Improvements in programming technology have paralleled im-
provements in computing system architecture and materials.
Along with increasing knowledge of the system and program
development processes, there has been some notable research
into programming project measurement, estimation, and plan-
ning. Discussed is a method of programming project productiv-
ity estimation. Also presented are preliminary results of re-
search into methods of measuring and estimating programming
project duration, staff size, and computer cost.

A method of programming measurement and estimation
by C. E. Walston and C. P. Felix

New materials technologies and architectures are significantly
affecting computing system hardware. While the cost per bit of
storage and the execution cost per instruction have both been
decreasing, the same trend has not been true for software. Since
software development has continued to be a people-oriented ac-
tivity, a higher percentage of the cost to acquire a computing
system is accruing to software development.'

New management and programming techniques have been de-
veloped to improve programming efficiency. Among the im-
proved programming technologies are the following:

Chief programmer team, a programming organization built
around a chief programmer, a backup chief programmer, and
a librarian that effectively produces code in a disciplined and
open environment.”

Hierarchy plus Input-Process-Output (HIPO), a graphic de-
sign and documentation method that is used to describe pro-
gram functions from the topmost level to great detail.’
Development support library, a tool that provides current
information about project programs, data, and status.”
Structured programming, a programming method based on
the mathematical Structure Theorem® that enables program-
mers to understand and enhance programs that have been
written by others,’ as well as one’s own programs.

Design and code inspections, a review of program design,
code, and documentation to detect errors prior to program
execution.”

Top-down development, an ordering of program development
and testing that begins at the topmost functional level and
proceeds decrementally to the lowest functional level.

WALSTON AND FELIX IBM SYST J

This paper discusses research into programming measurements,
with emphasis on one phase of that research: a search for a
method of estimating programming productivity. The method we
present is aimed at measuring the rate of production of lines of
code by projects, as influenced by a number of project condi-
tions and requirements. We do not, however, measure the per-
formance of individual programming project members. As we
continue our research, we are continuing to learn more about the
attributes of the programming process, about programming it-
self, and about better ways of analyzing the data.

Before starting the programming measurements research re-
ported here we analyzed the literature on programming measure-
ments and productivity that includes the work of Aron,® Wein-
wurm and Zagorski,” and Nelson."” We also wanted to isolate
the effects of improved programming technologies from the ef-
fects of monetary inflation, variations in computing cost, and
ambiguities in the definition of computing quantities (such as
that of the size of the delivered program product). ’

The software measurements project began in 1972 when we de-
cided to assess the effects of structured programming on the
software development process. To do that, a rigorous program
was established to measure the then current software method-
ologies so that changes that result from the introduction of new
methodologies could be measured. The initial phase of the mea-
surements program was to identify variables to be measured, to
design a questjonnaire (called the Programming Project Sum-
mary questionnaire), and to develop a system for processing the
data to be collected. The first report entered the system on
January 23, 1973, and data have continued to be received and
entered into’ the system from that time on. Since the establish-
ment of the Programming Project Summary, two new reporting
formats have been designed: the Software Development Report
and the Software Service Report. '

We understood at the outset that the established objectives
might change as the project matured and as data were accumu-
lated. Current objectives of the project discussed in this paper
are the following:

Provide data for the evaluation of improved programming
technologies.

Provide support for proposals and contract performance.
Gather and preserve historical records of the software de-
velopment work performed. _

Provide programming data to management.

Foster a common programming terminology.

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

objectives

Table 1 Software project measurements reports

Report Name Nature of the Report

Programming Project Detailed report on the software development
Summary environment, the product (including errors),
resources, and schedule.

Software Detailed report on the software development
Development Report environment, the product (including changes and
errors), resources and schedule.

Monthly Software One report on product, resource, and schedule
Development Report status. Changes in software development
environment are noted.

Software Service Report on project size and on the software
Report service environment.

Quarterly Software Detailed data on product being serviced,
Service Report resource status, and changes in software service
environment.

Key to a software measurement program are the analysis of
measurements and feedback of results to the suppliers of the
raw data and to management. This paper discusses the data re-
porting and analysis in the software measurements program of
the 1BM Federal Systems Division. Described first are the mea-
surements data base, the services that are available to users of
the data, and descriptive statistics from the data base. The next
section covers the analysis of programming productivity and
describes a productivity estimation technique. Following this,
the results of other analyses that have been performed with re-
spect to factors such as documentation, staffing, and computer
costs are presented. The last section briefly describes analysis
efforts that are being contemplated for future research. In the
measurements project discussed here, a sufficiently large quanti-
ty of data is being collected so that a programming project mea-
surement system is used to provide the necessary flexibility and
capability of storage control and analysis. The Programming
Project Measurement System is briefly described in the Appen-
dix. ’

Measurements data base

Data contained in questionnaires submitted by line projects at
prescribed reporting periods are stored in a computer data base
where they are accessible for answering queries, preparing re-
ports, or for analytical studies.

The basic measurements data base is structured so that it con-
tains all the reports received, as described in Table 1. Each Pro-

WALSTON AND FELIX IBM SYST J

gramming Project Summary milestone report is given a unique
number when received and is assigned a separate record in the
file. Project milestones are the following: start of work; prelimi-
nary design review; midway through software development;
acceptance test completion; and every three months during the
maintenance or service phase. Each initial and final Software
Development and Software Service report is also filed as a sepa-
rate record.

The monthly Software Development Reports plus any changes to
the initial submission constitute separate records, as do the
quarterly Software Service Reports and any changes to the ini-
tial Software Service Report. Each record is structured into
fields, or variables, that correspond to the question response
fields in the questionnaires.

Sixty completed software development projects are now in the
data base. These completed projects, which represent a wide
variety of programming technology, are summarized in Table 2.
Their delivered source lines of code range from 4000 to 467 000,
and their effort ranges from 12 to 11758 man months. These
programs include real-time process control, interactive, report
generators, data-base control, and message switching programs.
Some of the programs have severe timing or storage constraints
and other programs have both types of constraints. Twenty-
eight different high-level languages and 66 different computers
are represented in the listing in Table 2.

With the previously described data base and with the capabili-

ties provided by the Programming Project Measurement Sys-
tem, a wide variety of services can be provided to line project
personnel. Queries can be answered, analyses performed, and
programming project productivity estimation provided for new
or on-going projects. Examples of services are discussed through-
out the remainder of this paper.

Queries that can be answered by direct retrieval of data from the
data base are of two general types. First is a request for data
about a specific project. In this case, the Programming Project
Measurement System generates a report that lists the answers to
the questions submitted by personnel of the specified project.
The second type of query is a more general request for informa-
tion, an example of which is, “What has been the utilization of
improved programming technologies by projects in the data base
and what was the effect on project productivity?” The answer is
provided in the form of a listing of productivity data sorted by
project. The following breakdown indicates the types of report-
ed and derived data that can be provided in response to a gen-
eral inquiry:

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

services

Table 2 Characterization of programs in the programming project data base

A. Small less-complex systems

Batch storage and retrieval

Batch inventory

Batch information management

Batch languages preprocessor and information management
Batch reporting

Batch financial information

Batch scientific processing simulation

Batch utility

Batch operating system exerciser

. Medium less-complex systems
Special-purpose data management (2)
Batch storage and retrieval (2)

Process control simulation

Batch reporting

Batch data-base utility (2)

On-line scientific processing simulation
Batch on-line scientific information management
On-line business information management
On-line storage and retrieval

Batch hardware test support

Batch scientific algorithm feasibility (3)
Interactive scientific processing (2)
System test support

Batch planning (3)

Batch military information management
Special-purpose operating system

. Medium complex systems

Real-time, special-purpose system exerciser
Special-purpose operating system (2)

Batch information modification

Batch information conversion

Data management

Sensor-based mission control

On-line scheduling

Sensor-based mission simulation
Interactive scientific processing

Process control (3)

On-line graphics

System performance monitoring and measurement (3)
Terminal data management

Interactive information conversion
Operating system extensions

. Large complex systems
¢ Sensor-based mission monitoring and control
Interactive information acquisition
Process control
Sensor-based system exerciser (3)
Sensor-based mission processing and communication (2)

Programming project data:

e Number of lines of delivered source code ordered by project.
(Source lines are 80-character source records provided as
input to a language processor. Job control languages, data
definitions, link edit language, and comment lines are includ-
ed. Reused code is not included.)

58 WALSTON AND FELIX IBM SYST J

Table 3 Programming project descriptive data report for completed projects

Median Quartiles
50% 25-75%

Productivity
Source lines per man month of total 274 150-440
effort

Product
Source lines (thousands)
Percentage of code lines not to be
delivered
Documentation per thousand lines of
source code (pages)

Resource
Computer cost (as a percentage of
project cost}
Total effort (man months)
Average manning
Effort distribution of preliminary
design review (percent)
Distribution of effort (percent)
Management and administration
Analysis
Programming and design
Other
Duration (months)

Development error detection
Errors per thousand source lines
Incorrect function
Omitted function (percent)
Misinterpreted function (percent)
Errors per programming man month

¢ Pages of documentation (including program source listings)
delivered.
¢ Source languages used to develop code.

Resource data:

Total effort (in man-months, including management, adminis-
tration, analysis, operational support, documentation, design,
coding, and testing) required to produce the lines of source
code by project.

Duration of project in months.

Use of improved programming technologies (expressed as a
percentage of code developed using each technique):

Structured programming.
Top-down development.
Chief programmer team.
Design and code inspections.

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

Table 4 Data for completed service projects

Median Quartiles
50% 25-75%

Product
Lines of maintained source code 103 56-~474
(thousands)
Ratio of developed to maintained 0.04 0-0.19
code

Resources

Average manning per project

Maintained source lines per man
(thousands)

Distribution of effort
Management and administration

(percent)

Analysis (percent)
Programming (percent)
Other (percent)

Duration (months)

Errors detected
Errors per thousand lines of maintained
code
Incorrect function (percent)
Omitted function (percent)
Misinterpreted function (percent)

Table 5 Descriptive data from on-going projects

Median Quartiles
Programming 50% 25-75%

Source lines (thousands) 12.5 5.4-30

Percentage of code lines not to be 2.6 0-11
delivered

Effort (man months) 72 30-205

Distribution of effort:
System analysis (percent) 15 10-20
System design (percent) 20 15-25
Code and unit test (percent) 30 20-35
Integration and test (percent) 20 15-30
Other (percent) 5 0-10

Duration (months) 12 9-~18

Median Quartiles
Service 50% 25-75%

Maintained source lines (thousands) 148 55~-340

Ratio of developed to maintained code 0.05 0-0.09
Effort (man months) 88 27~185
Average manning (persons) S 3~19

Duration {months) 6.5-12

WALSTON AND FELIX IBM SYST J

Derived data:

Productivity achieved, ordered by project. Programming
productivity is defined as the ratio of the delivered source
lines of code to the total effort (in man-months) required to
produce the lines of code, and is computed from product and
resource data.

Average number of people required to work on the project,
computed by dividing the totai effort in man-months by the
duration of the project in calendar months.

More complex and extensive search and analysis questions can
also be answered. These are supported by a question analysis
subsystem of the Programming Project Measurement System,
which incorporates a statistical package for the manipulation
and statistical analysis of many types of data. The more complex
requests can be grouped into two types, descriptive and analyti-
cal. A descriptive request requires searching the data base for
specific variables or derived variables and computing character-
istics about their distributions such as the mean, mode, and stan-
dard deviation, in order to prepare the report. Table 3 illustrates
one such report for the completed projects in the data base.

Because of the variability in the measurement data, the statistics
in Table 3 are presented in terms of medians and quartiles. The
median for the size of the delivered software product is 20 thou-
sand lines and fifty percent of the projects reported that the sizes
of their delivered source code ranged from 10 thousand to 59
thousand lines. The effort for software development reported
was distributed into the major categories as shown. The error
detection section of the table shows the distribution of errors
reported during the development phase.

Table 4 provides descriptive statistical data for completed ser-
vice projects. Most service activity is not purely maintenance,
but includes development efforts as well. The ratio of developed
source lines of code to maintained lines of code was 4 percent at
the median.

Table 5 presents data on on-going programming and service
projects. Since only a small percentage of these projects have
been completed at this time, the statistics represent a mixture of
actual measurements and estimates at various stages of com-
pletion.

Productivity analysis

We have identified five major parameters that can help program-
ming project personnel make estimates. These parameters, pro-

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

ductivity, schedule, cost, quality, and size, are listed in order of
increasing difficulty and complexity of analysis. Some of the
difficulties arise from a lack of detailed data in the data base, as in
the case of schedule data. Complexity of the quantitative data
can create other difficulties. One significant difficulty is in iden-
tifying and measuring independent variables that can be used to
estimate the desired variable, as is the case in estimating the size
of the product to be delivered.

Productivity, which can be defined in terms of the quantitative
measures that are in the data base, is a vital factor in all software
estimating processes and, therefore, is of immediate value to
project personnel. For this reason, the analysis performed to
date has focused on productivity estimation. Productivity has
often been defined as the ratio of output to input. Programming
productivity is defined here as the ratio of the delivered source
lines of code (DSL) to the total effort in man-months (MM) re-

Figure 1 Relationship between quired to produce that delivered product.
delivered lines of code

d effort
ane efter The basic relationship between delivered lines of code and effort

is shown in Figure 1. Each plotted point represents the data
reported by a completed project in the data base. A number on
the chart indicates a position where a number of data points are
grouped sufficiently close together that they cannot be individu-
ally identified on the plot. The data have been plotted in the log-
log domain so that they become approximately linear. The linear
coeflicients become power relationships when transformed back
to the original domain of the data. The least squares fit to the
data as plotted in Figure 1, yields the result:

=}
=

TOTAL EFFORT (MAN-MONTHS)

1K 10K 100K M
DELIVERED CODE (SOURCE LINES)

E=52L""

where

E = total effort in man months
and

L = thousands of lines of delivered source code.

productivity This relationship is nearly a first-power (or linear) relatibnship
index between effort and product size. The dashed lines indicate the
standard error of the estimate on either side of the least squares

fit. To identify the sources of scatter or variation of Figure 1,

those variables that are related to productivity have been inves-

tigated. Preliminary findings have led to the development of a
productivity estimator that provides an on-line capability to
support proposed as well as on-going projects. A set of sixty-

eight variables was selected from the data base, and those vari-

ables were analyzed to determine which were significantly re-

lated to productivity. Twenty-nine of the variables showed a
significantly high correlation with productivity and have there-

WALSTON AND FELIX IBM SYST J

fore been retained for use in estimating. Table 6 lists these vari-
ables and the reponses associated with them. To illustrate the
meaning of Table 6, consider the first entry, which is derived
from a multiple-choice question that asks the information sup-
plier to circle his response to the following statement: Customer
interface is (less than, equal to, greater than) normal complexity.

When the mean productivity was computed for all the completed
reports in the data base that indicated less than normal customer
interface complexity, the result obtained was 500 delivered
source lines of code per man-month of effort (DSL/MM). By a simi-
lar computation, the mean productivity for all projects that re-
ported normal complexity was 295 DSL/MM, and the mean pro-
ductivity for those reporting greater than normal complexity
experience was 124 DSL/MM. The change in productivity be-
tween less-than-normal and greater-than-normal customer inter-
face is 376 DSL/MM, as noted in the final column in Table 6. Three
variables in the table (overall personnel experience, code com-
plexity, and design constraints) were formed by combining the
answers to several questions in the questionnaire. It should be
noted that this analysis was performed on each variable indepen-
dently and does not take into account either the possibility that
these variables may be correlated, or that there may be inter-
related effects associated with them.

The twenty-nine variables were then combined into an index,
based on the effect of each variable on productivity, as indicated
by the above analysis, to form a productivity index. The produc-
tivity index is computed as follows:

29
1= WX,

i=1

where

I = productivity index for a project

W, = question weight, calculated as one-half log,, of the ratio
of total productivity change indicated for a given question i

X, = question response (+1, 0 or —1), depending on whether
the response indicates increased, nominal, or decreased
productivity

An index was computed for fifty-one projects, and a plot of ac-
tual productivity for each project versus the computed produc-
tivity index and the least squares fit to this relationship is shown
in Figure 2. The standard error of the estimate (standard devia-
tion of the residuals) is shown as dashed lines.

To support project estimates, a shortened version of the data
collection form is used that contains excerpted questions as-

sociated with the twenty-nine variables used in the index. A

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

rapid
estimates

Table 6 Variables that correlate significantly with programming productivity

Question or Variable

Response Group
Mean Productivity
(DSL/IMM)

Productivity
Change
(DSLIMM)

Customer interface
complexity

User participation
in the definition of
requirements

Customer originated
program design changes

Customer experience
with the application
area of the project

Overall personnel
experience and qualifi-
cations

Percentage of pro-
grammers doing devel-
opment who participated
in design of functional
specifications

Minimal
146

Previous experience
with operational
computer

Minimal
122

Previous experience
with programming
languages

Minimal
146

Previous experience with
application of similar or
greater size and com-
plexity

< 0.5
305

No
297

0%
226

Ratio of average staff size
to duration (people/month)

Hardware under concurrent
development

Development computer
access, open under special
request

0-10%
303

No
289

Development computer
access, closed

Classified security envi-
ronment for computer and
25% of programs and data

Normal
295

Some
267

Some
340

Average
257

25-50%
242

Average
270

Average
225

Average
221

> Normal
124

Much
205

376

286

Many
196

Much
206

High
410

> 50%
39

Extensive
312

Extensive
385

Extensive
410

program, running in the Time Sharing Option of OS/vs (TSO) was
developed to compute and list the index estimates. This terminal-
based program allows rapid response to project requests for
information. The estimate of expected productivity is returned to

WALSTON AND FELIX

IBM SYST J

Question or Variable Response Group Productivity
Mean Productivity Change
(DSL/MM) (DSLIMM)

Structured programming 0-33% 34-66% 66%
169 — 301 132

Design and code inspec- 0-33% 34-66% > 66%
tions 220 300 339 119

Top down development 0-33% 34-66% > 66%
196 237 321 125

Chief programmer team 0-33% 34-66% > 66%
usage 219 - 408 189

Overall complexity of < Average > Average
code developed 314 185 129

Complexity of application < Average Average > Average
processing 349 345 168 181

Complexity of program < Average Average > Average
flow 289 299 209 80

Overall constraints on pro- Minimal Average Severe
gram design 293 286 166

Program design constraints Minimal Average Severe
on main storage 391 277 193

Program design constraints Minimal Average Severe
on timing , 303 317 171

Code for real-time or inter- < 10% 10-40% > 40%
active operation, or exe- 279 337 203
cuting under severe timing

constraint

Percentage of code for 0-90% 91-99% 100%
delivery 159 327 265

Code classified as non- 0-33% 34-66% 67-100%
mathematical application and 188 311 267
1/O formatting programs

Number of classes of items 0-15 16-80 > 80
in the data base per 1000 334 243 193
lines of code

Number of pages of de- 0-32 33-88 > 88
livered documentation per 320 252 195
1000 lines of delivered code

the requester in the form of a report that contains a comparison
between the project estimate and the one derived from the data
base. Also included is a list of the reported attributes or variables
that had a significant influence on the estimate. Where possible,
detailed discussions are held on special factors associated with a
project that may not be properly handled in the present algorithm.

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

Figure 2 Relationship between productivity and productivity index for twenty-nine
variables

PRODUCTIVITY (DELIVERED SOURCE LINES/MAN MONTH)
PRODUCTIVITY (DELIVERED SOURCE LINES/MAN DAY)

~————— DECREASING PRODUCTIVITY 0 INCREASING PRODUCTIVITY —————
PRODUCTIVITY INDEX

Figure 3 Estimated productivity for a hypothetical project

1600

PRODUCTIVITY (DELIVERED SOURCE LINES/MAN DAY)

T
=
z
[}
=
z
<
=
=~
%)
W
z
)
w
o
©
=3
Q
173
[a)
)
o
w
=
S
w
e
=
=
o
2
o
=]
&
a

~#—————— DECREASING PRODUCTIVITY ¢ {NCREASING PRODUCTIVITY ——————»
PRODUCTIVITY INDEX
4 150 DSL/MM PROJECT ESTIMATE
+ 200 DSL/MM PRODUCTIVITY INDEX ESTIMATE

Figure 3 is a plot similar to the one shown in Figure 2, which is
presented for a hypothetical project. The productivity index is
computed for the project from responses to the proposal ques-
tionnaire and yields the expected productivity to be attained, as
determined by the measurements data base. In the case shown
in Figure 3, the estimated productivity is seen to be two hundred

WALSTON AND FELIX IBM SYST J

Table 7 Additional productivity related variables

Variable Response Change Productivity
(low to high Change*
percent) (percent)

Ratio of developed to
original plus developed 0 to 100 705
code

Effort at primary develop- 50 to 100 215
ment location

Remote job entry computer 0 to 100 205
access

*Based on least squares fit to data in Figure 4.

delivered source lines of code per man-month (DSL/MM), with
one standard error range of 115 to 340 DSL/MM. The project
team’s independently developed productivity estimate for the
same conditions was 150 DSL/MM. Thus, in this case, the project
estimate is a more conservative estimate than that given by the
productivity index.

Consider additional conclusions that can be drawn from Figure
3. If we assume a normal distribution for the observations, when
they are plotted as a log of the productivity versus a log of the
productivity index in Figure 3, the probability P, that the proj-
ect would have a productivity estimate in region A (i.e., less
than 2.06 or the log,, of 115 DSL/MM) is about 0.17. The proba-
bility that the productivity estimate would be in region B (i.e.,

between 2.06 and 2.30, the log of 115 and 200 DSL/MM) is about
0.33. Similarly, P is 0.33 and P is 0.17. This is the probability
distribution of productivity estimates, not the cumulative proba-
bility that a project will (or will not) achieve or exceed the pro-
ductivity that was estimated.

Investigation is continuing into other variables from the data
base that may also be related to productivity. Figure 4 shows
several distributions that appear to have a significant relation-
ship to productivity, although in two of these cases they are
based on a limited number of observations. Table 7 expresses
the net effect of the data plotted in Figure 4 in tabular form.
Figure 4(A) shows productivity (in source lines of code per
man month) plotted against the ratio of developed source code
to the sum of any original (or reused) code plus the developed
code. The plot in Figure 4(A) suggests that productivity is high-
est when there is no original or reused code, that is, when all the
code is developed from the inception of the project. As the per-
centage of reused code grows, the expected productivity de-
creases.

+ 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

other
estimates

Fi

PRODUCTIVITY

Q
S

PRODUCTIVITY

o
=}
S

PRODUCTIVITY

<}
=3
T

Fi

DELIVERED DOCUMENTATION (PAGES)

gure 4 Additional productivity
relationships

—
=

50 100
RATIC OF DEVELOPED TO ORIGINAL
AND DEVELOPED CODE (PERCENT)

—
=

o 2
227 83
22 24
24
®2

1
25 50 75 100
EFFORT AT PRIMARY LOCATION (PERCENT)

©
.

\

WNGNOWWOe
e
L]
L[]

|]
50 100
REMOTE JOB ENTRY (PERCENT)

gure 5 Relationship between
documentation and de-
livered code

o
S
=

,.A
o
=

=

-
o
]

=)

1K 10K 100K 1M
DELIVERED CODE (SOURCE LINES)
D=491.01
WHERE
D = PAGES OF DOCUMENTATION
L = THOUSANDS OF SOURCE CODE LINES

68

Figure 4(B), although it contains a large amount of scatter, sug-
gests that when the development effort is spread across more
than one location, i.e., as the percentage of effort at the primary
location becomes less than 100 percent, the productivity de-
creases. Another question currently of interest is the impact of
remote job entry on productivity. Most of the completed proj-
ects in the data base were developed without the use of termi-
nals, as Figure 4(C) shows. On the basis of a least squares fit,
however, those projects that use remote job entry do appear to
have an increase in productivity.

Other results of programming analysis

Although the primary effort has been directed toward productiv-
ity analysis, other analyses have been performed on the data
base. Results of these efforts to the present time are presented
here. The data can be used to check productivity estimates, and
to check current project parameters against past experience, as
reflected by the data base. Such results provide a multidimen-
sional approach to crosschecking a number of the factors that
enter into estimates of effort: productivity, duration, documenta-
tion, and computer costs. These results also indicate the nature
of the analyses that can be performed against the data base.

Documentation is a critical product of every software project,
and documentation costs are an important component of the es-
timation process. A useful parameter for measuring documenta-
tion is number of pages. Figure 5 is a plot of delivered documen-
tation in number of pages versus delivered source lines of code.
Documentation is defined here as program functional specifica-
tions and descriptions, users’ guides, test specifications and re-
sults, flow charts, and program source listings that are delivered
as part of the documentation. As a first approximation, the least
squares fit indicates that a linear or first-order relationship ex-
ists; that is, the number of pages of delivered documentation
varies directly as the number of lines of source code.

After programming project estimates have been completed,
those estimates can be checked against the data base by using
the plots in Figures 5-10. If, for example, the size of the deliv-
ered software product is estimated as ten thousand lines of
source code {as shown in Figure 5) it can be seen from past
experience that the expected number of pages of documentation
to be delivered is five hundred. The range for one standard error
for this given value is one hundred eighty to thirteen hundred
pages. This provides an independent calibration point that the
manager can use to compare his estimate against the experience
of past projects. A significant difference between the two does

WALSTON AND FELIX IBM SYST J

not necessarily imply an error on the part of the manager, but it
does suggest that the assumptions and estimates might be re-
examined.

The question of how much time to allow for the development of
software is always difficult to assess. The relationship between
duration (expressed in months) and delivered source lines of
code is shown in Figure 6. Project duration as a function of total
effort in man months is shown in Figure 7. Initial analysis indi-
cates that a cubic relationship fits the data in both of these fig-
ures. This implies that the duration of effort increases by the
cube root of the number of source lines of code delivered or by
the cube root of the total effort applied to the development of
the code. For example, for a project that is developing a soft-
ware product of 10 thousand lines of source code, the expected
duration of the effort is 4.0 X 10.0°* or 9.6 months. Figure 7
does not imply that simply reducing total effort automatically
permits a reduction in project duration. Such a reduction would
more likely make it impossible to produce and test the required
volume of code.

The staff size utilized to develop a given software product is
influenced by a number of factors, including the time allowed for
development, the amount of code to be developed, and the staff-
ing rates that can be achieved. After a project has been estimat-
ed, one convenient measure used to describe the size of the proj-
ect is the average number of people required. Figure 8 shows a
relationship that can be used as another check on the estimating
process. It shows the relationship between the staff size —ex-
pressed in terms of the average number of people (defined as
total man-months of effort divided by the duration) —and the
total effort applied.

Estimating computer costs is very difficult, but at the same time
it can also be a very significant fraction of the total cost. Al-
though only eighteen of the completed projects in the data base
had computer costs reported, some interesting relationships are
indicated when computer costs are compared with the amount of
delivered code and the total effort, as is shown in Figures 9 and
10. In Figure 9, two observations (circled) are evidently out of
bounds when plotted against delivered code. These same two
observations, however, fit well with total effort, as shown by the
plot in Figure 10. Based on this limited evidence, it appears that
computer costs are closely related to effort, and they appear to
have nearly a first power (or linear) relationship. Note that in
Figure 9, the two out-of-bounds points are not included in deter-
mining the least-square fit.

No. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

project
duration

Figure 6 Relationship between
project duration and
delivered code

53
S

) -
oo > 5
Y .4 2%
i M"
/)’003

DURATION (MONTHS)
i
(=)

| | |
100 1K 10K 100K M
DELIVERED CODE (SOURCE LINES)

—

M=4.11036
WHERE
M == DURATION IN MONTHS
L = THOUSANDS OF SOURCE CODE LINES

computer
cost

Figure 7 Relationship between
project duration and
total effort

1=
=}

DURATION (MONTHS)
-
o

100 1K 10K
TOTAL EFFORT (MAN-MONTHS)

M=247 935
WHERE
M = DURATION IN MONTHS
E = EFFORT IN MAN MONTHS

COMPUTER COST (DOLLARS)

regression
method

Relationship between
computer cost and de-
livered code

=

10K 100K 1M
DELIVERED CODE (SOURCE LINES)

C=1.841096
WHERE
€ == COMPUTER COST IN THOUSANDS OF
DOLLARS
L =THOUSANDS OF SOURCE CODE LINES
(TWO OUTLIERS EXCLUDED FROM
LEAST SQUARES FIT.)

70

STAFF SIZE (AVERAGE NUMBER Of PEOPLE)

=

=}
S

Figure 8 Relationship between average staff size and total effort

|
10K

TOTAL EFFORT (MAN-MONTHS)

S=0.54E£06

WHERE
S = AVERAGE NUMBER OF PEOPLE ON STAFF
£ = TOTAL EFFORT IN MAN MONTHS

Concluding remarks

The present approach to productivity estimation, although use-
ful, is far from being optimized. Based on the results of the vari-
able analysis described in this paper, and supplemented by the
results of the continued investigation of additional variables re-
lated to productivity, an experimental regression model has been

developed. Preliminary results indicate that the model reduces
the scatter. Further work is being done to determine the potential
of regression as an estimating tool, as well as to extend the anal-
yses of the areas of computer usage, documentation volume,
duration, and staffing.

Appendix

The effective utilization of programming measurements data
requires the ability to store, retrieve, process, and report data.
Specialized capabilities to do various types of statistical analy-
ses are also required. These capabilities are provided by a Pro-
gramming Project Measurement System. This system is com-
posed of two subsystems, the question. processing subsystem
and the question analysis subsystem. The basic functions pro-
vided by the question processing subsystem are the maintenance
of the data base (which contains the information submitted in
response to the questionnaire), the retrieval and listing of data
from the data base in various report formats, and the extraction

WALSTON AND FELIX IBM SYST J

of data for transfer to the question analysis subsystem for statis-
tical analysis. Figure 11 shows the overall flow of information in
the programming project measurement system. The question
analysis subsystem uses the Statistical Package for the Social
Sciences (a product of Spss, Inc.), which is an integrated sys-
tem of computer programs for the analysis of data, and provides
the user with a large set of procedures for data selection, trans-
formation, and file manipulation, and offers a large number of
commonly used statistical routines.

Statistical routines include descriptive statistics, frequency dis-
tributions, cross tabulations, correlation, partial correlation, mul-
tiple regression, and factor analysis. The package has its own
internal data management facilities that can be used to modify
analysis files of data and can be used in conjunction with any of
the statistical procedures. These facilities enable the user to
generate variable transformations, recode variables, sample, se-
lect or weight specified cases, and add to or alter the data or the
analysis files.

Project data enter the Programming Project Measurement Sys-
tem by way of questionnaires that are answered by project per-
sonnel. At the inception of the measurement program discussed
in this paper, one questionnaire was used for both development
and service (maintenance) contracts. On service contracts,
questionnaires were to be submitted quarterly. For development
projects, four questionnaires were to be prepared by the project
at major milestones during the life of the project. Identical ques-
tionnaires were to be submitted, but not every item required an
answer at each submission. The four reporting milestones were
the following:

Start of work.
Preliminary design review or equivalent.
Top-down programming —completion of integration of one-
half of the program units, or
Bottom-up programming—completion of unit test of three
quarters of the program units.

s Acceptance test completion.

Problems arose when project personnel tried to use the same
questionnaire form for both development and service contracts;
differences between those two types of activities made it difficult
to fit all the necessary questions into one questionnaire format.
A further problem was the reporting frequency of development
contracts. The four milestones might often be six months to two
years apart, and many changes could occur in project organiza-
tion, in project specifications, and in the definitions of products
to be delivered, so that it was difficult to correlate questionnaire
responses from milestone to milestone.

No. 1 -« 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

Figure 10 Relationship between

COMPUTER COST (DOLLARS)

-
=

computer cost and
total effort

10 1K
TOTAL EFFORT (MAN-MONTHS)

C==1.1£08!
WHERE
€= COMPUTER COST IN THOUSANDS OF
DOLLARS
£=TOTAL EFFORT IN MAN MONTHS

Figure 11 Programming project measurement system

PROJECT QUESTION QUESTION STATISTICAL
DATA PROCESSING ANALYSIS ANALYSES
SUBSYSTEM SUBSYSTEM
REPORTS
BASE

For these reasons changes were made in the questionnaires and
the frequency of reporting. Separate questionnaires were created
for development projects (Software Development Reports) and
for service efforts (Software Service Reports). Development
reports, which cover detailed qualitative items as well as quanti-
tative data, are submitted at the start of work and again at
acceptance test completion. Between these two submittals, a
Monthly Software Development Report is submitted. This is a
one-page summary of the status of a product, cost, and effort
that is submitted each month. The Software Service Report is an
overview of a product that is being serviced and is submitted at
the start and end of service. The Quarterly Software Service
Report is a summary of the product, cost, and effort status, plus
a detailed reporting of errors and their impact. Reporting is done
by programming projects that are developing or servicing prod-
ucts in the form of lines of code and that employ two or more
programmers with an expenditure of twelve or more man-
months of effort.

CITED REFERENCES

1. B. W. Boehm, ‘““Software and its impact: a quantitative assessment,” Data-
mation 19, No. 5, 48-59 (May 1973).

2. F. T. Baker, “Chief programmer team management of production program-
ming,” IBM Systems Journal 11, No. 1, 56-73 (1972).

3. HIPO - A Design Aid and Documentation Technique, Order No. GC20-
1851, IBM Corporation, Data Processing Division, White Plains, New
York 10504.

. F. M. Luppino and R. L. Smith, Programming Support Library Functional
Requirements, U.S. Air Force, Headquarters, Rome Air Development Cen-
ter, Griffis Air Force Base, New York (July 1974). See also Rome Air
Development Center, Structured Programming Series, Vol. V.

. E. W. Dijkstra, “Notes on structured programming,” pp. 1-82, O. J. Dahl,
E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, New York (1972).

. F. T. Baker, “System quality through structured programming,” AFIPS
Conference Proceedings 41, Part 1, 339-343 (1972).

. M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal 15, No. 3, 182-211 (1976).

. J. D. Aron, “Information systems in perspective,” Computing Surveys 1,
No. 4 (December 1969).

WALSTON AND FELIX IBM SYST J

9. G. F. Weinwurm and H. J. Zagorski, Research Into the Management of
Computer Programming: A Transition Analysis of Cost Estimation Tech-
niques, SDC Report TM-2712, System Development Corporation, Santa
Monica, California (1965).

. E. A. Nelson, Research into the Management of Computer Programming:
Some Characteristics of Programming Cost Data from Government and
Industry, System Development Corporation, Santa Monica, California (No-
vember 1965).

GENERAL REFERENCES

1. Improved Programming Technologies—An Overview, IBM Systems Ref-
erence Library, Order No. GC20-1850, IBM Corporation, Data Processing
Division, White Plains, New York 10604.

2. P. Van Leer, “Top-down development using a program design language,”
IBM Systems Journal 15, No. 2, 155-170 (1976).

3. G. J. Myers, “Characteristics of composite design,” Datamation 19, No. 9,
100-102 (September 1973).

4. W. P. Stevens, G. J. Myers, and I. L. Constantine, “‘Structured design,”
IBM Systems Journal 13, No. 2, 115-139 (1974).)

5. E. W. Dijkstra, “Notes on Structured Programming,” T. H. Report WSK-03,
Second Edition, Technical University Eindhoven, The Netherlands (April 1970).

6. E. W. Dijkstra, “GOTO statement considered harmful,” Communications of
the ACM 11, No. 3, 147- 148 (March 1968).

7. H. D. Mills, Mathematical Foundations for Structured Programming, FSC
72-6012, IBM Corporation, Gaithersburg, Maryland 20760 (February 1972).

8. H. D. Mills, Structured Programming, FSC 70-1070, IBM Corporation,
Gaithersburg, Maryland 20760 (October 1970).

9. J. G. Rogers, “Structured programming for virtual storage systems,” IBM
Systems Journal 14, No. 4, 385-406 (1975).

10. G. J. Myers, Software Reliability: Principles and Practices, Wiley-Inter-
science, New York, to be published. : '

11. G. J. Myers, Reliable Software Through Composite Design, New York:
Petrocelli/Charter (1975). Also see W. P. Stevens, G. J. Myers, and L. L.
Constantine, “Structured Design,” IBM Systems Journal 13, No. 2, 115-139
(1974).

12. D. L. Parnas, “On the criteria to be used in decomposing systems into mod-
ules,” Communications of the ACM 15, No. 12, 1053-1058 (1972).

13. N. Wirth, Systematic Programming: An Introduction, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1973).

14. J. F. Stay, “HIPO and integrated program design,” /BM Systems Journal
15, No. 2, 143-154 (1976).

15. M. F. Fagan, “Design and code inspections to reduce errors in program de-
velopment,” IBM Systems Journal 15, No. 3, 182-211 (1976).

16. G. J. Myers, “Composite design facilities of six programming languages,”
IBM Systems Journal 15, No. 3, 212-224 (1976).

Reprint Order No. G321-5045.

PROGRAMMING MEASUREMENT AND ESTIMATION

73

