems have achieved the stability required
for standardization has advocates. To understand the issues of
standardization, it may be useful to mention some of the activities
that have entered into the standards debate.

The most prominently mentioned activity with regard to data
base standards is the Data Base Task Group of CODASYL,
which is an informal organization of users and producers of data
systems that works to develop techniques and languages to assist
in data systems analysis, design, and implementation. Reports
issued by the DBTG are advisory in nature. The history of DBTG
began in 1965, when an informal task group was formed to study
the subject of data bases. Instead of producing a general review
of the area, the committee developed specifications for an ex-
ample data base system. The specifications were based primarily
on two earlier systems with which the members had had experi-
ence —the General Motors Associative Programming Language
and the General Electric Integrated Data Store (IDS). When the
initial report was presented in 1969, 1BM also submitted a pro-
posal of specifications that included data independence, security,
and integrity. The committee decided to improve the existing
specifications, rather than make fundamental changes, to achieve
the desired additional functions. In 1971, a revised DBTG re-
port” superseded the 1969 report. The CODASYL DBTG report
design has been suggested as an industry standard. In this con-
nection, an International Standards Organization (1SO) Study
Group has concluded that any standardization action in the area
of data base management systems based on existing proposals
is premature in the absence of criteria against which to measure

such proposals.”’ On the DBTG question, IBM is not now im-
plementing a DBTG system. 1BM has recognized the need for
network structures and, as we have previously noted, has pro-
vided a number of forms of support for them within data base
systems such as IMS/VS.

At the same time, there also exist two other organizations, the
International Standards Organization (1S0), and the European
Computer Manufacturers Association (ECMA). In contrast to
CODASYL, ECMA does in some instances generate standards. The
original charge to its Task Group Data Base (TGDB) was to
report on the DB standardization options and manpower/time
needed for them. TGDB, however, submitted a majority report
that focused on the standardization of CODASYL DBTG.

In addition to its conclusion on standardization, 1SO has accepted
the Interim Report of the ANSI/X3/SPARC Study Group on Data
Base Management Systems as an initial basis for discussion on a
gross architecture of data base management systems.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

Data Base
Task Group
(DBTG)

ANSI SPARC In late 1972, the Standards Planning and Requirements Com-

Study Group mittee of the American National Standards Institute/X3 (ANSU/
X3/SPARC) established a study group to review the current state
of development in the data base systems field with the objective
of determining whether standardization activities were appro-
priate. The study group produced an overall architecture with
twenty-eight interfaces.”” We cannot discuss all these interfaces,
but it might be useful to note the gross architecture for the data
representations between the end user and the internal storage
media. To make feasible the level of data independence and com-
patibility with various end user languages that it desired, the
committee recognized that it would have to specify at least three
major levels of data representation within its system architecture.
These three levels are presented in Figure 8.

Figure 8 ANSI SPARC proposal The most striking feature in the ANSI SPARC architecture is a
for data base data conceptual schema level. This level is specified to provide a
structures and mapping “data structure independent description” of the real-world enter-

exterval prise. It is a formalization of an idea that could be seen in the

e SCHEMAL S ARE/GUIDE Report.” One aspect of this idea is that the con-

ceptual schema level should be as stable as possible to changes in

the underlying physical file organizations. This gives the system
g‘gwEMAD/M/APP/INGS flata independence in thg sense that programs that are writtgn

MAPPINGS in terms of this level (or in terms of user views mapped from it)

should not have to be changed when the underlying stored
structures are changed for reasons of computer efficiency.

gEaEMA SCHEMA 2

To accomplish this purpose, the conceptual-level architecture
proposes that the entity classes (employees, parts, departments,
etc.) that are recognized in an enterprise along with their attri-
butes and relationships be used as points of departure for the
entire data base system. A level based on such concepts should
be at least as stable as, and probably much more stable than, the
stored file organizations used to represent it in the computer.
Stored file organizations clearly have to change whenever the
entity classes and their relationships change (for example, when
employees became related to departments through projects). In
addition, they have to change to maintain efficiency in the face
of an evolving system load, even in cases where the entity rela-
tionships do not change.

As a second requirement, the system should be able to coordinate
and control all accesses to a particular stored fact (that, for
example, a particular employee had a particular salary). This is a
problem because there exists a recognized need to provide a
series of views of the system data to the end user, both in terms
of various programming languages and in terms of various
specialized views of the enterprise (the personnel view, the
payroll view, etc.). Mapping directly to a changing storage struc-
ture level from each of the many user views in an evolving sys-
tem would become very burdensome. Essentially, a new map

SENKO IBM SYST J

would have to be made for each affected user view every time
the structure changed. In addition, for each access request, the
system would have to look at all maps to determine whether
interference would occur.

The ANSI SPARC solution to both these problems is to have a
canonical conceptual level; that is, a level on which each fact
appears only once. In this solution, all the external views of a
particular fact are mapped from one stable place in the conceptual
level, and the system needs only to look at that place to deter-
mine whether another user is accessing the same fact. In sum,
there are two definite requirements for the conceptual level:
data structure stability and data sharing coordination. Steel of the
ANSI SPARC Committee has presented one proposal® for the
conceptual level that is firmly grounded in modern symbolic
logic. We shall discuss other proposals in a section on logical-
level models.

Existing commercial systems do not have anything that cor-
responds to a conceptual level. In fact, most systems have only
a single level where the user deals directly with what corresponds
to the ANSI SPARC internal schema. One early implementation
of a two-level system was the IMS implementation of logical and
physical hierarchies. The two levels in IMS correspond closely
to the external and internal levels of the ANSI SPARC proposal.
The DBTG schema and subschema levels also correspond closely
to the external and internal schema levels of ANSI SPARC, but
they do not allow the user to combine separate internal-level
files.

In summary, there is considerable interest from a number of
implementers for formal or informal standardization based on the
DBTG report. At the same time, there appear to be major new
capabilities in the offing, as exemplified by the basis for progress
on a broad front as laid down by the ANSI SPARC study group.

Recent research

There are presently two divergent paths of research on data base
systems —system functions and system performance. System
functions research deals with data models, data access languages,
and data dictionaries. System performance research deals with
workload description, and with the design, simulation, and
optimization of file organizations.

Present-day data base systems exhibit a strong tradeoff between
simplicity and power. Either the system is simple and less power-
ful or it is powerful and less simple. It should be possible, how-
ever, to achieve simultaneous improvements in simplicity and

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

system
functions

power. The way to achieve this optimization is to break up the
data base problem into the right kinds of subproblems or com-
ponents. To divide and conquer is the technique often used to
solve complex everyday problems. In its best form, the idea is to
break a problem up into two or more levels of detail that are
often called ‘““levels of abstraction.” If an appropriate set of
levels and components can be chosen, the user can solve certain
aspects of his problem at the first level without worrying about
all the details and then solve other aspects, one level at a time, by
adding the details embodied at each level.

Sometimes termed structured programming or abstract data
type definition, the technique has received much attention in the
computer science area. In structured programming and in ab-
stract data types, however, a new set of components is defined
for every problem. The new aspect of the work in the data base
systems area is that one set of components is designed to cover all
applications. If this work succeeds, then the study and use of data
base systems may acquire some of the discipline of chemistry
and physics. A student could learn a relatively simple set of
components and interaction rules—such as the elements and
valence rules in the periodic table —and use them to build appli-
cations throughout his career. He would not have to learn a new
complex, overlapping, inconsistent terminology for every new
system, and he would not have to invent a new set of components
to solve every new systems problem.

The logical and physical levels found in papers like those of
Madnick® and Meltzer,”® as well as in the GUIDE/SHARE Re-
port,”® are pragmatic examples of the abstract-level approach.

The essential idea, in data base terms, is to allow the user to
solve the logical aspects of his problem first, and then to take up
separately the physical storage structure details needed for
efficient support of his logical application structure.

Since the early papers, research has moved toward more funda-
mental and precise definitions of logical and physical levels and
their components, and toward a better separation of functions in-
to these levels. For example, the following four levels are defined
by the present author in the original DIAM paper.'

s Data structure independent Entity Set Level.
s Access Path Level.

s Encoding Level.

s Physical Device Level.

In DIAM, a major effort has been made to obtain a clean separa-
tion between the entity set level and the lower physical levels.
An explicit list of parameters is also given for each member of
the small set of component types defined for each level.

SENKO IBM SYST J

A similar effort is being carried out by the Data Definition Lan-
guage Committee of CODASYL'® that has proposed categories that
include the following:

Schema, for those components that —for example —give the
name of a schema.

Structure, including components for describing data ele-
ments and their real-world relationships. (This category and
the succeeding category correspond roughly to the

DIAM entity set level.)

Validation.

Access control.

Tuning (which corresponds to the DIAM access path and
encoding levels).

Resource allocation (which corresponds to the DIAM physi-
cal device level).

Until recently, most other research under the name of “data
model studies” has focused on the logical level only. (In different
contexts, this is called the end-user level or the Conceptual
Schema Level.) In most cases, these models have retained ele-
ments from physical representations (e.g., single-level record
structures) and, therefore, have not made a clean separation
between logical and physical levels. Nonetheless, their intention
has been to define a logical-level model, and that is the basis on
which data base systems research is discussed here.

After much consideration and deliberation, it has been agreed
that it is possible to map field values from any one logical-level
model to field values in any other logical-level model (that is,
between flat files, hierarchies, networks, etc.). The main differ-
ences between models occur in the ways in which they relate
field values and in the number of physical structure elements they
contain. Differences in relationships are important because some
kinds of field relationships correlate well with relationships be-
tween entities in the user’s practical model, and other types of
field relationships do not. For example, in the single-level file
model, each field in a record is equally related to each other field,
simply by the fact that they are in the same record. In the real
world, some of the relationships represented in the record may be
more direct than others, and the equal representation is mis-
leading.

In an employee file record, there is no explicit distinction made
between the relationship of ‘“‘salary” and ‘“‘secretary” and the
relationship of “employee’ and ‘‘salary.” Even though the users
of the system know that the relationship is “salary of employee,”
this may not be the real-world relationship that the placement of
salary in the record represents. The placement of salary in such a
record might equally represent ‘“‘salary of secretary.” If no fur-

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

evaluating
logical-level
models

single-level
file

logical
models

ther guidance is given, a user might come to the wrong conclusion
about the meaning of the field.

The use of the physical concepts of files and records also places
an added translation burden on the user because he must tell the
system how to find and search files and records, instead of simply
asking about the entities he is interested in. Finally, some types
of relationships lead to easy evolution of the system model when
a user’s picture of the real world changes and others do not.

At first glance, issues such as these seem relatively unimportant.
For example, it seems natural and necessary to translate prob-
lems into terms of files and records; therefore, we need not try to
get rid of this burden. Many assembly language programmers had
an analogous feeling about registers when compilers were being
proposed, yet compilers have been an extremely helpful develop-
ment. Similarly, making systems evolve gracefully over time is
important. It is frequently suggested that fifty to seventy percent
of programmer time is devoted to changing old programs to meet
new circumstances. In this situation, the important issue then
becomes that of how well a logical model provides the desired
relationship and system properties. For example: how faith-
fully does a logical-level model represent real-world relation-
ships? Does it imply spurious relationships that do not exist in
the real world? How stable is the match to changes in the real
world? Do the information structure and programs have to be
changed substantially when a small change occurs in the real
world? What is the ease of use of the accessing language?

To answer such questions, most recent work has focused on the
ability of the model to represent real-world relationships and on
the ease of use of possible accessing languages. Since there is
no mathematical formula for evaluating models, the work tests
the capabilities of models and compares different models by
judging how well they work with regard to examples of possible
queries and possible kinds of system evolution. Logical-level
model research has focused on models with simpler basic com-
ponents than the hierarchies and networks to be found in most
commercial systems. In particular, recent research on logical-
level models can be separated into the following two categories:
(1) single-level files (termed n-ary relational systems by many
authors), and (2) binary associations.

While there has been great recent interest in relational data base
systems, single-level logical models have roots in the use of the
punched card (which is a single-level record). One of the best-
known data processing systems, the report program generator,
uses a single-level logical model. For example, the operation
“match” in report program generators is the same as the opera-
tion “join” in relational terminology. In effect, the basic logical
models for report generators and relations are almost exactly the

SENKO IBM SYST J

same, except for terminology and accessing language.

Some of the earliest data base research work on single-level rela-
tional files was reported by McIntosh and Griffel”” in 1968. A
paper on the Entity Set Model by Davies™ gave added impetus to
research on single-level files. This paper was followed by a paper
by Codd,” who discussed single-level files in terms of the mathe-
matical theory of relations. Codd added a number of terms that
made the theory more compatible with the properties of data
processing files. His paper led to a considerable amount of work
in universities and within 1BM on relational data systems and
languages. In general, the relational work has focused on the
logical level and has not addressed the need for powerful physical
file organizations at lower abstract levels to obtain reasonable
system efficiency.

The initial basis for research in the single-level area was ex-
panded by the Data Independent Accessing Model (DIAM).'
This model more closely followed the terminology presented by
Davies, Meltzer, and the later SHARE/GUIDE reports. It provided
a basis for a general set of file organization techniques, including
hierarchic structures and indexes for efficiently supporting the
single-level entity set model. In essence, DIAM was a data model
that included a logical-level model as one of its levels. Addi-
tional work provided the set-oriented language RIL* for access-
ing the entity set model and algorithms for selection of optimum
paths® to satisfy set-oriented transaction statements.

The Entity-Relationship Model —another multilevel n-ary mod-
el— has been presented by Chen.”” Early publications on this
model were primarily concerned with the description of an
improved logical level, particularly, a more detailed and flexible
method of describing a network of relations. These publications
have not contained any detail on the components of the lower,
stored data structure levels.

Almost all research on implementation has been directed toward
implementing relational language systems. Noteworthy work
outside IBM has been done on the INGRES system™ at the
University of California, the ZETA system™ at the University of
Toronto, the RDMS system® and the R1SS system® at the Massa-
chusetts Institute of Technology. The underlying file organiza-
tions for these relational systems resemble the file organization
for the early MIs/360. That is, they allow for any number of
secondary indexes to a single level file. Although such organiza-
tions are useful for transactions that refer to a single relation,
they are often inefficient for processing matches between re-
lations. At present, interfile relationships must either be built
every time a transaction that requires them is executed or when
single-level files must be applied, such as when department in-
formation must be duplicated for every employee.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

implementation

accessing
languages

There is considerable work going on to improve efficiency. To
approach the efficiencies of hierarchic or network systems,
relational systems will have to have the ability to describe and
access stored hierarchic or network structures. A paper by
L. Schneider® has shown how this difficult capability can be
achieved in a general manner by using the DIAM model. There is,
in addition, work going on at the University of Toronto®® and the
University of Illinois® to provide limited versions of this capa-
bility, starting directly from a relational context. The DIAM model
has not been implemented in the form of a data base system, but
a group from the Martin Marietta Corporation has implemented a
generalized system performance simulator based on its specifica-
tions. This simulator has been able to describe the System 2000
organization by using a set of DIAM parameter tables.*

The second area where relational theory helps in understanding
data base systems is with regard to the structure of user lan-
guages. Either relational algebra or relational calculus can pro-
vide a formal mathematical basis for the construction of possible
user-oriented languages. The following is an example query
presented originally by Date.*'

English:

“Get supplier names for suppliers who supply at least one red
part.”

For the relational tables:

SUPPLIER (SUP-NO, SUP-NAME, STATUS, CITY)
PART (PART-NO, PART-NAME, COLOR, WEIGHT)

SUP-PART (SUP-NO, PART-NO, QTY)

Relational calculus language:

RANGE PART PX
RANGE SUP-PART SPX

GET W (SUPPLIER.SUP-NAME):

3SPX (SPX.SUP-NO=SUPPLIER.SUP-NO AJPX (PX.PART-NO
=SPX.PART-NO APX.COLOR=RED’))

Significant aspects of this statement are the phrases “SPX.SUP-
NO=SUPPLIER.SUP-NO” and “PX.PART-NO=SPX.PART-NO". These
are required to interconnect the three relations. Phrases like these
appear in all record-oriented systems. It is shown later in this
paper that such phrases are not required in semantic networks,
thereby simplifying the writing of program statements.

SENKO IBM SYST J

It has been suggested that statements like these might be ex-
pressed in a more user-oriented relational language. Exactly what
form such a language might take and whether it might differ
significantly from existing nonprocedural languages —like those
for Mi1s/360, SYSTEM 2000 and GIS—is not clear at this time.
Until the projected relational language appears, it is difficult to
judge the practicality of relational principles.

One strikingly different approach to single-level file languages is
Query-by-Example.” This language, like the report generators,
employs a fixed column input form. However, it has many unique
features. For example, the order of statements in a transaction
specification is immaterial. This relieves the user of the burden of
constructing his query in a sequential fashion. Instead, the user
constructs the query a line at a time in any order. The Query-by-
Example statements for the previous English language and rela-
tional query are presented in Figure 9.

In Query by Example, we can use any symbol as an example of
the element we want to talk about. Underlining indicates that the
element is an example. If an element is not underlined, the
symbol stands for itself. In our specification, “FIVE” is an ex-
ample of a number for a supplier, and “SEVEN" is an example of a
part number. Since “RED” is the actual color that the part must
have, it is not underlined. The “P.” before “XYZ” indicates that
the supplier’s name should be printed.

The Query-by-Example language has been the subject of a human
factors experiment to determine its ease of use with respect to
the Interactive Query Facility (1QF),” Tests were run with sub-
jects who were both experienced and inexperienced in pro-
gramming. For those functions that Query-by-Example could
provide, it seemed easier to use. Such tests may guide us as to
desirable language features, from a human factors point of view.

Much of the recent research on logical-level models has been
concerned with making the models represent the semantics of
the real-world situation more closely and exactly. For example,
we would like to present the user with a model that will restrict
him from performing nonsensical operations. This approach is
to be contrasted with today’s systems that present the user with
a logical-level model in terms of computer stored files of records
that contain bits or bytes. In these systems, the user can add any
field to any other field and store the result. { For example, one
can create a nonfact by adding “age 24” and “‘weight 150
together and storing ““174” as an ‘“‘address.” There are already
some compilers that forbid certain simple nonsensical operations
like adding a floating point number to a fixed point number with-
out conversion. Clearly, it would be useful if the system were to
forbid other meaningless operations.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

Figure 9 Query-by-Example

SUPPLIER]SUP-NO | SUP-NAME |STATUS! CITY
}

1
-
1
|
i

I mve | opxvz |
) | -)

PART :PART-NO PART-NAME ; COLOR { WEIGHT

l SEVEN RED

SUP-PART | SUP-NOJ PART-NO | QTY

U ave ! oseven |
I — 1 = |

semantics

natural
language
models

Figure 10 A meaningless relation

EMPLOYEE RELATION

EMPLOYEE NUMBER l NAME l ADDRESS] FRIEND SALARY -’

As we mentioned earlier in this paper, the best way to evaluate
models is to use examples. Kent has presented examples of mean-
ingless operations in two recent papers. Another set was
presented in Bracchi, et al."> Also, an early paper by Codd™ noted
that certain relational operations produced results that were not
meaningful in the real world. The DIAM paper’ went further by
pointing out a need for restricting information system operations
to those that produced meaningful results, and also gave some
examples.

More recently, Schmid and Swenson'® have discussed similar
examples in a relational framework and have pointed out a num-
ber of places where additional constraints should be placed on
the relational model. Figure 10 gives one of their examples. One
question posed by this example is what the appearance of
FRIEND and SALARY in the same relation implies. Does SALARY
imply “salary of the FRIEND” or “salary of the EMPLOYEE"?
Such a relation is without semantic meaning, and something must
be added to make the meaning clear to the user. In the Schmid-
Swenson approach, there is an attempt to define meanings in
terms of constraints as add-on features of the relational model.
When examined in detail, their proposals for describing these
constraints lead them to a model that is remarkably similar to the
binary models to be described in a later section.

Since other disciplines are also interested in the topic of se-
mantics, it is useful to consider their experience. Two of the
major disciplines are natural language processing and theorem
proving. In each of these disciplines, it is important to treat the
names for things in a manner that is meaningful in real-world
terms. In addition, these disciplines study better ways of char-
acterizing the data that they process and the operations they
allow to process it.

A natural language approach using a semantic network is being
followed by Roussopoulos and Mylopoulus at the University of
Toronto,” in which they try to make constraints inherent parts
of their model. Their model is a semantic network, and their
work has been published both in the data base and the artificial
intelligence literature. In their proposed use of the model, the
user and the operations he applies to the stored data would be
constrained by meanings implicit in the semantic network.

SENKO IBM SYST J

At this point, it is appropriate also to mention data base related
work in natural language query systems. Much of the early work
in this area has been devoted to creating systems for purposes
of demonstration. In these demonstrations, many natural lan-
guage queries could be parsed and answered, but the fraction of a
set of queries posed by an inexperienced user that would be
interpreted correctly was not clear. Systematic work on applica-
tion-oriented data bases is continuing. For example, Woods*” has
produced a system to answer natural language questions about
lunar rocks. Also, a group in the IBM Research Division is
working on a natural language query system for urban planning.*”
Petrick has recently published an excellent discussion of the use
of natural languages for communication with computers.*’

A hint of the difficulty involved in semantics can be given by the
following query: ““Print departments and their employees where
employees earn over $20000.” The question is whether the
system should print “all the employees in the department,” or
“only those that earn over $20000,” or “‘only departments where
the sum of all employee salaries is over $20000.” This query can-
not be answered without additional information.

It has been suggested by a number of authors that such a system
should have a dialogue with the user to obtain needed informa-
tion. If the system cannot understand English, then the user must
learn some formal language that the computer can deal with. This
defeats the reason for using natural language in the first place.
Fortunately, it appears that most queries have clearcut answers.
This means that there is hope that a system could answer a
sufficiently large fraction of possible queries to be useful and not
give seriously misleading answers in other cases. The truth of
this conjecture can only be determined in a real operating
environment.

Noting that Figure 2 is also a representation of information, one
might ask whether there are any systems that use such a binary-
association-oriented representation directly. The fact is that that
representdtion has many similarities to the semantic networks
that are used in natural language systems. There is also a long
history of work that uses binary associations in artificial intelli-
gence research. Some of the earliest work was done on the
Relational Data File by Levien and Maron.*® Later work was
done by Ash and Sibley,” Feldman and Rovner,” and others who
were concerned primarily with question answering or theorem
proving systems. None of these early systems has been con-
sidered for commercial use, perhaps because they store each set
of binary relations in a separate file. Such a file organization is
particularly inefficient when the number of individual relations is
large. In this case, many accesses must be made to peripheral
storage devices to process the different files.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

binary
logical-
level
models

Five DIAM |l abstract
levels for mapping bi-
nary associations at
the ANS! SPARC con-
ceptual schema level
to hierarchic records
at the external schema
level

Figure 11

SYSTEM OVERVIEW

DIAMII

END-USER
LEVEL

EXTERNAL

INFO LOGICAL
LEVEL Spl
QY

(NONREDUNDANT X V]
BINARIES) v
DATA LOGICAL A
LEVELS

LI

STRINGS

INTERNAL
SCHEMA

ENCODING 0

PD LEVEL

With the recent study of abstract levels, it has now become clear
that an information representation can be supported by a stored
data representation of a completely different form. For example,
Figure 11 presents the five DIAM II abstract levels™ for mapping
binary associations at the ANSI SPARC conceptual schema level
to hierarchic records at the external schema level, and to indexes,
lists, and hierarchic records at the internal schema level. This
mapping flexibility means that binary information representations
need no longer be saddled with the inefficiencies of stored binary
file organizations.

Given the promise of efficiency through mapping, interest in
binary relations has been renewed. Much of this interest is be-
cause binary relations seem to be a fitting semantic representa-
tion of facts. That is, binary relations can represent only the
facts that the user wants in his real-world model, and do not carry
along spurious associations like FRIEND and SALARY in n-ary
relations that must be removed from consideration by some add-
on mechanism. Figure 12 shows a binary representation of the
information listed in Figure 10. In this case, it is clear that
SALARY is a direct attribute of EMPLOYEE, and it is only in-
directly related to FRIEND by way of EMPLOYEE.

Langefors™ and Sundgren® have created renewed interest in the
area with their series of papers on structures for representing
the real world. Additional impetus came from Titman’s® and

Bracchi’s® work on binary relations, and a major force was

Abrial’s paper on data semantics.” This latter work was extended
in a paper by Senko.” There have been few implementations of

binary systems since the work of Feldman and Rovner. Titman’s
paper presented one implementation, and Bubenko® and Berild
and Nachmens®' describe a second running system.

Papers at the IFIp TC-2 Working Conference at Freudenstadt,
Germany, in 1976, seemed to agree that the network, hierarchic,
and single-level files brought the representation of too many
individual facts into their records and caused maintenance and
semantic difficulties. There was a movement expressed in papers
by Bracchi, Paolini and Pelagatti,”” Falkenberg,” Hall, Owlett
and Todd,” and Senko,” toward a smaller binary form of fact
representation. At the Freudenstadt meeting and at succeeding
data base meetings, there has been increasing agreement that the
binary network form or some close approximation has much
more desirable technical properties than n-ary relations, tables,
hierarchies, or DBTG networks for use as a logical level. How-
ever, since past experience often plays a part, tables may be more
desirable from a human factors standpoint. The resolution of this
dilemma should cause much lively discussion in the next few
years.

SENKO IBM SYST J

Figure 12 A binary representation

EMPLOYEE

EMPLOYEE NUMBER ADDRESS

An issue that has arisen recently deals with the handling of time
in a data base system. Due to the technological constraints of
hardware, we currently maintain data bases as time slices that
contain the set of most recent changes to fields in records. Each
time we modify a field, we overwrite the previous record and
perhaps place a copy of it on a recovery log tape, where it is no
longer accessible to normal processing. This process creates a
number of problems for data sharing and recovery management.

A more ideal way to view a data base system would be to con-
sider it as a permanent repository of facts that may be valid for
some time period. Thus, if a person withdrew money from his
bank account on a particular date, then the fact of account
balance after the withdrawal would be added to the data base with
a time stamp indicating when the new balance became valid. The
old balance would not be deleted; rather, it would be given a time
stamp to indicate when it had become invalid. In this situation,
the bank would no longer have to wait for the weekend or the
end of the working day to calculate a total balance. It would
simply look through its set of facts to see which customers’
balances were valid at the time it wanted to check the balance.
Similarly, obtaining historic information of any kind would be a
normal process rather than a process of writing special programs
to access old data base dumps.

A number of people are beginning to look at the technical con-
sequences of a system that operates in this mode, as indicated
by recent papers by Falkenberg,® Bubenko,” and Schueler,”
as well as the earlier work of Davies and Bjork.” The general
area of logical-level models has been reviewed by Kerschberg,
Klug, and Tsichritzis.** A more recent review by Senko™ focuses
on binary association or single fact models.

In spite of some agreement on single facts as the basic building
block for the logical level, there remains the problem that many
proposed languages for the binary logical level are very mathe-
matically oriented or they deal with one binary relation at a time.
In this sense, such languages are very much like the relational
languages for single-level files. Their operations are specified in

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

accessing
languages
for the
binary
logical
level

239

Figure 13 Example FORAL light pen file query

ABCQ FGHTJ KLMNO PQRST UVWXYZ 1234567890

SYSTEM called AN equal
gtrthn

A’/l/—@ gtrequ
SUP-NAME lssthn
| lssegu
betwn

| ()
_SUP®NO *SUP®PART* PART-NO WEIGHT (:)\1DUTPUT

I [(3)—eitisRE
| I @/QROCSS
I I

STATUS PART-NAME endwh

footnt

erase

SUl[Ng (where COLOR of PART-NO of SUP-PART_of SUP-NO_of_ SUP-NAME egual 'RED')

terms of named relations, and effort must be expended to specify
connections between relations (the multifile query).

This problem is alleviated to some extent in the FORAL language
for the- DIAM II system. FORAL operations are related to a FORAL
context, and this relationship allows the system to specify what
would normally be considered connections to other files in an
implicit fashion. In Figure 13 is shown a display screen for a
version of FORAL, called FORAL Lp (Light Pen).” In this lan-
guage, the user enters statements by touching nodes and arcs in
the network and operations on the operations list. On the screen,
we represent the series of pen touches required to create the
example query to obtain suppliers of at least one red part pre-
sented earlier. The bottom of the screen presents a linear listing
of the textual language FORAL 1I"' for user feedback.

The light pen language seems to require fewer artificial elements
(parentheses, commas, etc.) than a written language to render
it unambiguous. This particular light pen syntax also requires
little or no typing skill. Of the ten major words in the statement,
nine are entered with the correct spelling by single pen touches.
The word RED can either be picked out on the alphanumeric list
or typed in after the light pen phase has been completed.

Hierarchic report forms that contain such things as columns
that represent general expressions of attributes can also be de-
fined naturally using either version of FORAL. For example, the
FORAL statement on the left in Figure 14 gives the report on the
right. Note that there is no difference in this language syntax be-
tween asking for the single-valued attribute STATUS and a

SENKO IBM SYST J

Figure 14 Example FORAL report creation

output SUP-NO STATUS QTY of avg QTY-of
SUP-NO SUP~PART_of SUP-PART of
print SUP-NO SUP-NO
STATUS 3 7
QTY of SUP-PART of SUP-NO 9
avg QTY of SUP-PART_of_ SUP-NO 14

23

multiple-valued attribute QTY__of _SUP-PART-_of__SUP-NO. In
a flat file system, the user could easily get STATUS out of the
SUP-NO file by asking for the appropriate field. But to get QTY__of

SUP-PART__of _SUP-NO, one would have to call for the
SUP-PART file and specify a match between the SUP-NOs in the
two files.

By using binary association networks, it is possible to design
languages that avoid the syntactic noise found in languages that
deal with flat files, hierarchic files, or DBTG networks. In doing
this, we can derive languages that are both formal and unambig-
uous and have many similarities with natural language.

Most of the work on data models has been restricted to the
logical level. There was, however, some excellent early work on
formal models for stored data by Smith™ and Taylor.” This work
has been recently followed up by the CODASYL Stored Data
Definition and Translation Task Group (SDDTTG), of which both
Smith and Taylor are members, and which is publishing an ex-
tensive work on data translation” that has used and improved on

many of the DIAM concepts and components. A paper by
Nahourii, Brooks, and Cardenas’ takes another approach to data
translation. They are concerned about dynamic access to in-
formation stored in different generalized data base management
systems. Their approach consists of describing the stored data
structure in each of the systems by a DIAM string catalog. If the
user specifies his query in a self-contained set-oriented language
for his own system (like the set-oriented language for System
2000 or IQF for IMS/VS), then a search path selection algorithm
can look at the string catalog and translate these statements into
segment-at-a-time language searches for any of the system nodes
that contain relevant information. Using each data base system’s
own segment-at-a-time language avoids the writing of translation
algorithms that consider the encoding and access methods of
each individual system. In another improvement, DIAM II, the
model has been revised to support a binary network logical level®
and the physical device level has been better defined.”™

We have already mentioned several models for stored data that
are being worked on in the n-ary relational environment. These

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

stored
data
levels

summary:
data models
and
accessing
languages

summary

data
dictionaries

include the models of Chen” Mylopoulos, Schuster, and
Tsichritzis,”* and Schmid and Bernstein.®®* Another model in
this area is that of Cabanes.” These models tend to discuss
access path structures of greater generality than those found in
existing data base system implementations, but do not yet give
detailed, generalized parameters for access paths, encoding and
access methods. Finally, there is some recent work which uses
Abrial’s binary model as a basis for describing both the logical
level and the access path level. A paper by Adiba and Delobel,”
like that of Nahourii, et al., attacks the problem of cooperation
between different data base systems. Both of these papers also
discuss access path selection algorithms like those described by
Ghosh.” The paper by Hainaut™ focuses on the optimum search
path selection problem.

The main trend in logical level modeling is toward a more faithful
representation of the semantics of users’ models of the real
world. This trend has brought with it emphasis on models with
simpler components than the networks and hierarchies found in
most commercial systems. If followed to its apparent conclusion,
the work will result in the definition of a basic data structure
component for representing a single fact in the real world, rather
than a complex structure containing many facts.

The main trend in stored data strucures is in the other direction —
away from simple tabular structures toward structures of more
generality and more efficiency. This topic can be worked on in an
incremental fashion, as we have seen, with the extensions of
relational data structures. Also, research can start with a very
general structure, as was done by Smith, Taylor, or in the DIAM
model.

In the area of accessing languages, most of the work is directed
toward languages that access sets of elements rather than the
usual record-at-a-time languages. Here again there may be a
trend toward binary-oriented languages, although Query-by-
Example has demonstrated excellent usability and is a major
query language innovation.

The main obstacle to set-oriented languages and the simpler
logical-level models is the number of difficult research problems
yet to be solved, particularly in the area of shared update and
system efficiency. Although these problems will take time to
solve, the various systems mentioned give an indication of the
direction solutions will take.

In the best of possible worlds, the functions of current data
dictionaries would be integrated parts of a data base system
catalog. Clearly, specifications of data elements and real-world
relationships, along with their validity checks, should appear as

SENKO IBM SYST J

integrated parts of a logical-level catalog. Similarly, the sup-
porting physical-level file organization descriptions should appear
as part of an associated physical-level catalog.

It is often the case that a particular crucial need appears first in
actual systems in a business installation. This need is typically
met first by a special package, with research then following
afterward. This seems to be the case with data dictionaries. There
seems to be little direct research in the area of data dictionaries.
Most of the current work is driven by user requirements, in the
same way that user requirements generated development of data
base management systems like IDS, IMS/VS and CICS. For ex-
ample, early work in IBM on data dictionaries by Meyers on a
system called TAG* and the more recent DB/DC Data Dictio-
nary®' have both grown from field experience. There are general
discussions of data dictionaries by Uhrowczik™ and Canning.*®
With regard to research, the primary need is a good data model.
An appropriate integrated data dictionary should be a natural
consequence of such a model.

System performance

Up to this point, we have been concerned with research on
functions, research designed to improve human efficiency. On
the side of the coin lie questions of machine efficiency. Questions
of machine efficiency will remain as long as hardware storage is
accessed by address rather than by content. The questions arise
because a well-designed file organization can often provide an

order-of-magnitude or greater access time reduction to desired
information than a straightforward one. Since we cannot expect
to see content addressing hardware that is capable of storing large
data bases for an extremely long or an infinitely long time, these
order-of-magnitude economies through design should continue to
justify effort expended on research.

In the performance field, much of the early technology was
generated by workers with backgrounds in scientific computa-
tion. Digital system simulators exemplified by the 1BM Computer
System Simulator (cs$)* and analytical simulators® fall into
this class. These simulators describe an access to information
simply by some small, fixed number of random device accesses.
This approximation is quite satisfactory for many types of opera-
tional systems, but it breaks down in dealing with retrievals from
complex file organizations. In a complex information system, an
information access (or query) usually requires varying numbers
of device accesses, depending on data base size, content, file
organization, etc. Clearly, additional techniques are required to
deal with performance in these types of data base systems.

No. 3 - 1977 DB PAST, PRESENT, FUTURE

system
load

There are at least the following three main categories of work on
performance: (1) description of system load; (2) simulation of
proposed system hardware and software configurations; and
(3) synthesis and optimization of system hardware and software
configurations.

There are a number of ways of specifying system load. In
scientific computation, various instruction mixes, procedural
program mixes, or trace tapes have been used. These descriptions
are not quite appropriate for the design of information systems.
Instruction mixes do not represent the workload on mass
storage devices. In the case of procedural programs and trace
tapes, each assumes some fixed file structure. Such load specifica-
tions preempt any possibility of studying different file organiza-
tions for the same problem.

Since file organization is an impoftant consideration in the design
of information systems, a system workload description should
not contain any commitment to a particular stored file organiza-
tion. (In other words, it must be data structure independent.)
This means that the study of data-structure-independent data
models and their associated accessing languages has direct ap-
plication in the area of load description. However, more load
description is needed so that a simulator can calculate the num-
ber of records to be retrieved during a particular query. For
example, a simulator requires information on the number of
instances of a particular type, such as the number and size of
fields, the number of entity descriptions, types and numbers of
transactions, etc. This information must be added to the data
element type information to be found in data model descriptions,

e.g., the names of the fields and the names of relationships.

An even more important measure of the utility of a workload
description is a human factors one. The workload descriptions
collected for the tuning of existing file organizations may be
extremely complex, when such information can be collected
by the computer without human effort. On the other hand, the
workload description for the initial design must be relatively
simple because it must be constructed by hand. Rarely can a file
designer use a workload description that takes him weeks or
months to specify; he might prefer to take his chances with an
estimate of the file organization.

In the proceedings of the 1972 Fall Joint Computer Conference,
Teichrow™ published an excellent review of the work directly
related to system workload description. He singled out the
papers of Young and Kent, Lombardi, Langefors, and the In-
formation Algebra, ADS, PSL, TAG, and SYSTEMATICS systems
for detailed comparison. A more recent review was presented by
Couger” in Computing Surveys. In recent years, there seems to

SENKO IBM SYST)

have been little work focused only on this specific area. Perhaps
the best method for moving forward is to connect the load
description research directly with work on a specific system
simulator or optimizer. In fact, there have been definitions of sys-
tem load descriptions for input to specific design systems. Of
these, the studies of the 1SDOS group on PSL, the 1BM group on
FOREM,” the Martin Marietta Group on the DIAM simulator,”
and Cardenas’ group at UCLA are particularly noteworthy.

Until recently, there has been surprisingly little detailed simula-
tion of file organization performance. Most early published work
tended to use relatively simple approximation equations. De-
tailed studies have appeared in the field of scientific computation,
but they have related to queuing, paging, and single record ran-
dom or sequential access. As we mentioned earlier in this paper,
such techniques are adequate for studying simple types of trans-
actions directed to simple file organizations, but something more
is needed for many systems. There are two possible techniques
for achieving the more detailed level of modeling that is neces-
sary, namely, analytical models and event simulation' models.

Analytical models generally require a tenth of a second or less to
evaluate each information query, independently of the number of
device accesses required. When many device accesses are
involved in the evaluation, they can be orders of magnitude faster
than real time. Their one major drawback is that it is extremely
difficult or impossible to describe muitiple programs accessing
complex files in terms of analytical equations.

Event simulation models, on the other hand, can deal with any
amount of detailed interaction. Their problem is that they
generally run slower than analytical models. The simulation of a
single device access generally requires about one to ten milli-
seconds. Clearly there is a tradeoff between the two techniques,
and each has its area of relevance.

Perhaps the first detailed model of file organization performance
was the analytical model FOREM 1.** This model used analytical
equations to calculate timings for file organizations that use
secondary indexes, direct, indexed sequential, and sequential
access methods on a variety of peripheral devices. The FOREM
load description is relatively independent of its description of the
stored file organization, so that new organizations may be simu-
lated with a minimal amount of model change. For single thread
programs, FOREM achieved approximately the ten percent ac-
curacy that is judged to be reasonable for such models.”" The
FOREM model, however, requires a new program moduie for each
new data structure. The model of Cardenas” continued this
philosophy, but extended the file organizations covered to multi-
lists and doubly chained trees. A model with a similar philosophy

No. 3 - 1977 DB PAST, PRESENT, FUTURE

data base
system
simulation

synthesis
and
optimization
of

data base
systems

but using stochastic techniques has been published by Siler.”
The model of Yao and Merten® allowed for a generalized de-
scription of the indexing structure for a document retrieval sys-
tem. This line of analytical modeling leads into one form of file
organization optimization. A further improvement on this model
was reported by Teorey and Das.” This improvement provided a
measure of ability to deal with multiaccess environments. An
example of a computer science, queuing theory model that has
some added data base aspects may be found in Miyamoto.”

The difficulty of accurately simulating multiaccess file organiza-
tion environments in detail with equations also led to a second
line of development, based on classical event simulation tech-
niques. An early entry into this area was FOREM Phase II,”
developed by Owens. A more recent entry is the model of
Reiter” that incorporates more operating system characteristics.
Finally, there is the DIAM-based Martin Marietta model® that is
mentioned earlier in this paper. A review of the modeling area
has been made by Morgan and Kennedy.”

In spite of a great need and great challenge, only a small amount
of work has been done in the past on the automatic selection of
information system configurations. This is probably because of
the great complexity of the automatic design problem and the
difficulty of finding assumptions that make the problem tractable.
The early papers of Severance'” on file organization selection
and Shniederman'®' on reorganization points were particularly
interesting. More recently, there have been some pioneering

efforts by Dearnley and Stocker'” on self-organizing systems and
by Astrahan and Ghosh®' on optimal search path selection.

Logical design

In many papers, the reader will find the term “logical design”
used. If one means logical level in its pure sense, i.e., a de-
scription of the real-world associations among entities, it is not
possible to invent algorithms to design a logical level. We can
understand this by looking at an example. Assume that we wish
to describe the real-world relationships between some entities
made mainly of wood and some owners of these entities. To
describe this situation in a computer, we have to assign unique
names to the entities and to the relationships. Assume further
that we guess that there is really no significant difference between
the wooden entities and the other entities who happen to own
them. We might then assign a unique ENTITY NUMBER to each
entity, wooden or owner, and name the relationship OWNS. In
this design, it would be easy to write a program to list all the
entities, but it might take more work to write a program to list

SENKO IBM SYST J

the owners. In the second case, the user would have to write a
program that includes a test to determine whether a particular
entity number is related to another entity number by the relation-
ship that it is owned by the second entity number.

In a second possible logical design, we might guess that it would
be better to place the entities into two different sets for the
purpose of naming, say, OWNERS and FURNITURE. In this case,
the second program would be easy to write, since it would only
have to say LIST OWNERS. This is in contrast to the first one,
which would become more difficult, because it would have to
say LIST OWNERS and then LIST FURNITURE.

As we can see, the relative efficiency of the two logical designs
is measured in terms of the human efficiency of writing the pro-
grams to be used in the system. To evaluate this efficiency, we
must first have a proposal for the entity sets, and then we must
write programs in terms of these sets. Clearly, a computer cannot
write the programs, and, if it does not have the programs, it has
no way of calculating either the human cost or the computer
cost for building and running the system.

Of course, a person could design a logical level and write all the
required programs. We might then even invent a way to have
the computer calculate an absolute evaluation of the logical level,
but we still would not know whether the design were close to
optimal. We might also design and program two or more alterna-
tives and have the computer compare them, but that would al-
most certainly not be worth the trouble. What we should do, and
continue to do, is something that people do better than com-
puters; that is, look at the real world and classify its ill-defined
elements for our particular ill-defined purposes.

Looking at the design problem in this way, we can see that in the
strictest sense a computer cannot do logical design; at present, we
do not even have algorithms for the computer-comparison of
logical designs. In effect, what a computer does when it executes
an algorithm that groups associated fields into records is physical
design. Many workers call that logical design because they
believe that single-level or hierarchic records are logical struc-
tures. Almost without exception, however, design procedures
start with given sets of entities and binary associations between
them.

Physical design
Taken at its most exact and detailed level, physical design is
extremely complex. In an hour, a large system may process

thousands of transactions, make millions of peripheral device

NO. 3 - 1977 DB PAST, PRESENT, FUTURE

accesses, and use billions of computer instructions. The problem
of physical design is to find a file organization that is close to
optimal for periods of days or months. We clearly cannot
solve this problem by simulating each computer instruction
for a wide variety of choices of physical file organization. Each
instruction-for-instruction simulation of a proposed file organiza-
tion would run orders of magnitude slower than real time, and it
might take months to simulate only one choice. To approach
this problem, we make simplifying assumptions and/or localize
area of optimization. (For example, the data base simulators
previously mentioned all make the assumption that the execution
of computer instructions in a transaction can be represented by a
fixed time for execution, so that individual instructions need not
be simulated. This speeds up the simulation by at least a factor of
a thousand.) It is even difficult to make reasonable simplifying
assumptions. A change of one percent in a record size or in
internal execution time can result in a factor-of-two difference
in total processing time. These discontinuities make it virtually
impossible to use mathematical optimization techniques in a
straightforward way. Much ingenuity must be exercised to find
useful equations.

Even without using mathematical techniques, it is possible to
make some useful simplifying assumptions. An example of
extreme simplification may be found in the paper of Severance
and Duhne,'"” entitled “A practitioner’s guide to addressing
algorithms.” Other simplifications are discussed later in the
section.

In considering the localization of simplifications, we first discuss
the technique of hash addressing. It is possible to look for an
optimal design that is relatively independent of other file design
considerations. In a series of papers, Lum and coworkers'** have
demonstrated that division by a relatively prime number is, on
the average, the best hashing technique, and therefore the best
first choice as a technique. In another series of papers, Van der
Pool'” has provided guidance on the selection of an optimal
loading factor, considering both storage cost and access time
cost. The area of hash addressing techniques has been reviewed
by Severance,'” and more recently by Mauer and Lewis.'”

Another area of interest is design assistance in grouping as-
sociated fields together into records or in deciding whether cer-
tain associations should be represented by intersegment hier-
archies or DBTG sets. Since a large data base may contain
thousands of possible associations, it is extremely useful to have
assistance in assuring that all associations are represented and
consistent. This kind of assistance is provided by the I1BM
Data Base Design Aid'® described in this issue by Raver and
Hubbard.'” Like most of the following design aids, the Raver
and Hubbard data base design aid begins with an input of the

SENKO IBM SYST J

required binary associations for the system. From this informa-
tion, the system designs a network structure to support all the
required relations and checks to determine that there are no
conflicts. It then also checks to see that hierarchic structures for
supporting user logical views can be derived from this structure
according to IMS/VS rules for hierarchic records.

A further step has been presented by Smith and Mommens.'"’
Here, they ask for weightings of the associations to indicate
which associations are traversed most frequently. Their program
then performs a pruned exhaustive evaluation of all the possible
IMS/VS structures that fulfill the data requirements. The pruning
is done on the basis of allowing only valid IMS/vS Physical
structures and throwing away proposed structures that fall
below an already calculated structure in performance. Bubenko
et al.""" require that the user propose valid structures, and they
then give an algorithm that uses similar measures to compare
structures.

Finally, there are the studies that create equations that can be
used with mathematical optimization techniques. Hoffer and
Severance''” use a cluster analysis algorithm to perform alloca-
tion of fields to records on the basis of access path traversals.
Mitoma and Irani'"® go one step further than previous studies in
load description by asking the user to provide a sample of the
programs (or run units) to be used against a DBTG data base.
There is then a process that goes from these more data-indepen-
dent descriptions to the providing of traversal frequencies for the
proposed paths. The Mitoma-Irani optimization techniques
transfer the problem into terms of the shortest path in a network.

There are also a number of studies on the selection and design
of indices. Yao and Merten™ utilize a gradient projection method
to design a multilevel index for a document retrieval file. In an
earlier paper, Lum and Ling'" present analytical equations to
help in the selection of multiple secondary indices, and Schkol-
nick'"® presents techniques for a similar problem.

In conclusion, after a period during which little had been done on
file design algorithms, there emerged many new and interesting
techniques that are currently being studied in research and devel-
opment. Some of these techniques have already seen use, and
we can foresee more successes in the area of automatic design.

Future developments
Recently the National Bureau of Standards and the Association
for Computing Machinery held a workshop on Data Base Di-

rections— The Next Steps."'® The workshop had panels on User

No. 3 - 1977 DB PAST, PRESENT, FUTURE

Experience, Standardization, Audit, Government Regulations,
and Evolving Technology. The panel on Standardization sup-
ported immediate standardization based on DBTG. In the panel
on Evolving Technology, it became clear that there still exists
no broad basis of understanding and agreement to support a
particular proposal for standardization.

The panel on Evolving Technology investigated a number of
other areas. In system performance, the panel concluded that
the critical missing feature is the ability to specify requirements
for a specific user’s data base system; that is, there is still no good
means of describing job load. There did, however, seem to be
some hope of developing a formal language and graphics tech-
niques for the specification task. Overall, the panel members
speculated that useful job load description products would not
be available for the next five years. It also appeared that there
would be some improvement in facilities for manual tuning of
data base systems, but that again automatic configuration and
tuning was a long-term project.

The area of data models has been compared to the early auto-
mobile industry, in which many technologies had strong propo-
nents, but some technologies are now seen to have been early
portions of the automotive learning curve. In such a situation,
it is not possible to predict the success of any given technology,
especially one that is in a very early portion of its learning curve.

It was expected that approximately five years would be required
to determine whether relational systems have significant ad-
vantages over existing technology, and another three years to
settle the same issues for binary and set-oriented systems. With
this in mind, it was the consensus that — for systems in planning —
it would be best for users to depend on existing technology.

Attention was also paid to the use of more semantic information
and the use of inferential techniques in data base systems. The
general opinion was that there would be a gradual progression
of the use of these techniques. Simple techniques (like virtual
fields and representation mode discrimination) are already being
used. However, it was expected that several years of work would
be required before systems that utilized long chains of reason-
ing would become commercially useful.

Concluding remarks
In summary, there are two efficiencies of importance to the
development of data base systems. No matter how inexpensive

the hardware becomes, the increasing size and speed of data base

SENKO IBM SYST J

systems will require high computer efficiency. The new force in
the field, however, is the increasing demand for data base sys-
tems that are efficient in the utilization of human resources, users,
programmers and systems analysts. Considerable research and
development is going on, and this work should contribute
significantly to the evolution of easier-to-use, more powerful
data base systems.

CITED REFERENCES

1. M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L. Fehder, “Data
structures and accessing in data-base systems,” /BM Systems Journal 12,
No. 1, 30-93 (1973).

. B. W. Boehm, *‘Software and its impact: a quantitative assessment,” Data-
mation 19, No. 5, 48-59 (1973).

. J. P. Fry and E. H. Sibley, “Evolution of data-base management systems,”
ACM Computing Surveys 8, No. 1, 7-42 (1976).

. L. J. Cohen, Data Base Management Systems, Q.E.D. Information
Sciences, Inc., Wellesley, MA (1976).

. Datapro 70, Datapro Research Corporation, Delran, NJ (1976).

. Auerbach Computer Technology Reports: Segment J, Auerbach Pub-
lishers, Inc., Philadelphia, PA (1976).

. R. E. Blier, “Treating hierarchical data structures in the SDC time shared
data management system (TDMS),” Proceedings of the ACM 22nd Na-
tional Conference, p. 67, 41-49, Thompson Book Co., Washington, DC
(1967).

. W. C. McGee, “The IMS/VS system,” IBM Systems Journal 16, No. 2,
84-168 (1977).

. Interactive Query Facility (IQF), General Information Manual, GH20-
1074, 1BM Corporation, Data Processing Division, White Plains, New
York 10604.

. Generalized Information System, General Information Manual, GH20-
9035, IBM Corporation, Data Processing Division, White Plains, New
York 10604.

. J. H. Wimbrow, *““‘A large-scale interactive administrative system,” IBM
Systems Journal 10, No. 4, 260-282 (1971).

. J. E. Siwiec, “A high-performance DB/DC system,” IBM Systems Journal
16, No. 2, 169-195 (1977).

. D. C. Tsichritzis and F. H. Lochovsky, ““Hierarchical data-base manage-
ment,” ACM Computing Surveys 8, No. 1, 105-124 (1976).

. B. C. M. Douque and G. M. Nijssen, ‘“The Wepion recommendations on the
CODASYL DDL 1973,” Data Base Description, North-Holland Pub-
lishing Co., Amsterdam (1975), pp. 369-372.

. T. B. Steel, Jr., “Summary of recommendations,” Data Base Description,
North-Holland Publishing Co., Amsterdam (1975), pp. 373-376.

. F. Manola, The CODASYL data description language: status and activ-
ities, April 1975, NRL Report 8038, Naval Research Laboratory, Washing-
ton, DC (1976).

. R. W. Taylor and R. L. Frank, “CODASYL data-base management sys-
tems,” ACM Computing Surveys 8, No. 1, 67-104 (1976).

. G. F. Duffy and F. P. Gartner, *“An on-line information system for manage-
ment,” AFIPS Conference Proceedings, Spring Joint Computer Conference
34, 339-350 (1969).

. Interactive Query and Report Processor, General Information Manual,
GB21-9903, IBM Corporation, Data Processing Division, White Plains,
New York 10604,

. CODASYL Data Base Task Group, April 1971 Report, ACM, New York,
NY (1971).

1977 DB PAST, PRESENT, FUTURE

. ISO/TC 97/SC 5 Study Group on Data Base Management Systems, Con-
clusions of the June 24-26 Meeting, Washington, DC (1975).

. ANSI/X3/SPARC Study Group on Data Base Management Systems,
“Interim report,” FDT Bulletin of ACM SIGMOD 7, No. 21, 140 (1975).

. GUIDE-SHARE Database Requirements Group, Database Manage-
ment System Requirements, SHARE Inc., New York, NY (1970).

. T. B. Steel, Jr., “Formalization of conceptual schemas,” Proceedings of the
PL|I Symposium, Keystone, CO, February 1976, CIBAR Corporation,
Colorado Springs, CO, 1976; also to appear in T. B. Steel, Jr. and J. M.
Gallitano, A4 Proposal of a Language for the Conceptual Schema, North-
Holland Publishing Co., Amsterdam (1977); to be published.

. S. E. Madnick and J. W. Alsop, ‘A modular approach to file system design,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 34,
1-13 (1969).

. H. S. Meltzer, Data Base Concepts and Architecture for Data Systems,
IBM Report to SHARE Information Systems Research Project, SHARE
Inc., New York, NY (August 20, 1969).

. S. MclIntosh and D. Griffel, “ADMINS from Mark III to Mark V.,”
Proceedings of the IFIPS Congress 68, North-Holland Publishing Co.,
Amsterdam (1969).

. C. T. Davies, 4 Logical Concept for Control and Management of Data,
AR-0803-00, IBM Corporation, System Development Division, Pough-
keepsie, New York (1967).

. E. F. Codd, “A relational model for large shared data banks,” Communica-
tions of the ACM 13, No. 6, 377-387 (1970).

. P. L. Fehder, The Representation-Independent Language. Part 1: Intro-
duction and Subsetting Operations, Research Report RJ 1121, IBM
Research Laboratory, San Jose, California (1972).

. S. P. Ghosh and M. M. Astrahan, “A translator optimizer for obtaining
answers to entity set queries from an arbitrary access path network,” /n-
formation Processing 71, North-Holland Publishing Co., Amsterdam
(1974), pp. 436-439. S. P. Ghosh and M. E. Senko, “On the analysis of
search path procedures in an information system based on string paths,”
IBM Journal of Research and Development 18, 408-422 (1974).

. P. P-S. Chen, “The entity-relationship model —toward a unified view of
data,” ACM Transactions on Database Systems 1, No. 1, 9-36 (1976).

. G. M. Held, M. R. Stonebraker, and E. Wong, “INGRES —a relational
data base system,” Proceedings of the AFIPS National Computer Con-
ference 44, 409-416 (1975).

. J. Mylopoulos, S. Schuster, and D. Tsichritzis, ““A multi-level relational
system,” Proceedings of the AFIPS National Computer Conference 44,
403-408 (1975).

. V. K. M. Whitney, “RDMS: a relational data management system,” Pro-
ceedings of the Fourth International Symposium on Computer and In-
formation Sciences (COINS 1V) (1972).

. D. McLeod and M. Meldman, “RISS—A generalized minicomputer rela-
tional data base management system,” Proceedings of the AFIPS National
Computer Conference 44, 397-402 (1975).

. L. S. Schneider, “A relational view of the Data Independent Accessing
Model,” Proceedings of the ACM-SIGMOD International Conference on
Management of Data (1976), pp. 75-90.

. H. A. Schmid and P. A. Bernstein, ‘A multi-level architecture for relational
data base systems,” Proceedings of the International Conference on Very
Large Data Bases, Framingham, MA, 1975, D. S. Kerr, editor, ACM,
New York, NY, 1975, pp. 202-226.

. G. K. Manacher, “On the feasibility of implementing a large relational data
base with optimal performance on a mini-computer,” Proceedings of the
International Conference on Very Large Data Bases, Framingham, MA,
1975, D. S. Kerr, editor, ACM, New York, NY, 1975, pp. 175-201.

IBM SYST J

40. L. S. Schneider, Martin Marietta Corp., Denver, CO; private communica-

41.

42.

43.

tion (1976).

C. J. Date, An Introduction to Database Systems, 70, Addison-Wesley
Publishing Co., Reading, MA (1975).

M. M. Zloof, “Query-by-Example,” Proceedings of the AFIPS National
Computer Conference 44, 431-438 (1975).

J. C. Thomas and J. D. Gould, “A psychological study of Query-by-Ex-
ample,” Proceedings of the AFIPS Computer Conference 44, 439-445
(1975).

. W. Kent, “New criteria for the conceptual model,” Systems for Large Data

Bases, Preprints of the Conference on Very Large Data Bases, Brussels,
Belgium, September, 1976, P. C. Lockemann and E. J. Neuhold, editors,
North-Holland Publishing Co., Amsterdam (1976). W. Kent, “Entities and
relationships in information,” Modeling in Data Base Management Sys-
tems, Proceedings of the [FIP-TC-2 Working Conference, Nice, France,
January, 1977, IRIA, 78150 LeChesnay, France (1977).

. G. Bracchi, P. Paolini, and G. Pelagatti, “Binary logical associations in data

modeling,” Modeling in Data Base Management Systems, Proceedings of
the IFIP-TC-2 Working Conference, Freudenstadt, Germany, January,
1976, G. M. Nijssen, editor, North-Holland Publishing Co., Amsterdam
(1976), pp. 125-148.

. H. A. Schmid and J. R. Swenson, “On the semantics of the relational

model,” Proceedings of the SIGMOD Conference, San Jose, CA, 1975,
ACM, New York, NY (1975), pp. 211-223.

. W. A. Woods and R. M. Kaplan, The lunar sciences natural language in-
formation system, BBN Report 2265, Bolt Beranek and Newmann, Inc.,

Cambridge, MA (1971).

. W. J. Plath, “REQUEST: a natural language question-answering system,”

IBM Journal of Research and Development 20, No. 4, 326-335 (1976).

. S. R. Petrick, “On natural language based computer systems,” IBM

Journal of Research and Development 20, No. 4,314-325 (1976).

. R. E. Levien and M. E. Maron, “A computer system for inference execution

and data retrieval,” Communications of the ACM 10, 715-721 (1967).

. W. L. Ash and E. H. Sibley, “TRAMP: an interpretive associative pro-

cessor with deductive capabilities,” Proceedings of the ACM 23rd National
Conference, Brandon/Systems Press, Princeton, NJ (1968), pp. 144-156.

. J. A. Feldman and P. D. Rovner, “An ALGOL-based associative lan-

guage,” Communications of the ACM 12, No. 8, 439-449 (1969).

. M. E. Senko, “DIAM as a detailed example of the ANSI SPARC architec-

ture,” Modeling in Data Base Management Systems, Proceedings of the
IFIP-TC-2 Working Conference, Freudenstadt, G ermany, January, 1976,
G. M. Nijssen, editor, North-Holland Publishing‘Co., Amsterdam (1976),
pp. 73-94. k

. B. Langefors, “Information systems,” Information Processing 74, North-

Holland Publishing Co., Amsterdam (1974), pp. 937-945.

. B. Sundgren, An Infological Approach to Data Bases, (Urval nr 7),

National Central Bureau of Statistics, Stockholm, Sweden (1973).

. P. Titman, ““An experimental data base system using binary relations,”

Data Base Management, Proceedings of the IFIP-TC-2 Working Confer-
ence, Cargese, Corsica, January, 1974,]. W. Klimbie and K. L. Koffeman,
editors, North-Holland Publishing Co., Amsterdam (1974).

. G. Bracchi, A. Fedeli, and P. Paolini, A multilevel relational model for

data base management systems,” Data Base Management, Proceedings of
the IFIP-TC-2 Working Conference, Cargese, Corsica, January, 1974,
J. W. Klimbie and K. L. Koffeman, editors, North-Holland Publishing Co.,
Amsterdam (1974).

. J-R. Abrial, ‘“‘Data semantics,” Data Base Management, Proceedings of the

IFIP-TC-2 Working Conference, Cargese, Corsica, January, 1975, J. W.
Klimbie and K. L. Koffeman, editors, North-Holland Publishing Co.,
Amsterdam (1974).

1977 DB PAST, PRESENT, FUTURE

. M. E. Senko, “The DDL in the context of a multilevel structured de-
scription: DIAM 11 with FORAL,” Data Base Description, Proceedings of
the IFIP-TC-2 Working Conference, Wepion, Belgium, January, 1975,
B. C. M. Douque and G. M. Nijssen, editors, North-Holland Publishing
Co., Amsterdam (1975), pp. 239-258.

. J. A. Bubenko and S. Berild, CADIS System 4: a Tool Incremental De-
scription and Analysis of Systems, Report TRITA-IBADB-3082, Depart-
ment of Information Processing, University of Stockholm, Sweden (1974).

. S. Berild and S. Nachmens, ‘‘Some practical application of CS4—a DBMS
for associative data bases,” Preprints, Proceedings of the IFIP-TC-2
Working Conference, Nice, France, January, 1977, Modeling in Data Base
Management Systems, IRIA, 78150 Le Chesnay, France (1977).

. E. Falkenberg, “Concepts for modeling information,” Modeling in Data
Base Muanagement Systems, Proceedings of the IFIP-TC-2 Working Con-
ference, Freudenstadt, Germany, January, 1976, G. M. Nijssen, editor,
North-Holland Publishing Co., Amsterdam (1976), pp. 95-110.

. P. Hall,J. Owlett, and S. Todd, “Relations and entities,” Modeling in Data
Base Management Systems, Proceedings of the IFIP-TC-2 Working Con-
ference, Freudenstadt, Germany, January, 1976, G. M. Nijssen, editor,
North-Holland Publishing Co., Amsterdam (1976), pp. 201 -220.

. E. Falkenberg, “Design and application of a natural language oriented data
base language,” Advanced Course on Data Base Languages and Natural
Language Processing, H. J. Schneider, editor, Technical University, Berlin,
Germany (1975).

. J. A. Bubenko, “The temporal dimension in information modeling,”
Modeling in Data Base Management Systems, Proceedings of the [FIP-
TC-2 Working Conference, Nice, France, January, 1977, IRIA, 78150
Le Chesnay, France (1977) pp. 41-66.

. B. M. Schueler, “Update Reconsidered,” Modeling in Data Base Manage-
ment Systems, Proceedings of the IFIP-TC Working Conference, Nice,
France, January, 1977, IRIA 78150 Le Chesnay, France (1977).

. L. A. Bjork, Jr. “Generalized audit trail requirements and concepts for
data base applications,” IBM Systems Journal 14, No. 3, 229-245 (1975).

. L. Kerschberg, A. Klug, and D. Tsichritzis, ““A taxonomy of data models,”
Systems for Very Large Data Bases, Preprints of the Conference on Very
Large Data Bases, Brussels, Belgium, 1976, P. C. Lockemann and E. J.
Neuhold, editors, North-Holland Publishing Co., Amsterdam (1976),
pp. 43-64.

. M. E. Senko, “Conceptual schemas, abstract data structures, enterprise
descriptions,” Proceedings of 1CS77, the ACM International Computing
Symposium 1977, Liege, Belgium, North-Holland Publishing Co., Amster-
dam (1977).

. M. E. Senko, “DIAM II with FORAL LP: making pointed queries with
light pen,” Proceedings of the IFIP Congress 77, Toronto, Canada, 1977.
FORAL LP for DIAM 11: FORAL with light pen—a language primer,
Research Report RC-6328, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY (1976).

. M. E. Senko, “FORAL II for DIAM I1, information structure and query-
maintenance language,” may be obtained from the author, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY (1976).

. D. P. Smith, An Approach to Data Description and Conversion, Moore
School Report No. 72-20, Moore School of Electrical Engineering, Uni-
versity of Pennsylvania, Philadelphia, PA (1971).

. R. W. Taylor, Generalized Data Base Management System Data Struc-
tures and their Mapping to Physical Storage, Ph.D. Thesis, University of
Michigan, Ann Arbor, MI (1971). E. H. Sibley and R. W. Taylor, “A data
definition and mapping language,” ACM Communications 16, No. 12,
750-759 (1973).

. The Stored-Data Definition and Translation Task Group of the CODASYL
Systems Committee, *‘Stored-data description and data translation: a model

254 SENKO IBM SYST J

and a language,” Information Systems 2, No. 3 (1977).

. E. Nahouraii, L. O. Brooks, and A. F. Cardenas, “An approach to data
communication between different generalized data base systems,” Systems
for Large Data Bases, Proceedirgs of the Conference on Very Large Data
Bases, Brussels, Belgium, September, 1976, North-Holland Publishing
Co., Amsterdam (1976).

. M. E. Senko, “DIAM 11 and levels of abstraction: the physical device
level: a general model for access methods,” Systems for Large Data Bases,
Proceedings of the Conference on Very Large Data Bases, Brussels,
Belgium, September, 1976, North-Holland Publishing Co., Amsterdam
(1976).

. A. Cabanes, “Data independence and physical implementation,” Data
Structure Models for Information Systems, Travaux de I'lnstitut d’ Infor-
matique No. 4, Proceedings of the International Workshop, Namur, Bel-
gium, May, 1974, Presses Universitaires de Namur, Namur, Belgium
(1975), pp. 169-188.

. M. Adiba and C. Delobel, “The problem of the cooperation between dif-
ferent DBMS,” Modeling in Data Base Management Systems, Proceed-
ings of the IFIP-TC-2 Working Conference, Nice, France, January, 1977,
IRIA, 78150 Le Chesnay, France (1977), pp. 131-156.

. F. L. Hainaut, “Some tools for data independence in multilevel data base
systems,” Modeling in Data Base Management Systems, Proceedings of
the IFIP-TC-2 Working Conference, Nice, France, January, 1977, IRIA,
78150 Le Chesnay, France (1977), pp. 157 - 188.

. J. F. Kelly, Computerized Management [nformation Systems, The Mac-
millan Co., New York, NY (1970), p. 533.

. DBIDC Data Dictionary, General Information Manual, GH20-9104-0,
IBM Corporation, Data Processing Division, White Plains, New York
10604.

. P. P. Uhrowczik, “Data dictionaries/directories,” IBM Systems Journal
12, No. 4, 332-350 (1973).

. R. G. Canning, “The data dictionary/directory function,” EDP Analyzer
12, No. 11 (1974).

. P. H. Seaman and R. C. Soucy, “‘Simulating operating systems,” IBM
Systems Journal 8, No. 4, 264-279 (1969).

. P. H. Seaman, R. A. Lind, and T. L. Wilson, “On teleprocessing system
design, Part IV. An analysis of axuiliary-storage activity,” IBM Systems
Journal 5, No. 3, 158-170 (1966).

. D. Teichroew, “A survey of languages for stating requirements for com-
puter-based information systems,” AFIPS Conference Proceedings, Fall
Joint Computer Conference Part IT 41, 12031244, (1972).

. J. D. Couger, “Evolution of business system analysis techniques,” ACM
Computing Surveys 5, No. 3, 167-198 (1973).

. M. E. Senko, V. Y. Lum, and P. J. Owens, “A file organization model
(FOREM),” Information Processing 68, Proceedings of the IFIP Con-
ference, North-Holland Publishing Co., Amsterdam, (1969), pp. 514-519.
M. E. Senko, P. J. Owens, and V. Y. Lum, “File structure simulation model
(FSSM),” Formatted File Organization Techniques, Final Contract Re-
port, Contract (AF 30(602)—-4088), Rome Air Development Center, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY (1967).

. L. S. Schneider and C. R. Spath, “Quantitative data description,” Pro-
ceedings of the SIGMOD Conference, San Jose, California, 1975, ACM,
New York, NY (1975), pp. 167~ 185.

. A. F. Cardenas, “Evaluation and selection of file organization —a model and
a system,” ACM Communications 16, No. 9, 540-548 (1973). A. F.
Cardenas and J. P. Sagamag, “Modeling and analysis of data base organiza-
tion, the doubly chained tree structure,” Information Systems 1, 57-67
(1975).

. V. Y. Lum, M. E. Senko, H. Ling, and J. H. Barlow, “Quantitative timing
analysis and verification for file organization modeling,” Information Sys-

1977 DB PAST, PRESENT, FUTURE

tems, COINS 1V,]J. Tou, editor, Plenum Press, New York, NY (1974),
pp. 377-1386.

. K. F. Siler, ““A stochastic evaluation model for database organizations in
data retrieval systems,” ACM Communications 19, No. 2, 84-95 (1976).

. S. B. Yao and A. G. Merten, “Selection of file organization using an ana-
lytical model,” Proceedings of the International Conference on Very
Large Data Bases, Framingham, MA, September, 1975, D. S. Kerr, editor,
ACM, New York, NY (1975), pp. 255-267.

. T.J. Teory and K. S. Das, ““Application of an analytical model to evaluate
storage structures,” Proceedings of the 1976 SIGMOD Conference on
Management of Data, Washington, DC, June, 1976, J. B. Rothnie, editor,
ACM, New York, NY (1976), pp. 9-20.

. 1. Miyamoto, ‘““Hierarchical performance analysis models for data base
systems,”” Proceedings of the International Conference on Very Large Data
Bases, Framingham, MA, September, 1975, D. S. Kerr, editor, ACM,
New York, NY (1975), pp. 322-352.

. P. J. Owens, “Phase Il —a data base management modeling system,” In-
formation Processing 71, Proceedings of the IFIPS 1971 International
Conference, North-Holland Publishing Co., Amsterdam (1972), pp. 827 -
832.

. A. Reiter, “Data models for secondary storage representations,” Pro-
ceedings of the International Conference on Very Large Data Bases,
Framingham, MA, September, 1975, D. S. Kerr, editor, ACM, New York,
NY (1975), pp. 87-119.

. L. S. Schneider, Generalized Data Management System, Math Model Sim-
ulator, User Guide, NASA Contract NAS9-13951, Institutional Data
Systems Division, Lyndon B. Johnson Space Center, NASA, Houston, TX
(1975).

. H. L. Morgan and S. R. Kennedy, “Mathematical models of file processing:
survey and classification,” Information Science Technical Report No. 3,
California Institute of Technology, Pasadena, CA (1972).

. D. G. Severance and A. G. Merten, “Performance evaluation of file
organization through modeling,” Proceedings of the ACM National Con-
ference, 1972, ACM, New York, NY (1972), pp. 1061-1072.

. B. Schneiderman, “Optimum data base reorganization points,” 4ACM
Communications 16, 362-365 (1973).

. P. M. Stocker and P. A. Dearnley, “A self-organizing data base manage-
ment system,” Data Base Management, Proceedings of the IFIP TC-2
Working Conference, Cargese, Corsica, April, 1974, J. W. Klimbie and
K. L. Koffeman, editors, North-Holland Publishing Co., Amsterdam
(1974), pp. 337-350. P. Dearnley, “A model of a self-organizing data
management system,” Computer Journal 17, 13-16 (1974).

. D. Severance and R. Duhne, “A practitioner’s guide to addressing algo-
rithms,” ACM Communications 19, No. 6, 314-326 (1976).

. V. Y. Lum, P. S. T. Yuen, and M. Dodd, “Key-to-address transform tech-
niques: a fundamental performance study on large existing formatted files,”
ACM Communications 14, No. 4, 228-239 (1971). V. Y. Lum, “General
performance analysis of key-to-address transformation methods using an
abstract file concept,” ACM Communications 16, No. 10, 603-612
(1973). S. P. Ghosh and V. Y. Lum, *“An analysis of collisions when hash-
ing by division,” Information Systems 1, No. 1, 15-22 (1975).

. J. A. Van der Pool, “Optimum storage allocation for initial loading of a
file,” IBM Journal of Research and Development 16, No. 6, 579-586
(1972).

. D. G. Severance, “Identifier search mechanisms: a survey and a gen-
eralized model,” ACM Computing Surveys 6, No. 3, 175-194 (1974).

. W. D. Mauer and T. G. Lewis, “Hash table methods,” ACM Computing
Surveys 7, No. 1, 5-19 (1975).

IBM SYST J

. Data Base Design Aid. General Information Manual, GH20-1626, IBM
Corporation, Data Processing Division, White Plains, New York, NY
10604.

. N. Raver and G. Hubbard, “Automated logical file design: concepts and
application,” this issue.

. S. E. Smith and J. H. Mommens, ““Automatic generation of physical data
base structures,” ACM SIGMOD International Conference, SanJose, CA,
1975, ACM, New York, NY (1975).

. J. A. Bubenko, Jr., S. Berild, E. Lindencrona-Ohlin, and S. Nachmens,
“From information structures to DBTG data structures,” Proceedings of
the Conference on Data: Abstraction, Definition, and Structure, FDT
Bulletin 8, No. 2, 73-85 (1976).

. J. A. Hofter and D. G. Severance, “The use of cluster analysis in physical
data base design,” Proceedings of the International Conference on Very
Large Data Bases, Framingham, MA, September, 1975, ACM, New York,
NY (1975), pp. 69-86.

. M. F. Mitoma and K. B. Irani, “*Automatic data base schema design and
optimization,” Proceedings of the International Conference on Very Large
Data Bases, Framingham, MA, September, 1975, ACM, New York, NY
(1975), pp. 286-321.

. V. Y. Lum and H. Ling, “An optimization problem in the selection of
secondary keys,” Proceedings of the 1971 ACM National Conference 26,
349-356, (1972).

. M. Schkolnick, ‘“‘Secondary index optimization,” ACM SIGMOD 1975,
International Conference on Management of Data, San Jose, CA, ACM,
New York, NY (1975).

. Data Base Directions, The Next Steps, NBS Special Publication 451,
John L. Berg, editor, U.S. Department of Commerce, National Bureau of
Standards, U.S. Government Printing Office, Washington, DC (1975).

GENERAL REFERENCES

1. A. Blaser and H. Schmutz, Data base research: a survey, Research Report
TR75.10.009, IBM Heidelberg Scientific Center, Heidelberg, Germany (1975).

2. C. J. Date, An Introduction to Database Systems, Addison-Wesley Publish-
ing Co., Reading, MA (1975).

3. J. Martin, Computer Data Base Organization, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1975).

Reprint Order No. G321-5053.

DB PAST, PRESENT, FUTURE

257

