
Transaction processing and a further discussion of communica-
tion facilities are presented. Also discussed are system opera-
tions, including startup and shutdown, restart, and system moni-
toring. Other parts in this series present I M s l V S objectives and
architecture, data base facilities, batch processing, and data
communication.

The information management system IMS/VS
Part V: Transaction processing facilities

by W. C. McGee

The transaction processing facilities of IMS/VS permit the user to
provide for the arbitrary processing of messages entered from
terminals. This processing is accomplished by user-written ap-
plication programs that are entered into the system at system
definition, and are scheduled for execution as required to pro-
cess incoming messages. Typical uses for the transaction pro-
cessing facilities are:

Data entry: Keyed input records are checked by the program
for format and data errors, possibly referring to tables stored
in data bases. Accepted records are written to a sequential
file for later processing. Records in error are returned to the
terminal operator for correction.
Data base inquiry and update: An input query message con-
tains one or more entity identifiers. The application program
retrieves data about these entities from one or more data
bases, and incorporates those data into a message that is sent
back to the terminal. Additionally or alternatively, the pro-
gram updates the data bases, using values in the input mes-
sage.
Data output: An application program is started by the sys-
tem operator to prepare and transmit operating reports to
printers at various plant locations.

The IMSlVS transaction processing facilities also provide for the
communication of messages between application programs.
Messages generated by one program may be placed in an IMslvs
queue, from which they may be subsequently retrieved and pro-
cessed by a second program. For example, terminal-entered data
that have been validated by an on-line application program may
be queued for later processing by a batch application program.

148 MCGEE PART v IBM SYST J

This part describes the transaction processing facilities of
IMSIVS. Transactions are described first. This is followed by a
discussion of transaction processing programs, including their
structure, the system services available to them, and their defini-
tion to r~slvs . The scheduling of transaction processing pro-
grams is then described. The part concludes with a discussion of
on-line executions and system monitoring facilities.

Transactions

A transaction is a message that is to be processed by a user-
written application program. IMslvs provides two general cate-
gories of transactions: Data Communication (DC) transactions,
which are processed by facilities in the DC feature; and Fast
Path (F P) transactions, which are processed under the FP fea-
ture. DC transactions may be generated by terminals and appli-
cation programs, and may consist of one or more segments. FP
transactions may originate only from terminals, and may consist
of a single segment only. Transactions of both kinds may be
processed concurrently in the same on-line execution.

Transaction types may be defined by the user. Attributes of a
DC transaction type include the following:

Transaction type code, a one to eight character code.
Number of segments in the transaction, single or multiple.

to be invoked after the transaction type has been determined.

Transaction types are defined at system definition with the
TRANSACT statement. For example,

TRANSACT CODE=AROl, MSGTYPE=(SNGLSEG . . .)

defines the Automobile Club of Michigan transaction type AROI
that is used to retrieve and display accounts receivable data for

Transactions that originate from a terminal carry a transaction
type code in the initial positions of the first segment. Transac-
tions that originate from a program may or may not be so identi-
fied. If they are, receiving programs can be written to be inde-
pendent of whether the transaction originates from a terminal or

For DC transactions, a separate transaction queue is maintained
by the system for each transaction type. When a transaction of a

the transaction tvpe. For purposes of scheduling application I

programs to process transactions, transaction types may be
grouped into transaction classes. Up to 255 such classes may be
defined, and a given class may contain any number of transac-
tion types. Classes and their members;.ip are defined implicitly
through the TRANSACT statement. Continuing the previous
example, the statement

TRANSACT CODE=AROl, MSGTYPE=(SNGLSEG, ,1)

assigns transaction type AROl to class 1.

For FP transactions, a separate transaction queue is maintained
for each fast path load balancing group that is active in the exe-
cution. Each load balancing group is associated with one or
more executions of a single application program, and its queue
holds transactions that are destined for those executions. FP
transactions do not use the concept of transaction classes.

Transaction processing programs

User-written application programs that process transactions are
called transaction processing programs. The DC feature pro-
vides two types of transaction processing programs: message
processing programs and batch message processing programs,
each type being limited to the processing of DC transactions
only. In the FP feature, the analogous program types are the
message-driven program and the non-message-driven program,
respectively. The former processes FP transactions only. The
latter does not process transactions at all, but is treated here
because of its close analogy to the batch message processing
program of the DC feature. Each of the four program types runs
in a specific dependent region type that is named after the corre-
sponding program type. For example, a message processing pro-
gram runs in a message processing region.

Transaction processing programs may be written in the same
languages as batch processing programs, and they have the same
structure and operating characteristics, as discussed in Part 111.
One difference is that the Program Communication Blocks
(PCBS) that are associated with a transaction processing pro-
gram-instead of residing in the same region as the application
program-are loaded into the control region, when the program
is first scheduled. The control program maintains a pool of main
storage for PCBS, and retains as many PCBS as possible in main
storage during system operation, to minimize access to secon-
dary storage.

150 MCGEE PART v IBM SYST J I

Data services for transaction processing programs I
The data services that are available to DC transaction pro-
cessing programs include those services that are available to
batch processing programs. In addition, the DC feature provides
a program isolation facility that permits multiple transaction
processing programs to access the same data bases concurrently
without interfering with one another and without compromising
the integrity of the data. Data bases to be accessed by transaction
processing programs are called on-line data bases, and must be
declared at system definition as well as being defined through
the DBDGEN utility program.

Program isolation provides three levels of access to data re-
sources: read-only (level 1), single-update (level 2) , and exclu-
sive (level 3) . A given resource (e.g., a segment of a physical
data base) can be held at any moment by any number of read-
only users; or by one single-update user and any number of
read-only users; or by one exclusive user. When a program re-
quests a resource, its intended access level is added to the larg-
est of the access levels of the programs that currently hold the
resource, and if the sum is less than 4, the program is granted
access to the resource (i.e., it becomes one of the holders). If
not, the program waits. When a program releases a resource, the
waiting programs (if any) are scanned to determine whether any
such program can be granted access.

Data base calls from application programs result in implicit re-
quests for data resources. Examples of resources that may be
requested are physical segments and data set records. Resources
are acquired at the appropriate level and are released in such a
way that (a) The integrity of the data is preserved; (b) A pro-
gram’s view of its data bases remains consistent; and (c) The
time that a resource is held is as short as possible, consistent
with (a) and (b) . Consider the following examples:

When a PCB current position pointer is positioned in a data
base record, the root segment of that record is held at the
single-update level. This insures that only one program is
working in a data base record at a time.
A segment that is returned to a program with a GHU, GHN,
or GHNP call is held at the single-update level, so that no
other program can acquire it through such a call. If the seg-
ment is replaced with a REPL call, the access level is raised to
exclusive to prevent all levels of access from another pro-
gram until the holding program reaches a synchpoint. (A
synchpoint is a point from which an application program may
be restarted. The concept is discussed more fully later in this

adequate for most data sharing situations. For the occasional sit-
uation where protection is not adequate, IMS/VS permits applica-
tion programs to explicitly acquire and release data resources.
Segments may be acquired during program operation by includ-
ing the ‘Q’ command code in retrieval calls, and may be released
explicitly with a dequeue (DEQ) call. Additionally, a data base,
or one or more segment types within a data base, may be ac-
quired for exclusive use by a program when it is scheduled by
defining the program to have the exclusive processing option
with respect to the data base or segment types in question.

The data services available to FP transaction processing pro-
grams reflect the Fast Path objective of high transaction
throughput rates for limited-function transactions, and accord-
ingly are somewhat different from the data services available to
batch and DC transaction processing programs. The Application
Programmer (AP) data structure class for FP programs is the
same as for other program types, but FP data bases are derived
in all cases directly from Data Administrator (DA) physical data
bases. Physical data bases have two implementations: the Data
Entry Data Base (DEDB), whose records are limited to a root
segment type and a single dependent segment type; and the Main
Storage Data Base (MSDB), whose records consist of root seg-
ments only, and have imbedded fields or terminal names as keys.

The manipulation of Fast Path AP data structures is accom-
plished through call statements of the type used with other AP
data structures, but with certain limitations that are imposed in
the interest of performance. In a DEDB, root segments can be
accessed in the manner of root segments in other data base im-
plementations, but operations on dependent segments are limited
to insert and sequential retrieval, reflecting the DEDB goal of
efficient data collection. In an MSDB, the operations permitted on
the root segment depend on the MSDB type that has been de-
clared by the user. In non-terminal-related MSDBS, which may
have terminal names or imbedded fields as keys, operations are
limited to retrieval and to a new Field (FLD) function. The latter
permits one or more fields in a segment to be updated directly
from application program work areas with a single call, in contrast
to the usual procedure of first retrieving the segment to be modi-
fied with a get hold call, modifying it in a program work area, and
then returning it to the data base with a replace call. In terminal-
related MSDBS, which may have terminal names only for keys,
root segments can be accessed in the manner of other imple-
mentations, but updating operations on a segment (replace, in-
sert, delete) are permitted only when the program is processing
a transaction from the logical terminal that “owns” the segment.

152 MCGEE PART V IBM SYST J I

Much of the difference between FP and other IMS/VS data ser-
vices stems from the special provisions made in Fast Path for
reducing contention among concurrently running programs for
shared data resources. By reducing contention, Fast Path re-
duces the delays incurred by a transaction in waiting for re-
sources that are held by another transaction. In DEDBS and non-
terminal-related MSDBS, contention is reduced by holding the
data base changes requested by a program in main storage, and
applying them to the data base only when the program reaches
the next synchpoint. In terminal-related MSDBS, contention is
reduced by permitting data to be updated only by transactions
that are entered from the terminal that owns the data, and by
making sure that no more than one transaction from a given
terminal is in process at any time.

Communication services for transaction processing
programs

IMS/VS provides facilities that enable a DC transaction pro-
cessing program to communicate with transaction queues and
terminal queues, hence to communicate with terminals and other
programs. A transaction processing program can remove trans-
actions from a single transaction queue that has been designated
as the input queue, and can place messages in any number of
terminal and transaction queues, or output queues, as shown in
Figure 1. Messages that are placed in terminal queues are sent to
the associated terminals, and messages that are placed in trans-
action queues are processed by the associated transaction proces-
sing programs.

The communication services available to FP transaction process-
ing programs are similar to those provided for DC programs,
with the major difference that -in processing a given transac-
tion-an FP program may place a message in a single output
queue only, namely, the terminal queue for the terminal that
entered the transaction. In the discussion that follows, DC com-
munication services are described first, and the differences in FP
communication services are then noted.

In DC transaction processing, the input queue for a message
processing program is the transaction queue for the transaction
type that caused the program to be scheduled. For a batch mes-
sage program, the input queue is selected by the operator when
he schedules the program.

Communication with queues is controlled through a second type
of PCB, the TP PCB. A TP PCB in general holds the name of a
queue (i.e., a logical terminal name or a transaction type code)
and the results of operations that are carried out under its con-

NO. 2 ' 1977 IMSlVS TRANSACTION PROCESSING

Figure 1 Input and output
queues far a transac-
tion processing pro-
gram

1
rERMlNAL

QUEUE

OUTPUl
OUEUEL

-
rERMlNAl

QUEUE

TRANS-
ACTION
QUEUE

c-

data
communication

153

TRANSACTION
PROCESSING

PROGRAM

Name of the logical terminal from which the transaction orig-
inated (or blank if the transaction came from a program).
Sequence number for the transaction.
Date and time the transaction was received.
Status code, indicating the outcome of the call.

If the input queue is empty when the GU call is issued, the sys-
tem returns a “queue empty” status code.

Succeeding segments of a transaction are obtained by specifying
the Get Next (GN) function. Each segment has the following
format:

L L Z Z T T T . . . T

where L designates length, z is reserved, and T is text. When no
more transactions remain, an “end of transaction” code is re-
turned.

To place a message in an output queue, the program builds each
segment of the message in a work area in the following format:

L L Z Z T T T . . . T

and issues a call that specifies the Insert (ISRT) function and a TP
PCB that holds the name of the queue in which the message is to
be placed. The call may also specify a Message Output Descrip-
tor (MOD) if Message Format Service (MFS) editing is to be done

’ on the message before it is transmitted to a terminal. The last
segment of an output message is indicated to the system by a GU

~ call to the I/O PCB, which implicitly delimits all previously issued
ISRT call sequences; or by a Purge (PURG) call, which explicitly

1 delimits the previously-issued ISRT call sequence against a speci-
fied PCB. When the system has received the last segment of a
message, it places the message in a temporary destination queue.
At the program’s next synchpoint, the message is transferred to
the final destination queue.

A program may send a response to the terminal that originated a
transaction simply’by specifying the I/o PCB in its ISRT calls,
because the system places the name of the originating terminal
in the I/O PCB, when the program retrieves the transaction. To
set the destination of a PCB that is defined as modifiable, the
program issues a Change (CHNG) call that specifies a PCB and the
name of the destination to which the PCB is to be set.

In using IMS/VS communication services, transaction processing
programs must be aware of certain attributes that may be as-
signed to transaction types at system definition. These attributes
are the response mode and the conversation mode, and apply

A response mode may be specified in the definition of transac-
tion types that originate from terminals. A response mode of
RESPONSE specifies that the program must transmit a response
message to the originating terminal before another transaction is
accepted from that terminal. A response mode of NONRE-
SPONSE specifies that such a response is not required. This facil-
ity may be used to keep the terminal operator in step with the
application program.

A conversation mode may similarly be specified for transactions
that originate from terminals. A transaction type is defined to be
conversational if a scratch pad area definition is included in the
definition of the transaction type. For example

TRANSACT CODE=ALPH . . . SPA=(156, CORE)

defines the Automobile Club of Michigan transaction type ALPH
to be conversational, with a main storage scratchpad area of 156
bytes. If this definition is not included, the transaction type is
nonconversational.

In processing a conversational transaction, a program may en-
gage in a two-way exchange of messages with the originating
terminal before the transaction is considered to be completely
processed. A scratchpad area is provided in which the program
may save intermediate results, while waiting for terminal re-
sponses. Thus the program need not occupy a message processing
region during these intervals.

Conversational transaction processing is initiated by the termi-
nal operator by entering a transaction in the normal way. When
the system receives the transaction, instead of placing it in the
appropriate transaction queue, it constructs a segmented mes-
sage the first segment of which is a scratchpad that is associated
with the originating terminal, and succeeding segments are those
of the original transaction. This substitute message is then
placed in the transaction queue.

When the associated transaction processing program is sched-
uled and issues a GU call to the I/O PCB, it receives in its work
area the scratchpad segment that has the following format:

where L designates length, x is reserved, c is the transaction
code, and x is an initially blank work area. Ensuing GN calls
against the I lo PCB retrieve the first segment (without a transac-
tion type code) and succeeding segments of the original transac-
tion.

156 MCGEE PART v IBM SYST J I

To send a conversational response to the originating terminal,
the program issues ISRT calls against the 110 PCB, as in noncon-
versational processing. One and only one response message
must be sent to enable the terminal to continue the conversation.

To save the scratchpad between exchanges, an ISRT call against
the I/O PCB is again used. The scratchpad segment is distin-
guished from output message segments by coding in the segment
header. The system saves the scratchpad in main storage or di-
rect access storage, as specified in the transaction definition.
The scatchpad need not be saved on every exchange. If it is not
saved, the original, or the most recently saved version, is returned
on the next GU call.

When the terminal has received a program response, the opera-
tor can enter the terminal’s response. This response does not
represent a new transaction and therefore does not contain a
transaction type code. On receiving the terminal’s response, the
system retrieves the scratchpad, and uses it to build and enqueue
a multisegmented message, as with the original input. The pro-
gram is rescheduled through the normal scheduling facilities, and
at that time it may issue GU and GN calls to retrieve the scratch-
pad and terminal input segments.

Conversational processing can continue in this manner for any
number of exchanges. The conversation is normally terminated
by the program by blanking out the transaction type code in the
scratchpad segment before saving it with an ISRT call. When the
system receives such a scratchpad, it removes the terminal from
conversational mode and discards the scratchpad. The next in-
put from the terminal is treated as a new transaction.

Alternatively, a conversation may be terminated by the terminal
operator’s entering an EXIT command. The terminal then reverts
to normal transaction mode. During a conversation, the terminal

~ operator may temporarily leave and later re-enter the conversa-
tional mode by entering the HOLD and RELEASE CONVERSA-

1 TION commands, respectively.

The communication services provided to FP transaction process- fast
ing programs are similar to those just described for DC transac- path
tion processing programs. The principal differences are as fol-
lows:

The input queue for an FP transaction processing program is
the transaction queue for the associated load balancing
group. The queue may hold transactions of more than one
type.
The (single) output queue is the terminal queue for the ter-
minal that entered the transaction.

NO. 2 1977 IMSlVS TRANSACTION PROCESSING 157

All messages consist of a single segment only.
All transaction types must have a response mode of RE-
SPONSE and must be nonconversational.

Definition of transaction processing programs

A transaction processing program must be defined through the
use of the PSBGEN utility program, in the same manner as a
batch processing program. Program attributes that may be de-
clared include program name, data bases to be accessed, type of
access, and destinations to which messages are to be sent. The
resulting Program Specification Block (PSB) is placed in the
r~s lvs program specification block library.

A transaction processing program is also declared at system
definition with the APPLCTN statement, as in the following ex-
ample:

APPLCTN PsB=psbname, PGMTYPE= TP

{BATCH\

One or more transaction types may be associated with the pro-
gram by following the APPLCTN statement with one or more
TRANSACT statements. The following statements:

APPLCTN PSB=MVP402, PGMTYPE=;TP . . .
TRANSACT CODE=AROI . . .
TRANSACT CODE-OMP . . .
TRANSACT CODE-KDG . . .

associate transaction types AROl, COMP, and CKDG with the PSB
and program named ~ ~ ~ 4 0 2 . A transaction type may be asso-
ciated with one and only one application program.

For a message processing program, the defined association be-
tween the program and one or more transaction types forms the
basis for scheduling the program. Specifically, the receipt of a
transaction of a given type causes the corresponding application
program to be scheduled.

As with batch processing programs, transaction processing pro-
grams must be stored in the IMS/VS application program library.

Transaction processing program scheduling

The facilities for scheduling transaction processing programs in
the DC feature are designed for transactions having a wide range

158 MCGEE PART v I B M SYST J

of arrival rates and processing requirements, and are accordingly
quite general. The corresponding facilities in the FP feature, on
the other hand, are tailored to uniformly high transaction rates
and relatively low processing requirements. In this section are
described the two sets of facilities, starting with those in the DC
feature.

The two types of DC transaction processing programs, message data
processing programs and batch message processing programs, communication
are distinguished primarily by the manner in which they are
scheduled. Batch message processing programs are scheduled
manually by the system operator, whereas message processing
programs are scheduled automatically by the system whenever a
message processing region is available.

I In scheduling a transaction processing program, the following
three functions are performed:

A program is selected.
The schedulability of the program is determined. A program
is schedulable if it has not been disabled and if all resources
required, as reflected in its PSB, are available.
The program and its associated control blocks are loaded,
and control is given to the program.

In the case of batch message processing programs, the selection
of a program is accomplished by the operator, when the batch
message region job is started. Job control parameters that are
specified by the operator include program name, the PSB name,
and the transaction type code for the transaction queue that is to
be the program’s input queue. (The latter is optional, i.e., a
batch message processing program need not access a queue.)
The PSB that is associated with the program is retrieved in order
to determine whether the data bases required are available. If
so, the program is loaded and control is given to it. Otherwise, a
message is sent to the master terminal and the job is terminated.

In the case of message processing programs, the selection of a
program is accomplished with the aid of the association estab-
lished between programs and transaction types in program defi-
nition, and the assignment of priorities to transaction types in
system definition and message processing region startup. The
job request that starts a message processing region specifies one
or more classes of transaction types to be processed by that re-
gion. The order in which classes are specified determines the
priority of the respective classes of transaction types. Within a
given class, the priority of a transaction type is determined by
priority attributes declared for the transaction type at system
definition, and by the size of its associated transaction queue.

IMSlVS TRANSACTlON PROCESSlNG 159 I

Program selection then consists of selecting the program with
the highest-priority transaction type for which transactions are
waiting.

Priority attributes to be declared for a transaction type include a
normal priority, a limit priority, and a limit count. Initially, the
transaction type has the normal priority. When the size of the
associated transaction queue exceeds the limit count, the priori-
ty is changed to the limit priority and remains there until the
queue is emptied, at which time it reverts to the normal priority.
Limit priority is usually set higher than normal priority, so that
large queues receive preferential treatment.

When a message processing program has been scheduled, it is
not normally schedulable again until it has terminated. To expe-
dite the processing of heavily used transaction types, provision
is made for declaring a program to be parallel schedulable, and
for declaring a parallel processing limit for any transaction type
associated with the program. Such a program may be scheduled
concurrently into two or more message processing regions.
When an associated transaction type is considered for schedul-
ing, it is scheduled only if the number of transactions of that
type that are waiting exceeds the product of the number of re-
gions currently processing the transaction type and the value of
the parallel processing limit (PARLIM) parameter declared for the
transaction type. In queuing system terms, PARLIM represents
the largest value that the average number of waiting customers
per server can attain before another server is added. The ability
to automatically adjust the number of regions processing a given
transaction type to the current activity of that transaction type is
called load bulancing.

A program completes by issuing a return call, and the region
then becomes available for rescheduling. A program normally
issues a return call when there are no more messages in its input
queue. Under certain circumstances it may be undesirable for
the program to relinquish the region. Although this can always
be achieved by the program’s withholding its return call, a less
costly approach is to declare the transaction type to have the
Wait For Input (WFI) attribute. When the associated queue is
accessed and is empty, the system interlocks the program until a
transaction arrives, but does not schedule another program into
the region in the interim.

The scheduling of message processing programs may be con-
trolled during system operation by master terminal commands
that reassign transaction classes to regions, reassign transaction
types to classes, and change the priorities that are assigned to
transaction types. Commands are also available to enable and
disable three types of resources that are central to program

160 MCGEE PART V IBM SYST J

scheduling: transactions, programs, and data bases. Disabled
transactions are rejected, disabled programs are not scheduled,
and disabled data bases render unschedulable any programs that
reference them.

Once scheduled, a program runs to completion unless it is ab-
normally terminated. To minimize the impact of such termina-
tions on system operation, provision is made for dividing the
execution period into intervals bounded by synchpoints. A
synchpoint is a point from which a program can be restarted in
the event of an abnormal program end. A synchpoint occurs
when a G U call is issued to the r/o PCB (on the assumption that
the call starts the major loop in the program), and when the pro-
gram issues a Checkpoint (CHKP) call. A batch message process-
ing program may issue checkpoint calls if it does not access an
input queue. Between synchpoints, the system saves the mes-
sage taken from the input queue by the program, holds output
messages in a temporary destination queue, and records all data
base changes made by the program in a dynamic log. When a
synchpoint is reached, the saved input message is discarded, the
output messages are placed in their final destination queues, and
dynamic log entries for the interval are erased, thereby commit-
ting the output messages and the data base changes.

, A transaction processing program may be abnormally ended
1 (abended) for any of the following three reasons:

It attempts to execute an instruction or invoke a system ser-

It is terminated by IMS/VS to break a data resource deadlock.
It terminates itself with the Rollback (ROLL) call.

vice for which there is no useful outcome.

For all abends, the system backs out -with the aid of the dy-
namic log - all data base changes made by the program since its
most recent synchpoint. The system cancels output messages
generated by the program since the last synchpoint by discard-
ing the temporary destination queue, and places the message
removed by the program from the input queue back in the input
queue. For deadlock and rollback abends, the system automati-
cally restarts the application program. For other abends, the sys-
tem disables the abending program so that it cannot be resched-
uled, and notifies the system operator, giving the program name,
transaction code, input terminal name, and the first segment of
the current input message. The operator can determine the
cause of the abend, correct it, and re-enable the program with
the /START command. Message processing programs restart au-
tomatically; batch message processing programs must be resub-
mitted.

NO. 2 ' 1977 IMS/VS TRANSACTION PROCESSING 161

fast In the Fast Path feature, both types of transaction processing
path programs - the message-driven and the non-message-driven -

are scheduled by the system operator, in a manner similar to the
scheduling of batch message processing programs in the DC fea-
ture. A non-message-driven program normally terminates itself
with a return statement, whereas a message-driven program is
designed to run continuously and be terminated by the system
operator. Message-driven programs operate in the wait for in-
put mode, i.e., they are interlocked when they attempt to re-
trieve from any empty input queue.

Multiple executions of a message-driven program may be
scheduled concurrently into different regions. All executions are
associated with a single load balancing group, and retrieve trans-
actions in First In First Out (FIFO) sequence from the single trans-
action queue that is associated with the load balancing group.
The load balancing group facility serves the same purpose as the
parallel scheduling facility of the DC feature. In the load balanc-
ing group facility, the number of program executions is deter-
mined by the system operator, whereas in the parallel scheduling
facility this number is determined by the system on the basis of
transaction load.

A message-driven program creates a synchpoint when it issues a
c u call to the I lo PCB, as does a non-message-driven program by
issuing a new Synchpoint (SYNC) call. At a synchpoint, all data
base changes requested by the program since the previous
synchpoint are carried out, all logging for the interval is done,
and the output message is placed in the appropriate terminal
queue. Synchpoint processing is serialized, i.e., done for one
program at a time, so that there is no possibility of two or more
programs reaching deadlock over shared resources. The dy-
namic log is not used by Fast Path. If a program abends, data
base backout is not required since data base changes have not
yet been made. Instead, the operator can correct the cause of
the abend, if necessary, and simply restart the program.

On-line execution operation and monitoring

An on-line execution of I ~ s l v s is initiated by a system console
command that starts a control region and gives control to the
IMSlvS control program. After initialization, the control program
requests a restart command from the master terminal. When
starting the system for the first time (cold s tart) , the operator
replies with the command lNRESTART CHECKPOINT 0. The con-
trol program responds by enabling all IMS~VS resources except
lines (or logical units) and dependent regions. Communication
lines are enabled by master terminal command, as described in
Part IV. Dependent regions are started through operating sys-
tem facilities as described in Part I.

162 MCGEE PART v I S M SYST J

/CHECKPOINT

This commanl

point entry from the previous shutdown, restores the control
blocks saved at that time, and waits for the operator to enable
lines and regions, as in a cold start. If the previous shutdown
had been a DUMPQ or PURGE, the operator must specify in the
NRESTART command the identification of the shutdown check-
point. After locating this checkpoint, the system rebuilds the
message queues from entries in the log, and restores control
blocks.

An on-line execution can be ended abnormally for a variety of
reasons, including the following:

The control region abends.
The control region does not respond to terminals and must
be terminated by operating system command.
The operating system, power, or hardware fails.

IMS/VS provides facilities that permit the system to be restarted
from abnormal ends without disruption to the terminal user,
other than waiting for restart to take place.

The basic approach to emergency restart is to record the state of
the system periodically in the form of system checkpoints and
message queue dumps, and to log system activity that occurs
between such recordings. When an outage occurs, the system is
restarted by taking the most recently recorded state and using
the log to update it to the point of the outage.

System checkpoints are taken at normal system shutdown, sys-
tem restart, and at intervals throughout system operation. The
checkpoint interval is determined by a user-specified number of
log records to be written between checkpoints. Checkpoints
may also be taken during operation by issuing the master termi-
nal command /CHECKPOINT. Message queue dumps are taken at
normal system shutdowns, using the DUMPQ or PURGE options.

Following an outage in which main storage or queue data sets
are lost, the operator first determines that the system log has
been properly terminated, using the Log Tape Termination utili-
ty if necessary. The operator then restarts the operating system
and the IMS/VS control region. If only main storage has been
lost, the operator enters the command IERESTART. The system
responds by selecting an appropriate checkpoint on the system
log, and processing the log forward from that point to restore the
message queues to their state at the time of the outage. For each
DC transaction processing program that is active at the time of
the outage, the system uses the dynamic log to reset system
state to the program’s most recent synchpoint, just as though the
program had abnormally terminated. When restart processing is
complete, the operator may start message processing regions

164 MCGEE PART v IBM SYST J

of transactions processed by the system in a specified time inter-
Val, thereby giving a detailed history of each transaction. The
report is optionally recorded on secondary storage so that it may
be sorted into various sequences and otherwise manipulated by
user programs. The utility also optionally produces an extract of
the system log for more convenient study of intervals of interest.

The Statistical Analysis utility program gives summaries of the
activity in various system resources during a specified time in-
terval, including line and terminal activity (e.g., messages sent
and received and message sizes), transaction type activity (e.g.,
transactions processed and average response time), and pro-
gram activity (e.g., transactions processed, calls issued, and CPU
time expended). These reports may be used, for example, to
schedule the use of terminals so as to achieve better line utiliza-
tion and response times.

A Program Isolation Trace Report utility program lists instances
of program waiting caused by the program isolation feature,
along with waiting times. This information is useful in eliminat-
ing bottlenecks that have been created by heavily-used data re-
sources.

Additional information on system operation can be obtained by
including in the defined system the IMS/VS Monitor Facility,
which may be enabled on any batch or on-line execution. In an
on-line execution the facility may be started and stopped from
the system console. The Monitor Facility produces an indepen-
dent log of system activity that can be processed by an appro-
priate utility program. Logs created in on-line executions are
processed by the DC Monitor Report Print program, which pre-
pares reports that contain the following kinds of information:

Buffer pool utilization, which is useful in determining the
adequacy of assigned pool sizes.
Region timing information, from which region utilization can
be derived.
Program activity, such as number of calls of various types,
number and duration of waits for input and output, and CPU
time.
Transaction queuing activity, which is useful in setting trans-
action type priorities.
Special events, such as failure to schedule application pro-
grams because of processing intent conflict or lack of buffer i
space.

Logs created by batch executions are processed by the DB Mon-
itor Report Print program for reporting buffer pool utilization
and program activity.

I 166 MCGEE PART v I B M SYST J

