
The structuring of a data base and its implementation through
the use of several access methods are presented. A number of
implementation methods are described and compared. Also pre-
sented are retrieval, updating, reorganization, and recovery.
Other parts of this jive-part series on I M S ~ vs include objectives
and architecture, batch processing, data communication, and
transaction processing.

The informatiom management system IMS/VS
Part II: Data base facilities

by W. C. McGee

IMS/VS provides facilities that assist the user in establishing and
maintaining a collection of data to be shared among a number of
applications. Such a collection is a data base. r ~ s l v s provides
support for the following data base functions:

Definition.
Creation.
Retrieval and updating.
Reorganization and recovery.

The general approach taken for supporting these functions is to
provide special languages and utility programs for performing
the definition, reorganization, and recovery functions, and to
provide a set of call-level functions for data base retrieval and
updating so that these operations can be conveniently achieved
through user-written application programs. Data base creation is
accomplished by a combination of r~s lvs utility programs and
user-written load programs.

r ~ s l v s provides two distinct classes of data structures: (1) the
class of structures seen by the data administrator (which we
call the DA class) ; and (2) the class of structures seen by the
application programmer (which we call the A P class). The DA
class has been designed for the efficient storage and retrieval of
shared data. This is basically a hierarchic class, but with provision
for the interconnecting of hierarchies into networks to avoid
redundant storage. The AP class is a subset of the DA class. It is
strictly hierarchic, and affords a simplified view of data appro-
priate for the development of application programs. Provision
has been made for defining AP structures in terms of DA struc-

96 MCCEE PART 11 IBM SYST 1

tures, and all application program operations on AP structures
are automatically reflected in the underlying DA structures. The
A P class and associated retrieval and updating facilities of IMS/VS
are discussed more fully in Part 111, on batch processing
facilities.

In this part we describe the DA data structure class, the imple-
mentation of DA structures, and the facilities provided for the
creation, reorganization, and recovery of DA structures.

The DA data structure class

The data structure types in the DA data structure class are iden-
tified in Figure 1. The figure indicates informally the way in
which structures are composed of other structures. Thus the
construct A - B means generally that structures of type A are
composed of structures of type B.

The basic structure type in the DA class is the segment, which is segments
a string of bytes. Segment types may be defined by the user.
Attributes of a segment type include its name, length type (fixed
or variable j, and length (if fixed) or minimum length and maxi-
mum length (if variable j. If a segment type has the fixed length
attribute, every instance of that segment type has the same
length. If it has the variable length attribute, instance lengths
range between the defined minimum and maximum. The first
two bytes of a variable-length segment contain the segment
length.

One or morejields may be associated with a segment. A field is Figure 1 Data administrator

a sequence of bytes within a segment. Field type attributes in-
clude name, value type, (fixed) length, and starting position in DATA BASE GROUP

the associated segment. The following value types are provided:

Hexadecimal 1-255 BAs<!FTRD '1" TION-

Character 1-255
Packed decimal 1 - 16

The segment is typically used to represent an application entity, FIELD

such as an automobile or an insurance policy. The fields of a
segment represent the values of the attributes of such entities.
For example, within a segment that represents an automobile,
fields may be used to represent the make, model, and year of the
automobile.

One of the fields in a segment may be designated as the segment
sequence field, or k e y . If a segment type has a key, segments of
that type occur under their parent segment (as defined in the

data structure types

INDEX DATA /-LoGI. PHYSICAL LOGICAL CAL

DATABASE DATABASE RELA Type Allowed lengths (bytes)

sEGrENT

parent segment type. If the child segment type has a key, the
twins are in sequence by key value; otherwise their sequence
is determined by the manner in which they are placed in the
record by the user's program.

Record types are defined by specifying a parent segment name
in each segment type definition. The definition of the record type
in Figure 2 has the following form:

SEGM NAME=VIPROOT, P A R E N F O , . . .
SEGM NAME=VIPGENPL, PARENT'VIPROOT, . . .
SEGM NAME=VIPARACT, PARENT'VIPGENPL, . . .
SEGM NAME=VIPADDR, PARENFVIPGENPL, . . .
SEGM NAME=VIPNAME, PAREN'PVIPADDR, . . .
etc.

Segments with keys also have concatenated keys. The concaten-
ated key of a segment is the concatenation of key values from
the given segment and its antecedent segments, i.e., the seg-
ments on the path from the given segment to the root segment.
Concatenated keys are used to uniquely identify segments with-
in a data base record.

A set of records of a single type is a physicul data buse. The physical
sequence of records in a data base is determined by the method data
used to implement it. A data base is defined by the statement base
DBD NAME=data-base-name . . . followed by the SEGM and
FIELD statements that define its record type.

The segments of a data base have a hierarchic sequence, which
is defined as the sequence obtained by applying the following
(recursive) procedure to the root segment of each record of the
data base in sequence:

traverse x:
get x;
for each child y of x, traverse y ;

Twins are taken in sequence, and sets of twins under a given
parent are taken in the order of definition of the corresponding
segment types.

Figure 3 illustrates two instances of the record type of Figure 2,
with the hierarchic sequence as indicated.

The structure types described so far are sufficient to represent
many different information situations. It often happens, how-
ever, that the use of these structures alone results in redundant
data being carried in two or more physical data bases. To ob-
viate this, IMSlVs provides the logical relationship structure type

NO. 2 * 1977 IMS/VS DATA BASE FACILITIES 99

Figure 4 Bidirectional logical relationship

VIPMPF DATA BASE VIPDATE DATA BASE

tal. When one of these segments is modified, the system auto-
matically modifies the other in identical manner.

If Sa and Sb represent two (or possibly the same) entity types,
the logical relationship represents a binary relation between enti-
ties of the two types. The connection segment sc may be used
for "intersection" data that describes each pair in the relation.
Figure 4 illustrates a bidirectional logical relationship that repre-
sents a binary relation between a set of policies and a set of
dates. The path from VIPGENPL to DATESEG can be used to de-
termine the (presumably one) billing date for a given policy, and
the reverse path can be used to determine the policies that have
a given billing date.

The logical relationship of Figure 4 is defined with the following
statements:

D B D NAME=VIPMPF
. . .
SEGM NAME=VIPGENPL. . .
LCHILD NAME=(VIPBWD,VIPDATE).

PAIR=BILLDATE . , .

SEGM NAME=BILLDATE,
PARENT=((VIPGENPL).
(DATESEG,P,VIPDATE)) . . .

DBD NAME=VIPDATE

SEGM NAME=DATESEG . . .
LCHILD NAME=(BILLDATE,VIPMPF).

PAIR=VIPBWD . . .
. . .
SEGM NAME=VIPBWD,

PARENT=((DATESEG,
(VIPGENPL,P,VIPMPF)) . . .

The physical data base and logical relationship constructs just
presented permit the construction of data structures of consider-
able generality and complexity. Experience indicates that, al-
though such structures are necessary for efficient storage and
retrieval, they are rarely needed for the expression of data pro-
cessing procedures; rather, they tend to complicate the develop-
ment and maintenance of such procedures. IMS/VS has, there-

fore, been designed to limit the application programmer’s view
to hierarchically structured records, and to provide facilities that
allow the data administrator to define virtual hierarchic struc-
tures in terms of physical data bases and logical relationships.
These virtual structures are logical data bases.

A logical data base is, like a physical data base, composed of
one or more records, with each record being a single-rooted tree
of segments patterned after a single tree-structured record type.
A logical data base record type may be constructed by selecting
any physical data base record type, and for each segment type
therein performing one of the following actions:

Include the segment type as it is (possibly with a new

Omit the segment type (and its dependent segment types).
If the segment type is a logical child, replace it with a new
segment type that is the concatenation of the logical child
with its logical parent.

name).

When a concatenated segment type is produced, the antecedents
and dependents of the logical parent in question can be copied
as dependents of the concatenated segment.

Thus, segment types of any number of physical data base record
types may be incorporated into a single tree-structured logical
data base record type. To illustrate, Figure 5 shows a logical
data base record type that has been constructed from the
VIPMPF and VIPDATE data bases shown in Figure 4. This
record type would be appropriate for processing all the policies
that have a given billing date.

Since logical data bases are virtual data bases, they do not have a
separate existence in secondary storage. Instead, segments of
logical data bases are materialized as required from the underly-
ing physical data bases and are passed to the application pro-
gram. Similarly, logical data base segments are accepted from
the application program, and the underlying structures are in-
serted, replaced, or deleted as appropriate.

Although logical data bases are defined as an aid to application
programmers, it is convenient to regard them as part of the DA
class, since they are usually defined at the same time as physical
data bases and logical relationships, and use the same data defi-
nition language. A logical data base definition has the same gen-
eral form as a physical data base definition, except that no fields
are defined. (The physical data base field definitions are used.)
Also every segment type has one or two source segment types
defined for it. To illustrate, the definition of the logical data base
record type in Figure 5 has the following form:

NO. 2 1977 IMS/VS DATA BASE FACILITIES

secondary index data base record key, which may be either a
unique or a multiple key. The purpose of the subsequence field
is to permit the generation of unique keys within the index data
base, even in the presence of duplicate search fields, and thus
make the accessing of the index data base more efficient.

Index data bases are automatically created and maintained by
the system. In addition, they may be accessed by application
programs in the same manner as physical data bases. The provi-
sion for carrying duplicate data in secondary indexes is useful
for rapidly accessing frequently used data.

Index data bases are defined in a manner similar to physical data
bases. An LCHILD statement is used to designate the target seg-
ment type, and the target segment type definition specifies,
through an XDFLD statement, the source segment type and
search field.

At most, one primary index data base and any number of secon-
dary index data bases may be associated with a given physical
data base. All the physical data bases connected by logical rela-
tionships, together with their associated index data bases, con-
stitute a data base group. The data base group is a significant
construct from an operational point of view, since in general all
members of a group must be present to process any one of them.

Implementation of DA data structures

To implement the data structures just described, IMS/VS uses the
following operating system access methods:

I
Sequential Access Method (SAM).
Indexed Sequential Access Method (ISAM).
Virtual Storage Access Method (vSAM).

I M ~ / V S also uses the specially developed Overflow Sequential
Access Method (OSAM) to supplement ISAM. OSAM provides for
the storage and retrieval of fixed-length unblocked or blocked
records on direct access storage devices. Records may be ac-
cessed either sequentially or directly by relative byte number.

l ~ s l v s data structure implementations make extensive use of
physical pointers. A physical pointer contains a four-byte num-
ber that is the relative number of a byte within an access method
data set. A physical pointer points to a data set record or to a
byte sequence therein by specifying the relative byte number of
the first byte of the record or sequence.

~ NO. 2 . 1977 IMS/VS DATA BASE FACILITIES 105 I

Figure 6 Variable-length seg-
ment implementation

PREFIX DATA CONTIGUOUS
STORAGE

PREFIX

SEPARATE
STORAGE

HSAM

Figure 7 Example of HSAM im-
plementation

ATA BASE
NE

ECORO

106

For implementing physical data bases, IMS/VS provides the fol-
lowing implementation methods:

Hierarchic Sequential Access Method (HSAM).
Hierarchic Indexed Sequential Access Method (HISAM).
Hierarchic Indexed Direct Access Method (HIDAM).
Hierarchic Direct Access Method (HDAM).
Generalized Sequential Access Method (GSAM).
Data Entry Data Base (DEDB).
Main Storage Data Base (MSDB).

Any one of these methods may be selected by the user for im-
plementing a given physical data base. Selection is made in the
DBD statement for the data base as in the following example:

DBD NAME=VIPMPF, ACCESS=(HDAM,OSAM)

Each access method has different storage and performance char-
acteristics, and the user is, therefore, able to select a method
that closely matches the requirements of the particular data base
being implemented. The methods also differ in the degree to
which they accommodate the various data constructs described
so far. Thus only HISAM, HIDAM, and HDAM data bases may
participate in logical relationships and have associated index
data bases. Other limitations are noted later in this paper.

In all implementations, a segment is implemented in two parts:
(1) a prejix part that contains a segment type code and other im-
plementation related information; and (2) a data part that con-
tains the DA segment byte sequence as shown in Figure 6 . The
prefix and data parts of a segment are stored contiguously unless
the length of a (variable-length) segment increases beyond the
space originally allocated. In that event, the data part is stored
separately, and connected to the prefix by a physical pointer.
For brevity, the term “segment” is now assumed to denote the
implementation of a DA segment.

In HSAM, a physical data base is implemented as a single SAM
data set with fixed-length unblocked records, as shown in Figure
7 . The segments of each data base record are stored in hierar-
chic sequence, in one or more consecutive data set records. Each
data set record holds an integral number of segments, and any
residual space in the record is unused. The last segment of one
data base record is followed immediately (in the same or next
data set record) by the root segment of the next data base rec-
ord. When the data base is created, data base records are stored
in the sequence in which they are presented by the user’s pro-
gram. If the root segments have keys, records must be presented
(and stored) in ascending key value.

MCGEE PART I1 IBM SYST J

A simple variation of HSAM is provided for the common case of
root-only data bases. This Simple Hierarchic Sequential Access
Method (SHSAM) is the same as HSAM, except that segments
have no prefixes. HSAM is intended for data for which the pre-
dominant mode of access is sequential. Direct access is possible
but not often used, since it requires a linear search of the data
base, and updating requires the writing of a new version of the
data base.

In HISAM, a physical data base may be implemented on one of
two access method bases, I S A M ~ O S A M or vSAM. With the
ISAM~OSAM base, a physical data base is implemented as two
data sets, an ISAM data set and an OSAM data set. With the VSAM
base, two data sets are also used, a Key Sequenced Data Set
(KSDS) and an Entry Sequenced Data Set (ESDS). The two im-
plementations are similar, with the ISAM and OSAM data sets in
the first playing the roles of the KSDS and ESDS, respectively, in
the second. For brevity, we describe only the VSAM imple-
mentation, and note differences for ISAM~OSAM as appropriate.

As in HSAM, a data base record in HISAM is implemented as a
physically contiguous sequence of segments taken in hierarchic
order. Instead of overlaying the resulting sequence on SAM rec-
ords, however, the sequence is divided into one or more subse-
quences, with each subsequence consisting of a whole number
of segments. The first subsequence is placed in a KSDS record,
and the remaining subsequences, if any, are placed in one or
more ESDS records that are chained by physical pointers to the
associated KSDS record, as shown in Figure 8. Each record
holds as many segments as it can, with any residual space being
available for segment inserts.

The root segment type of a HISAM data base must have a unique
key. The records of the data base are in ascending sequence on
the values of this key. The corresponding KSDS records are also
sequenced and are uniquely identified by this key. The ESDS
records used for a given data base record may occur in any se-
quence.

One implementation difference between IsAMlOSAM and VSAM
occurs in the insertion of records after the data base has been
created. In ISAM/OSAM, the first subsequence of such a record is
placed in the OSAM data set, and is chained to the ISAM record
with the next higher key value. In VSAM, a new VSAM record is
added to the KSDS, and the first subsequence is placed in that
record. Another implementation difference lies in the provision
in ISAM~OSAM for partitioning the data base record type into
subtrees of segment types, and storing the instances of each sub-
tree in a separate data set group. Such a group consists of an
ISAM and an OSAM data set as shown in Figure 9. The primary

NO. 2 . 1977 I M S ~ V S DATA BASE FACILITIES

i (SEGMENTS OF TYPE A 6)
PRIMARY DATA SET GROUP

I SECONDARY DATA SET GROUP
(SEGMENTS OF TYPE C, D)

require extensive segment insertion and deletion. The use of a
second data set (i.e., OSAM or ESDS) to hold overflow segments
permits efficient keyed access to data base records having a
wide variation in record lengths, and also permits the physical
separation of high-usage and low-usage data within a record.

In the Hierarchic Indexed Direct Access Method (HIDAM), a
physical data base is implemented as one or more OSAM or ESDS
data sets, wherein each data set holds all occurrences of a given
set of segment types (without regard to record structure). As
shown in Figure 10, the data set that holds root segment occur-
rences is called the primary data set, and the remainder (which
are optional) are called secondary data sets.

In contrast to HSAM and HISAM, segments of a HIDAM data base
record may be stored at arbitrary locations relative to one anoth-
er. Record structure is preserved through physical pointers con-
tained in the segment prefixes. Data set records are used as
“containers” for holding segments. r~s lvs manages the space
within the records, and allocates and reclaims space as segments
are inserted and deleted. In allocating space, an attempt is made
to keep adjoining segments in the hierarchic sequence as close
together in storage as possible.

One or both of the following two types of pointers may be used
to implement a record for HIDAM:

Hierarchic pointers connect the segments of a record in
their hierarchic sequence. Both forward and backward point-
ers may be used.
Physical child-physical twin pointers connect a parent seg-
ment and each of its sets of twins in a chain, with the twins
being in sequence by key value (if any). A separate chain
can be provided for each child segment type, and backward
as well as forward pointers can be used.

Hierarchic pointers are used to traverse a record in hierarchic
sequence, while child-twin pointers permit rapid access to any
segment within a record.

As in HISAM, the root segment type of a HIDAM data base must
have a unique key, and the records of the data base are in as-
cending sequence on values of this key. Record sequencing is
implemented through an associated primary index data base, and
may be implemented optionally through forward and backward
physical twin pointers in the root segments. The latter imple-

HIDAM

Figure 10 Example of HIDAM
implementation.

OSAM OR ESDS

PRIMARY DATA SET

\

B 1
OSAM OR ESDS

B 1 SECONDARY DATA SET

Figure 1 1 Example of pr imary
index implementation

PRIMARY HIDAM
INDEX
DATA

PHYSlCAl

BASE
DATA
BASE

ISAM OR KSOS OSAM OR ESDS
~

1”; SECONDARY

HDAM

Figure 12 Example of HDAM
implementation

OSAM OR ESDS ,
ADDRESS
ROOT

ABLE
AREA

OVER-

AREA
FLOW

OSAM OR ESOS

PRIMARY

SET
DATA

SECONDARY
DATA
SET

110

A primary index data base, which may be associated only with a
HIDAM physical data base, is implemented as an ISAM~OSAM data
set pair or a single VSAM Key Sequential Data Set (KSDS) as
shown in Figure 11. Each index data base record is placed in a
separate ISAM or KSDS record, with the latter in sequence on the
index data base record key. In ISAM~OSAM, records added after
the initial creation of the index are placed in the OSAM data set
and chained, as in HISAM.

The prefix of each root segment in a primary index data base
record contains a physical pointer to the root segment of the
associated physical data base record. Direct access to a record
with key value K is accomplished in the following two steps:

1. Using the indexing mechanism of ISAM or VSAM, locate the
index data base record containing key value K .

2. Using the pointer in the record found in step 1, locate the
physical data base root segment that contains key value K .

The primary index data base is automatically maintained by the
system. Insertion or deletion of a record in the indexed data
base causes the insertion or deletion of the corresponding index
data base record.

HIDAM is useful when both sequential and direct access by root
key are required, and when many segment insertions and dele-
tions can be expected. The provision of multiple data sets for a
HIDAM data base permits the parameters of each data set to be
set to best accommodate the contained segment types.

The Hierarchic Direct Access Method (HDAM) is similar to
HIDAM in that segments are stored in one primary data set and
in one or more secondary data sets, with the segments of a rec-
ord interconnected through physical pointers. Unlike HIDAM, an
HDAM data base has no associated primary index data base. In-
stead, direct access is provided through a randomizing routine
supplied by the user. The primary data set is divided into two
areas: (1) a root addressable area that consists of the first n
records of the data set, where n is user-selectable; and (2) an
overflow area that contains the remaining records of the data
set. The secondary data sets are extensions of the over-flow area
as shown in Figure 12.

The root addressable area is used to store root segments and a
limited number of dependent segments, the limit being set by the
user. When a data base record is to be added, the user’s random-
izing algorithm converts the root segment key value (which may
be unique or multiple) into a record number in the range (1,n).
If space is available in the record thus selected, the root segment
and dependent segments up to the user-specified limit are placed

MCGEE PART 11 IBM SYST J

in this record, and the remaining segments are placed in one or
more overflow area records. If space is not available in the record
randomized to, an attempt is made to store the root and its
dependents in records that are physically close to the record
randomized to, or, failing this, in the over-flow area. In any case,
the root segment is added to a synonym chain that is anchored in
the record randomized to and that is used to connect all root
segment synonyms, i.e., root segments that randomize to the
same root addressable area record. A root segment is retrieved
by randomizing a given key value, locating the root addressable
area record thus selected, and following the synonym chain for
that record to the root with the given key value.

To minimize the length of synonym chains, provision is made to
establish up to ten synonym chains in each root addressable area
record. The randomizing algorithm must produce both a record
number and a chain number that specify the record and the
chain within that record that hold the root with a given key.

The root segments (hence records) of an HDAM data base are in
sequence by key value within synonym chain within data set
record.

Parameters declared for an HDAM implementation include a
randomizing module name, the size of the root addressable area,
the maximum number of bytes of root and dependent segments
to be stored at one time in the root addressable area, and the
number of synonym chains to be included in each root address-
able area record.

HDAM is useful when direct access to a data base is required,
and the key set for the data base is relatively stable and capable
of being randomized. As in HIDAM, HDAM can tolerate a large
amount of segment insertion and deletion.

The Generalized Sequential Access Method (GSAM) may be
used to implement root-only data bases with fixed-length root
segments. A GSAM data base may be implemented as a SAM data
set or a VSAM ESDS, and is intended primarily for data exchange
between IMS/VS application programs and other user programs
that access SAM or VSAM data sets.

The Data Entry Data Base (DEDB) implementation method is
intended for applications in which a large number of key-driven
terminals enter data for later processing by batch programs. This
method is available only with the Fast Path feature. In a DEDB,
a data base record type is restricted to a single root segment
type and a single dependent segment type. A root segment is
typically used to represent a terminal from which data are being
entered, and dependent segments are used to hold the individual
entries from that terminal.

vo. 2 1977 IMS/VS DATA BASE FACILITIES

Figure 13 Example of DEDB
implementation

OVERFLOW
AREA

DEPENDENT

AREA
SEGMENT t

ESDS

1 DATA
SET 2

MSDB

logical
relationships

A DEDB is implemented as one or more VSAM ESDSs, as shown
in Figure 13. Multiple data sets may be used to partition the
data base into sets of data base records, i.e., all segments of a
given data base record are stored in the same data set. In this
way, data bases that exceed the capacity of a single data set may
be accommodated.

The placement of root segments in a DEDB is governed by a
user-supplied randomizing algorithm. Dependent segments are
stored in a separate dependent segment area at the end of the data
set. In the interest of rapid storage, dependent segments are
stored in time-of-entry sequence without regard to keeping re-
lated segments physically close. Dependent segments are chained
to their root in last-in-first-out manner.

The Main Storage Data Base (MSDB) implementation method is
intended for data bases that have very high access rates and that
can be conveniently held in (virtual) main storage. This method
is available only with the Fast Path feature.

A MSDB record type is restricted to a single root segment type of
fixed length. Two root segment keying methods are provided for
a given MSDB. In the first, a key value is carried in each root
segment, as in other implementation methods. In the second, a
one-to-one correspondence is set up between root segments and
logical terminals, and the name of a logical terminal is taken to
be the key of the associated root segment. The first keying
method is appropriate for data bases in which many terminals
must access the same- usually small- set of root segments,
such as ledgers. The second is suited for data bases in which
each terminal requires a dedicated storage area, such as teller
records.

During an on-line execution, MSDBs are held in main storage
with root segments in ascending key value. When the on-line
execution is shut down, all MSDBS are dumped to disk data sets.
These data sets are used to reload the data bases into main stor-
age when the next on-line execution is started.

Logical relationships among segments of physical data bases are
implemented by means of pointers of the following types: (1)
physical pointers of the type used to implement the physical
data bases themselves; and (2) symbolic pointers, which are
concatenated keys. Physical pointers cannot be used to point to
segments in HISAM data bases because these segments are sub-
ject to relocation during normal updating operations.

The following unidirectional logical relationship construct:
sb I

1 12 MCGEE PART 11

is implemented by placing a logical purent pointer in sc, i.e., a
pointer that points to the logical parent (sb) of sc. This pointer
enables a traversal from sa to sb via the physical parent-child
path between sa and sc, and thence via the pointer in sc to sb. If
sb is in a HISAM data base, the pointer in sc is a symbolic one,
and is the concatenated key of sb, which must be present in the
DA view of sc. If sb is in an HDAM or HIDAM data base, the
pointer may be symbolic, or it may be a physical pointer carried
in the prefix of sc.

The following bidirectional logical relationship construct

may be implemented in two ways. In physicul pairing, logical
parent pointers are placed in each of sc and sd. Two paths are
thus created, one from sa to sb, and the other from sb to sa, each
in the manner of the unidirectional implementation.

In virtual pairing, one of the two segments sc or sd does not
physically exist (it exists only in the DA view of the construct).
Assume sd does not exist. The path from sa to sb is implement-
ed as in the unidirectional implementation. The reverse path is
implemented by chaining sb and all associated sc’s with logical
child-logical twin pointers and placing a physical parent pointer
in each sc as follows:

The traversal from sb to sa is then accomplished by following
the logical child-logical twin pointers to the appropriate sc, and
thence by physical parent pointer to sa. Logical child-logical
twin chains can be bidirectional, and the twins on such a chain
can be sequenced as though they were physical children of the
logical parent. When virtual pairing is used, the real logical child
of the logical child pair cannot occur in a HISAM data base, since
HISAM provides no twin pointers of any kind.

Secondary index data bases are implemented by VSAM data sets.
If the key of the secondary index record is unique, the data base
is implemented as a single KSDS, with each data base record be-
ing placed in a separate data set record. If the key is multiple,
the data base is implemented as a KSDS-ESDS pair, with the
KSDS holding the first record with a given key value and the

~ ESDS holding the remaining records with the same key value.
1 The records with the same key value are chained together with

Figure l 4 Example of secondary physical pointers. In both cases, records of the KSDS are in as-
index implementation cending sequence on record key value as shown in Figure 14.

Each secondary index record contains a pointer to a target seg-
ment in a physical data base. If the physical data base is HISAM,
the pointer is symbolic; i.e., it is the concatenated key of the tar-
get segment, and if it is not present in the DA view of the index
record, it is concatenated to the end of the record. If the physi-
cal data base is HIDAM or HDAM, the pointer may be symbolic,
or it may a physical pointer in the index record prefix.

The retrieval of target segments having a common associated
search field value u is accomplished as follows:

1. The first secondary index record whose search field has the
value u is located, using the generic key retrieval facility of
VSAM. (The index record key is the search field plus the sub-
sequence field.).

2. The pointer in the record that is located in (1) is followed to
locate the target segment.

3 . The duplicate key chain, if any, from the record located in
(1) is followed into the ESDS, and the pointer in each record
on the chain is followed to locate a target segment.

4. Steps (2) and (3) are repeated for each subsequent record in
the KSDS that has the same search field value u.

KSDS

SECONDARY
INDEX
DATA BASE DATA BASE

HDAM
PHYSICAL

Secondary index data bases are maintained by the system. When
source segments are inserted or deleted, corresponding records
are inserted or deleted in the secondary index data base. When
any source field value changes, the corresponding index record
is repositioned in the index, if necessary, to reflect the new
value.

Definition and creation of DA structures

Each physical data base, logical data base, and index data base
to be created must first be defined to IMSIVS. This definition is
accomplished with a utility program called DBDGEN that runs in
a batch region. Input to DBDGEN is a set of control statements
for one data base, having the following general form:

DBD NAME=data-base-name
(DATASET,SEGM,LCHILD,FIELD,XDFLD statements)
DBDGEN
FINISH
END

Output is a Data Base Description (DBD) control block that is
stored in the I ~ s l v s data base description library. The DBD

114 MCGEE PART 11 ISM SYST J

control block is used by the system during data base creation,
recovery, and reorganization operations, and in handling data
base requests from application programs.

A DBD may be modified by deleting the old version with an os
utility, and rerunning DBDGEN with the new version. When a
DBD is modified, it is also generally necessary to recreate or
reorganize the data base described by the DBD.

Because of the variety of data sources and procedures that may
be used to create a data base, IMS/VS has been designed so that
data base creation is accomplished with a user-written program
called a load program (as opposed to, say, a generalized creation
program). Such a program builds one or more physical data bas-
es by issuing calls to IMSIVS. Each call results in the addition of
a single new segment or path or segments to one of the data bas-
es that is being created. Except for the implementation methods
that use randomizing algorithms to store root segments, data
base records must be added in ascending root segment key se-
quence. In all implementation methods, segments within each
data base record must be added in hierarchic sequence.

Logical data bases gain their existence through the creation of
the underlying physical data bases. Index data bases are created
by the system as a byproduct of the creation of the associated
indexed data bases.

Creation of HISAM, HIDAM and HDAM data bases is normally
done on a data base group basis, i.e., all physical data bases and
index data bases within a group are created at the same time.
(Reorganization facilities, which are described in the following
section, permit data bases to be added to an existing group.)
The creation of a group is done with a combination of IMS/VS
utility programs and user load programs, all of which run in a

The procedure for the creation of a group is illustrated in Fig-
ure 15. The following programs are used in the procedure:

physical data bases. In responding to these calls, the system
places segments in storage and resolves hierarchic, physical
child, physical twin, and physical parent pointers based on
placement in storage. Resolution of logical pointers is de-

In loading HIDAM and HDAM data bases, the user may I
so that segments that are inserted later will have a better
chance of being stored close to their hierarchic neighbors.

Figure 15 Data base group creation

PREREORGANIZATION

--"""A

ample, DATASET. . . .FRSPC=(5,50) . . . specifies that every
fifth data set record is to be left vacant, and that no more than
fifty percent of each data set record is to be used at load time.
During load program execution, the system produces a pri-
mary index data base for each HIDAM physical data base
created and a work data set that contains records of two kinds.
One is a prefix work record for each inserted segment that is a
logical parent or a logical child. Each record contains the seg-
ment's physical location and its concatenated key (if a logical
parent) or its logical parent's concatenated key (if a logical
child). The other kind of work data set record is an index
work record for each inserted secondary index source seg-
ment, containing all the information needed to construct a
secondary index entry. A single load program can be used to
create all physical data bases in a group, or data bases may
be created individually or in combinations with multiple load
programs.

116 MCGEE PART II IBM SYST J

2. Prejix resolution is an IMSIVS utility program that sorts the
work data set(s) produced in step (1) so that records for log-
ical parents and for their associated logical children are phys-
ically contiguous. This enables the resolution of logical point-
ers. Work records are then distributed to a prefix work data
set that contains prefix work records sorted by physical loca-
tion within data set; and to an index work data set that con-
tains index work records sorted on search field-subsequence
field within secondary index.

3. Prejix update is an IMS/VS utility program that accepts the
prefix work data set produced in step (2) , and (for each rec-
ord therein) locates the corresponding segment in a physical
data base and completes its prefix.

4. H I S A M unload and H I S A M reload are IMslVs utilities that are
run in tandem to accept the index work data set produced in
step (2) , and create one or more secondary index data bases.

For MSDBs, data base creation is accomplished with the help of
the MSDB maintenance utility program. This program accepts an
old set of MSDBs in sequential data set form and a set of user-
prepared changes. When no old version is provided as input, the
program in effect creates a new set of M S D B ~ .

The Automobile Club of Michigan has created some sixty-four
physical data bases for production work, using the HSAM,
HISAM, HIDAM, and HDAM implementation methods. About half
the data bases are HIDAM. In addition, some thirty physical data
bases have been created for program testing and operator train-
ing. Among the larger data bases are the automobile insurance
policy data bases. To simplify reorganization and recovery, pol-
icy information is held in five separate data bases that have iden-
tical record structure (Figure 2) . The last digit of a member’s
number determines the data base in which his policy information
is kept. Each data base contains about one-hundred sixty-two
thousand records, with an average segment count of twenty-six
and an average length of thirteen hundred twenty bytes. The five
data bases together occupy eight 3 3 3 0 disk packs.

Reorganization of DA structures

Data bases that are subject to segment insertions, deletions, or
variable-length segment replacements tend to become disorgan-
ized with use, i.e., segments normally stored together become

~ separated, and space becomes fragmented into pieces too small1
to be used for segment insertions. In addition, deleted segments
accumulate in HISAM data bases, since space is not reclaimed
upon deletion. The effect of this disorganization is to increase
both the number of secondary storage accesses and the amount

Figure 16 HISAM and index stor-
age reorganization

118

The IMS/VS data base reorganization facilities permit the user to
restore the physical storage structure of an existing data base to
the condition it would have if it had just been loaded. In general
this is achieved by unloading the data base onto a sequential
data set, with segments in hierarchic sequence, and subsequent-
ly reloading the data base, i.e., creating a new version of the data
base, using the sequential data set created in the unload process.
Deleted segments are dropped in the unloading process.

For the storage reorganization of a HISAM data base, the pro-
cedure of Figure 16 may be used. The procedure uses the
HISAM unload utility program and the HISAM reload utility pro-
gram. The procedure may be used to reorganize storage in both
HISAM physical data bases and index data bases (whose storage
organization is the same as HISAM data bases).

The storage reorganization of HIDAM and HDAM data bases
uses the procedure of Figure 17, which makes use of the hier-
archic direct unload utility program and the hierarchic direct
reload utility program. This procedure differs significantly from
the HISAM procedure in that in reorganizing a HIDAM or HDAM
data base, it is necessary to move segments from their original
insert position. As a consequence, pointers to these segments in
other data bases must be adjusted. In reorganizing a HISAM data
base, segments are also moved, but this has no effect on other
data bases, since all pointers into HISAM are symbolic.

The process of resolving pointers in storage reorganization is
similar to that used when a data base group is created. In particu-
lar, the reload program acts as a user load program. In addition
to its primary function of loading segments and resolving physi-
cal parent-child pointers in the new data base, the reload utility
creates a work data set with prefix work records and index work
records as in initial data base load. A separate utility program,
the data base scan utility, is used to create a similar work data
set of logical parents and logical children in data bases that are
not being reorganized, but which are related to the data base
that is being reorganized. The two work data sets are combined
by the prefix resolution utility that resolves logical parent-child
pointers and generates the output for prefix update and secon-
dary index creation, as in initial data base load. The procedure
creates new indexes for the data base that is being reorganized,
rather than attempting to adjust existing indexes.

The IMS/VS reorganization facilities may also be used for struc-
mre reorganization, i.e., for reflecting changes to DBD parameters
into the stored data without requiring a special user-written
program. Changes that are confined to a single data base are
achieved with a variation of the storage reorganization procedure
in which the DBD of the data base being restructured is re-

MCGEE PART 11 IBM SYST J

Record structure. (Segment types may be deleted from and
added to the end of record type paths.)
Segment attributes (length, nonkey fields).
Indexing parameters.

Structure reorganization can be carried out at the same time as
storage reorganization.

The IMS/VS reorganization facilities also permit limited changes
to be made to the composition of a data base group. These
changes are the addition of a new data base to a group (i.e., es-
tablishing a new logical relationship), and the addition of a new
secondary index data base.

The addition of a new data base generally requires the structure
reorganization of the data base(s) to which it will be related.
Similarly, the addition of a new secondary index data base re-
quires the reorganization of the data base that is being indexed.
These changes can be effected with variants of the procedures
shown earlier, in which DBDGEN, unload, and reload or initial
load are performed for each affected data base.

The reorganization of DEDB data bases is accomplished with a
root segment reorganization utility that reorganizes the root ad-
dressable and overflow areas of a data base. In addition, Fast
Path provides a dependent scan utility program that copies a set
of physically contiguous dependent segments to a sequential
data set, and a dependent delete utility program that recovers
the space occupied by such a set of segments.

Data base recovery

A data base may be damaged in a variety of ways, including
read/write errors, physical damage to a volume, inadvertent
erasing by an operator, and by an application program error.
The effect of such loss on the user’s installation can be mini-
mized through the use of data base recovery facilities.

The basic approach to data base recovery in IMS/VS is to make
periodic copies of the data sets that underlie the data base and
record data base changes on the system log. In the event of fail-
ure in a data set, the latest copy can be updated with changes
logged since the copy was made, thus restoring the data set to its
condition at the point of failure.

A data base change is recorded in the system log in the form of
two segment images: the segment as it appeared before the
change, and the segment as it appeared after the change. Addi-
tional information recorded includes the identity of the program

I 120 MCGEE PART I1 IBM SYST J

Summary and concluding remarks

IMs lVs provides the following two data structure classes: struc-
tures perceived by the installation data administrator (DA),
and structures perceived by the application programmer (AP).
The DA class is basically hierarchically organized but pro-
vides a logical relationship facility that avoids redundant data
storage and permits the representation of many-to-many rela-
tions. The DA class also includes primary and secondary index
structures. For implementing DA structures, a variety of imple-
mentation methods are provided, so that the user may select the
methods giving the best performance for particular data bases.
Implementation methods range from sequential storage to stor-
age by randomizing algorithms, and even include the imple-
menting of data bases in main storage.

Facilities are provided for the definition and creation of data
bases. Creation is governed primarily by user-written load pro-
grams, with utilities provided for the integration of data bases
into groups. Reorganization and recovery facilities are also
provided through a number of utility programs.

GENERAL REFERENCES
1 . IBM Corporation, IMSIVS Version I SystemlApplication Design Guide, Doc-

ument SH20-9025, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

2. IBM Corporation, IMSIVS Version I Fast Puth Feature General Informa-
tion Manual, Document GH20-9069, IBM Corporation, Data Processing
Division, White Plains, New York 10604.

3. IBM Corporation, IMSIVS Version I Utilities Reference Munual, Document
SH20-9029, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

Reprint Order No. G321-5047. I

122 MCGEE PART 11

