Transaction processing and a further discussion of communica-
tion facilities are presented. Also discussed are system opera-
tions, including startup and shutdown, restart, and system moni-
toring. Other parts in this series present IMS|VS objectives and
architecture, data base facilities, batch processing, and data
communication.

The information management system IMS/VS
Part V: Transaction processing facilities

by W. C. McGee

The transaction processing facilities of IMS/VS permit the user to
provide for the arbitrary processing of messages entered from
terminals. This processing is accomplished by user-written ap-
plication programs that are entered into the system at system
definition, and are scheduled for execution as required to pro-
cess incoming messages. Typical uses for the transaction pro-
cessing facilities are:

¢ Data entry: Keyed input records are checked by the program
for format and data errors, possibly referring to tables stored
in data bases. Accepted records are written to a sequential
file for later processing. Records in error are returned to the
terminal operator for correction.
Data base inquiry and update: An input query message con-
tains one or more entity identifiers. The application program
retrieves data about these entities from one or more data
bases, and incorporates those data into a message that is sent
back to the terminal. Additionally or alternatively, the pro-
gram updates the data bases, using values in the input mes-
sage.
Data output: An application program is started by the sys-
tem operator to prepare and transmit operating reports to
printers at various plant locations.

The IMS/VS transaction processing facilities also provide for the
communication of messages between application programs.
Messages generated by one program may be placed in an IMS/VS
queue, from which they may be subsequently retrieved and pro-
cessed by a second program. For example, terminal-entered data
that have been validated by an on-line application program may
be queued for later processing by a batch application program.

MCGEE PART V IBM SYST J




This part describes the transaction processing facilities of
IMS/VS. Transactions are described first. This is followed by a
discussion of transaction processing programs, including their
structure, the system services available to them, and their defini-
tion to IMS/vS. The scheduling of transaction processing pro-
grams is then described. The part concludes with a discussion of
on-line executions and system monitoring facilities.

Transactions

A transaction is a message that is to be processed by a user-
written application program. IMS/VS provides two general cate-
gories of transactions: Data Communication (DC) transactions,
which are processed by facilities in the DC feature; and Fast
Path (FpP) transactions, which are processed under the Fp fea-
ture. DC transactions may be generated by terminals and appli-
cation programs, and may consist of one or more segments. Fp
transactions may originate only from terminals, and may consist
of a single segment only. Transactions of both kinds may be
processed concurrently in the same on-line execution.

Transaction types may be defined by the user. Attributes of a
DC transaction type include the following:

Transaction type code, a one to eight character code.
Number of segments in the transaction, single or multiple.
Editing routine, i.e., the name of a user-written edit routine
to be invoked after the transaction type has been determined.

Transaction types are defined at system definition with the
TRANSACT statement. For example,

TRANSACT CODE=ARO01, MSGTYPE=(SNGLSEG .. .)

defines the Automobile Club of Michigan transaction type AR01
that is used to retrieve and display accounts receivable data for
a specified automobile policy.

Transactions that originate from a terminal carry a transaction
type code in the initial positions of the first segment. Transac-
tions that originate from a program may or may not be so identi-
fied. If they are, receiving programs can be written to be inde-
pendent of whether the transaction originates from a terminal or
from a program.

For DC transactions, a separate transaction queue is maintained
by the system for each transaction type. When a transaction of a
given type is received, it is placed into the transaction queue for
the transaction type. For purposes of scheduling application

NO. 2 + 1977 IMS/VS TRANSACTION PROCESSING




programs to process transactions, transaction types may be
grouped into transaction classes. Up to 255 such classes may be
defined, and a given class may contain any number of transac-
tion types. Classes and their membersi.ip are defined implicitly
through the TRANSACT statement. Continuing the previous
example, the statement

TRANSACT CODE=ARO01, MSGTYPE=(SNGLSEG, ,1)

assigns transaction type ARO01 to class 1.

For Fp transactions, a separate transaction queue is maintained
for each fast path load balancing group that is active in the exe-
cution. Each load balancing group is associated with one or
more executions of a single application program, and its queue
holds transactions that are destined for those executions. Fp
transactions do not use the concept of transaction classes.

Transaction processing programs

User-written application programs that process transactions are
called transaction processing programs. The DC feature pro-
vides two types of transaction processing programs: message
processing programs and batch message processing programs,
each type being limited to the processing of DC transactions
only. In the FpP feature, the analogous program types are the
message-driven program and the non-message-driven program,
respectively. The former processes Fp transactions only. The
latter does not process transactions at all, but is treated here
because of its close analogy to the batch message processing
program of the DC feature. Each of the four program types runs
in a specific dependent region type that is named after the corre-
sponding program type. For example, a message processing pro-
gram runs in a message processing region.

Transaction processing programs may be written in the same
languages as batch processing programs, and they have the same
structure and operating characteristics, as discussed in Part II1.
One difference is that the Program Communication Blocks
(PCBs) that are associated with a transaction processing pro-
gram—instead of residing in the same region as the application
program —are loaded into the control region, when the program
is first scheduled. The control program maintains a pool of main
storage for PCBs, and retains as many PCBs as possible in main
storage during system operation, to minimize access to secon-
dary storage.

MCGEE PART V IBM SYST J




Data services for transaction processing programs

The data services that are available to DC transaction pro-
cessing programs include those services that are available to
batch processing programs. In addition, the DcC feature provides
a program isolation facility that permits multiple transaction
processing programs to access the same data bases concurrently
without interfering with one another and without compromising
the integrity of the data. Data bases to be accessed by transaction
processing programs are called on-line data bases, and must be
declared at system definition as well as being defined through
the DBDGEN utility program.

Program isolation provides three levels of access to data re-
sources: read-only (level 1), single-update (level 2), and exclu-
sive (level 3). A given resource (e.g., a segment of a physical
data base) can be held at any moment by any number of read-
only users; or by one single-update user and any number of
read-only users; or by one exclusive user. When a program re-
quests a resource, its intended access level is added to the larg-
est of the access levels of the programs that currently hold the
resource, and if the sum is less than 4, the program is granted
access to the resource (i.e., it becomes one of the holders). If
not, the program waits. When a program releases a resource, the
waiting programs (if any) are scanned to determine whether any
such program can be granted access.

Data base calls from application programs result in implicit re-
quests for data resources. Examples of resources that may be

requested are physical segments and data set records. Resources
are acquired at the appropriate level and are released in such a
way that (a) The integrity of the data is preserved; (b) A pro-
gram’s view of its data bases remains consistent; and (c) The
time that a resource is held is as short as possible, consistent
with (a) and (b). Consider the following examples:

e When a PCB current position pointer is positioned in a data

base record, the root segment of that record is held at the
single-update level. This insures that only one program is
working in a data base record at a time.
A segment that is returned to a program with a GHU, GHN,
or GHNP call is held at the single-update level, so that no
other program can acquire it through such a call. If the seg-
ment is replaced with a REPL call, the access level is raised to
exclusive to prevent all levels of access from another pro-
gram until the holding program reaches a synchpoint. (A
synchpoint is a point from which an application program may
be restarted. The concept is discussed more fully later in this
part.)

No. 2 + 1977 IMS/VS TRANSACTION PROCESSING




The implicit protection that is provided by program isolation is
adeqpate for most data sharing situations. For the occasional sit-
uation where protection is not adequate, IMS/VS permits applica-
tion programs to explicitly acquire and release data resources.
Segments may be acquired during program operation by includ-
ing the ‘Q’ command code in retrieval calls, and may be released
explicitly with a dequeue (DEQ) call. Additionally, a data base,
or one or more segment types within a data base, may be ac-
quired for exclusive use by a program when it is scheduled by
defining the program to have the exclusive processing option
with respect to the data base or segment types in question.

The data services available to Fp transaction processing pro-
grams reflect the Fast Path objective of high transaction
throughput rates for limited-function transactions, and accord-
ingly are somewhat different from the data services available to
batch and DC transaction processing programs. The Application
Programmer (AP) data structure class for Fp programs is the
same as for other program types, but Fp data bases are derived
in all cases directly from Data Administrator (DA) physical data
bases. Physical data bases have two implementations: the Data
Entry Data Base (DEDB), whose records are limited to a root
segment type and a single dependent segment type; and the Main
Storage Data Base (MSDB), whose records consist of root seg-
ments only, and have imbedded fields or terminal names as keys.

The manipulation of Fast Path Ap data structures is accom-
plished through call statements of the type used with other AP
data structures, but with certain limitations that are imposed in
the interest of performance. In a DEDB, root segments can be
accessed in the manner of root segments in other data base im-
plementations, but operations on dependent segments are limited
to insert and sequential retrieval, reflecting the DEDB goal of
efficient data collection. In an MSDB, the operations permitted on
the root segment depend on the MSDB type that has been de-
clared by the user. In non-terminal-related MSDBs, which may
have terminal names or imbedded fields as keys, operations are
limited to retrieval and to a new Field (FLD) function. The latter
permits one or more fields in a segment to be updated directly
from application program work areas with a single call, in contrast
to the usual procedure of first retrieving the segment to be modi-
fied with a get hold call, modifying it in a program work area, and
then returning it to the data base with a replace call. In terminal-
related MSDBs, which may have terminal names only for keys,
root segments can be accessed in the manner of other imple-
mentations, but updating operations on a segment (replace, in-
sert, delete) are permitted only when the program is processing
a transaction from the logical terminal that “‘owns” the segment.

MCGEE PART V IBM SYST J




Much of the difference between FP and other 1IMS/vs data ser-
vices stems from the special provisions made in Fast Path for
reducing contention among concurrently running programs for
shared data resources. By reducing contention, Fast Path re-
duces the delays incurred by a transaction in waiting for re-
sources that are held by another transaction. In DEDBs and non-
terminal-related MSDBs, contention is reduced by holding the
data base changes requested by a program in main storage, and
applying them to the data base only when the program reaches
the next synchpoint. In terminal-related MSDBs, contention is
reduced by permitting data to be updated only by transactions
that are entered from the terminal that owns the data, and by
making sure that no more than one transaction from a given
terminal is in process at any time.

Communication services for transaction processing
programs

IMS/VS provides facilities that enable a DC transaction pro-
cessing program to communicate with transaction queues and
terminal queues, hence to communicate with terminals and other
programs. A transaction processing program can remove trans-
actions from a single transaction queue that has been designated
as the input queue, and can place messages in any number of
terminal and transaction queues, or output queues, as shown in
Figure 1. Messages that are placed in terminal queues are sent to
the associated terminals, and messages that are placed in trans-
action queues are processed by the associated transaction proces-
sing programs.

The communication services available to FP transaction process-
ing programs aré similar to those provided for DC programs,
with the major difference that—in processing a given transac-
tion—an FP program may place a message in a single output
queue only, namely, the terminal queue for the terminal that
entered the transaction. In the discussion that follows, DC com-
munication services are described first, and the differences in Fp
communication services are then noted.

In DC transaction processing, the input queue for a message
processing program is the transaction queue for the transaction
type that caused the program to be scheduled. For a batch mes-
sage program, the input queue is selected by the operator when
he schedules the program.

Communication with queues is controlled through a second type
of PCB, the TP PCB. A TP PCB in general holds the name of a
queue (i.e., a logical terminal name or a transaction type code)
and the results of operations that are carried out under its con-

NO. 2 - 1977 IMS/VS TRANSACTION PROCESSING

Input

and output

queves for a transac-
tion processing pro-

gram

TERMINAL

QUEUE

TERMINAL

QUEUE

QUTPUT
QUEUES

TRANSACTION
PROCESSING

PROGRAM

data
communication




trol. One PCB, the 1/0 PCB, is associated with the input queue
and is generated automatically by the system. The remaining
PCBs, alternate PCBs, are declared by the user as part of pro-
gram definition. An alternate PCB may be permanently associat-
ed with a particular output queue by using a PCB statement of
the following form:

PCB TYPE=TP, | LTERM=logical-terminal-name

NAME=transaction-type-code

An alternate PCB may also be defined in such a way that its
association with a queue is achieved during program execution
as follows:

PCB TYPE=TP, MODIFY=YES

The latter facility is useful when a program must send output
messages to a large number of destinations, and must avoid de-
fining and dedicating storage to a separate PCB for each destina-
tion.

A transaction processing program invokes communication ser-
vices through a call statement of the following form (in PL/
programs):

CALL PLITDLI (parmcount, function, pcbptr, workarea . . .)
where

function designates a character string variable holding the
name of the function to be performed.

pcbprr designates a pointer variable that points to a TP PCB.
workarea designates an area in the program where message
segments are deposited and picked up by the system.

The remaining parameters depend on the particular function to be
performed.

To obtain a transaction from its input queue, a program issues
one or more call statements, one statement for each segment of
the transaction. The first segment is obtained by specifying the
Get Unique (GU) function. The system places the segment in the
specified work area in the following format:

LLZZCCC...CTTT...T
(where L designates length, zZ is reserved, ¢ designates transac-
tion type, and T is text) and returns the following information to

the 1/0 PCB:

MCGEE PART V IBM SYST J




Name of the logical terminal from which the transaction orig-
inated (or blank if the transaction came from a program).
Sequence number for the transaction.

Date and time the transaction was received.

Status code, indicating the outcome of the call.

If the input queue is empty when the GU call is issued, the sys-
tem returns a ‘‘queue empty’’ status code.

Succeeding segments of a transaction are obtained by specifying
the Get Next (GN) function. Each segment has the following
format:

LLZZTTT...T

where L designates length, Z is reserved, and T is text. When no
more transactions remain, an “end of transaction” code is re-
turned.

To place a message in an output queue, the program builds each
segment of the message in a work area in the following format:

LLZZTTT...T

and issues a call that specifies the Insert (ISRT) function and a TP
PCB that holds the name of the queue in which the message is to
be placed. The call may also specify a Message Output Descrip-
tor (MOD) if Message Format Service (MFS) editing is to be done
on the message before it is transmitted to a terminal. The last
segment of an output message is indicated to the system by a GU
call to the 1/0 pCB, which implicitly delimits all previously issued
ISRT call sequences; or by a Purge (PURG) call, which explicitly
delimits the previously-issued ISRT call sequence against a speci-
fied pPCB. When the system has received the last segment of a
message, it places the message in a temporary destination queue.
At the program’s next synchpoint, the message is transferred to
the final destination queue.

A program may send a response to the terminal that originated a
transaction simply by specifying the 1/0 PCB in its ISRT calls,
because the system places the name of the originating terminal
in the 1/0 pCB, when the program retrieves the transaction. To
set the destination of a PCB that is defined as modifiable, the
program issues a Change (CHNG) call that specifies a PCB and the
name of the destination to which the PCB is to be set.

In using IMS/VS communication services, transaction processing
programs must be aware of certain attributes that may be as-
signed to transaction types at system definition. These attributes
are the response mode and the conversation mode, and apply
only to message processing programs.

No. 2 - 1977 IMS/VS TRANSACTION PROCESSING




A response mode may be specified in the definition of transac-
tion types that originate from terminals. A response mode of
RESPONSE specifies that the program must transmit a response
message to the originating terminal before another transaction is
accepted from that terminal. A response mode of NONRE-
SPONSE specifies that such a response is not required. This facil-
ity may be used to keep the terminal operator in step with the
application program.

A conversation mode may similarly be specified for transactions
that originate from terminals. A transaction type is defined to be
conversational if a scratch pad area definition is included in the
definition of the transaction type. For example

TRANSACT CODE=ALPH ... SPA=(156, CORE)

defines the Automobile Club of Michigan transaction type ALPH
to be conversational, with a main storage scratchpad area of 156
bytes. If this definition is not included, the transaction type is
nonconversational.

In processing a conversational transaction, a program may en-
gage in a two-way exchange of messages with the originating
terminal before the transaction is considered to be completely
processed. A scratchpad area is provided in which the program
may save intermediate results, while waiting for terminal re-
sponses. Thus the program need not occupy a message processing
region during these intervals.

Conversational transaction processing is initiated by the termi-
nal operator by entering a transaction in the normal way. When
the system receives the transaction, instead of placing it in the
appropriate transaction queue, it constructs a segmented mes-
sage the first segment of which is a scratchpad that is associated
with the originating terminal, and succeeding segments are those
of the original transaction. This substitute message is then
placed in the transaction queue.

When the associated transaction processing program is sched-
uled and issues a GU call to the 1/0 PCB, it receives in its work
area the scratchpad segment that has the following format:

LLXXXXCCC...CXXX...X

where L designates length, X is reserved, C is the transaction
code, and X is an initially blank work area. Ensuing GN calls
against the 1/0 PCB retrieve the first segment (without a transac-
tion type code) and succeeding segments of the original transac-
tion.

MCGEE PART V IBM SYST J




To send a conversational response to the originating terminal,
the program issues ISRT calls against the 1/O0 PCB, as in noncon-
versational processing. One and only one response message
must be sent to enable the terminal to continue the conversation.

To save the scratchpad between exchanges, an ISRT call against
the 1/0 pCB is again used. The scratchpad segment is distin-
guished from output message segments by coding in the segment
header. The system saves the scratchpad in main storage or di-
rect access storage, as specified in the transaction definition.
The scatchpad need not be saved on every exchange. If it is not
saved, the original, or the most recently saved version, is returned
on the next GU call.

When the terminal has received a program response, the opera-
tor can enter the terminal’s response. This response does not
represent a new transaction and therefore does not contain a
transaction type code. On receiving the terminal’s response, the
system retrieves the scratchpad, and uses it to build and enqueue
a multisegmented message, as with the original input. The pro-
gram is rescheduled through the normai scheduling facilities, and
at that time it may issue GU and GN calls to retrieve the scratch-
pad and terminal input segments.

Conversational processing can continue in this manner for any
number of exchanges. The conversation is normally terminated
by the program by blanking out the transaction type code in the
scratchpad segment before saving it with an ISRT call. When the
system receives such a scratchpad, it removes the terminal from
conversational mode and discards the scratchpad. The next in-
put from the terminal is treated as a new transaction.

Alternatively, a conversation may be terminated by the terminal
operator’s entering an EXIT command. The terminal then reverts
to normal transaction mode. During a conversation, the terminal
operator may temporarily leave and later re-enter the conversa-
tional mode by entering the HOLD and RELEASE CONVERSA-
TION commands, respectively.

The communication services provided to Fp transaction process-
ing programs are similar to those just described for DC transac-
tion processing programs. The principal differences are as fol-
lows:

The input queue for an FP transaction processing program is
the transaction queue for the associated load balancing
group. The queue may hold transactions of more than one
type.

The (single) output queue is the terminal queue for the ter-
minal that entered the transaction.

« 1977 IMS/VS TRANSACTION PROCESSING




¢ All messages consist of a single segment only.
e All transaction types must have a response mode of RE-
SPONSE and must be nonconversational.

Definition of transaction processing programs

A transaction processing program must be defined through the
use of the PSBGEN utility program, in the same manner as a
batch processing program. Program attributes that may be de-
clared include program name, data bases to be accessed, type of
access, and destinations to which messages are to be sent. The
resulting Program Specification Block (PSB) is placed in the
IMS/VS program specification block library.

A transaction processing program is also declared at system
definition with the APPLCTN statement, as in the following ex-
ample:

APPLCTN PSB=psbname, PGMTYPE=|TP
BATCH
One or more transaction types may be associated with the pro-
gram by following the APPLCTN statement with one or more
TRANSACT statements. The following statements:
APPLCTN PSB—=MVP402, PGMTYPE=TP...
TRANSACT CODE=AROI . ..
TRANSACT CODE=COMP ...

TRANSACT CODE=CKDG ...

associate transaction types AR01, COMP, and CKDG with the PSB
and program named MVP402. A transaction type may be asso-
ciated with one and only one application program.

For a message processing program, the defined association be-
tween the program and one or more transaction types forms the
basis for scheduling the program. Specifically, the receipt of a
transaction of a given type causes the corresponding application
program to be scheduled.

As with batch processing programs, transaction processing pro-
grams must be stored in the IMS/VS application program library.

Transaction processing program scheduling

The facilities for scheduling transaction processing programs in
the DC feature are designed for transactions having a wide range

MCGEE PART V IBM SYST J




of arrival rates and processing requirements, and are accordingly
quite general. The corresponding facilities in the Fp feature, on
the other hand, are tailored to uniformly high transaction rates
and relatively low processing requirements. In this section are
described the two sets of facilities, starting with those in the DC
feature.

The two types of DC transaction processing programs, message
processing programs and batch message processing programs,
are distinguished primarily by the manner in which they are
scheduled. Batch message processing programs are scheduled
manually by the system operator, whereas message processing
programs are scheduled automatically by the system whenever a
message processing region is available.

In scheduling a transaction processing program, the following
three functions are performed:

A program is selected.

The schedulability of the program is determined. A program
is schedulable if it has not been disabled and if all resources
required, as reflected in its PSB, are available.

The program and its associated control blocks are loaded,
and control is given to the program.

In the case of batch message processing programs, the selection
of a program is accomplished by the operator, when the batch
message region job is started. Job control parameters that are
specified by the operator include program name, the PSB name,
and the transaction type code for the transaction queue that is to
be the program’s input queue. (The latter is optional, i.e., a
batch message processing program need not access a queue.)
The pSB that is associated with the program is retrieved in order
to determine whether the data bases required are available. If
so, the program is loaded and control is given to it. Otherwise, a
message is sent to the master terminal and the job is terminated.

In the case of message processing programs, the selection of a
program is accomplished with the aid of the association estab-
lished between programs and transaction types in program defi-
nition, and the assignment of priorities to transaction types in
system definition and message processing region startup. The
Jjob request that starts a message processing region specifies one
or more classes of transaction types to be processed by that re-
gion. The order in which classes are specified determines the
priority of the respective classes of transaction types. Within a
given class, the priority of a transaction type is determined by
priority attributes declared for the transaction type at system
definition, and by the size of its associated transaction queue.

No. 2 - 1977 IMS/VS TRANSACTION PROCESSING

data
communication




Program selection then consists of selecting the program with
the highest-priority transaction type for which transactions are
waiting.

Priority attributes to be declared for a transaction type include a
normal priority, a limit priority, and a limit count. Initially, the
transaction type has the normal priority. When the size of the
associated transaction queue exceeds the limit count, the priori-
ty is changed to the limit priority and remains there until the
queue is emptied, at which time it reverts to the normal priority.
Limit priority is usually set higher than normal priority, so that
large queues receive preferential treatment.

When a message processing program has been scheduled, it is
not normally schedulable again until it has terminated. To expe-
dite the processing of heavily used transaction types, provision
is made for declaring a program to be parallel schedulable, and
for declaring a parallel processing limit for any transaction type
associated with the program. Such a program may be scheduled
concurrently into two or more message processing regions.
When an associated transaction type is considered for schedul-
ing, it is scheduled only if the number of transactions of that
type that are waiting exceeds the product of the number of re-
gions currently processing the transaction type and the value of
the parallel processing limit (PARLIM) parameter declared for the
transaction type. In queuing system terms, PARLIM represents
the largest value that the average number of waiting customers
per server can attain before another server is added. The ability
to automatically adjust the number of regions processing a given
transaction type to the current activity of that transaction type is
called load balancing.

A program completes by issuing a return call, and the region
then becomes available for rescheduling. A program normally
issues a return call when there are no more messages in its input
queue. Under certain circumstances it may be undesirable for
the program to relinquish the region. Although this can always
be achieved by the program’s withholding its return call, a less
costly approach is to declare the transaction type to have the
Wait For Input (WFID) attribute. When the associated queue is
accessed and is empty, the system interlocks the program until a
transaction arrives, but does not schedule another program into
the region in the interim.

The scheduling of message processing programs may be con-
trolled during system operation by master terminal commands
that reassign transaction classes to regions, reassign transaction
types to classes, and change the priorities that are assigned to
transaction types. Commands are also available to enable and
disable three types of resources that are central to program

MCGEE PART V IBM SYST J




scheduling: transactions, programs, and data bases. Disabled
transactions are rejected, disabled programs are not scheduled,
and disabled data bases render unschedulable any programs that
reference them.

Once scheduled, a program runs to completion unless it is ab-
normally terminated. To minimize the impact of such termina-
tions on system operation, provision is made for dividing the
execution period into intervals bounded by synchpoints. A
synchpoint is a point from which a program can be restarted in
the event of an abnormal program end. A synchpoint occurs
when a GU call is issued to the 1/0 PCB (on the assumption that
the call starts the major loop in the program), and when the pro-
gram issues a Checkpoint (CHKP) call. A batch message process-
ing program may issue checkpoint calls if it does not access an
input queue. Between synchpoints, the system saves the mes-
sage taken from the input queue by the program, holds output
messages in a temporary destination queue, and records all data
base changes made by the program in a dynamic log. When a
synchpoint is reached, the saved input message is discarded, the
output messages are placed in their final destination queues, and
dynamic log entries for the interval are erased, thereby commit-
ting the output messages and the data base changes.

A transaction processing program may be abnormally ended
(abended) for any of the following three reasons:

It attempts to execute an instruction or invoke a system ser-

vice for which there is no useful outcome.
It is terminated by IMS/VS to break a data resource deadlock.
It terminates itself with the Rollback (ROLL) call.

For all abends, the system backs out—with the aid of the dy-
namic log—all data base changes made by the program since its
most recent synchpoint. The system cancels output messages
generated by the program since the last synchpoint by discard-
ing the temporary destination queue, and places the message
removed by the program from the input queue back in the input
queue. For deadlock and rollback abends, the system automati-
cally restarts the application program. For other abends, the sys-
tem disables the abending program so that it cannot be resched-
uled, and notifies the system operator, giving the program name,
transaction code, input terminal name, and the first segment of
the current input message. The operator can determine the
cause of the abend, correct it, and re-enable the program with
the /START command. Message processing programs restart au-
tomatically; batch message processing programs must be resub-
mitted.

IMS/VS TRANSACTION PROCESSING




In the Fast Path feature, both types of transaction processing
programs —the message-driven and the non-message-driven—
are scheduled by the system operator, in a manner similar to the
scheduling of batch message processing programs in the DC fea-
ture. A non-message-driven program normally terminates itself
with a return statement, whereas a message-driven program is
designed to run continuously and be terminated by the system
operator. Message-driven programs operate in the wait for in-
put mode, i.e., they are interlocked when they attempt to re-
trieve from any empty input queue.

Multiple executions of a message-driven program may be
scheduled concurrently into different regions. All executions are
associated with a single load balancing group, and retrieve trans-
actions in First In First Out (FIFO) sequence from the single trans-
action queue that is associated with the load balancing group.
The load balancing group facility serves the same purpose as the
parallel scheduling facility of the DC feature. In the load balanc-
ing group facility, the number of program executions is deter-
mined by the system operator, whereas in the parallel scheduling
facility this number is determined by the system on the basis of
transaction load.

A message-driven program creates a synchpoint when it issues a
GU call to the 1/0 PCB, as does a non-message-driven program by
issuing a new Synchpoint (SYNC) call. At a synchpoint, all data
base changes requested by the program since the previous
synchpoint are carried out, all logging for the interval is done,
and the output message is placed in the appropriate terminal

queue. Synchpoint processing is serialized, i.e., done for one
program at a time, so that there is no possibility of two or more
programs reaching deadlock over shared resources. The dy-
namic log is not used by Fast Path. If a program abends, data
base backout is not required since data base changes have not
yet been made. Instead, the operator can correct the cause of
the abend, if necessary, and simply restart the program.

On-line execution operation and monitoring

An on-line execution of IMS/VS is initiated by a system console
command that starts a control region and gives control to the
IMS/VS control program. After initialization, the control program
requests a restart command from the master terminal. When
starting the system for the first time (cold start), the operator
replies with the command /NRESTART CHECKPOINT 0. The con-
trol program responds by enabling all IMS/VS resources except
lines (or logical units) and dependent regions. Communication
lines are enabled by master terminal command, as described in
Part IV. Dependent regions are started through operating sys-
tem facilities as described in Part 1.

MCGEE PART V IBM SYST J




Table 1

System shutdown options

FREEZE

Message
processing
regions
stopped

Batch message
processing
regions
stopped

Line input
stopped

Line output
stopped

At program
completion

At checkpoint
or program
completion

At message
completion

At message
completion

At program
completion

At checkpoint
or program
completion

At message
completion

At message
completion

When transaction
queues are empty

At program
completion

At message
completion

When terminal queues

are empty

Dumped to
system log

Transaction Retained in Emptied normally
and message queue data

queues sets

The normal shutdown of an on-line execution is accomplished
with the following command:

FREEZE
/CHECKPOINT{ DUMPQ

PURGE

This command causes the various resources of the system to be
disabled in an orderly manner, and a system checkpoint to be
taken. A system checkpoint consists of flushing data base buf-
fers and message queue buffers to direct access storage, and
recording key system control blocks on the system log. The
checkpoint is identified on the log and in a message to the opera-
tor by an identifier that consists of the date and the time of the
checkpoint.

Three variations of shutdown are provided for control over the
method of stopping programs and lines, and to control the
method of disposing of queues. The effects of these variations
are shown in Table 1. The DUMPQ option is useful in freeing the
queue data sets, so that they can be reallocated on the next start-
up. The PURGE option attempts to empty all the queues, so that
no outstanding work remains. Messages that cannot be pro-
cessed or transmitted are retained in the system log.

To restart (warm start) the system from the state attained at the
previous FREEZE shutdown, the operator enters the command
/NRESTART. The system searches the system log for the check-

No. 2 - 1977 IMS/VS TRANSACTION PROCESSING




point entry from the previous shutdown, restores the control
blocks saved at that time, and waits for the operator to enable
lines and regions, as in a cold start. If the previous shutdown
had been a DUMPQ or PURGE, the operator must specify in the
NRESTART command the identification of the shutdown check-
point. After locating this checkpoint, the system rebuilds the
message queues from entries in the log, and restores control
blocks.

An on-line execution can be ended abnormally for a variety of
reasons, including the following:

The control region abends.

The control region does not respond to terminals and must
be terminated by operating system command.

The operating system, power, or hardware fails.

IMS/vs provides facilities that permit the system to be restarted
from abnormal ends without disruption to the terminal user,
other than waiting for restart to take place.

The basic approach to emergency restart is to record the state of
the system periodically in the form of system checkpoints and
message queue dumps, and to log system activity that occurs
between such recordings. When an outage occurs, the system is
restarted by taking the most recently recorded state and using
the log to update it to the point of the outage.

System checkpoints are taken at normal system shutdown, sys-
tem restart, and at intervals throughout system operation. The
checkpoint interval is determined by a user-specified number of
log records to be written between checkpoints. Checkpoints
may also be taken during operation by issuing the master termi-
nal command /CHECKPOINT. Message queue dumps are taken at
pormal system shutdowns, using the DUMPQ or PURGE options.

Following an outage in which main storage or queue data sets
are lost, the operator first determines that the system log has
been properly terminated, using the Log Tape Termination utili-
ty if necessary. The operator then restarts the operating system
and the IMS/vS control region. If only main storage has been
lost, the operator enters the command /ERESTART. The system
responds by selecting an appropriate checkpoint on the system
log, and processing the log forward from that point to restore the
message queues to their state at the time of the outage. For each
DC transaction processing program that is active at the time of
the outage, the system uses the dynamic log to reset system
state to the program’s most recent synchpoint, just as though the
program had abnormally terminated. When restart processing is
complete, the operator may start message processing regions

MCGEE PART V IBM SYST J




and communication facilities in the normal manner, and the
scheduling facilities automatically restart any message process-
ing programs that had been in progress at shutdown. Interrupted
batch message processing programs and Fp transaction process-
ing programs must be restarted manually. If a batch message
processing program uses the program checkpoint/restart facility,
the system indicates to the operator the proper program check-
point from which the program should be restarted. Otherwise
the program must be started from the beginning.

If the message queues or scratchpad data sets are damaged in
the outage, the operator specifies in the ERESTART command the
identification of the checkpoint taken on a previous bUMPQ or
PURGE shutdown. The system locates the specified checkpoint
on the log, rebuilds the message queues and scratchpad data sets
from the information that had been dumped to tape at the
checkpoint, and then processes the log forward to restore the
queues to their state at the time of the outage. Transaction pro-
cessing programs are then backed up to their most recent synch-
points and restarted.

The routine operation of an on-line execution is facilitated
through the use of the /DISPLAY command, which may be used
to display at the master terminal two general kinds of informa-
tion: system resource attributes and system resource utilization.
Examples of system resource attributes that may be displayed
are as follows:

e Assignment of logical terminals to physical terminals.
e Status of lines and terminals.
o Current priority of transaction types.

Examples of the utilization information are the following:

¢ Current size of queues.
e Number of conversational transactions in progress.
e Current utilization of main storage buffers.

The master terminal operator uses the display command to ob-
tain information about the system that helps him select the best
setting of parameters under his control. For example, by observ-
ing the lengths of transaction queues, the operator is able to ad-
just the number of message processing regions, the region-class
assignments, or transaction type priorities to keep queue lengths
short and uniform.

The system log contains a great deal of information that can be
used to obtain better performance from the system, through the
adjustment of execution-time or system-definition parameters.
IMS/VS provides three utility programs for extracting information
of this kind from the system log for on-line system executions.

NOo. 2 - 1977 IMS/VS TRANSACTION PROCESSING




The Log Transaction Analysis utility program produces a listing
of transactions processed by the system in a specified time inter-
val, thereby giving a detailed history of each transaction. The
report is optionally recorded on secondary storage so that it may
be sorted into various sequences and otherwise manipulated by
user programs. The utility also optionally produces an extract of
the system log for more convenient study of intervals of interest.

The Statistical Analysis utility program gives summaries of the
activity in various system resources during a specified time in-
terval, including line and terminal activity (e.g., messages sent
and received and message sizes), transaction type activity (e.g.,
transactions processed and average response time), and pro-
gram activity (e.g., transactions processed, calls issued, and CPU
time expended). These reports may be used, for example, to
schedule the use of terminals so as to achieve better line utiliza-
tion and response times.

A Program Isolation Trace Report utility program lists instances
of program waiting caused by the program isolation feature,
along with waiting times. This information is useful in eliminat-
ing bottlenecks that have been created by heavily-used data re-
sources.

Additional information on system operation can be obtained by
including in the defined system the IMS/vS Monitor Facility,
which may be enabled on any batch or on-line execution. In an
on-line execution the facility may be started and stopped from
the system console. The Monitor Facility produces an indepen-

dent log of system activity that can be processed by an appro-
priate utility program. Logs created in on-line executions are
processed by the DC Monitor Report Print program, which pre-
pares reports that contain the following kinds of information:

o Buffer pool utilization, which is useful in determining the
adequacy of assigned pool sizes.
Region timing information, from which region utilization can
be derived. :
Program activity, such as number of calls of various types,
number and duration of waits for input and output, and CpPU
time.
Transaction queuing activity, which is useful in setting trans-
action type priorities.
Special events, such as failure to schedule application pro-
grams because of processing intent conflict or lack of buffer
space.

Logs created by batch executions are processed by the bB Mon-
itor Report Print program for reporting buffer pool utilization

and program activity.

MCGEE PART V IBM SYST J




Summary and concluding remarks

Two general categories of transaction processing facilities are
provided in IMS/VS: the DC transaction processing facilities that
had their origin in early IMS systems, and are intended for a
broad range of transaction processing applications; and the Fp
transaction processing facilities, a more recent addition, that are
intended for applications with high transaction volumes and lim-
ited processing. DC transactions are queued by type, and are
removed from the queues by user-written programs that are
scheduled by the operator or by the IMS/VS control program, on
the basis of transaction priorities and resource availability. Fp
transactions are queued by load balancing group, and are pro-
cessed by operator-initiated executions of user-written pro-
grams. Both types of transaction processing may coexist in the
same on-line execution.

The transaction processing facilities of IMS/vS contain a number
of significant contributions to the technology of generalized data
base management systems. These contributions occur in the
areas of fixed-server transaction processing, the synchpoint con-
cept, and data sharing.

Many early teleprocessing monitors (and many today) employ
the variable-server approach to transaction processing. When a
transaction arrives, the monitor creates a server, i.e., some inter-
nal entity such as a job or a task, to process the transaction. When
the processing is completed, the server is destroyed. In the
fixed-server approach, on the other hand, a fixed number of
servers is established at system startup, and the monitor assigns
transactions to them as they are received. In IMS/VS, the servers
are the program controllers running in the dependent regions. In
the DC feature, program controllers are capable of loading dif-
ferent programs to customize their response. With the Fast Path
feature, application programs are continuously resident, and they
in effect become the servers. The variable-server approach is
best suited to fluctuating workloads of many different transac-
tion types, since it avoids tying up system resources during low-
demand periods. The fixed-server approach, on the other hand,
is best suited to steady workloads of a few transaction types,
since it avoids much of the allocation and deallocation activity
on each transaction that occurs in the variable-server approach.
IMS was among the first systems to recognize the latter require-
ment, and continues to be oriented toward this kind of workload.

The concept of dividing the execution of a program into intervals
bounded by synchpoints is a significant technological advance.
The synchpoint concept simultaneously fulfills three needs:
(1) It provides points from which a transaction processing pro-
gran can be conveniently restarted in the event it ends ab-

No. 2 - 1977 IMS/VS TRANSACTION PROCESSING




normally (which is classical checkpoint/restart facility); (2) It
provides points at which shared data resources acquired by a
program can be released by the system, to prevent excessive
queuing on these resources; and (3) It provides points at which
actions of a program are committed to the program’s environ-
ment. Synchpoints might also be used as points at which the
system provides consistency of the data base, thus allowing
application programs the convenience of creating temporary
inconsistencies in the data base between synchpoints. Intervals
between synchpoints are fundamental units of work in trans-
action processing systems, and are comparable in significance to
Jjobs and job steps in batch processing environments.

Along with a number of other generalized data base manage-
ment systems, IMS/VS solves the problem of sharing data among
concurrently executing programs, in a manner that preserves the
integrity of the data without creating excessively long queues on
shared resources. In early releases of 1MS, data sharing was
controlled through processing intent scheduling, i.e., a transac-
tion processing program would not be scheduled if it intended to
update segment types that were being updated by currently run-
ning programs. Undeér this regime, the granule of sharing was
effectively the segment type. With the introduction of program
isolation in IMS/VS, the granule of sharing has been reduced to
the segment instance. Programs that are updating the same seg-
ment types are allowed to run concurrently, with segments that
are being acquired and released as required io prevent interfer-
ence. Deadlocks over data resources are resolved by forcing one
or more of the deadlocked programs to terminate abnormally,
and using the synchpoint recovery facilities already in place to
restart the terminated programs.

GENERAL REFERENCES

1. IBM Corporation, IMS/VS Version 1 System|Application Design Guide,
Document SH20-9025, IBM Corporation, Data Processing Divislon, White
Plains, New York 10604.

2. IBM Corporation, IMS/VS Version I Fast Path Feature General Information
Manual, Document GH20-9069, IBM Corporation, Data Processing Division,
White Plains, New York 10604.

3. IBM Corporation, IMS/VS Version 1 Installation Guide, Document SHZO-
9081, IBM Corporation, Data Processing Division, White Plains, New York
10604.

4. 1BM Corporation, IMS/VS Version 1 Operator’'s Reference Manual, Docu-
ment SH20-9028, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

5. IBM Corporation, IMS/VS Version 1 Utilities Reference Manual, Document
SH20-9029, IBM Corporation, Data Processing Division, White Plains, New
York 10604.

6. IBM Corporation, IMS/VS Version 1 Application Programming Reference
Manual, Document SH20-9026, IBM Corporation, Data Processing Division,
White Plains, New York 10604.

Reprint Order No. G321-5050.

MCGEE PART V IBM SYST J




