Discussed is the evolution of a computerized airline reservation
system from its early form up to the present version. Data base
allocation, accessing techniques, and data communications of
the system are described. The system consists of the Pro-
grammed Airline Reservation System (PARS) and its control
program called Acp.

A high-performance DB/DC system
by J. E. Siwiec

To satisfy applications with very high performance require-
ments, a specialized operating system is needed. In this paper,
one such system that evolved from early automated airline res-
ervation systems is described, the result being the present
DB/DC (data base/data communications) system. Initially de-
veloped for the growing air passenger travel industry, it was
adopted for use in other, completely diverse businesses which
required similar system attributes, e.g., the automation of the
clerical, record-keeping function with no impact on the casual and
natural dialogue between the reservations agent and customer
during the transaction. Terminal response, availability, reliabili-
ty, and recoverability were the overriding systems design con-
siderations.

Today, such a system typically has 3000 terminals and performs
a real-time inventory control application 24 hours per day at a
rate of more than 50 messages per second against a five billion-
byte data base.

This paper deals with the development of that system, explain-
ing in what ways it differs from other systems. The history de-
scribing its evolution through all the releases of the software and
supported component devices is documented. The elements that
give the system its unique performance characteristics are de-
scribed, including the dispatching of work units and storage
management. Data base allocation and accessing techniques are
discussed. The data communication section describes the evolu-
tionary sequence from the specialized Airlines Line Control to
SNA/SDLC (Systems Network Architecture/Synchronous Data
Link Control). The importance of test tools and data collection-
reduction facilities in the system are emphasized.

NO. 2 - 1977 PARS-ACP

History of the system

The earliest passenger name reservation system was developed
with American Airlines and was called SABRE, a name suggesting
speed and accuracy. The original acronym, SABER, stood for
Semi-Automatic Business Environment Research.' The primary
motivation for the system was to automate the airline reserva-
tion function which was mostly a manual process. The objective
was to improve on the accuracy and capacity of the reservation
function without impacting the personal and natural dialogue
between the reservations agent and passenger. The initial on-line
system contained 100000 instructions, 40000 of which made
up the control program and support functions. The system was
implemented on the 1BM 7090 processor and used 1BM 1301 disk
files. Specialized terminals (1IBM 1003) and concentrators (IBM
1006) were also developed for SABRE.

Some important technical results of the work on SABRE were:

Line concentration techniques.

Medium- and low-speed data set development.
Fast random access.

Front-end processing.

Large volume disk and drum storage devices.
Relocatable, reentrant software.

Two similar systems were developed later that benefited from
the experience gained on the SABRE project— Deltamatic for
Delta Airlines using 1BM 7074 processors and PANAMAC for

Pan American Airlines using 1BM 7080 processors. These sys-
tems were functionally equivalent, the primary difference being
system capacity (throughput).

The American Airlines SABRE system went ‘“‘on-line” in 1963.
Delta and Pan American started up their systems in 1964.

In 1965, 1BM began to develop a generalized airline reservation
package called PARS (Programmed Airline Reservation
System). The plan was to apply the knowledge gained from the
three prior implementations, together with the System/360 tech-
nology, to produce a modular system usable by airlines of any
size. Today, PARS is widely used in the airline industry.

PARS was implemented on System/360 processors Models 40
through 75 but was used primarily on the System/360 Model 65.
Large Core Storage (LCS) was used as a data file for frequently
accessed records, and less active data was stored on an IBM
2314 Direct Access Storage Facility. The off-line support pro-
grams ran under DOS. The system supported IBM 2703 Trans-
mission Control Units and terminal concentrators (2948) to

SIWIEC IBM SYST J

which special CRT terminals (2915) with reservation-functional
keyboards were attached. The system had several special fea-
tures to provide the performance and application requirements.
For exampile, a special buffer for the storage control unit freed
the channel for a major part of the access time, providing more
available channel time and, hence, more accesses.” The terminal
concentrators and transmission control units were modified for
similar reasons.

In 1968, the control program portion, called ACP, and related
utilities were separated from the airline reservation application
in PARS and have since been separately enhanced to support
new devices and provide functional improvements. These en-
hancements, coupled with the increased use of ACP for other
applications, have had the effect of creating software with the
characteristics of an operating system particularly suitable for
the support of high transaction rates.

The ACP system, which has evolved over the years, can be de-
fined as a high-performance, real-time, message-driven operating
system. It consists of approximately 500000 lines of code. (The
reservation application in PARS totaled 150000 lines.) It is
characterized by a high volume of unpredictable inputs, requir-
ing limited function and flexibility but extremely high availability
and rapid, consistent responses. These characteristics imply that
demands on the system are dynamic in nature and dictated by
some external stimulus not under control of the system; that the
data base must be on-line and current; that fallback, restart, and
recovery functions must be fast and accomplished with little or
no awareness by the user and almost no impact to the per-
formance of the system.

These requirements are addressed in ACP through the evolution
of a control philosophy and new facilities. Dynamic load control
was implemented to allow maximum utilization of the various
system components. The user (the terminal operator) was made
an integral part of the system, and the impact of any errors was
isolated to affect only the specific user while the system re-
mained available to other users. This philosophy was extended
to include the operator as part of the system, and checkpointing,
restart, recovery, and reconfiguration facilities were provided to
allow restart in one to two minutes or reconfiguration in three to
five minutes while attempting to limit the impact of an outage to
only those users directly affected.

Several key factors were involved in achieving the high avail-
ability and recoverability characteristics:

e Certain system software decisions and functions could be
off-loaded by considering the reservations agent-operator as

No. 2 - 1977 PARS-ACP

ACP
characteristics

human
element

171

restart and
switchover

trivial
computation

backup CPU

duplicate
data base

an intelligent system component. Human judgments regard-
ing the transaction were made by that component. However,
the agent could take no action, make decisions, or tie up re-
sources that could affect other transactions or the system as
a whole. This philosophy not only streamlined the process
but enabled a natural dialogue between the agent and pas-
senger.”

Because the system is for the most part configured at system
generation (not initialization) time, the restart process is rap-
id and uncomplicated, thus making most restarts successful
and achievable in seconds. Moreover, the switchover and
restart procedures are identical, enabling either process to be
effected with the same high reliability expectations.

The structured nature of the system enables an extremely
high degree of multiprogramming. Thus, many units of work
will be active at any given time (50 to 75 are not
uncommon). Because each unit will use only a tiny resource,
waiting time (by each unit) is reduced to a minimum. This
design ensures system accessibility (availability) to the high-
est possible number of users.

A backup processor designated as the standby machine is
made available in the event that an unscheduled switchover
must be performed. A switchover is usually due to some un-
correctable hardware failure in the on-line cpu. This occur-
rence, while relatively rare, is nonetheless of crucial signif-
icance when it does occur during peak activity. In practice,
most switchovers are of the “*scheduled” type for preventive
maintenance.

The data base is selectively duplicated depending on the data
type and relative importance as designated by the user.

While duplicated records increase system overhead (each
record must be written twice), an advantage is gained when
referencing the data because more than one path exists to it.

Typically, an ACP system network consists of from 2000 to
5000 terminals, although some ACP systems also exist with a
few hundred terminals, and 10000 terminal systems have been
envisaged for the near future. However, many terminals do not
necessarily imply many messages. The entry frequency for mes-
sages will vary from one application to another. A message input
of one per minute was assumed as the design point for highly
active terminals. Less active systems were designed for a lower
frequency of input per terminal. The required average response
(according to the design point) to the terminal is under two sec-
onds, where response time is the period between the moment
when the enter key is depressed and the first response character
appears on the screen.

The system is message-driven, which means that the source of
all input is the result of polling the remote concentrators on a

SIWIEC IBM SYST J

periodic basis. The units of work in the CPU (called entries) are
initiated by some external stimulae (messages). Multiprogram-
ming is accomplished by allowing as many entries to be activat-
ed as the system resources will accommodate. Application pro-
grams are relocatable and reentrant and, hence, can be shared
between entries. Each entry will proceed until it is required to
“wait” for an external (file) reference, at which time another
entry will be initiated or allowed to proceed. All messages are
handled on a first-in, first-out basis and, hence, no processing
overhead is incurred for task switching as in a preemptive
scheduling system.

ACP was first announced as a system separate from PARS in No-
vember 1970 and first delivered in August 1972. It was called
ACP Model 5. The anticipated users were airlines, and this mod-
el, implemented on a System/360 Model 195, provided support
of the following devices:

2880 Block Multiplexor Channel.

2305 Fixed Storage Model 2.

2969 Programmed Terminal Interchange (PTI), which is a
special transmission control unit designed to extend the
communications line attachment capability for Model 195
systems.

The off-line utilities were converted from DOS to run under OS in
Release 5. The support of the System/360 Model 195 necessi-
tated a major restructuring of the control program to accommo-
date the increased capacity of that system. Restrictions on num-
bers of terminals and device attachments were removed. Since
the system still supported the other System/360 models, new
device support had to be modular and had to be able to be sys-
tem generated. Note that the modularization necessitated by the
larger CPU ultimately assisted the capability to run on the
smaller System/370 cpus (e.g., System/370 Model 135).

A companion release, ACP Model 6, was announced in January
1972 and shipped in May 1973. It extended support to include
the 3330 Direct Access Storage Facility and was implemented
on the System/370 Model 165.

Comprehensive tests of Model 5 using System/360, Model 195s
were performed with special emphasis on the performance capa-
bilities. Projected peak message activity required a throughput
capability for processing 180 typical reservation messages’ per
second at 85 percent of CPU utilization. The average response
time per message during peak loads was to be within two sec-
onds with a requirement for no more than 10 percent of the
messages to exceed four seconds. The average processing time
per message was to be within 4.7 milliseconds.’

No. 2 -+ 1977 PARS-ACP

ACP
Models 5 and 6

MESSAGES/SECO!

N
=3
=3

CPU throughput for
PARS messages

MODEL 168
(2.28)

MODEL 158 (0.8)

o3 #MODEL 145 (0.3)
[moDEL 135 0.14) |

05 10 15 20 25 30 35
MILLIONS OF INSTRUCTIONS /SECOND

cohabitation

The tests validated all the stated objectives (with the system
driven by a second CPU simulating the network at various rates
up to 161 messages per second). One important observation
made was that the processing time per message (4.2 milliseconds
were actually measured) remained reasonably constant at all
message rates. This knowledge permitted linear extrapolation
with high confidence levels up to the maximum capacity of the
CpU. Also, it means that given the rated capacity of any CpU, its
PARS capability could be quickly assessed.

Thus, for Acp, the message-processing capacity of any CpPU is a
linear function of its MIP (millions of instructions per second)
rate:

MIP rate

Messages per second = ”

Figure 1 depicts the relationships and extrapolations for several
CPU types assuming the typical PARS message at 15000 instruc-
tions per message and up to 100 percent CpU utilization. How-
ever, in practice, systems are designed for up to 85 percent CPU
utilization beyond which some degradation in response may
occur.

Since the ACP systems were designed for the future peak mes-
sage rate and were required to operate 24 hours per day, and
since the load demands of the application followed a cyclical
pattern, there were long periods of low system utilization. A
software hypervisor was developed to make use of the unused

CPU capacity. This facility was announced in ACP Model 7 in
August 1972 and made available in December 1973. The hyper-
visor allowed an ACP user on a System/370 to capitalize on the
excess computing power by operating 0S/VS jobs during the low
periods of on-line activity.

Some unique objectives had to be met in the hypervisor de-
velopment process. Firstly, the processing overhead on ACP had
to be minimal (under five percent) to retain the performance
capabilities of the system. Secondly, essentially no impact on
ACP system reliability (uptime) could be tolerated. Thirdly, the
feature had to be transparent to the applications under ACP or
0S/vs and to 0S/VS itself.

The first objective was met by designing the hypervisor as a log-
ical extension of the ACP interrupt handler routines. Since inter-
rupt handlers are crucial to ACP performance, and since they
already contained logic to recognize which interrupts do and do
not belong to ACP, only a slight amount of additional overhead
was necessary to process the 0S/vs interrupts.

SIWIEC IBM SYST J

The second objective was met by designing the ACP hypervisor
as a special kind of “virtual machine” system. Only two operat-
ing systems are supported (ACP and 0S/VS); OS/VS runs only in
problem state and is always physically enabled. Interrupts oc-
curring while 08/vS is in control of the cpU allow ACP to seize
control of the cpu if it solicits the interrupt, but 0S/vS solicited
interrupts, occurring while 0s/vs is logically disabled, are pre-
served (stacked) until 0S/vS is logically enabled. Privileged in-
structions executed by the 0S/vS supervisor are simulated by
the hypervisor, keeping total control of the status of the 0s/vS
“virtual machine.” This control prevents impairment of the ACP
system reliability due to unforeseen damaging conditions
emerging during the execution of instructions in the 0S/vVS
domain.

The third objective was also met. Adjustments had to be made
dynamically by the hypervisor to the 0$/vS address translation
tables because the 1/0 supervisor modules were relocated to
make way for ACP. Beyond those adjustments, transparency was
maintained. As might be expected, the simulation of privileged
instructions executed by 0S/vs cause a degradation of 0S/VS
jobs, depending on the percentage of privileged instructions exe-
cuted in 0S/vS, which varies from job to job. A later version
(ACP Model 9) invokes the facility of the Virtual Machine Assist
feature to reduce the overhead significantly.

In December 1972, ACp Model 8 was announced. This version
included enhancements that began to give ACP the characteris-
tics of a generalized DB/DC system. The following functions

provided in Model 8 were made available in three separate re-
leases:

This version could be implemented on System/370 Models
135, 145, 158, 168, and 195.

At a read/write level, the 1BM 3211 Printer, 3505 Card Read-
er and 3525 Card Punch could be attached. It may be inter-
esting to note that the support for such devices was de-
veloped to satisfy the need for application expansion. Being
totally interactive in nature, ACP allows all system communi-
cations by terminal or system console, thereby rendering
card readers and the Job Control Language type of input
unnecessary.

A load and dump facility through ACP for the emulation pro-
gram in the IBM 3705 communications controller was avail-
able.

scp functions in support of consumer finance users (particu-
larly terminals and concentrators) were provided.

A 3340 direct access storage device could be attached.

The 3270 Information Display system could be attached
through a System/7 used as a remote multiplexor.

NO. 2 - 1977 PARS-ACP

ACP
Model 8

Figure 2 ACP Models 8 and 9 message routing

SATELLITE SATELLITE
PROCESSOR PROCESSOR
(ACP) (0S/VS)

DOW—<OMUXT

TERMINAL
NETWORK

=

& O

s The hypervisor was enhanced to allow channel sharing
between 0S/vs and ACP and to provide a ‘“bridge” through
which applications under 0S/vs could access and update the
ACP on-line data base.

Improved system implementation facilities were also pro-
vided.

The network facilities, as part of the third release of Acp Model
8, extended the scope and function of existing data communica-
tions support facilities. The fundamental structure and method
of terminal operation remained unchanged, but the terminals,
lines, and other communications facilities could now be shared
by other processing systems (satellite processors) operating
under control of 0S, OS/VS, or ACP.

Also, direct communications between applications under ACP
and those in other CPUs were made possible, thereby allowing
data-base records and other internally generated information to
be sent from one system to another. The data is sent as the text

SIWIEC IBM SYST J

of a “message” between applications in each processor with
appropriate indicators specifying the source and destination of
the data. ACP remains the focal control point for the network
of terminals and satellite processors. It establishes connections
between terminals and application programs in the ACP system or
in one of the satellite processors.

The satellite processors are normally attached to the ACP sys-
tem by point-to-point communication lines utilizing a binary
synchronous procedure.® Figure 2 shows the interprocessor
connections utilizing the message-routing facility of ACP. Note
that one of the satellite processors is an ACP system. In the case
where the 0S/vS systems share a CPU with ACP via the hypervi-
sor, the binary synchronous communications connection be-
comes “virtual,” and (as indicated by dotted lines) data is trans-
ferred over an internal interface.

Announced on July 15, 1975 and made available on November
26, 1976, ACP Model 9 is the most current version of the sys-
tem. It is a true implementation of IBM’s Systems Network Ar-
chitecture for the 3600 Finance Communication System via the
3705 controller with NCP/vS (Network Control Program). The
SNA/SDLC protocol can coexist in the same CpPU with the pre-
viously supported ACP data communication protocols.

A binary synchronous data link for interprocessor communica-
tions extends the networking capabilities of the previous version
to multipoint. (ACP Model 8 provided only point-to-point capa-
bilities.) Also, the Virtual Machine Assist feature could be in-

voked in the ACP software hypervisor.

ACP operational characteristics

The system is basically controlled through a mechanism called
the cpu loop program (Figure 3). This program continually in-
terrogates a series of queues for work to be done. Whenever an
interrogated queue is not empty, the first item (entry) in the
queue will be dispatched. Interrupts (as a result of 1/0 com-
pletions) cause entries to be placed in the queues. The interrupt
routines do not perform any scheduling and always return to the
interrupted code (which may be the CPU loop program itself).

The three primary queues are called the ready, input, and de-
ferred queues. The order in which the queues are interrogated
establishes the processing priority. The ready queue is always
interrogated first and all the items dispatched before the input
queue is tested. This is consistent with the philosophy that work
in process (ready queue) takes priority over work to be pro-
cessed (input queue). The ready queue contains units of work

No. 2 -+ 1977 PARS-ACP

ACP
Model 9

dispatcher

Figure 3 The ACP dispatcher

oy

—HVCDDM—AZ —\

N\

& ZPrDOOTT

READY
QUEUE

T

MmO =<MW
ZrTOOTO

1/0 REQUESTS
VIA (SVC) MACRO

&,“‘?/*

/ INPUT

JEQueve \F QUEUE QUEVE
OT EMPTY NOTEMPTY | RewiGvE 1]
REMOVE ENTRY | CPU LOOP PROGRAM | REMOVE ENTRY jet—— |||
AND REACTIVATE AND INITIATE

APPLICATION APPLICATION

S—cmﬂ

-+————— ENTRY POINT /
%,
<

A

N~
N\
<

VCHHAMAZ _NXDO

\F QUEUE
NOT EMPTY
REMOVE ENTRY
AND REACTIVATE
APPLICATION

I —

NOT EMPTY
NOT EMPTY

K

COMMUNICATION
LINE QUEUES
DEFERRED
___ | Queue

wot EMPTY

NETWORK
SERVICES REQUEST
APPLICATION PROGRAM VIA (SVC) MACRO
APPLICATION PROGRAM
APPLICATION PROGRAM

that are ready for further processing. Entries are placed in the
queue by the 1/O completion interrupt routines which were the
result of an application program request for system service (e.g.,
data retrieval).

The input queue contains input messages that have not yet been
given the status of an entry. These messages are added to the
queue by the network services interrupt routines that completed
the message input processing.

The deferred queue contains entries designated as low priority
by the application. It is a convenient way to defer processing
until triggered by some required event taking place (e.g., a real-
time indicator is set). Thus, the application can “wait” without
usurping system resources by looping.

Figure 3 shows these queues and depicts the ACp dispatcher
philosophy. Because the ready queue contains only entries for
work in process, the application program is in all cases being
reinvoked. In contrast, the input queue contains fresh messages
that will initiate an application program for the first time. Note
also that the entry point to the CPU loop program is always
where the ready queue will be interrogated first, thereby main-
taining the work-in-process priority.”

SIWIEC IBM SYST J

ACP storage management has the significant attribute of homo-
geneity. Storage blocks may alternately serve as: program, work
space, data, and control blocks, using the same expedient stor-
age management techniques. The storage block is part of an ac-
tive entry and thus has a short life. It is returned to the storage
area, or pool, for reuse by another entry.

Storage is presegmented into small, fixed block sizes and dy-
namically dispensed as required for use by the applications. The
blocks are returned to a common pool when not in use. Four
different storage areas called pools are maintained in different
sizes:

128 bytes— used primarily as input buffers for network control
and also as work space for the application or ACP.

381 bytes— used as an entry control block, message block, data
block, program block, or work space.

1055 bytes—used the same as the 381-byte block except for
entry control.

40 bytes— used exclusively by ACP to control /O operations.

The main storage allocated to each pool is identified at ACP ini-
tialization time, and the size of each pool (number of blocks) is
a function of the type and volume of system activity. It is impor-
tant to be able to predict the activity to initially create the four
different pools and subsequently measure it in order to “‘fine
tune” the system for optimum performance. The data collection
programs are used in this activity and will be discussed later.

A set of “lists” is associated with each storage pool. The list is a
“pushdown stack’ of addresses of all blocks in a given pool. A
pointer is maintained and always points to the list item that
contains the address of the next available storage block. Figure
4 depicts the storage pool and list concept. The pointer contains
the address (A) of the location in the list that contains the ad-
dress of the next available 1055-byte block (B). Managing the
lists consists of the simple expedient of dispensing (and
returning) main storage block addresses from and to the list and
incrementing or decrementing the pointer to the list item.

The list concept is an improvement over an earlier design, in
which the available main storage blocks were chained together,
and the chain words, manipulated as blocks, were dispensed
from and returned to the pool. Since the storage pools are un-
protected from application programs, the chain words were of-
ten modified erroneously. Such modification resulted in broken
chains and lost main storage blocks, which caused system er-
rors. In the current design, the list itself is protected, whereas
the storage pools remain unprotected. The error incidence has
been reduced significantly as a result.

NO. 2 - 1977 PARS-ACP

storage
management

180

Figure 4 Storage management

PROTECTED
STORAGE

LIST
POINTER

1055-BYTE
LIST

Figure 5 Application entry environment

SIWIEC

~

!

DEVICE
QUEUE

Al

£l
COI
381

—1

BLOCK

NTRY
NTROL
BYTES

P

UNPROTECTED
STORAGE

STORAGE POOLS

|
____1._4_f_._:___1.._
]

1055-BYTE
POOL ~
y—L

¢ T

_1_381-BYTE

pooL == +—]

/0 CONTROL

BLOCK [

40 BYTES

MESSAGE
BLOCK
128 BYTES

DATA BLOCK
381 BYTES

PROGRAM
BLOCK
381 BYTES

PROGRAM

WORK BLOCK
1055 BYTES

BLOCK
1055 BYTES

IBM SYST J

The environment in which the application program performs its
function is within a group of storage blocks interrelated by refer-
ence (chain) words. This environment is initially created when a
message is removed from the input queue (see Figure 3) and
chained to a 381-byte entry control block and an application
program is dispatched. Figure 5 shows the application entry en-
vironment.

The application then processes the message, uses work space,
retrieves and updates data, responds to the originating terminal,
and exits. All related blocks are chained to the entry control
block because it is the primary controlling block.

An entry control block is pointed to by an 1/0 control block that
is used by the system to perform 1/0 operations on behalf of the
entry. The 1/0 control block is, in turn, referenced as an item in
the device queue.

One additional point should be made about the program block.
Since all application programs must be relocatable and reen-
trant, one copy of the program could be shared by more than
one entry. Thus, the program blocks shown in Figure 5 could
actually be referenced and used by another entry in the system.

Data-base support

The performance of a system largely depends on the number of

file storage requests and the time required to transfer the data to
main storage. The number of requests is determined by the
application design. The request time includes the amount of
time taken by the control program instructions, the time required
to find the requested block on a physical device, the time in
queue for the device, and the transfer time. Since each device
can only handle one request at a time, multiple requests for a
particular device must be queued.

The transfer time and seek time are based on the device char-
acteristics. The queuing time, however, is dependent on the file
organization. A first step in reducing the queue for any device
can be to design a system that approaches equal queue sizes for
each device. The average length of the queue on a device can
then be reduced by increasing the number of devices.

In ACP, rapid access is provided to a large data base concurrently
for many system entries by arranging PARS/ACP data in a unique
pattern on the devices. The data is spread across all the physical
devices rather than in a more traditional sequential-by-module

NO. 2 - 1977 PARS-ACP

Figure 6 Data distribution and addressing

RECORD ORDINAL
TYPE NUMBER (#)

MAIN STORAGE
TABLE

= + ¥ = (BASE + #)

THIRD DEVICE N TH DEVICE

LOGICAL
FILES

arrangement while maintaining the appearance of a sequential
data set to the application. This scheme allows for optimum
accessibility through the channels and control units to the devices
because more paths are effectively maintained to the data. The
file is not ‘‘opened” or “owned’’ by a particular application but is
available to all applications at all times.

The organization might be envisioned as a group of disk packs,
each identical in format and type of content. The logical files
are layers on the packs, each pack with an equal percentage of
the total logical file. Figure 6 represents N physical devices on
which three logical files reside (A, B and C). The Nth record on
the N'th module is the last record of logical file A. Examples of
logical files might be inventory records or customer account
records. A table resident in main storage contains the base
(starting) address of each of the logical files (called record types
in ACp), and an ordinal number designating the relative record
position is added to the base to locate the specific record in the
file. The ordinal number is assigned when the record is initially
allocated and subsequently presented (by the application pro-
gram) as a parameter together with the record type to effect the
retrieval.

The purpose of this organization is to allow a larger number of
concurrent accesses to any particular logical file than would
otherwise be possible, thereby reducing the chance of excessive

SIWIEC IBM SYST J

queuing. It has an additional advantage in that it frees the applica-
tion design from many of the physical device performance
considerations.

Data is stored and retrieved at the physical record level, and the
record sizes are fixed at the familiar 381- and 1055-byte size.
Thus, the homogeneity of main storage is extended to the
secondary levels of storage.

The data records fall into one of two general categories designat-
ed as “fixed” and “‘pool” records. ‘‘Fixed” records are used to
contain permanent or static data. The data content may change
dynamically, but the number of records generally will not.
“Pool” records contain data that is more transient in nature and
will occupy file space only while the data is active.

For example, fixed records might contain inventory counts of
the number of seats available for a flight. Pool records might
contain the names of the passengers on that flight. Since the
flight is flown on a scheduled basis, it is necessary to retain the
inventory records, whereas after the flight is flown, it is not nec-
essary to retain the passenger name records on-line. They are
then purged to a history file, and the space occupied made
available for reuse; hence the name *“pool.”

Dynamic requirements for file storage are provided for in the
pools. As in the fixed areas, pool records are similarly allocated
across the physical devices during system generation. However,
the pool record area represents a large repository of file storage
common to all applications, and the records within the pool area
are dispensed on an ‘“as needed” basis. This means the avail-
ability of each record within the pool area is managed by service
routines in ACP. (No such management is performed on records
within a fixed record type). An application program may obtain
a pool record address at a point in processing where the applica-
tion needs the space.

A distinction is made between the lengths of time during which
the data in the record is active. Record space from the short
term pool is usually used only during the life of a transaction (i.e.,
seconds). Long term pool records are used for more permanent
data (i.e., days, months). The pool space is freed for subsequent
use by either the application or the control program. Large
(1055) and small (381) records can be allocated to the pool.

Figure 7 shows the pool record allocation and addressing
scheme. An entire pool appears as one record type in the sys-
tem. Since record addresses must be dispensed dynamically, a
bit matrix is used to locate the record and indicate its usage.

No. 2 - 1977 PARS-ACP

pool
storage

summary

Figure 7 Pool record allocation

POOL DIRECTORY POOL RECORDS

0 1 0

SCAN LEFT TO RIGHT
0= NOT AVAILABLE
1= AVAILABLE

3-MODULE SYSTEM (RECORDS
ALLOCATED ACROSS THE MODULES)

Matrix records are themselves chained and reside on file when
not in use. Record space is freed or made unavailable by a simple
bit setting in the matrix record.

Pool addresses are reinstated for use through on- and off-line
utility programs. This reinstatement involves the manipulation
of the bit matrix records (called directories), setting the bit “on”
for the associated record address. Other utility programs “‘scan’
the data base and “recoup” lost records (broken chains, unre-
turned addresses).

Data is retrieved and updated through a simple macro interface
between the application programs and ACP. Some data-accessing
magcroinstructions are:

FIND —retrieve a record.

FILE —write a record.

FINH —retrieve a record and hold (does not allow any other
attempt to update but allows simultaneous reference) .

GETF —get file address (POOL).

RELF —release file address (POOL).

ACP provides a simple direct-accessing capability on which a
complex data management facility was built for PARS. Re-
locatable and reentrant subroutines are available to retrieve
and update the data based on its input parameters, e.g.,
Flight/Date/Name. Other on-line subfunctions, such as recoup-
ing lost addresses, file maintenance, file reorganizers, and data-
base capture, were also developed. Other applications (loan
payment processing, car rental, credit inquiry) similarly tailored
the data management function to their needs.

Data communications

The communications-handling portion of PARS/ACP is an integral
part of the overall architecture. A message flows in and out of

SIWIEC IBM SYST J

the system, accomplishing its purpose of data-base inquiry and
upddte with a minimum of processing. Incoming characters are
assembled in a buffer storage block to form a message that is
placed on an input queue. In its turn, the message becomes input
to an entry created by the system. Applications, invoked as a
result of input messages, retrieve and update data and are multi-
programmed with other entries as a result of 1/0 activity. Applica-
tion processing terminates after a system request is made for the
transmission of a response message.” Almost without exception,
the above is the general processing sequence for all inputs.

The functions performed by the communications-handling por-
tion of ACP (called Communications Control Program, or cCP)
are:

Polling and circuit assurance.

Execution of 1/0 operations.

Input/output character code translation.

Main storage allocation for associated 1/0 operation.
Preliminary input message assembly, including multiblock
message assembly.

Application program interface (invoking the application
program).

Hardware error detection and corrective actions.
Communications hardware reconfiguration activations.
Communications line queuing.

Computer network control (Message Router) allows the
sharing of terminals, lines, and other communication facilities
by other (satellite) processors.

Operator communications.

A detailed description of the data communications functions of
ACP can be found in the document, ACP System Concepts and
Facilities.”

Early in the development of the original SABRE systems, the
importance of efficient line control and terminal concentration
was recognized. A special line discipline was developed for
those early systems and is still in use today. It is called Airlines
Line Control, or ALC (also known as SABRE Line Control or
PARS Line Control). Implemented in reservation systems utiliz-
ing the special concentrators, ALC is a true, full duplex, synchro-
nous transmission capability.

ALC uses synchronous full duplex transmission on dedicated
communication lines that are either hub or roll call polled and
may be either leased common carrier or private telephone lines.
Each message contains two synchronization characters, the data
text, and a character to aid in determining the validity of the
message. Each character is six bits in length.

NO. 2 - 1977 PARS-ACP

Airlines
Line Control

The line control takes advantage of the fact that the agent is an
integral part of the system and the philosophy that every input
message will result in an output message. The choice of message
concentrators (asynchronous time division multiplexors), rather
than individual terminal polling (synchronous time division
multiplexing), further contributes to the communications effi-
ciency.

For nearly 15 years, the PARS-ACP systems have used basically
the same unique communication discipline. It remains an effec-
tive and stable discipline for applications that can be performed
within the limits of the six-bit character set. For a more detailed
analysis of the characteristics of ALC see Knight."

As the use of ACP expanded, several external factors influenced
the data communications architecture:

& Terminals and remote concentrators with more intelligence
were being introduced, thus providing a more transparent
communications interface to the application.

ACP was increasingly being used for other applications be-
yond airlines reservations, requiring a larger character set.
Hardware advances were reducing the necessity for special-
purpose devices.

A unified systems structure linking terminals and host com-
puters called Systems Network Architecture (SNA)'' was
developed along with a line control discipline called synchro-
nous data link control (SDLC)."”

The evolution from ACP-ALC to SNA-SDLC was accomplished
over a sequence of steps, each accommodating changes within
the state of the art. Figure 8 shows four steps in the evolution.

Stage 1 depicts the primary communication devices supported
in earlier releases of PARS-ACP. All communication devices had
custom hardware modifications to accommodate ALC. A start/
stop mode of transmission was used between the terminal and
display control unit.

The six-bit character (64-character set) representations provid-
ed adequate alphanumeric and special symbols for the airline
reservations and certain other applications. A more powerful
cyclic check (in contrast to a vertical character parity plus block
check) of strings of characters provided for fewer undetected
transmission errors as well as eliminating the parity bit per char-
acter. The advantage of a full duplex capability is to further re-
duce the error rate.

In Stage 2, System/7 was introduced as a remote concentrator.
The six-bit character set was still adequate. Because the Sys-

SIWIEC IBM SYST 1]

Figure 8 Stages of communication

STAGE 1
HOST CPU

2915
KEYBOARD/DISPLAY FXXCE;:’S

DISPLAY
CONTROL
UNIT
START/STOP
2703

STAGE 2 3
\) HOST CPU

4505
KEYBOARD/DISPLAY 2740

O
KEYBOARD, \Z
PRINTER 2
S7; Y
— 2 S, TERMINAL
) o CONCENTRATOR

<>

S
\) START/STOP
SYSTEM/7

1980-9
KEYBOARD/PRINTER

STAGE 3
HOST CPU

3270
TERMINALS

TERMINAL
CONCENTRATOR
BSC
: : SYSTEM/7 I

STAGE 4
HOST CPU

COMMUNICATIONS

3600
TERMINALS CONTROLLER

STANDALONE

tem/7 is programmable, more than one terminal type could be
attached to it. A regular keyboard/printer (1BM 2740) and two
special-purpose terminals are shown (Airlines 4505/7411 and
Consumer Finance 1980-9) in Figure 8.

Stage 3 allows the attachment of the 1IBM 3270 Information Dis-
play System. This stage required the transmission to be accom-
plished via the binary synchronous communications (BSC) pro-
tocol using EBCDIC character representations. Nonetheless, the
inherent efficiency of ALC was still required. The System/7 was
programmed to convert the eight-bit code into one or two six-bit
ALC characters for transmission over the ALC line (depicted as
ALC’ in Figure 8). The characters were then reconverted in the
CPU. A data link escape mechanism that has additional control
characters which change the meaning of the characters that fol-

NO. 2 - 1977 PARS-ACP

synchronous
data link
control

low-speed
controlled
telegraph

low-speed
free-running
telegraph

low it was used to achieve maximum efficiency over the line.
Thus, the functional capability of the information display system
was made available on the ACP high-performance communica-
tion facility.

Stage 4 shows the current step in the evolutionary process:
SNA-SDLC support for the 1BM 3600 Financial Communication
System is indicated as an SNA module in ACP. The communica-
tions controller (3601) provides additional remote intelligence,
enabling more terminal independence and added message integ-
rity. SDLC provides a transparent™ line protocol commensurate
with the previous efficiency requirements. The Network Control
Program in the communications controller (3705) replaces the
emulator program, removing the last special-purpose hardware
modifications in the communications network except that the
communications controllers (2703 and 3705) in emulator mode
required custom modifications to accommodate the ALC pro-
tocol.

As the use of ACP expanded to other applications, additional line
controls and terminal support were provided. In addition to ALC,
other protocols mentioned below are supported by the current
system.

SDLC is the data transmission procedure used within IBM’s Sys-
tems Network Architecture for information transfer over data
communication channels. Transmission may be full duplex, half
duplex, point-to-point, or multipoint. SDLC includes comprehen-
sive detection and recovery procedures at the data link level.
For example, ACP Model 9 supports the 3600 Financial Com-
munications System within the framework of SNA/SDLC. Thus,
all applicable SNA commands for the financial system are sup-
ported.

Low-speed controlled telegraph (LSCT) supports multidrop lines
(multiple terminals on a line) in a start/stop mode of transmis-
sion. Each drop can be addressed and each drop must be roll
call polled (i.e., the transmission of a short message to each
drop to solicit input) for data. Half duplex lines operate at rates
up to 75 baud (100 words per minute). The character size is
five-bit Baudot,” and LSCT is required by users of 83-B type
equipment for message-switching functions.

Low-speed free-running telegraph (LSFR) is point-to-point
start/stop transmission. The line is free-running, eliminating poll
messages and other control characters, but requiring more com-
plex synchronization within the software. The lines operate at
rates up to 75 baud in full duplex, half duplex, and simplex
modes. Characters are five-bit Baudot.

SIWIEC IBM SYST J

Synchronous link control (SLC) is a technique specified in the
requirements of the National and International Air Transport
Associations, which represent domestic and international air-
lines. Operation of SLC communications is synchronous on full
duplex, private, leased, voice-grade lines. It requires point-to-
point full duplex lines operating at rates up to 9600 baud. Each
link, containing up to seven communication lines, represents a
connection between CPUs. A single message may utilize all sev-
en lines. No polling is associated with sLc. Each CPU continual-
ly listens to the receive lines. Dummy messages are transmitted
whenever there are long periods without transmission to check
on whether or not the line is still operating.

Data and control characters are eight bits long (seven bits of
data plus parity). Each message contains a block check charac-
ter for error detection, as well as a vertical redundancy check on
all characters. All data messages are sequenced, allowing each
CPU to detect missing or spurious messages, which permits the
automation of corrective procedures. Corrective procedures
usually entail the request for retransmission and/or system oper-
ator notification.

ARINC is an acronym for Aeronautical Radio Incorporated, a
wholly owned subsidiary of the U.S. domestic airlines, which
operates a message-switching network. ARINC support, which is
Asynchronous Link Control, uses point-to-point, low line speed,
full duplex, start/stop transmission methods. This includes mes-
sage sequencing to detect lost messages. Application functions
protect against the possibility of lost or garbled messages.

The ACP system support of binary synchronous control is used
for processor-to-processor communications. This use permits
other system control programs to communicate with the ACP
system (see Figure 2) in order to accomplish a point-to-point
or multipoint data transfer.

Test tools and support programs

The structure of PARS-ACP requires a rather rigid discipline be
imposed on all the programs in the system. The structure is nec-
essary to achieve high performance. Test tools are used to im-
pose the structure on the programs. Structural violations are
automatically detected, flagged, and then corrected by the pro-
grammer.

Some examples of structural violations are:

e Using nonreentrant code.
¢ Using more storage than optimally permitted.

No. 2 ¢ 1977 PARS-ACP

synchronous
link control

asynchronous
link controt

binary
synchronous
communications

e Using more CPU cycles than optimally permitted.
* Exceeding fixed segment (program and data) sizes.

The test complex that has evolved over the years provides a
comprehensive environment in which an application is run in a
controlled, but realistic, on-line environment to ensure that the
on-line discipline is adhered to. This is of paramount impor-
tance since systems of this type can tolerate only very small
outages for short periods of time. An example from the experi-
ence of Trans World Airlines, a user of PARS-ACP, serves to
make the point: During 1976, overall uptime was 98.70 percent,
and uptime performance against schedule was 99.85 percent.
Looked at another way, that year the system was scheduled to
be operational an average of 23 hours and 43 minutes a day. It
was actually operational 23 hours and 40 minutes a day. And
there were 270 days on which there was no unscheduled down-
time. There were 131 total outages. The mean outage was 6.0
minutes despite the fact that a unique operational incident caused
one single outage to last as long as 230 minutes.

The test environment must very closely approximate the real
environment. In the initial systems, this approximation was ac-
complished by simulating every known condition that could
occur in the real-time environment. In the later systems, the
actual (ACP) system was used as the basis. Hence, the real-time
environment was ‘“‘real’”’ to a much larger degree.

The resultant test facilities in PARS-ACP provide:

A check on violations of programming conventions.

An orderly progression from simple debugging through com-
plex multiprogramming tests, including the entry of messages
from terminals.

A uniform data definition and data base for use in all levels
of testing.

The ability to batch various test runs.

A flexible method to specify and/or modify data for each
test, including the facility to restore the test data base be-
tween individual test cases.

A method of simulating unavailable programs.

Flexibility in specifying the types of output desired.

On-line components to assist in the detection of faulty pro-
grams.

Off-line components to print the results of a test.

Stress testing, e.g., the capability to drive the system at high
message rates for sustained periods of time.

Appropriate test methodology is required to give completeness
and structure to the test sequence. This includes planning, prep-

aration, control, executions, post analysis, and corrections.

SIWIEC IBM SYST J

Other functions required to support the on-line operation fall
in the general category of support programs. Some (post-
processors, data reduction) execute off-line in the backup
machine. Others, which support the on-line operation directly,
run in the on-line system. These programs were designed so as
to minimize the impact on system availability. For example, the
function of data base/capture must be performed periodically, so
that in the event of a catastrophic data-base failure, it can be
restored to at least a certain point in time. A stand-alone disk-to-
tape utility could be used in an off-line environment to accomplish
the task; however, this would require that the system go “off the
air.” In ACP, the function had to be designed as a major sub-
system running on-line in real time with complex checkpointing
subfunctions, while optimizing system resources (channels,
drives) so as to complete the process in minimal efapsed time.
The resulting facility can be invoked during regular operation and
run in parallel with normal activity.

Data collection-reduction

The PARS-ACP systems are designed for a six-to-eight-year life.
Because they tend to be highly structured and, hence, not easily
changed, a means is provided whereby:

The system can be “tuned” to peak efficiency during installa-
tions and after the start-up phases.

Daily monitoring of system performance can be readily
achieved.

Long-term trends can be observed, thus predicting growth in
system load and justification for future expansion.

Data about system variables is collected during the operation of
the on-line system and then correlated and interpreted so that
decisions can be made to ensure efficient system operation and
growth.

The data collection and reduction programs of PARS-ACP accom-
plish the required functions. As experience is gained with
each successive installation, the importance of this aspect of the
system becomes more apparent. Changes are continually being
made to improve on the techniques.

The data collection programs operate on-line in real time. These
programs are invoked on a periodic basis under operator control
to: (a) read out counters (which are continuously updated), (b)
intercept and record specific events, such as data and program
reads, and (c¢) dynamically sample parameters that fluctuate
with time (device queues, storage pool lists).

NoO. 2 + 1977 PARS-ACP

support
programs

Table 1 Kinds of data o be collected

Messages
Arrival Time
Text
Length
Type
Output Queue Lengths
Total Number
Time Sent
System
Input Queue Length
Ready Queue Lengths
Count of High-Speed Messages
Count of Low-Speed Messages
Elapsed Time in Various CPU States
Storage Block Usage
Count of Active Entry Control Blocks
Program
Count of Program Execution
Program Residency
Files
Count of Record Accesses
Count of Program Accesses
Count of Tape Writes
Count of Device Queues

The data is recorded, according to function, on tape. Each rec-
ord is time-stamped to indicate chronological order and contains
control information for reduction purposes. The kinds of data
that can be collected are listed in Table 1.

The data reduction program runs off-line under 0S/vs. The data

is edited, sorted, and arranged chronologically ascending,
uniquely by type, in single arrays. Arithmetic operations are per-
formed to describe the system phenomena in user terminology,
i.e., messages per second, percent of time CPU is busy, etc.

Some important observations, based on the PARS-ACP data
collection-reduction experience, are:

With real-time operations, a prime factor is the load and inter-
ference imposed by the collection programs. Minimum impact
on normal processing operations is essential. Counters rele-
vant to system variables are imbedded in and updated by
ACP as part of the architecture: thus, no bias is introduced as
the result of the accumulation of variables.

It follows, then, that all data reduction can and should be
done in the off-line system which would have no impact on
the on-line system.

Extreme care must be taken in the analysis of the reduced
data. Judgments made from too little data can cause more
problems than making no corrections.

SIWIEC IBM SYST J

Software data collection and reduction facilities are not ade-
quate to measure and predict all aspects of system perform-
ance. For example, the number of 1/0 accesses over a channel
can be counted, but the time during which the channel is busy
can only be approximated. For these reasons, special hard-
ware monitors are used to supplement the performance
measurement and analysis process.

Concluding remarks

ACP is a special-purpose operating system that satisfies the
needs of certain requirements (e.g., high message rates and high
availability) for computationally trivial applications. As such, it
imposes a rigid structure or discipline on the application in order
to achieve the desired results.

Several of the methods and techniques discussed have transfer-
able qualities. For instance, while other applications may not
require 24-hour operation, they may have commensurately high
uptime requirements for, say, a 12-hour day. All the high-avail-
ability attributes in ACP would then still apply.

The data-base concept is another example. The horizontal data
distribution allows for optimum accessibility. Providing a funda-
mental access mechanism allows for either a customized high-
performance data management system or a somewhat more gen-
eral one to be built on that foundation.

The following are examples of the more common applications
under ACP in use today:

Airlines:

Seat reservations
Fare quote
Ticketing
Boarding pass
Cargo

Other:

Police car dispatching

Car rental reservations and billing
Credit authorization

Hotel reservations

Loan/payment processing

In future systems, ACP is most often considered and recom-
mended for:

- 1977 PARS-ACP

193

Bank teller systems:

Demand deposit accounting

Time deposit accounting

Loan accounting

Financial switch, which is a message switching and forwarding
application between various terminal devices (cash dispensers,
teller machines, point-of-sale terminals) and participating mem-
ber bank systems.

In addition to the interest in the financial industry, ACP is in-
creasingly being considered in the domain of networking imple-
mentations. Most notably, it is conceptualized as a front-end
processing system handling the ‘“‘computationally trivial” trans-
actions (with the most stringent response criteria) and passing
the more complex ones to a more sophisticated data-base man-
agement system.

A final comment: Careful analysis and consideration must be
given when designing this type of system. High message rates
can be attained at the expense of some function or flexibility;
that is, a “short cut” is always a trade-off for which compensa-
tion must ultimately be obtained.

CITED REFERENCES AND FOOTNOTES

1. SABER bore a strong imprint in philosophy (indeed in name) from a prede-
cessor system called SAGE (Semi-Automatic Ground Environment), an
electronic air defense network developed during the 1950s.

. This concept was originally developed for the IBM 1301 Disk Storage Sys-
tem used in SABRE and was called the “‘record ready” feature.

. It is general knowledge that airline reservations systems are automated.
Most people are surprised to learn, however, that the casual telephone con-
versation with the reservations agent usually results in five to ten mes-
sages generated to and from a remote computer, 70 data-base accesses, and
100,000 instruction executions during that conversation.

. The “typical” PARS message is defined as 15,000 instruction executions
and 10 data-base accesses—a relatively complex application profile for
ACP.

. Processing time as used here represents only that time taken for instruction
execution and excludes all waiting and I/O transfer time.

. ACP System Message Routing Concepts, No. GH20-1693, IBM Corpora-
tion, Data Processing Division, White Plains, New York.

. The name CPU loop is somewhat of a misnomer but still descriptive of the
concept. The original dispatcher was indeed a programmed loop. However,
System/360 and System/370 architecture is better utilized by entering the
WAIT state at a point where all the queues have been found empty —the
conceptual ‘‘bottom” of the loop. Interrupt processing would eventually
cause program execution to commence at the previously described entry
point —the conceptual “top” of the loop.

. A message can be “traced” through the system by envisioning it in the vari-
ous processing stages as shown in Figure 3.

. R. Heistand, ACP System Concepts and Facilities, “‘Data Communica-
tions,” Chapter 6, No. GH20-1473, IBM Corporation, Data Processing
Diviston, White Plains, New York.

. J. R. Knight, “A case study: Airlines reservation systems,” Proceedings of
the IEEE 60, No. 11, 1423-1431 (November 1972).

194 SIWIEC IBM SYST J

11. J. H. McFadyen, “Systems Network Architecture: An overview,” IBM
Svstems Journal 15, No. 1, 4-23 (1976).

. R. A. Donnan and J. R. Kersey, “Synchronous data link control: A perspec-
tive,” IBM Systems Journal 13, No. 2, 140-162 (1974).

. The information field is unrestricted in content; its content is transparent
(invisible) to the components of the protocol.

. A code named after its inventor. Five bits are used to represent each charac-
ter. Since this allows for only 2° or 32 character combinations, two shift
characters are utilized and effectively increase the character representation
to 57.

GENERAL REFERENCES

1. G. Burck, “‘On-line’ in ‘real time, " Fortune Magazine, 141-145 (April
1964) .

2. M. O. Duke, “Testing in a compiex systems environment,” [BM Systems
Journal 14, No. 4, 353-365 (1975).

3. H. Hellerman and T. F. Conroy, Computer System Performance, McGraw-
Hill Book Co., Inc., New York (1975).

4. M. N. Perry and W. R. Piugge, “American Airlines SABRE electronic reser-
vation system,” AFIPS Conference Proceedings, Western Joint Computer Con-
ference 19, 593-601 (May 1961).

S. A. Shaw, The Logical Design of Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1974).

6. IBM Synchronous Data Link Control— General Information, No. GA27-
3093, IBM Corporation, Data Processing Division, White Plains, New York.

7. IBM Systems Network Architecture — General Information, No. GA27-3102,
1BM Corporation, Data Processing Division, White Plains, New York.

8. D.P. News, National Edition, IBM Corporation, Armonk, New York (Sep-
tember 11, 1967).

Reprint Order No. G321-5051.

PARS-ACP

195

