
Improvements in programming technology have paralleled im-
provements in computing system architecture and materials.
Along with increasing knowledge of the system and program
development processes, there has been some notable research
into programming project measurement, estimation, and plan-
ning. Discussed is a method of programming project productiu-
ity estimation. Also presented are preliminary results of re-
search into methods of measuring and estimating programming
project duration, staff size, and computer cost.

A method of programming measurement and estimation
by C. E. Walston and C. P. Felix

New materials technologies and architectures are significantly
affecting computing system hardware. While the cost per bit of
storage and the execution cost per instruction have both been
decreasing, the same trend has not been true for software. Since
software development has continued to be a people-oriented ac-
tivity, a higher percentage of the cost to acquire a computing
system is accruing to software development.'

New management and programming techniques have been de-
veloped to improve programming efficiency. Among the im-
proved programming technologies are the following:

Chief programmer team, a programming organization built
around a chief programmer, a backup chief programmer, and
a librarian that effectively produces code in a disciplined and
open environment.'
Hierarchy plus Input-Process-Output (HIPO), a graphic de-
sign and documentation method that is used to describe pro-
gram functions from the topmost level to great detaiL3
Development support library, a tool that provides current
information about project programs, data, and tatu us.^
Structured programming, a programming method based on
the mathematical Structure Theorem' that enables program-
mers to understand and enhance programs that have been
written by others: as well as one's own programs.
Design and code inspections, a review of program design,
code, and documentation to detect errors prior to program
execution7
Top-down development, an ordering of program deqelopment
and testing that begins at the topmost functional level and
proceeds decrementally to the lowest functional level.

I 54 WALSTON AND FELIX IBM SYST J

This paper discusses research into programming measurements,
with emphasis on one phase of that research: a search for a
method of estimating programming productivity. The method we
present is aimed at measuring the rate of production of lines of
code by projects, as influenced by a number of project condi-
tions and requirements. We do not, however, measure the per-
formance of individual programming project members. As we
continue our research, we are continuing to learn more about the
attributes of the programming process, about programming it-
self, and about better ways of analyzing the data.

Before starting the programming measurements research re-
ported here we analyzed the literature on programming measure-
ments and productivity that includes the work of Aron: Wein-
wurm and Zagorski: and Nelson." We also wanted to isolate
the effects of improved programming technologies from the ef-
fects of monetary inflation, variations in computing cost, and
ambiguities in the definition of computing quantities (such as
that of the size of the delivered program product).

The software measurements project began in 1972 when we de-
cided to assess the effects of structured programming on the
software development process. To do that, a rigorous program
was established to measure the then current software method-
ologies so that changes that result from the introduction of new
methodologies could be measured. The initial phase of the mea-
surements program was to identify variables to be measured, to
design a questionnaire (called the Programming Project Sum-
mary questionnaire), and to develop a system for processing the
data to be collected. The first report entered the system on
January 23, 1973, and data have continued to be received and
entered into'the system from that time on. Since the establish-
ment of the Programming Project Summary, two new reporting
formats have been designed: the Software Development Report
and the Software Service Report.

We understood at the outset that the established objectives
might change as the project matured and as data were accumu-
lated. Current objectives of the project discussed in this paper
are the following:

Provide data for the evaluation of improved programming

Provide support for proposals and contract performance.
Gather and preserve historical records of the software de-

Provide programming data to management.
Foster a common programming terminology.

technologies.

velopment work performed.

NO. I * 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

Table 1 Software project measurements reports

Report Name Nature of the Report

Programming Project
Summary

Software
Development Report

Monthly Software
Development Report

Software Service
Report

Quarterly Software
Service Report

Detailed report on the software development
environment, the product (including errors),
resources, and schedule.

Detailed report on the software development
environment, the product (including changes and
errors), resources and schedule.

One report on product, resource, and schedule
status. Changes in software development
environment are noted.

Report on project size and on the software
service environment.

Detailed data on product being serviced,
resource status, and changes in software service
environment.

Key to a software measurement program are the analysis of
measurements and feedback of results to the suppliers of the
raw data and to management. This paper discusses the data re-
porting and analysis in the software measurements program of
the IBM Federal Systems Division. Described first are the mea-
surements data base, the services that are available to users of
the data, and descriptive statistics from the data base. The next
section covers the analysis of programming productivity and
describes a productivity estimation technique. Following this,
the results of other analyses that have been performed with re-
spect to factors such as documentation, staffing, and computer
costs are presented. The last section briefly describes analysis
efforts that are being contemplated for future research. In the
measurements project discussed here, a sufficiently large quanti-
ty of data is being collected so that a programming project mea-
surement system is used to provide the necessary flexibility and
capability of storage control and analysis. The Programming
Project Measurement System is briefly described in the Appen-
dix.

Measurements data base

Data contained in questionnaires submitted by line projects at
prescribed reporting periods are stored in a computer data base
where they are accessible for answering queries, preparing re-
ports, or for analytical studies.

The basic measurements data base is structured so that it con-
tains all the reports received, as described in Table 1. Each Pro-

56 WALSTON AND FELIX IBM SYST J

gramming Project Summary milestone report is given a unique
number when received and is assigned a separate record in the
file. Project milestones are the following: start of work: prelimi-
nary design review: midway through software development;
acceptance test completion: and every three months during the
maintenance or service phase. Each initial and final Software
Development and Software Service report is also filed as a sepa-
rate record.

The monthly Software Development Reports plus any changes to
the initial submission constitute separate records, as do the
quarterly Software Service Reports and any changes to the ini-
tial Software Service Report. Each record is structured into
fields, or variables, that correspond to the question response
fields in the questionnaires.

Sixty completed software development projects are now in the
data base. These completed projects, which represent a wide
variety of programming technology, are summarized in Table 2.
Their delivered source lines of code range from 4000 to 467000,
and their effort ranges from 12 to 11 758 man months. These
programs include real-time process control, interactive, report
generators, data-base control, and message switching programs.
Some of the programs have severe timing or storage constraints
and other programs have both types of constraints. Twenty-
eight different high-level languages and 66 different computers
are represented in the listing in Table 2 .

With the previously described data base and with the capabili-
ties provided by the Programming Project Measurement Sys-
tem, a wide variety of services can be provided to line project
personnel. Queries can be answered, analyses performed, and
programming project productivity estimation provided for new
or on-going projects. Examples of services are discussed through-
out the remainder of this paper.

Queries that can be answered by direct retrieval of data from the
data base are of two general types. First is a request for data
about a specific project. In this case, the Programming Project
Measurement System generates a report that lists the answers to
the questions submitted by personnel of the specified project.
The second type of query is a more general request for informa-
tion, an example of which is, “What has been the utilization of
improved programming technologies by projects in the data base
and what was the effect on project productivity?” The answer is
provided in the form of a listing of productivity data sorted by
project. The following breakdown indicates the types of report-
ed and derived data that can be provided in response to a gen-
eral inquiry:

NO. 1 * 1977 PROGRAMMING MEASUREMENT A N D ESTIMATION

Table 2 Characterization of programs i n the programming project data base
~ ~ ~

A. Small less-complex systems
Batch storage and retrieval
Batch inventory
Batch information management
Batch languages preprocessor and information management
Batch reporting
Batch financial information
Batch scientific processing simulation
Batch utility
Batch operating system exerciser

B. Medium less-complex systems
Special-purpose data management (2)
Batch storage and retrieval (2)
Process control simulation
Batch reporting
Batch data-base utility (2)
On-line scientific processing simulation
Batch on-line scientific information management
On-line business information management
On-line storage and retrieval
Batch hardware test support
Batch scientific algorithm feasibility (3)
Interactive scientific processing (2)
System test support
Batch planning (3)
Batch military information management
Special-purpose operating system

C . Medium complex systems
Real-time, special-purpose system exerciser
Special-purpose operating system (2)
Batch information modification
Batch information conversion
Data management
Sensor-based mission control
On-line scheduling
Sensor-based mission simulation
Interactive scientific processing
Process control (3)
On-line graphics
System performance monitoring and measurement (3)
Terminal data management
Interactive information conversion
Operating system extensions

D. Large complex systems
Sensor-based mission monitoring and control
Interactive information acquisition
Process control
Sensor-based system exerciser (3)
Sensor-based mission processing and communication (2)

Programming project data:

Number of lines of delivered source code ordered by project.
(Source lines are 80-character source records provided as
input to a language processor. Job control languages, data
definitions, link edit language, and comment lines are includ-
ed. Reused code is not included.)

58 WALSTON AND FELIX IBM SYST J

~-

Table 3 Programming project descriptive data report for completed projects

Median Quurtiles
50% 25-75%

Productivity
Source lines per man month of total 274 150- 440

effort

Product
Source lines (thousands) 20 10-59
Percentage of code lines not to be 5 0-11

Documentation per thousand lines of
delivered 69 27- 167

source code (pages)

Resource
Computer cost (as a percentage of 18 10-34

project cost)
Total effort (man months) 67 37- 186

Average manning 6 3.8- 14.5
Effort distribution of preliminary 18 11-25

Distribution of effort (percent)
design review (percent)

Management and administration 18 12-20
Analysis 18 6 - 27
Programming and design 60 50- 70
Other 4 0 - 6

Duration (months) 1 1 8- 19

Development error detection
Errors per thousand source lines 3.1 0.8- 8.0

Incorrect function 76 50- 86
Omitted function (percent) 8 0.22
Misinterpreted function (percent) 17 7-25

Errors per programming man month 0.9 0.3 - 2.4

Pages of documentation (including program source listings)

Source languages used to develop code.
delivered.

Resource data:

Total effort (in man-months, including management, adminis-
tration, analysis, operational support, documentation, design,
coding, and testing) required to produce the lines of source
code by project.
Duration of project in months.

Use of improved programming technologies (expressed as a
percentage of code developed using each technique) :

Structured programming.
Top-down development.
Chief programmer team.
Design and code inspections.

NO. 1 . 1977 PROGRAMMING MEASUREMENT A N D ESTIMATION 59

Derived data:

Productivity achieved, ordered by project. Programming
productivity is defined as the ratio of the delivered source
lines of code to the total effort (in man-months) required to
produce the lines of code, and is computed from product and
resource data.
Average number of people required to work on the project,
computed by dividing the total effort in man-months by the
duration of the project in calendar months.

More complex and extensive search and analysis questions can
also be answered. These are supported by a question analysis
subsystem of the Programming Project Measurement System,
which incorporates a statistical package for the manipulation
and statistical analysis of many types of data. The more complex
requests can be grouped into two types, descriptive and analyti-
cal. A descriptive request requires searching the data base for
specific variables or derived variables and computing character-
istics about their distributions such as the mean, mode, and stan-
dard deviation, in order to prepare the report. Table 3 illustrates
one such report for the completed projects in the data base.

Because of the variability in the measurement data, the statistics
in Table 3 are presented in terms of medians and quartiles. The
median for the size of the delivered software product is 20 thou-
sand lines and fifty percent of the projects reported that the sizes
of their delivered source code ranged from 10 thousand to 59
thousand lines. The effort for software development reported
was distributed into the major categories as shown. The error
detection section of the table shows the distribution of errors
reported during the development phase.

Table 4 provides descriptive statistical data for completed ser-
vice projects. Most service activity is not purely maintenance,
but includes development efforts as well. The ratio of developed
source lines of code to maintained lines of code was 4 percent at
the median.

Table 5 presents data on on-going programming and service
projects. Since only a small percentage of these projects have
been completed at this time, the statistics represent a mixture of
actual measurements and estimates at various stages of com-
pletion.

i

~ Productivity analysis

We have identified five major parameters that can help program-
ming project personnel make estimates. These parameters, pro-

NO. 1 - 1977 PROGRAMMING MEASUREMENT AND ESTIMATION 61

ductivity, schedule, cost, quality, and size, are listed in order of
increasing difficulty and complexity of analysis. Some of the
difficulties arise from a lack of detailed data in the data base, as in
the case of schedule data. Complexity of the quantitative data
can create other difficulties. One significant difficulty is in iden-
tifying and measuring independent variables that can be used to
estimate the desired variable, as is the case in estimating the size
of the product to be delivered.

Productivity, which can be defined in terms of the quantitative
measures that are in the data base, is a vital factor in all software
estimating processes and, therefore, is of immediate value to
project personnel. For this reason, the analysis performed to
date has focused on productivity estimation. Productivity has
often been defined as the ratio of output to input. Programming
productivity is defined here as the ratio of the delivered source
lines of code (DSL) to the total effort in man-months (MM) re-

Figure 1 Relationship between quired to produce that delivered product.
delivered lines of code
and effort

The basic relationship between delivered lines of code and effort
F l O K - is shown in Figure 1 . Each plotted point represents the data + z
P reported by a completed project in the data base. A number on

r grouped sufficiently close together that they cannot be individu-
h100-

log domain so that they become approximately linear. The linear 2
ally identified on the plot. The data have been plotted in the log-

10- coefficients become power relationships when transformed back

1 4 1 I data as plotted in Figure 1 , yields the result:

5 1K- the chart indicates a position where a number of data points are
2

2
+

>

e
to the original domain of the data. The least squares fit to the

100 1K 10K lOOK 1M
DELIVERED CODE (SOURCE LINES)

E = 5 . 2r-0.91

where

E = total effort in man months

and

L = thousands of lines of delivered source code.

productivity This relationship is nearly a first-power (or linear) relatibnship
index between effort and product size. The dashed lines indicate the

standard error of the estimate on either side of the least squares
fit. To identify the sources of scatter or variation of Figure 1 ,
those variables that are related to productivity have been inves-
tigated. Preliminary findings have led to the development of a
productivity estimator that provides an on-line capability to
support proposed as well as on-going projects. A set of sixty-
eight variables was selected from the data base, and those vari-
ables were analyzed to determine which were significantly re-
lated to productivity. Twenty-nine of the variables showed a
significantly high correlation with productivity and have there-

62 WALSTON A N D FELIX IBM SYST J

fore been retained for use in estimating. Table 6 lists these vari-
ables and the reponses associated with them. To illustrate the
meaning of Table 6, consider the first entry, which is derived
from a multiple-choice question that asks the information sup-
piier to circle his response to the following statement: Customer
interface is (less than, equal to, greater than) normal complexity.

When the mean productivity was computed for all the completed
reports in the data base that indicated less than normal customer
interface complexity, the result obtained was 500 delivered
source lines of code per man-month of effort (DSLIMM). By a simi-
lar computation, the mean productivity for all projects that re-
ported normal complexity was 295 DsLIMM, and the mean pro-
ductivity for those reporting greater than normal complexity
experience was 124 DSLIMM. The change in productivity be-
tween less-than-normal and greater-than-normal customer inter-
face is 376 DSLIMM, as noted in the final column in Table 6. Three
variables in the table (overall personnel experience, code com-
plexity, and design constraints) were formed by combining the
answers to several questions in the questionnaire. It should be
noted that this analysis was performed on each variable indepen-
dently and does not take into account either the possibility that
these variables may be correlated, or that there may be inter-
related effects associated with them.

The twenty-nine variables were then combined into an index,
based on the effect of each variable on productivity, as indicated
by the above analysis, to form a productivity index. The produc-
tivity index is computed as follows:

29

where
I = productivity index for a project
Wi = question weight, calculated as one-half log,, of the ratio

of total productivity change indicated for a given question i
Xi = question response (+l, 0 or - I) , depending on whether

the response indicates increased, nominal, or decreased
productivity

An index was computed for fifty-one projects, and a plot of ac-
tual productivity for each project versus the computed produc-
tivity index and the least squares fit to this relationship is shown
in Figure 2. The standard error of the estimate (standard devia-
tion of the residuals) is shown as dashed lines.

To support project estimates, a shortened version of the data rapid
collection form is used that contains excerpted questions as- estimates
sociated with the twenty-nine variables used in the index. A

NO. 1 * 1977 PROGRAMMING MEASUREMENT A N D ESTIMATION 63 I

Table 6 Variables that correlate significantly with programming productivity

Question or Variuble Response Group Productivity
Meun Productivity Change

(D S L / M M) (DS I,/ M M)

Customer interface Normal
complexity 500

User participation None
in the definition of 49 1
requirements

Customer originated Few
program design changes 297

Customer experience None
with the application 318
area of the project

Overall personnel Low
experience and qualifi- 132
cations

Percentage of pro- < 25%
grammers doing devel- 153
opment who participated
in design of functional
specifications

Previous experience Minimal
with operational 146
computer

Previous experience Minimal
with programming 122
languages

Previous experience with Minimal
application of similar or 146
greater size and com-
plexity

Ratio of average staff size < 0.5
to duration (people/month) 305

Hardware under concurrent N o
development 297

Development computer 0%
access, open under special 226
request

Development computer 0- 10%
access, closed 3 03

Classified security envi- No
ronment for computer and 289
25% of programs and data

Normal > Normal
295 124 376

Some Much
267 205 286

Many
196 101

Some Much
340 206 112

Average High
257 410 278

25-50% > 50%
242 391 238

Average Extensive
270 312 I66

Average Extensive
225 385 263

Average Extensive
22 1 410 264

0.5-0.9 > 0.9
310 173 132

Yes
177 120

1-25% >25%
274 357 131

11-85% > 85%
25 1 170 133

Yes
156 133

program, running in the Time Sharing Option of Oslvs (TSO) was
developed to compute and list the index estimates. This terminal-
based program allows rapid response to project requests for
information. The estimate of expected productivity is returned to

64 WALSTON A N D F E L I X IBM SYST J

Figure 4 Additional productivity
relationships

RATIO OF DEVELOPED TO ORIGINAL
50 100

AND DEVELOPED CODE (PERCENT)

. .
25 50 75 100
EFFORT AT PRIMARY LOCATION (PERCENT)

50 100
REMOTE JOB ENTRY (PERCENT)

Figure 5 Relationship between
documentation and de-
livered code

- 10-
100 1 K 10K lOOK 1M

DELIVERED CODE (SOURCE LINES1

0=49t101
WHERE

D = PAGESOFDDCUMENTATION
L=THOUSANOSOFSOURCECOOELlNE~

68

Figure 4(B) , although it contains a large amount of scatter, sug-
gests that when the development effort is spread across more
than one location, i.e., as the percentage of effort at the primary
location becomes less than 100 percent, the productivity de-
creases. Another question currently of interest is the impact of
remote job entry on productivity. Most of the completed proj-
ects in the data base were developed without the use of termi-
nals, as Figure 4(C) shows. On the basis of a least squares fit,
however, those projects that use remote job entry do appear to
have an increase in productivity.

Other results of programming analysis

Although the primary effort has been directed toward productiv-
ity analysis, other analyses have been performed on the data
base. Results of these efforts to the present time are presented
here. The data can be used to check productivity estimates, and
to check current project parameters against past experience, as
reflected by the data base. Such results provide a multidimen-
sional approach to crosschecking a number of the factors that
enter into estimates of effort: productivity, duration, documenta-
tion, and computer costs. These results also indicate the nature
of the analyses that can be performed against the data base.

Documentation is a critical product of every software project,
and documentation costs are an important component of the es-
timation process. A useful parameter for measuring documenta-
tion is number of pages. Figure 5 is a plot of delivered documen-
tation in number of pages versus delivered source lines of code.
Documentation is defined here as program functional specifica-
tions and descriptions, users' guides, test specifications and re-
sults, flow charts, and program source listings that are delivered
as part of the documentation. As a first approximation, the least
squares fit indicates that a linear or first-order relationship ex-
ists; that is, the number of pages of delivered documentation
varies directly as the number of lines of source code.

After programming project estimates have been completed,
those estimates can be checked against the data base by using
the plots in Figures 5 - 10. If, for example, the size of the deliv-
ered software product is estimated as ten thousand lines of
source code (as shown in Figure 5) it can be seen from past
experience that the expected number of pages of documentation
to be delivered is five hundred. The range for one standard error
for this given value is one hundred eighty to thirteen hundred
pages. This provides an independent calibration point that the
manager can use to compare his estimate against the experience
of past projects. A significant difference between the two does

WALSTON AND FELIX IBM SYST J

not necessarily imply an error on the part of the manager, but it
does suggest that the assumptions and estimates might be re-
examined.

The question of how much time to allow for the development of
software is always difficult to assess. The relationship between
duration (expressed in months) and delivered source lines of
code is shown in Figure 6. Project duration as a function of total
effort in man months is shown in Figure 7. Initial analysis indi-
cates that a cubic relationship fits the data in both of these fig-
ures. This implies that the duration of effort increases by the
cube root of the number of source lines of code delivered or by
the cube root of the total effort applied to the development of
the code. For example, for a project that is developing a soft-
ware product of 10 thousand lines of source code, the expected
duration of the effort is 4.0 X 10.0°'38 or 9.6 months. Figure 7
does not imply that simply reducing total effort automatically
permits a reduction in project duration. Such a reduction would
more likely make it impossible to produce and test the required
volume of code.

The staff size utilized to develop a given software product is
influenced by a number of factors, including the time allowed for
development, the amount of code to be developed, and the staff-
ing rates that can be achieved. After a project has been estimat-
ed, one convenient measure used to describe the size of the proj-
ect is the average number of people required. Figure 8 shows a
relationship that can be used as another check on the estimating
process. It shows the relationship between the staff size-ex-
pressed in terms of the average number of people (defined as
total man-months of effort divided by the duration) -and the
total effort applied.

Estimating computer costs is very difficult, but at the same time
it can also be a very significant fraction of the total cost. Al-
though only eighteen of the completed projects in the data base
had computer costs reported, some interesting relationships are
indicated when computer costs are compared with the amount of
delivered code and the total effort, as is shown in Figures 9 and
10. In Figure 9, two observations (circled) are evidently out of
bounds when plotted against delivered code. These same two
observations, however, fit well with total effort, as shown by the
plot in Figure 10. Based on this limited evidence, it appears that
computer costs are closely related to effort, and they appear to
have nearly a first power (or linear) relationship. Note that in
Figure 9, the two out-of-bounds points are not included in deter-
mining the least-square fit.

NO. 1 * 1977 PROGRAMMING MEASUREMENT AND ESTIMATION

project
duration

Figure 6 Relationship between
project duration and
delivered code

100 1K 10K lOOK 1 M
DELIVEREDCODE (SOURCE LINES)

M = 4 l L 0 3 6
WHERE

M = DURATION IN MONTHS
L =THOUSANDS OF SOURCE CODE LINES

staff
size

computer
cost

Figure 7 Relationship between
project duration and
total effort

.. ~

TOTAL EFFORT (MAN MONTHS)

M = 2 4 7 E 0 3 5
WHERE

M = DURATION IN MONTHS
E = EFFORT IN MAN MONTHS

69

Figure 8 Relatianship between average staff size and total effort

regression
method

Figure 9 Relationship between
computer cost and de-
livered cade

DELIVEREDCODE (SOURCE LINES)

C = 1 84 L O g 6
WHERE

C=COMPUTERCOSTINTHOUSANDSOF
DOLLARS

L=THOUSANDSOFSOURCECODELlNES
(TWOOUTLIERS EXCLUDED FROM
LEAST SQUARES FIT)

1 10 100 1K 10K

S = 0 5 4 E 0 6
WHERE

S=AVERAGENUhlBEROFPEOPLEONSTAFF
E = TOTAL EFFORT IN MAN MONTHS

TOTAL EFFORT (MAN MONTHS)

Concluding remarks

The present approach to productivity estimation, although use-
ful, is far from being optimized. Based on the results of the vari-
able analysis described in this paper, and supplemented by the
results of the continued investigation of additional variables re-
lated to productivity, an experimental regression model has been
developed. Preliminary results indicate that the model reduces
the scatter. Further work is being done to determine the potential
of regression as an estimating tool, as well as to extend the anal-
yses of the areas of computer usage, documentation volume,
duration, and staffing.

Appendix

The effective utilization of programming measurements data
requires the ability to store, retrieve, process, and report data.
Specialized capabilities to do various types of statistical analy-
ses are also required. These capabilities are provided by a Pro-
gramming Project Measurement System. This system is com-
posed of two subsystems, the question processing subsystem
and the question analysis subsystem. The basic functions pro-
vided by the question processing subsystem are the maintenance
of the data base (which contains the information submitted in
response to the questionnaire), the retrieval and listing of data
from the data base in various report formats, and the extraction

70 WALSTON AND FELIX IBM SYST J

Figure 1 1 Programming project measurement system

-
QUESTION - + QUESTION - STATISTICAL

PROCESSING
SUBSYSTEM SUBSYSTEM

ANALYSIS

\ f\

For these reasons changes were made in the questionnaires and
the frequency of reporting. Separate questionnaires were created
for development projects (Software Development Reports) and
for service efforts (Software Service Reports). Development
reports, which cover detailed qualitative items as well as quanti-
tative data, are submitted at the start of work and again at
acceptance test completion. Between these two submittals, a
Monthly Software Development Report is submitted. This is a
one-page summary of the status of a product, cost, and effort
that is,submitted each month. The Software Service Report is an
overview of a product that is being serviced and is submitted at
the start and end of service. The Quarterly Software Service
Report is a summary of the product, cost, and effort status, plus
a detailed reporting of errors and their impact. Reporting is done
by programming projects that are developing or servicing prod-
ucts in the form of lines of code and that employ two or more
programmers with an expenditure of twelve or more man-
months of effort.

CITED REFERENCES
1. B. W. Boehm, “Software and its impact: a quantitative assessment,” Data-

mation 19, No. 5 , 4 8 - 5 9 (May 1973).
2. F. T. Baker, “Chief programmer team management of production program-

ming,” I B M Systems Journal 11, No. 1, 56-73 (1972) .
3 . HIPO-A Design Aid and Documentation Technique, Order No. GC20-

185 I , IBM Corporation, Data Processing Division, White Plains, New
York 10504.

4. F. M. Luppino and R. L. Smith, Programming Support Library Functional
Requirements, U.S. Air Force, Headquarters, Rome Air Development Cen-
ter, Criffis Air Force Base, New York (July 1974). See also Rome Air
Development Center, Structured Programming Series, Vol. V.

5. E. W. Dijkstra, “Notes on structured programming,” pp. 1 - 82, 0. J. Dahl,
E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, New York (1972).

6. F. T. Baker, “System quality through structured programming,” AFIPS
Conference Proceedings 41, Part I , 339-343 (1972).

7. M. E. Fagan, “Design and code inspections to reduce errors in program
development,” I B M Systems Journal 15, No. 3, 182-21 1 (1976) .

