
Batch processing is described from the application programmer
point of view. Restart and recovery techniques are also dis-
cussed. Other parts of the series discuss objectives and archi-
tecture, data base structuring, data communication, and
transaction processing facilities.

The information management system IMS/VS
Part 111: Batch processing facilities

by W. C. McGee

The batch processing facilities of IMS/VS permit the user to
provide for the arbitrary processing of I M W S data bases. This is
accomplished by user-written application programs that are
stored in the IMS/VS application program library and are invoked
during batch executions of the system. Such programs are called
batch processing programs, to distinguish them from other types
of application programs accommodated by IMS/VS. Typical uses
for batch processing facilities are:

Data base maintenance in which batches of change records
are accumulated and processed periodically to add new rec-
ords to and to update existing records in one or more data
bases.
Report generation in which records of a data base are re-
trieved sequentially to produce a report.

The facilities described here are those that are available in the
Data Base system of IMS/VS. Additional batch processing facili-
ties are provided in the Data Communication and Fast Path fea-
tures, but since these facilities are closely related to the transac-
tion processing facilities of IMS/VS, they are discussed in Part V.

The batch processing facilities of the I M W S Data Base system
are presented by first describing the general structure and opera-
tion of batch processing programs. This is followed by a discus-
sion of the data services available to batch processing programs.
Next, the definition and cataloging of batch processing pro-
grams are described. Finally, the operation of batch executions
is discussed. Since the batch processing program is the only type
of application program to be discussed in this part, it will be re-
ferred to simply as “application program.”

IBM SYST 1 IMS/VS BATCH PROCESSING FACILITIES 123

Application program structure and operation

Application programs to be run under IMS/VS may be written in
System/370 Assembler Language, COBOL, or PL/I. An applica-
tion program communicates with the system through a set of
Program Communication Blocks (PCBS). The PCBS for a pro-
gram are produced and stored in a library at the time the pro-
gram is defined to IMSIVS, and are loaded into the batch region
each time the program is scheduled for execution. PCBS contain
user-declared program attributes as well as parameters that are
passed between the program and system during execution.

An application program is written as a subroutine that has a
standard entry point name and accepts as parameters the ad-
dresses of (or pointers to) its associated PCBS. When the pro-
gram is invoked by IMSIVS, these addresses or pointers are set to
point to the program’s PCBS, in the order of their appearance in
the program definition.

Programs invoke system services through calls to a standard
interface routine, specifying the function to be performed, the
PCB to be used to communicate the parameters and results of the
call, and additional parameters as appropriate to the function
being invoked. As a result of the call, control goes to the inter-
face routine and thence to various system modules to carry out
the requested function. The system places feedback information
in the designated PCB and returns control to the program. When
the application program completes, it returns control to IMS/VS
by executing a RETURN statement.

Data services

IMS/VS provides two distinct classes of data structures: (1) the
Data Administrator (DA) class of structures perceived by the
data administrator, and (2) the Application Programmer (AP)
class of structures perceived by the application programmer. In
this section we describe the AP class, the facilities provided for
defining AP structures, and the facilities provided for manipulat-
ing AP structures from application programs.

Figure 1 Application program- The AP data structure class is a subset of the DA class as shown
mer data structure types in Figure 1. In particular, AP records are structurally indepen-

dent of one another, in contrast to DA records which may be in-
terconnected through logical relationships. Structure types in the
AP class generally have the same attributes and composition
rules as the like-named structure types in the DA class.

A P data bases are virtual, in that they do not physically exist on

DATA BASE

1
I
I

RECORD

SEGMENT

FIELD secondary storage. An AP data base is materialized, on a seg-

124 MCGEE PART 111
IBM SYST J

ical data base (itself a virtual struc
following relation:

AP data base = senseg * procseq *

Status code to indicate that the function has been performed
successfully, or that it has not been performed, for a reason
indicated in the code.
Level, type, and concatenated key of the segment accessed,
or of the segment that defines the path accessed.

The direct retrieval of a particular segment or path from an AP
data base is accomplished with the Get Unique (GU) function. The
call specifies an SSA for each level down to and including the
desired segment. The system responds by finding the first path
in the data base that satisfies the specified SSAS. If such a path
can be found, the system moves into the program work area the
path-defining segment and every higher-level segment for which
a command code of ‘D’ is specified in the corresponding SSA.
Thus, to retrieve only the path-defining segment, no ‘D’ com-
mand codes are used; to retrieve the entire path, all higher-level
SSAS contain the ‘D’ command code. If the designated path
cannot be found, a “not found” status code is returned.

The SSAS for a GU call typically take the following form:

segment-type (key-field-name = value)

so that the call becomes a call for a unique path or segment in
the data base.

single For the sequential retrieval of segments in hierarchic sequence,
positioning the Get Next (GN) function is provided. The system maintains a

current position pointer that can point to any segment in the
data base. When a GN call is issued, the current position pointer
is advanced to point to the next segment in hierarchic sequence,
and that segment is copied into the program work area. When
the last segment in the data base has been retrieved in this man-
ner, the next GN call returns a status code that indicates that the
end of the data base has been reached.

GN calls may be qualified so that only segments that meet a
specified condition are retrieved. If one or more SSAS are speci-
fied, the system retrieves one or more segments on the first path
following the current position that satisfies the SSAS.

The scope of the GN call is the entire data base. In particular, if
a GN call is qualified, the system searches the entire data base
for the qualifying path. The scope of sequential retrieval can be
limited to the dependents of a particular segment, by using the
Get Next within Parent (GNP) function. The first GNP call fol-
lowing a GU or GN call establishes the current segment as the
parent for sequential retrieval, and retrieves the first dependent
of the parent. Subsequent GNP calls retrieve successive depen-
dents in hierarchic sequence. When the last dependent has been

I 128 MCGEE PART 111 IRM S Y S T 1 I

retrieved, the system indicates “not found.” G N P calls may be
qualified in the same manner as GN calls.

The sequential retrieval process that has been described up to
this point uses single positioning, by which a single current posi-
tion pointer is maintained (in the PCB) for the entire data base.
To maintain multiple positions, a program may elect to use two
or more DB PCBS, each of which maintains a different position
within the same data base. Alternatively, multiple positioning
may be selected when defining the PCB. With this option, the sys-
tem maintains in the PCB a current position pointer for each
segment type in the data base, in such a way that if S 1 ,S2, . . . ,
Sn is a path of segment types, the position pointers for S1 ,S2,
. . . ,Sn always point to a valid path of segments of the corre-
sponding types. Qualified retrieval calls generally affect only the
pointers for the segment types that are involved in the call, and
paths defined by the remaining pointers are undisturbed. Multiple
positioning is useful for processing children of different types in
parallel. For example, in the following record:

the retrieval sequence b 1, c 1, b2, c2, . . . can be achieved easily
with multiple positioning.

G U calls to A P data bases derived from physical data bases are
implemented by first locating the desired root segment, and then
searching-via pointers or physical adjacency -for the desired
dependent segments. If the physical data base is HISAM, HIDAM,
or HDAM and the root segment SSA specifies a key value, the
root segment is found directly by using the indexing or random-
izing technique for the implementation. In other cases, a scan of
the data base is required. GN calls are implemented by search-
ing - again via pointers or physical adjacency - for segments that
satisfy the call. When the A P data base is derived from a logical
data base, the retrieval of segments that have direct counterparts
in a physical data base is accomplished as just described. The
retrieval of a concatenated segment in general requires the re-
trieval of both physical data base segments that make up the
concatenated segment.

When the AP data base is obtained by a processing sequence
transformation, retrieval is as has just been described, except
that a secondary rather than primary index is used to locate the
root segment. The sensitive segment transformation is effected
by skipping over segments to which the program is not sensitive,
and for segments to which key-sensitivity only has been speci-
fied, returning only the segment’s key to the key feedback field
in the PCB.

NO. 2 1977 IMSlVS BATCH PROCESSING FACILITIES

Segments are added to an AP data base with the Insert (ISRT)
function. The segment to be added is first assembled in the pro-
gram work area, and an ISRT call is then issued that contains an
SSA for each level down to and including the segment to be in-
serted. The system uses the SSAS to select, as in G U , a path to
the new segment’s parent, and then extends the path by adding
the new segment. If the new segment has a key, the segment is in-
serted into its twins in key value sequence. If the key is unique
and the key value is already present, the call is rejected. If the
new segment does not have a key, the segment is inserted as
specified in the definition of the segment type: first in the twin set,
last in the twin set, or immediately ahead of the current twin.

The ISRT function may also be used to extend a path with multi-
ple hierarchically related segments. The segments to be added
are assembled in the work area before the call is issued, and the
command code ‘D’ is specified in the SSA for the highest-level
segment to be inserted. The system responds by taking each
segment in sequence from the work area and inserting it as in
single-segment insertion.

When an AP data base is derived directly from a physical data
base, insert operations on the former are reflected directly in the
latter. ISRT calls to HSAM data bases are not allowed (except in
load programs). With HISAM data bases, the insertion of a
dependent segment generally requires the displacement of data
within an access method record to make room for the new seg-
ment. If data are displaced out of the record, the displacement
process continues into the overflow record (s) . The insertion of a
root segment implies either the creation of a new overflow
record (ISAM/OSAM) or the creation of a new KSDS record
(VSAM). In HIDAM and HDAM data bases, inserted dependent seg-
ments are placed as close as possible to their hierarchic prede-
cessors, on the assumption that the most common access se-
quence is the hierarchic sequence. HDAM root segments are
placed in or close to the root addressable area record to which
the segment key value randomizes.

When the AP data base is derived from a logical data base, the in-
sertion of an AP segment that has a single physical segment coun-
terpart is implemented as has just been described. The insertion
of a concatenated segment is carried out in conformance with
the insert rule specified in the definition of the logical parent
type in question. The physical insert rule requires the logical
parent to be present. If it is, the logical child part of the segment
is inserted and chained to the logical parent. With the logical
insert rule, the logical parent may be absent, and the system de-
rives both a logical child and a logical parent segment from the
concatenated segment.

130 MCGEE PART 111 IBM SYST J

Segments and paths of AP data bases may be replaced with the
Replace (REPL) function. Before a REPL call is issued, the seg-
ment or path to be replaced must be retrieved with a Get Hold
Unique (GHU), Get Hold Next (GHN), or Get Hold Next within
Parent (GHNP) call. These calls perform the same function as
GU, GN, and GNP, respectively, and in addition advise the sys-
tem that the retrieved data may be replaced by a subsequent
REPL call. The retrieved data are modified as required in the
work area, and a REPL call is issued to cause the modified data
to be written back to the data base.

The values of key fields cannot be changed through the REPL
function. Before copying the work area back to the data base,
the system determines whether any key field value has changed,
and if so it rejects the call. Field values used for secondary in-
dexing may be changed, and if so the system automatically ad-
justs the secondary indexes involved.

In HISAM, the replacement of a variable-length segment may
cause data displacement as in ISRT. In HIDAM and HDAM data
bases, the replacement of a variable-length segment may cause
the prefix and data parts of a segment to be separated if the
length increases, or reunited if the length decreases. REPL calls
to HSAM data bases are not allowed.

The replacement of a concatenated segment in a logical data
base is done in conformance with the replace rule specified in
the definition of the logical parent. A physical replace rule per-
mits changes only to the logical child part of the segment, and
rejects the call if changes to the logical parent part are attempt-
ed. A logical replace rule is the same, except that changes to the
logical parent part are simply ignored. A virtual replace rule
permits changes to both parts of the concatenated segment.

Segments and paths of AP data bases may be deleted with the
Delete (DLET) function. The segment or path to be deleted is first
retrieved with a GHU, GHN, or GHNP call, and a DLET call is
then issued to accomplish the deletion. The deletion of a given
segment implies the deletion of all its dependent segments.

The deletion of an A P segment generally results in the deletion
of the underlying physical data base segment. An exception
occurs in deleting segments that participate in logical relation-
ships. Such segments are actually deleted only when they are no
longer required to maintain logical relationships.

When a segment is deleted from a HIDAM or HDAM physical
data base, the space occupied by the segment is reclaimed, i.e.,
the space is made available for new segments. In HISAM data
bases, the segment is simply tagged in its prefix as being deleted;

IMS/VS BATCH PROCESSING FACILITIES 13 1 I

the space occupied by the segment can be reclaimed only
through reorganization of the data base. The system automati-
cally adjusts any indexes affected by a segment deletion. DLET
calls to HSAM data bases are not allowed.

In using IMS/VS data services, application programs must ob-
serve processing options declared for a program in its definition.
A processing option may be specified for each AP data base or
segment type that the program intends to access, and may be
any combination of G (retrieval), I (insert), R (replace), and D
(delete), together with an intent (P) to use path access. Any
call that violates the declared processing option is rejected.

Application program definition and cataloging

Application programs are defined to IMS/VS through the use of
the Program Specification Block Generation (PSBGEN) utility
program. That utility accepts declarations of such program attri-
butes as name and language, the definitions of the AP data bases
to be accessed by the program, and the type of access to be made.
The PSBGEN generates a Program Specification Block (PSB)
that contains a PCB for each AP data base defined. The PSB is
stored in the IMS/VS PSB library.

In addition to being defined, an application program must be
compiled and stored in the IMS/VS application program library.
These functions are provided by the appropriate language com-
piler and operating system utility programs.

Batch executions I

Batch processing is accomplished by starting a batch execution
of the system. A batch execution is a normal operating system
job that is initiated by the operator through a job request that
specifies the IMS~VS region controller module as the program to
be executed, and allocates to the job the data sets for the physi-
cal data bases to be accessed. The job request also specifies, as
a parameter to be passed to the region controller, the name of
the user-written application program to be run in this system
execution.

When an operating system region is available, the job is sched-
uled for execution. The region controller is fetched from the
r~s lvs load module library and given control. The region con-
troller performs the following operations:

1. Loads from IMS/VS control block libraries the PSB and the
DBDS that define the application program and the data bases
that it is to access.

I 132 MCGEE PART 111 IBM SYST J

2. Loads from the r ~ s l v s load module library the action mod-

3 . Loads the application program from the l~s /Vs application

4. Transfers control to the application program.

When the program completes, it returns control to the region con-
troller, which in turn relinquishes control to the operating sys-
tem, thereby ending the job.

A batch execution may include the use of a system log to record
changes that the application program makes to the data bases.
The log is useful for restoring data that have been erroneously
changed or deleted by an incorrect program, and for restarting
the program after system failure.

To protect data bases against the effects of incorrect application
programs, IMS/VS provides a Data Base Backout utility program.
The backout program searches the system log in the backward
direction for data base change entries that have been attributed
to the program in question, and uses the “before” image from
each such entry to replace the corresponding data in the data
bases. The utility ends when it encounters the scheduling entry
for the program.

To preclude the rerunning of an entire job in the event of system
failure, I ~ s l v s provides a program checkpointlrestart facility
that permits programs to make periodic copies of selected pro-
gram and system variables (checkpoints), and to be restarted
from such checkpoints in the event of system failure. Program
checkpoints are taken by a Checkpoint (CHKP) call that specifies
the program variables to be saved, and a checkpoint identifica-
tion for subsequent reference to the checkpoint. The system
responds to the call by flushing the data base buffers to direct
access storage and by creating a checkpoint entry in the system
log that contains the user-specified checkpoint identification, the
keys of the last data base records to be processed, and the user-
specified program variables. The system also writes a check-
point message to the operator, giving the checkpoint identifica-
tion.

Before restarting a program, following a system failure, the Data
Base Backout utility must be run to backout the changes made by
the program since a specified checkpoint. The utility ends when it
finds the specified checkpoint (or the program scheduling entry,
if that occurs first) in the system log. If the system log was
not closed at the time of failure, it may be closed by running a
Log Tape Terminator utility program. This program uses a main
storage dump to locate and flush log buffers, and then closes the
log data set.

ules that are required in this execution of the system.

program library.

NO. 2 * 1911 IMS/VS BATCH PROCESSING FACILITIES

A program is restarted through the regular batch execution initi-
ation procedure, with specification of the identification of the
checkpoint from which restart is to occur. The application pro- I
gram must issue, as part of its initialization processing, an Ex-
tended Restart (XRST) call that specifies the program variables to
be restored. The system responds by searching the system log
for the specified checkpoint. The system then restores the speci-
fied program variables and position in GSAM data bases. The
program must separately restore position in other data bases and
in non-IMsIvs data sets.

Summary and concluding remarks

The batch processing facilities of the IMSIVS Data Base System
permit users to write application programs in COBOL, P L ~ , or
System/370 assembler language; to define these programs to the
system; and to execute them through batch executions of the
system. Application programs may issue calls to the system to
retrieve, modify, add, and delete data base data. For program-
ming simplicity, application programs view data bases as sets of
hierarchic records, and transformations between this view and
the underlying data are carried out automatically. A system log
and a set of utility programs are provided to facilitate the re-
covery of data bases from the effects of incorrect programs, and
to facilitate the restarting of long-running programs, following a
system outage.

IMS/VS was one of the first generalized data base management
systems to provide hierarchic data structures. Other early sys-
tems providing such structures were the FACT’ system for the
Honeywell H800, the Generalized Information System (G I S) , ~
and to a limited extent the formatted file ~ys tems.~ The original
motive for this type of structure was to eliminate redundancy
inherent in flat files, when the entity being modeled has variably- ’

occurring attributes or subordinate entities. (Engineering docu-
ments, a common entity in the early IMS milieu, have this prop-
erty.) Since then, the hierarchic data structure has become a
proper logical view or model of data, i.e., it is a natural way of
looking at certain collections of data. IMS is frequently cited as
the exemplar of the hierarchic model. The lesson from this expe-
rience and other similar experiences seems to be that if a data
model is to be successful, it must simultaneously solve the data
view problem and the implementation-performance problem.

CITED REFERENCES

1 . R. F. Clippinger, “FACT: a business compiler,” Annual Reuiew in Automat-
ic Programming 2, 23 1 - 292, Pergamon Press, Elmsford, New York, 1961.

2. J. H. Bryant and P. Semple, “CIS and file management,” Proceedings of the
A C M 1966 National Conference, 97- 107, New York (1966).

IBM SYST J

IMS/VS BATCH PROCESSING FACILITIES 135

