


History of the system 

The earliest  passenger name reservation  system  was developed 
with American Airlines and  was called SABRE, a  name suggesting 
speed and accuracy. The original acronym, SABER, stood  for 
Semi-Automatic Business Environment Research.’ The primary 
motivation for the  system was to  automate  the airline reserva- 
tion function which was mostly a manual process. The objective 
was  to  improve  on  the  accuracy and capacity of the  reservation 
function without impacting the personal and natural dialogue 
between  the  reservations  agent and passenger. The initial on-line 
system  contained 100000 instructions, 40000 of which made 
up the  control program and  support  functions. The system was 
implemented on  the IBM 7090  processor and used IBM 1301  disk 
files. Specialized terminals (IBM 1003)  and  concentrators (IBM 
1006)  were also developed  for SABRE. 

Some  important technical results of the  work on SABRE were: 

Line  concentration  techniques. 
Medium- and low-speed data  set  development. 
Fast random  access. 
Front-end processing. 
Large volume disk and  drum  storage  devices. 
Relocatable. reentrant  software. 

Two similar systems  were  developed  later  that benefited from 
the  experience gained on the SABRE project-  Deltamatic  for 
Delta Airlines using IBM 7074  processors and PANAMAC for 
Pan  American Airlines using IBM 7080  processors. These sys- 
tems  were functionally equivalent,  the primary difference being 
system  capacity (throughput). 

The American Airlines SABRE system  went “on-line” in 1963. 
Delta and Pan  American  started up their systems in 1964. I 

PARS In 1965, IBM began to  develop a generalized airline reservation 
package called PARS (Programmed Airline Reservation 
System).  The plan was to apply the knowledge gained from the 
three  prior  implementations,  together with the  System/360  tech- 
nology, to  produce  a modular system  usable by airlines of any 
size. Today, PARS is widely used in the airline industry. 

PARS was implemented on System/360  processors  Models  40 
through 75  but  was used primarily on  the  System/360 Model 65. 
Large Core Storage (LCS) was used as  a  data file for frequently 
accessed  records, and less  active  data  was  stored  on  an IBM 
23 14 Direct  Access  Storage  Facility.  The off-line support pro- 
grams  ran  under DOS. The system  supported IBM 2703 Trans- 
mission Control  Units  and terminal concentrators  (2948)  to 
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which special CRT terminals (29 15) with reservation-functional 
keyboards  were  attached. The system had several special fea- 
tures to provide the  performance and application  requirements. 
For example,  a special buffer for  the  storage  control unit freed 
the  channel for a major part of the  access time, providing more 
available channel time and,  hence,  more  accesses.' The terminal 
concentrators and transmission control units were modified for 
similar reasons. 

In  1968,  the  control program portion, called ACP, and related 
utilities were  separated from the airline reservation application 
in PARS and have since been separately  enhanced to support 
new devices and provide functional improvements. These  en- 
hancements, coupled with the  increased  use of ACP for other 
applications,  have had the effect of creating  software with the 
characteristics of an  operating  system particularly suitable for 
the  support of  high transaction  rates. 

The ACP system, which has evolved over  the  years,  can be de- 
fined as a high-performance, real-time, message-driven operating 
system. It consists of approximately 500000 lines of' code. (The 
reservation application in PARS totaled 150000 lines.) It is 
characterized by a high volume of unpredictable  inputs,  requir- 
ing limited function and flexibility but  extremely high availability 
and rapid,  consistent  responses. These characteristics imply that 
demands on the  system  are  dynamic in nature and dictated by 
some external stimulus not  under  control of the  system;  that  the 
data  base must be on-line and current; that fallback, restart,  and 
recovery  functions  must be fast and accomplished with little or 
no awareness by the  user  and  almost no impact  to  the  per- 
formance of the  system. 

These requirements  are  addressed in ACP through the evolution 
of a  control philosophy and new facilities. Dynamic load control 
was implemented to allow maximum utilization of the  various 
system  components. The user (the terminal operator) was made 
an integral part of the  system,  and  the impact of any  errors  was 
isolated to affect only the specific user while the  system re- 
mained available to other  users.  This philosophy was extended 
to include the  operator as part of the  system,  and  checkpointing, 
restart,  recovery,  and reconfiguration facilities were provided to 
allow restart in one to  two minutes or reconfiguration in three  to 
five minutes while attempting  to limit the  impact of an  outage  to 
only those  users  directly affected. 

Several key factors  were involved in achieving the high avail- 
ability and recoverability  characteristics: 

Certain  system  software  decisions and functions could be 
off-loaded by considering the  reservations  agent-operator as 
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an intelligent system  component.  Human  judgments  regard- 
ing the  transaction  were made by that  component.  However, 
the  agent could take no action, make decisions, or tie up re- 
sources  that could affect other  transactions or  the system as 
a whole. This philosophy not only streamlined the  process 
but  enabled  a  natural dialogue between  the  agent and pas- 
~ e n g e r . ~  

restart  and Because the  system is for the most part configured at system 
switchover generation (not initialization) time, the  restart  process is rap- 

id and uncomplicated,  thus making most  restarts successful 
and achievable in seconds.  Moreover,  the  switchover  and 
restart  procedures  are identical, enabling either  process  to  be 
effected with the  same high reliability expectations. 

trivial The structured  nature of the  system  enables  an  extremely 
computation high degree of multiprogramming. Thus, many units of work 

will be  active  at any given time (50 to 75 are  not 
uncommon). Because each unit will use only a tiny resource, 
waiting time (by each unit) is reduced  to  a minimum. This 
design ensures  system accessibility (availability)  to  the high- 
est possible number of users. 

backup CPU A backup  processor designated as the  standby machine is 
made available in the  event  that  an  unscheduled  switchover 
must be performed. A switchover is usually due  to some un- 
correctable  hardware failure in the on-line CPU. This  occur- 
rence, while relatively rare, is nonetheless of crucial signif- 
icance when it does  occur  during peak activity. In practice, 
most switchovers  are of the  “scheduled” type for  preventive 
maintenance. 

duplicate The data  base is seiectively duplicated depending  on  the data 
data  base type  and  relative  importance  as designated by the  user. 

While duplicated records  increase  system  overhead  (each 
record must be written twice), an  advantage is gained when 
referencing the  data  because more than  one  path  exists  to  it. 

Typically, an ACP system  network  consists of from 2000 to 
5000 terminals, although some ACP systems  also  exist with a 
few hundred terminals, and 10000 terminal systems  have  been 
envisaged for the  near  future.  However, many terminals do not 
necessarily imply many messages. The entry  frequency for mes- 
sages will vary from one application to  another. A message input 
of one per minute was assumed as the design point for highly 
active  terminals.  Less  active  systems  were designed for  a lower 
frequency of input per terminal. The required average  response 
(according  to  the design point) to the terminal is under two sec- 
onds,  where  response time is the period between  the moment 
when the  enter key is depressed  and  the first response  character 
appears on the  screen. 

The system is message-driven, which means  that  the  source of 
all input is the  result of  polling the  remote  concentrators on a 
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periodic basis. The units  of work in the CPU (called  entries)  are 
initiated by some external stimulae (messages). Multiprogram- 
ming  is accomplished by allowing as many entries  to be activat- 
ed as  the  system  resources will accommodate. Application pro- 
grams are  relocatable and reentrant  and,  hence,  can be shared 
between entries.  Each  entry will proceed until it is required to 
“wait” for an  external  (file)  reference,  at which time another 
entry will  be initiated or allowed to proceed. All messages are 
handled on  a first-in, first-out basis and,  hence, no processing 
overhead is incurred for  task switching as in a preemptive 
scheduling system. 

ACP was first announced  as a system  separate from PARS in No- ACP 
vember 1970 and first delivered in August 1972. It was called Models 5 and 6 
ACP Model 5 .  The anticipated  users were airlines, and this mod- 
el, implemented on a  System/360 Model 195, provided support 
of the following devices: 

2880 Block Multiplexor Channel. 
2305 Fixed Storage Model 2. 
2969 Programmed Terminal  Interchange (PTI), which is a 
special transmission control unit designed to extend the 
communications line attachment capability for Model 195 
systems. 

The off-line utilities were  converted from DOS to  run  under os in 
Release 5. The  support of  the  System/360 Model 195 necessi- 
tated a major restructuring  of  the  control program to  accommo- 
date  the increased  capacity of that  system.  Restrictions on num- 
bers of terminals and device  attachments  were  removed.  Since 
the  system still supported  the  other  System/360 models, new 
device  support had to be modular and had to be able  to be sys- 
tem generated. Note  that  the modularization necessitated by the 
larger CPU ultimately assisted  the capability to run on the 
smaller System/370 CPUS (e.g.,  System/370 Model 135). 

A  companion  release, ACP Model 6, was announced in January 
1972 and shipped in May 1973. It extended  support to include 
the  3330  Direct  Access  Storage Facility and was implemented 
on the  System/370 Model 165. 

Comprehensive  tests of Model 5 using System/360, Model 195s 
were performed with special emphasis on the performance  capa- 
bilities. Projected peak message activity required a  throughput 
capability for processing 180 typical reservation messages4 per 
second at 85 percent of CPU utilization. The average  response 
time per message during peak loads was to be within two sec- 
onds with a  requirement for no more than 10 percent of the 
messages to  exceed  four  seconds. The average processing time 
per message was to be  within 4.7 milliseconds.” 



Figure cPU throughput for The tests validated all the  stated  objectives  (with  the  system 
driven by a  second CPU simulating the  network at various  rates 

was that  the processing time per message (4.2 milliseconds 
were actually measured) remained reasonably  constant  at all 
message rates.  This knowledge permitted linear extrapolation 
with high confidence levels up  to  the maximum capacity of the 
CPU. Also, it means  that given the  rated  capacity of any CPU, its 
PARS capability could be quickly assessed. 

Thus, for ACP, the message-processing capacity of any CPU is a 
linear function of its MIP (millions of instructions per second) 

PARS messages 

0 up to 161 messages per second).  One important  observation Y 200 - 

MILLIONS OF INSTRUCTIONS/SECOND 

Messages  per second = 
MIP rate 

k 

Figure 1 depicts  the relationships and  extrapolations  for several 
CPU types assuming the typical PARS message at 15000 instruc- 
tions per message and up  to 100 percent CPU utilization. How- 
ever, in practice,  systems are designed for  up  to 85 percent CPU 
utilization beyond which some  degradation in response may 
occur. 

cohabitation Since  the ACP systems  were designed for  the  future  peak mes- 
sage rate  and  were required to  operate 24 hours  per  day,  and 
since  the load demands of the application followed a cyclical 
pattern,  there  were long periods of low system utilization. A 
software  hypervisor was developed to make use of the unused 
CPU capacity.  This facility was announced in ACP Model 7 in 
August 1972 and made available in December  1973. The hyper- 
visor allowed an ACP user  on  a  System/370  to  capitalize on the 
excess computing power by operating oslvs jobs during the low 
periods of on-line activity. 

Some unique objectives had to be met in the  hypervisor  de- 
velopment  process.  Firstly,  the processing overhead  on ACP had 
to  be minimal (under five percent)  to retain the  performance 
capabilities of the  system.  Secondly, essentially no impact on 
ACP system reliability (uptime) could be  tolerated.  Thirdly,  the 
feature had to be transparent  to  the applications under ACP or 
oslvs and to oslvs itself. 

The first objective  was met by designing the  hypervisor as a log- 
ical extension of the ACP interrupt  handler  routines.  Since  inter- 
rupt  handlers are crucial to ACP performance,  and  since  they 
already  contained logic to recognize which interrupts do and do 
not belong to ACP, only a slight amount of additional overhead 



The second  objective  was met by designing the ACP hypervisor 
as a special kind  of “virtual machine” system. Only two  operat- 
ing systems  are  supported (ACP and oslvs); oslvs runs only in 
problem state and is always physically enabled.  Interrupts  oc- 
curring while oslvs is  in control  of  the CPU allow ACP to  seize 
control of the CPU if it solicits the  interrupt,  but oslvs solicited 
interrupts, occurring while oslvs is logically disabled, are pre- 
served (stacked) until oslvs is logically enabled. Privileged in- 
structions  executed by the O S ~ V S  supervisor are simulated by 
the  hypervisor, keeping total control  of  the  status of the oslvs 
“virtual machine.” This  control  prevents impairment of the ACP 
system reliability due  to  unforeseen damaging conditions 
emerging during the  execution of instructions in the oslvs 
domain. 

The third objective was also  met.  Adjustments had to  be made 
dynamically by the  hypervisor  to  the oslvs address  translation 
tables  because  the  lo supervisor modules were  relocated  to 
make way for ACP. Beyond those  adjustments,  transparency was 
maintained. As might be expected,  the simulation of privileged 
instructions  executed by oslvs cause  a  degradation of oslvs 
jobs,  depending  on  the  percentage of privileged instructions  exe- 
cuted in oslvs, which varies from job to job. A  later version 
(ACP Model 9) invokes the facility of the  Virtual  Machine  Assist 
feature  to  reduce  the  overhead significantly. 

In  December 1972, ACP Model 8 was announced.  This version ACP 
included enhancements  that began to give ACP the  characteris- Model 8 
tics of a generalized DB~DC system. The following functions 
provided in Model 8 were made available in three  separate  re- 
leases: 

This version could be implemented on System/370 Models 
135, 145, 158, 168, and 195. 
At  a  read/write level, the IBM 32 1 1 Printer,  3505  Card  Read- 
er and 3525  Card Punch could be attached.  It may be inter- 
esting to  note  that  the  support  for  such  devices was de- 
veloped to satisfy the  need for application expansion. Being 
totally interactive in nature, ACP allows all system communi- 
cations by terminal or system  console,  thereby rendering 
card readers and the  Job  Control Language type of input 
unnecessary. 
A load and  dump facility through ACP for  the emulation pro- 
gram in the IBM 3705  communications  controller was avail- 
able. 
SCP functions in support of consumer finance users  (particu- 
larly terminals and  concentrators)  ‘were provided. 
A  3340  direct  access  storage  device could be attached. 
The 3270 Information Display system could be attached 
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Figure 2 ACP Models 8 and 9 message  routing 
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The hypervisor was enhanced  to allow channel sharing 
between oslvs and ACP and to  provide a “bridge” through 
which applications  under oslvs could access and update  the 
ACP on-line data base. 
Improved  system implementation facilities were also pro- 
vided. 

The network facilities, as part of the third release of ACP Model 
8, extended  the  scope  and  function of existing data communica- 
tions support facilities. The fundamental structure and method 
of terminal operation remained unchanged,  but  the terminals, 
lines, and other  communications facilities could now be  shared 
by other  processing  systems  (satellite  processors)  operating 
under  control of os, oslvs, or ACP. 

Also, direct  communications  between applications under ACP 
and  those in other CPUS were made possible,  thereby allowing 
data-base  records  and  other internally generated information to 

176 be sent from one  system  to  another. The data is sent as the  text 
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of a “message” between applications in each  processor with 
appropriate  indicators specifying the  source and destination of 
the  data. ACP remains the focal control point for  the  network 
of terminals and satellite processors. It establishes  connections 
between terminals and application programs in the ACP system or 

1 in one of the satellite processors. 

The satellite processors are normally attached  to  the ACP sys- 
tem by point-to-point communication lines utilizing a binary 
synchronous  procedure.6 Figure 2 shows  the  interprocessor 
connections utilizing the message-routing facility of ACP.  Note 
that  one of the satellite processors is an ACP system. In the  case 
where the OSlvs systems  share a CPU with ACP via the  hypervi- 
sor,  the binary synchronous  communications  connection  be- 
comes  “virtual,”  and (as indicated by dotted  lines)  data is trans- 
ferred over  an internal interface. 

Announced  on July 15, 1975 and made available on November ACP 
26, 1976, ACP Model 9 is the most  current version of the  sys- Model 9 
tern. It is a true implementation of IBM’s Systems  Network  Ar- 
chitecture for the  3600  Finance Communication System via the 
3705  controller with N C P ~ V S  (Network Control  Program).  The 
SNA~SDLC protocol can coexist in the  same CPU with the  pre- 
viously supported ACP data communication protocols. 

A binary synchronous  data link for  interprocessor communica- 
tions extends  the networking capabilities of the  previous version 
to multipoint. (ACP Model 8 provided only point-to-point capa- 
bilities.) Also, the Virtual Machine Assist  feature could be in- 
voked in the ACP software  hypervisor. 

ACP operational  characteristics 

The system is basically controlled through a mechanism called dispatcher 
the CPU loop program (Figure 3).  This program continually in- 
terrogates a series  of  queues for work to be done.  Whenever  an 
interrogated  queue is not  empty,  the  first item (entry) in the 
queue will  be dispatched.  Interrupts (as a result of rlo com- 
pletions)  cause  entries  to be placed in the  queues.  The  interrupt 
routines do not perform any scheduling and always  return to the 
interrupted  code  (which may  be the CPU loop program itself). 

I 

The three primary queues  are called the  ready,  input, and de- 
ferred queues. The  order in which the  queues are interrogated 
establishes  the processing priority. The ready queue is always 
interrogated first and all the items dispatched before the input 
queue is tested.  This is consistent with the philosophy that  work 
in process  (ready queue)  takes priority over work to be pro- 
cessed  (input queue).  The ready  queue  contains units of work 



Figure 3 The ACP dispatcher 
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that  are  ready for further processing. Entries  are placed in the 
queue by the I/O completion interrupt  routines which were  the 
result of an application program request  for  system  service (e.g., 
data  retrieval). 

The input queue  contains input messages that  have  not yet been 
given the  status of an  entry.  These messages are  added to the 
queue by the  network  services  interrupt  routines  that  completed 
the message input processing. 

The deferred  queue  contains  entries designated as low priority 
by the application. It is a  convenient way to  defer processing 
until triggered by some required  event taking place (e.g.,  a real- 
time  indicator is set).  Thus,  the application can “wait” without 
usurping system  resources by looping. 

Figure 3 shows  these  queues  and  depicts  the ACP dispatcher 
philosophy.  Because  the ready queue  contains only entries for 
work in process,  the application program is in all cases being 
reinvoked.  In  contrast,  the input queue  contains  fresh messages 
that will initiate an application program for  the first time. Note 
also that  the  entry point to  the CPU loop program is always 
where  the  ready  queue will be interrogated first, thereby main- 
taining the  work-in-process priority.? 
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ACP storage management has the significant attribute of homo- 
geneity.  Storage blocks may alternately  serve as: program, work 
space,  data,  and  control blocks, using the  same  expedient  stor- 
age management techniques. The storage block is part of an  ac- 
tive entry and thus  has  a  short life. It is returned to the  storage 

, area,  or pool, for  reuse by another  entry. 

Storage is presegmented into small, fixed block sizes and dy- storage 
namically dispensed as required for use by the  applications. The management 
blocks are  returned to a common pool when not in use. Four 
different storage  areas called pools are maintained in different 
sizes: 

128 bytes- used primarily as  input buffers for  network  control 
and also as work space  for  the application or ACP. 

381 bytes- used as  an  entry  control block, message block, data 
block, program block, or work space. 

1055 bytes - used the  same  as  the 38 1-byte block except  for 
entry  control. 

40 bytes- used exclusively by ACP to  control 1l0 operations. 

The main storage  allocated to each pool is identified at ACP ini- 
tialization time, and the size of each pool (number of blocks) is 
a function of the  type  and volume of system  activity. It is impor- 
tant to be able to predict  the activity to initially create  the four 
different pools and subsequently  measure it in order to “fine 
tune”  the  system  for optimum performance. The data collection 
programs are used in this activity and will be discussed  later. 

A set of  ‘‘lists’’  is associated with each  storage pool. The list is a 
“pushdown  stack” of addresses of  all blocks in a given pool. A 
pointer is maintained and  always points to  the list item that 
contains  the  address of the  next available storage block. Figure 
4 depicts  the  storage pool and list concept.  The pointer  contains 
the  address ( A )  of the location in the list that  contains  the  ad- 
dress of the  next available 1055-byte block ( B ) .  Managing the 
lists consists of the simple expedient of dispensing (and 
returning) main storage block addresses from and  to  the list and 
incrementing or  decrementing  the  pointer to the list item. 

The list concept is an improvement over  an earlier design, in 
which the available main storage blocks were chained together, 
and the  chain  words, manipulated as blocks, were dispensed 
from and returned  to  the pool. Since  the  storage pools are un- 
protected from application programs, the chain words  were of- 
ten modified erroneously.  Such modification resulted in broken 
chains and lost main storage  blocks, which caused  system  er- 
rors.  In  the  current design, the list itself is protected,  whereas 
the  storage pools remain unprotected. The  error incidence has 
been reduced significantly as a  result. 
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Figure 7 Pool record allocation 
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Matrix  records are themselves  chained and reside  on file when 
not in use.  Record  space is freed  or made unavailable by a simple 
bit setting in the matrix record. 

Pool addresses  are  reinstated  for  use through on-  and off-line 
utility programs.  This  reinstatement involves the manipulation 
of the bit matrix records  (called  directories), setting the bit “on” 
for  the  associated  record  address.  Other utility programs  “scan” 
the  data base  and  “recoup”  lost  records  (broken  chains,  unre- 
turned addresses). 

Data is retrieved and updated through a simple macro  interface 
between  the application programs and ACP. Some  data-accessing 
macroinstructions  are: 

FIND - retrieve  a  record. 
FILE -write  a  record. 
FINH -retrieve  a  record and hold (does not allow any  other 

attempt  to  update  but allows simultaneous reference). 
GETF - get file address (POOL). 
RmF-release file address (POOL). 

summary ACP provides  a simple direct-accessing capability on which a 
complex data management facility was built for PARS. Re- 
locatable  and  reentrant  subroutines are available to retrieve 
and update  the  data based on its  input  parameters, e.g., 
Flight/Date/Name.  Other on-line subfunctions,  such as recoup- 
ing lost addresses, file maintenance, file reorganizers,  and  data- 
base  capture, were also developed.  Other applications (loan 
payment  processing,  car  rental,  credit  inquiry) similarly tailored 
the  data management function to their needs. 

Data communications 

The communications-handling portion of PARslACP is an integral 
part of the overall architecture. A message flows in and out of 
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update with a minimum  of processing. Incoming characters  are 
assembled in a buffer storage block to form a message that is 
placed on an input queue. In its turn,  the message becomes input 
to  an  entry  created by the  system.  Applications, invoked as  a 
result of input messages,  retrieve  and  update data and are, multi- 
programmed with other  entries as a  result of  lo activity. Applica- 
tion processing terminates  after  a  system  request is made for the 
transmission of a  response message.8 Almost without  exception, 
the  above is the general processing sequence for all inputs. 

The functions performed by the communications-handling por- 
tion of ACP (called  Communications  Control  Program, or CCP) 
are : 

Polling and circuit assurance. 
Execution of rlo operations. 
Input/output  character  code  translation. 
Main storage allocation for  associated I/O operation. 
Preliminary input message assembly, including multiblock 

Application program interface  (invoking  the application 

Hardware  error  detection  and  corrective  actions. 
Communications hardware reconfiguration activations. 
Communications line queuing. 
Computer network control  (Message  Router) allows the 
sharing of terminals, lines, and other communication facilities 
by other  (satellite)  processors. 

message assembly. 

program). 

Operator  communications. 

A detailed description of the  data  communications  functions of 
ACP can be found in the  document, A C P  System Concepts and 

Early in the  development of the original SABRE systems,  the Airlines 
importance of efficient line control  and terminal concentration Line  Control 
was recognized.  A special line discipline was developed for 
those early systems  and is still in use  today. It is called Airlines 
Line Control,  or ALC (also known as SABRE Line Control or 
PARS Line Control). Implemented in reservation  systems utiliz- 
ing the special concentrators, ALC is a true, full duplex,  synchro- 
nous transmission capability. 

ALC uses  synchronous full duplex transmission on dedicated 
communication lines that  are  either hub or roll call polled and 
may be either leased common  carrier  or private telephone lines. 
Each message contains  two  synchronization  characters,  the  data 
text,  and  a  character to aid in determining the validity of the 
message.  Each  character is six bits in length. 



The line control  takes  advantage of the  fact  that  the agent is an 
integral part of the  system  and  the philosophy that  every  input 
message will result in an  output  message. The choice of message 
concentrators  (asynchronous time division multiplexors),  rather 
than individual terminal polling (synchronous time division 
multiplexing),  further  contributes  to  the  communications effi- 
ciency. 

For nearly 15 years,  the PARS-ACP systems  have used basically 
the  same unique communication discipline. It remains  an effec- 
tive and  stable discipline for applications that  can be performed 
within the limits of the six-bit character  set. For a more detailed 
analysis of the  characteristics of ALC see Knight." 

As  the use of ACP expanded,  several  external  factors influenced 
the  data  communications  architecture: 

Terminals and remote  concentrators with more intelligence 
were being introduced,  thus providing a more transparent 
communications  interface  to  the  application. 
ACP was increasingly being used for  other applications be- 
yond airlines reservations, requiring a larger character  set. 
Hardware  advances were reducing the  necessity for special- 
purpose  devices. 
A unified systems  structure linking terminals and  host  com- 
puters called Systems  Network  Architecture (sNA)'~ was 
developed along with a line control discipline called synchro- 
nous data link control (SDLC).~* 

The evolution from ACP-ALC to SNA-SDLC was accomplished 
over a sequence of steps,  each accommodating changes within 
the  state of the  art.  Figure 8 shows  four  steps in the  evolution. 

Stage 1 depicts  the primary communication  devices  supported 
in earlier  releases of PARS-ACP. All communication  devices had 
custom  hardware modifications to accommodate ALC. A start/ 
stop mode of transmission was used between the terminal and 
display control unit. 

The six-bit character  (64-character  set)  representations provid- 
ed adequate  alphanumeric and special symbols for the airline 
reservations  and  certain  other applications. A  more powerful 
cyclic check  (in  contrast  to  a vertical character  parity plus block 
check) of strings of characters provided for fewer  undetected 
transmission  errors as well as eliminating the parity bit per  char- 
acter.  The advantage of a full duplex capability is to  further  re- 
duce  the  error  rate. 

In Stage 2, System/7 was introduced as a  remote  concentrator. ~ 

The six-bit character  set  was still adequate.  Because  the  Sys- i 



Figure 8 Stages of communication 
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tem/7 is programmable, more than one terminal type could be 
attached  to it. A regular keyboard/printer (IBM 2740)  and  two 
special-purpose terminals are  shown  (Airlines  4505/74 1 1 and 
Consumer  Finance  1980-9) in Figure 8. 

Stuge 3 allows the  attachment of the IBM 3270 Information Dis- 
play System.  This  stage required the transmission to be accom- 
plished via the binary synchronous communications (BSC) pro- 
tocol using EBCDIC character  representations.  Nonetheless,  the 
inherent efficiency of ALC was still required. The System/7 was 
programmed to convert  the eight-bit code  into  one or two six-bit 
ALC characters for transmission over  the ALC line (depicted  as 
ALC’ in Figure 8 ) .  The  characters were then reconverted in the 
CPU.  A  data link escape mechanism that has additional control 
characters which change  the meaning of the  characters  that fol- 
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low  it was used to  achieve maximum efficiency over  the line. 
Thus, the functional capability of the information display system 
was made available on the ACP high-performance communica- 
tion facility. 

Stage 4 shows  the  current  step in the  evolutionary  process: 
SNA-SDLC support  for  the IBM 3600 Financial Communication 
System is indicated as  an SNA module in ACP. The communica- 
tions controller (360 1 ) provides additional remote intelligence, 
enabling more terminal independence  and  added message integ- 
rity. SDLC provides a transparent13 line protocol  commensurate 
with the  previous efficiency requirements. The Network  Control 
Program in the  communications  controller (3705) replaces  the 
emulator program, removing the  last  special-purpose  hardware 
modifications in the  communications  network  except  that  the 
communications  controllers (2703 and 3705) in emulator mode 
required custom modifications to  accommodate  the ALC pro- 
tocol. 

As  the use of ACP expanded  to  other  applications, additional line 
controls and terminal support  were  provided.  In addition to ALC, 
other  protocols mentioned below are  supported by the  current 
system. 

SDLC is the  data transmission procedure used within IBM'S Sys- 
tems  Network  Architecture  for information transfer  over  data 
communication channels.  Transmission may be full duplex, half 
duplex,  point-to-point, or multipoint. SDLC includes  comprehen- 
sive  detection  and  recovery  procedures at the data link level. 
For example, ACP Model 9 supports  the 3600 Financial Com- 
munications System within the  framework of SNA/SDLC. Thus, 
all applicable SNA commands  for  the financial system  are  sup- 
ported. 

Low-speed controlled telegraph (LSCT) supports multidrop lines 
(multiple terminals on a line) in a  start/stop mode of transmis- 
sion.  Each  drop  can be addressed and each  drop  must  be roll 
call  polled (i.e.,  the  transmission of a  short message to  each 
drop  to solicit input) for data. Half duplex lines operate  at rates 
up to 75 baud ( 100 words per minute). The character size is 
five-bit Baudot,I4 and LSCT is required by users of 83-B  type 
equipment  for message-switching functions. 

Low-speed free-running telegraph (LSFR) is point-to-point 
start/stop  transmission. The line is free-running, eliminating poll 
messages and other  control  characters,  but requiring more com- 
plex synchronization within the  software. The lines operate  at 
rates  up  to 75 baud in full duplex, half duplex, and simplex 
modes. Characters  are  five-bit  Baudot. 
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requirements of the  National  and  International Air Transport link  control 
Associations, which represent  domestic  and  international  air- 
lines. Operation of SLC communications is synchronous  on full 
duplex,  private,  leased, voice-grade lines. It requires point-to- 
point full duplex lines operating at  rates up to 9600 baud.  Each 
link, containing up to seven communication lines, represents a 
connection between CPUS. A single message may utilize all sev- 
en lines. No polling  is associated with SLC. Each CPU continual- 
ly listens to  the  receive lines. Dummy messages are transmitted 
whenever  there are long periods without transmission  to  check 
on  whether or not  the line is still operating. 

Data and control  characters  are eight bits long (seven bits of 
data plus parity). Each message contains  a block check  charac- 
ter for error  detection,  as well as a vertical redundancy  check  on 
all characters. All data messages are sequenced, allowing each 
CPU to  detect missing or spurious messages, which permits the 
automation of corrective  procedures.  Corrective  procedures 
usually entail the  request for retransmission  and/or  system  oper- 
ator notification. 

ARINC is an  acronym  for  Aeronautical Radio Incorporated,  a asynchronous 
wholly owned subsidiary of the U.S. domestic airlines, which link  control 
operates  a message-switching network. ARINC support, which is 
Asynchronous Link Control,  uses  point-to-point, low line speed, 
full duplex,  start/stop transmission methods. This includes mes- 
sage sequencing to  detect lost messages. Application functions 
protect against the possibility of lost or garbled messages. 

The ACP system  support of binary synchronous  control is used binary 
for  processor-to-processor  communications.  This  use  permits synchronous 
other  system  control programs to communicate with the ACP communications 
system (see Figure 2) in order  to accomplish a point-to-point 
or multipoint data  transfer. 

Test tools and support programs I 

imposed on all the  programs in the  system. The &ucture is nec- 
essary  to  achieve high performance. Test tools are used to im- 
pose the  structure on the  programs.  Structural violations are 
automatically detected, flagged, and then corrected by the  pro- 
grammer. 

Using nonreentrant  code. I 
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Other  functions required to  support  the on-line operation fall support 
in the general category of support programs. Some (post- programs 
processors,  data  reduction)  execute off-line  in the  backup 
machine. Others. which support  the on-line operation  directly, 
run in the on-line system. These programs were designed so as 
to minimize the  impact on system availability. For example,  the 
function of data  base/capture  must be performed periodically, so 
that in the  event of a  catastrophic  data-base  failure, it can  be 
restored  to at least a certain point in time. A stand-alone  disk-to- 
tape utility could be used in an off-line environment  to accomplish 
the task; however, this would require  that  the  system go  “off the 
air.” In ACP, the  function had to be designed as  a major sub- 
system running on-line in real time with complex checkpointing 
subfunctions, while optimizing system  resources  (channels, 
drives) so as to complete  the  process in minimal elapsed time. 
The resulting facility can be invoked during regular operation  and 
run in parallel with normal activity. 

Data collection-reduction 

The PARS-ACP systems  are designed for a  six-to-eight-year life. 
Because they tend to be highly structured  and,  hence,  not easily 
changed,  a means is provided whereby: 

The system  can be “tuned”  to peak efficiency during installa- 

Daily monitoring of system  performance  can be readily 

Long-term trends  can be observed.  thus predicting growth in 

tions and  after  the  start-up  phases. 

achieved. 

system load and justification for  future  expansion. 

Data about  system variables is collected during the  operation of 
the on-line system and then  correlated and interpreted so that 
decisions  can be made to  ensure efficient system  operation  and 
growth. 

The  data collection and  reduction programs of PARS-ACP accom- 
plish the required functions. As experience is gained with 
each  successive installation, the  importance of this  aspect of the 
system  becomes more apparent.  Changes are continually being 
made to improve on the  techniques. 

The  data collection programs  operate on-line in real time. These 
programs are invoked on  a periodic basis under  operator  control 
to: (a) read  out  counters  (which  are  continuously updated), (b)  
intercept  and  record specific events,  such  as  data  and program 
reads,  and (c)  dynamically sample parameters  that fluctuate 

~ with time (device  queues.  storage pool lists). 



Table 1 Kinds of data to be collected 

Messuges 
Arrival  Time 
Text 
Length 
Type 
Output  Queue Lengths 
Total  Number 
Time Sent 

Input  Queue Length 
Ready Queue  Lengths 
Count of High-speed Messages 
Count of Low-Speed  Messages 
Elapsed Time in Various CPU  States 
Storage Block Usage 
Count of Active  Entry Control Blocks 

Count of Program Execution 
Program  Residency 

Count of Record Accesses 
Count of Program  Accesses 
Count of Tape Writes 
Count of Device  Queues 

System 

Program 

Files 

The  data is recorded,  according  to  function, on tape.  Each  rec- 
ord is time-stamped to  indicate chronological order and contains 
control information for reduction  purposes. The kinds of data 
that  can be collected are listed in Table 1. 

The  data reduction program runs off-line under oslvs. The  data 
is edited,  sorted, and arranged chronologically ascending, 
uniquely by type, in single arrays.  Arithmetic  operations  are  per- 
formed to  describe the system  phenomena in user terminology, 
i.e., messages per  second,  percent of time CPU is busy, etc. 

Some important  observations, based on the PARS-ACP data 
collection-reduction  experience,  are: 

With real-time operations,  a prime factor is the load and  inter- 
ference imposed by the collection programs. Minimum impact 
on normal processing operations is essential.  Counters  rele- 
vant to system variables are imbedded in and  updated by 
ACP as  part of the  architecture:  thus, no bias is introduced as 
the result of the accumulation of variables. 
It follows, then,  that all data  reduction can and should be 
done in the off-line system which would have no impact on 
the on-line system. 
Extreme  care must be taken in the  analysis of the  reduced 
data. Judgments made from too little data  can  cause more 
problems than making no corrections. 

192 SlWIEC IBM SYST J 



Software  data collection and reduction facilities are not ade- 
quate to measure and predict all aspects of system perform- 
ance. For example,  the number of I/O accesses  over  a channel 
can be counted,  but  the time during which the  channel is busy 
can only be approximated. For  these  reasons, special hard- 
ware monitors are used to supplement  the  performance 
measurement  and analysis process. 

Concluding remarks 

ACP is a special-purpose  operating  system  that  satisfies  the 
needs of certain  requirements  (e.g., high message rates and high 
availability) for computationally trivial applications. As such, it 
imposes a rigid structure  or discipline on the application in order 
to achieve  the desired results. 

Several of the methods and techniques  discussed  have  transfer- 
able qualities. For instance, while other  applications may not 
require 24-hour operation, they may have  commensurately high 
uptime requirements  for,  say,  a  12-hour  day. All the high-avail- 
abiiity attributes in ACP would then still apply. 

The data-base  concept is another example. The horizontal data 
distribution allows for optimum accessibility. Providing a  funda- 
mental access mechanism allows for  either  a  customized high- 
performance  data management system  or  a  somewhat more gen- 
eral  one  to be built on that  foundation. 

The following are  examples of the more common applications 
under ACP in use today: 

Airlines: 
Seat  reservations 
Fare  quote 
Ticketing 
Boarding pass 
Cargo 

Other: 
Police car dispatching 
Car  rental  reservations and billing 
Credit  authorization 
Hotel  reservations 
Loan/payment processing 

In future  systems, ACP is most  often  considered and recom- 
mended for: 
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Bunk teller  systems: 
Demand  deposit  accounting 
Time  deposit  accounting 
Loan  accounting 
Financial  switch,  which  is  a  message  switching  and  forwarding 
application  between  various  terminal  devices (cash  dispensers, 
teller  machines,  point-of-sale  terminals 1 and  participating  mem- 
ber  bank  systems. 

In  addition to  the  interest in the financial industry, ACP is in- 
creasingly  being  considered in the  domain of networking  imple- 
mentations.  Most  notably, it is conceptualized  as a  front-end 
processing  system handling the  “computationally  trivial”  trans- 
actions  (with  the  most  stringent  response  criteria)  and  passing 
the  more  complex  ones  to a  more  sophisticated  data-base  man- 
agement  system. 

A final comment:  Careful  analysis  and  consideration  must be 
given  when  designing  this  type of system.  High  message  rates 
can  be  attained  at  the  expense of some  function or flexibility; 
that  is, a “short  cut” is always  a  trade-off for which compensa- 
tion must  ultimately  be  obtained. 
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