
The design  and implementation of an  experimental A P L  system 
on the  small, sensor-based  System17  is  described. Emphasis  is 
placed on the  solution to the  problem  ofjitting a full A P L  system 
into  a small computer. 

The  system  has been extended  through  an !Io auxiliary  proces- 
sor to  make  it  possible  to  use APL in the  management  and con- 
trol of the  System17  sensor-based I I O  operations. 

An  APL interpreter and system  for  a  small  computer 
by M. Alfonseca, M. L. Tavera,  and R. Casajuana 

~ystem/7'  is a small-size, special-purpose IBM computer  for sen- 
sor-based applications. It has  a limited memory of two  to  64 kilo- 
words, 16 bits per  word,  not being byte-oriented. Its arithmetic 
unit includes an  accumulator,  one  instruction  address  register, 
and  seven work registers as well as several  indicators. The cen- 
tral processing unit (CPU) is hardwired (not microprogrammed) , 
with a  fast  cycle of 400  nanoseconds,  and  accepts  up  to  about 40 
machine language instructions  where bit and  byte handling, fixed 
point multiplication and division,  and all the floating point 
operations are  absent.  Only fixed point 16-bit integer numbers 
are supported. 

The standard  peripheral  equipment is likewise limited: small 
capacity  disks ( 1.2 megawords) ,' a  tape  attachment, slow card 
reader and punch, matrix printer,  and  a  teletype console. How- 
ever, telecommunication equipment  and  sensor-based  input-out- 
put (110) equipment are available in large variety, including di- 
rect CPU attachment  to  other  computer  systems,  and analog and 
digital input and  output.  Four levels of operation, with four 
complete  arithmetic unit register  sets, are supported in order  to 
serve  the different Ilo interruptions. 

The computer was originally meant  to be used primarily as  an 
intelligent, sensor-controller  terminal,  connected to a  host com- 
puter  (e.g.,  the  System/370 series) where  the  preprocessed  data 
would be sent and further  processed.  Therefore, it was an- 
nounced with almost no stand-alone  software, including only a 
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disk support  system  and  a primitive assembler with the  absence 
of any operating  system, but a  sophisticated  assembler  and  a 
FORTRAN compiler as well as an  automatic program generator 
(a pL/I-based interactive  support program to help users design 
their application programs) could be used  at  the  host  computer 
to  prepare  System/7  programs. As time proceeded,  stand-alone 
software began to increase, and the aforementioned assembler 
and FORTRAN compiler were made available within the configu- 
ration, as well as  a  sensor-controller programming system 
( LABS/73) . 

Before much of this had happened, we  had come  to  the  conclu- 
sion  that a stand-alone  System/7 provided with an  interactive, 
sensor-based, high-level control language was justifiable. Yet, 
process  control applications for which System/7 may be applica- 
ble could be eased if this high-level language had a matrix-han- 
dling facility, because  process  control problems commonly give 
rise to matrix equations. We chose APL for our implementation 
for  the following reasons: 

APL4 is a highly sophisticated high-level language, having a 
large number of symbolic built-in functions  (primitive 
functions) and operators that render it possible  to  write 
complicated programs within a simple syntax in a concise 
form. 
Primitive APL functions and operators  take  arrays  as well 

, as  scalars as their working objects, so that  loopless  programs 
may be written, in this way counteracting  the loss in transla- 
tion time inherent  to  interpretive  systems  as  compared  to 
compiling systems. Besides, many of the common array-han- 

trix products, matrix inverses,  and so forth, so that  the lan- 
guage is especially useful for problems having to  do with 
matrix computation,  as is the  case with process  control and 
other  sensor-based related problems. 
APL systems usually give the  user  access  to  an  active work 
space in the main memory where  he may store  and  execute 
his defined functions  and variables. He may further  save  those 
work spaces in a disk library  and recall them at his will, in 
this way giving to each  user  a flexible and easy  procedure 
for building and using his own application packages. 
The APL shared variable facility (see below) makes it very 
easy  to include language extensions in the form of auxiliary 
processors built to cope with special tasks.  This ability 
would be especially important in our  case,  for  the  sensor- 
based I/O capabilities of the  System/7 had to  be,  and  were 
not,  dealt with in the  standard APL language definition as was 
necessary if this language were to be the  answer to our 
needs. 

I dling operations are primitives to  the language, such as ma- 
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Figure 1 System  structure 
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The implementation of a full APL system in a small computer met 
a  number of difficulties. Although several  attempts  have been 
made along this line, such as  the APL- 1 1 305 and the A P L - ~ ~  sys- 
tems, all of them had tried to implement only a subset of the lan- 
g ~ a g e , ~  whereas in our  case,  our  purpose was precisely the  op- 
posite,  that is to  say:  to  enhance  the language. Besides, it was 
just not possible to  take  the APLSV source  code  and  translate it 
into  System/7  instructions,  because  several APLSV features were 
not  desirable,  such as multiple active work spaces, while the 
absence of most  arithmetic  operations in System/7 machine lan- 
guage rendered  the  translation impossible. It was also  our pur- 
pose  to design our own algorithms in order  to  try  to optimize 
several  features  for  storage  occupation,  thus leading, for in- 
stance,  to  our having developed a double table-driven syntax ana- 
lyzer unlike any of the APL implementations known to us. This 
analyzer  uses  the well-known transition matrix approach: but 
splits up the  table  into  two  parts to save  space. 

The implementation of an APL system on a small computer,  such 
as  System/7,  presented  the following challenges: 

Representation and management of data. 
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The difficulty of fitting a full APL system  into  a small-size 

Implementation of a time-sharing system. 
Management of peripherals. 

The Computer  Science  Department of the IBM Scientific Center 
of Madrid has built an  experimental system," called A P L / ~ ,  im- 
plementing the full API, language on a 16K-word SystemI7, with 
r/o typewriters (IBM Model 735)  as  terminals,  connected 
through the digital I/O groups of the  System/7.  The objectives of 
the work were: 

To demonstrate  the feasibility of solving the aforementioned 
problems. 
To provide our  System/7 with an  interactive high-level lan- 
guage. 
To extend APL to  sensor management in order  to analyze  its 
suitability for process  control  and  laboratory  automation ap- 
plications. 

computer. 

The system has been completely designed and implemented. 
Figure 1 shows  the  general  structure of the  system. The subse- 
quent  sections of this  paper  describe  the  development of the 
APL/? system in meeting the  objectives. 

Data representation and  management 

The previously mentioned arithmetic limitations presented us 
our first problem in the internal representation  and handling of 
the different data  types  (characters  and  numeric) existing in APL 
(giving rise internally to Boolean, integer, floating point num- 
bers,  and characters), since  the  System/7  features only permit 
the management of integers. 

For floating point numbers,  instead of the classical solution of 
simulating binary floating point arithmetic, we considered a 
pseudo-decimal approach. A floating point number is represent- 
ed in four  consecutive  System/7  words,  the first containing the 
exponent (base 10) and  the  other  three  the  mantissa in base lo4 
(i.e.,  each of them is a fixed point integer  smaller in absolute 
value than lo4) ; the sign is carried by the  three  mantissa words. 

If  we call wl, w2, w3, and w4 the  contents of these  words in the 
order  indicated,  the  represented floating point number value 
would be taken  as: 

10"' X ((w, X 10') + (w3 X io4) + w4) 
This  representation allows up to 12 decimal digit numbers with 
an  exponent up to +9999. 
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A right-justified normalization was used so that  the  representa- 
tion is unique and with  minimal exponents.  This  representation 
gives rise to  the following advantages: 

It is possible for  the  system  programmer  to  process  the  expo- 
nent  part  directly. 
The register overflow condition cannot  happen when adding 
or subtracting  two  numbers in this  representation,  since 
twice IO4 is less  then 32767, which is the maximum positive 
number  a  Systeml7  register may contain. 
Larger  exponents  are  possible, with respect  to  most pro- 
gramming languages, and correspondingly reduced the possi- 
bility of real overflow (numbers larger than  the maximum 
allowable.) 
Any integer  number with less  than 13 digits is represented 
exactly, with no truncation error, reducing  to a minimum the 
need for  comparison  tolerances. 
The process of translation  into  external  characters  (decimal) 
is simplified. 

The general internal  format of the  data is shown in Figure 2. 
Depending  on  the  type,  the values occupy  the following 
amounts: 

Type 3 (characters) 1 byte (l/z word)  per data item 
Type 2 (floating point) 4 words  per  data item 
Type 1 (integer) 1 word per data item 
Type 0 (Boolean) 1 bit per  data item 

In  the first and  fourth cases, if the number of values  is  such  that 
they do not fill a whole word length (odd  number of characters, 
number of Boolean values not multiple of 16), the  last word is 
left-justified and  the  rest of the word is not  used.  In  this  way, it 
is possible to  process the APL object  (scalar,  vector,  matrix, 
high-order arrays) from left to right, and to know, from  the  type, 
whether  the  processor must look for  data  every  bit,  byte, word, 
or group of four  words,  starting  after the dimensions, the num- 
ber of which is also given in the  same word as  the  type. 
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The work of writing the code  for  the primitive functions  started 
by designing the  basic  arithmetic and logic subroutines using this 
internal  representation. Thus, later on it was possible  to  under- 
take  the  task  (anyway  tedious) of the design of algorithms, 
some of them  standard, some new,  for  the huge amount of more 
sophisticated operators existing in the APL language. 

Size of the system 

The small size of the main storage,  reduced in our  case  to 16K 
words (16 bits  per  word)  and in the largest possible  System/7 to 
64K words, made it necessary  to find a feasible solution for  the 
problem of squeezing a complete APL system  into that size. “Stan- 
dard” APL systems  run  on  a minimum of 128K bytes,  approxi- 
mately equivalent  to  the largest possible System/7 main storage 
(APLSV, for  instance,  needs  a minimum of 256K bytes). 

Up to now,  there  has been some work in the direction of imple- 
menting APL in small machines (e.g.,  the IBM 1130 computer: 
the S y ~ t e m / 3 ~ ) ,  but all of them solved the size problem by re- 
ducing the APL power, using only a  subset of it. Our  intention 
was to have a full APL system, with no reduction in the applica- 
bility compared to the  standard  ones. Our approach  was  a vir- 
tual memory allocation processor controlling a modular inter- 
preter.  Response time would be traded off against work-space 
size. 

Since  the  System/7 is not  a microprogrammable machine and 
I has  no virtual storage  hardware  processor,  the virtual memory 

allocation had to be software  simulated. The problem was 
solved through the following steps, which describe  the paging 
algorithm: 

1 .  The interpreter  code  was  written in modules, a module being 
defined as a relocatable program occupying up to 128 words. 
Since  these modules will be transferred to  the main storage 
and given control in different situations  depending on the APL 
programs to be executed,  the modules had to be strictly relo- 
catable,  and  hence, all the  System/7  instructions  that  use  as 
arguments  absolute  addresses had to be avoided when the 
code  was  written. 

Given  the relocatibility requirement,  the  size of 128 words is a 
compromise  between  the  number of I/O operations, which ob- 
viously increases as  the size of the modules  decreases,  and  the 
simplicity of the programming task,  since the  System/7 in- 
structions permit direct  references  (relative  addressing)  to 
other  instructions in the program provided the difference 



Figure 3 Structure of the  interpreter 
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Despite  the  restrictions, 128 was  found to  be a quite  adequate 
size to fit the  programs for  the  very  basic  (and  hence  very of- 
ten called) APL operations. If a  larger  size had been  used,  the 
modules would have  been  able to contain  more  than  one of 
these  basic  operations,  and time would have  been  wasted in 
transferring  the  code to main storage  for  these extra opera- 
tions when only one of them was requested. 

2. Transference of control from one module to  another must 
always  be  done via the  supervisor. The transference of con- 
trol can be called in coroutine  mode  (no return)  or in subrou- 
tine mode (with  return  to  the point immediately after  the call 
when the subroutine  execution is completed). A macroin- 
struction (pseudo supervisor call) was built for  this  purpose. 
Its argument must be  the  number of the  requested module, 
positive for a coroutine call, negative for a subroutine call. 

3. The virtual  interpreter  supervisor  has  access  to a table con- 
taining as many words  as  there  are modules contained in the 
real memory allocated  to  the  interpreter.  Each  word in the 
table is related  to  a real module address  and  contains  either 
zero if that  space is empty or the module number, seizing it if 
it  is not, with an indication (the sign)  about  the state of the 
module in question: positive if  it is no longer needed in real 
storage  for the moment, negative if it  is still needed. 

4. Whenever a pseudo  supervisor call  is issued, the  supervisor 
searches  the module table  for  the  appearance of the  request- 
ed module number.  In  the  case  where it is found, it  is given 
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control immediately. In  the  opposite  case, a new search is 
done to seek  either  an  empty  space  or  one  occupied by a  pro- 
gram no longer needed.  Then  the  requested module is read 
from the  interpreter disk file onto  the assigned space,  the 
module table is updated, and the program is given control. 

5. Parameters  are  passed from one module to another by means 
of the registers of the  System/7.  Their  values  are  saved by 
the  supervisor  and  restored in such  a way that when control 
is given to a  coroutine  or  subroutine,  the  registers  have  the 
same values as before  the call, and the  same is true  for  the 
return of a  subroutine. No matter how  many intetmediate 
nested calls have  appeared during the  subroutine  exekution, 
when control is resumed, the registers  contain  the  same val- 
ues as  before the call. Figure 3 presents  the  structure of the 
interpreter. 

Implementation and performance 

A full APL interpreter  has been built, including the primitive 
functions  and  operators  added  to  the APLSV system.  It  also in- 
cludes a set of APL system  functions and variables,4 and a work- 
space management system consisting of a  work-space library 
containing a directory where information is stored  concerning 
the  degree of library occupation,  users,  and public library num- 
bers,  and  the work spaces  related  to  each. The rest of the file 
contains  the  actual work spaces. The APL command language 
has been implemented to manage the  work-space library and  the 
active  work  space. 

Our APL/7 prototype  runs  on  a  System/7 provided with only 
16K words of memory. This memory is split up between the 
different  parts of the  system as Figure 4 indicates. The supervi- 
sor is resident in memory, controlling time-sharing and virtual 
interpreter allocation. 

Control blocks are provided for  each APL terminal to be used for 
disk file and  sensor-based  operations.  They  consist of a  number 
of words containing information about  the I/O processes. The 
modular interpreter table contains  the  number of those modules 
present in memory at any time (see  above).  The total size of 
this  section of the  system (in our prototype,  5.373K)  depends 
on the number of terminals  connected (up to  four) and I/O oper- 
ations allowed (number of control  blocks)  as well as on real in- 
terpreter size (size of the module table). 

The number of modules simultaneously present in memory is 
the  number of times 128 is contained in the real interpreter 
memory size. The number is also the  size of the module table in 
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words, this number influencing the relation of APL execution 
time  to supervising time, and  therefore the speed of the  system. 

A trade-off can be made between  the  space  allocated in  main 
storage  for  the  interpreter  (response  time)  and  the  work-space 
size, within reasonable limits. For a general system, minimum 
space for  the  interpreter is established as 4K words.  Work-space 
size should be larger than 6 K  words, smaller than 48K words, 
and a multiple of 3K words,  because  this is the length of a disk 
track. 

A configuration program has been built that  conversationally 
asks  the  operator of the  system his desired configuration in 
terms of the number of terminals,  number of rlo control  blocks, 
and  work-space  size. The program then calculates  the  real  inter- 
preter size, and if  it is within the limits, the new configuration is 
written  up in the  system  loader. 

The complete APL interpreter  and auxiliary processor  comprise 
289 (128  words) modules. Our prototype allows the simulta- 
neous  presence in real memory of 37 modules. Thus,  the 
real/virtual relation is equal  to  1:7.8, much worse  than  the nor- 
mal maximum recommended relation in standard virtual storage 
systems. 

With this configuration, performance  tests  were  run,  separating 
APL execution time from supervising time. An average relation 
of about 1:30 between both times was observed,  the  results  de- 
pending on  the APL primitive function to  be  tested. 

A second  test panoply was  run with a different APLh configura- 
tion. In this case,  work-space size was  reduced to only 3K 
words,  supervisor and control blocks remaining the  same.  The 
number of modules in real memory was thus  incremented  to 6 1 , 
corresponding  to  a  real/virtual relation of 1:4.7. In this  case,  the 
average relation between APL execution time and supervising 
time was equal to about 1 :3, APL execution time remaining the 
same as in the preceding case,  as  expected. Supervising time 
was thus  shortened by one  order of magnitude, meaning that 
disk I/O operations were drastically reduced. 

No other  performance  tests were run on  the supervising time 
response,  because  the small size of our  System/7 did not allow 
the necessary flexibility.In any case, it  is possible to  theoretical- 
ly calculate  the effect of further  increases of real interpreter size 
on  the system  response. 

The maximum interpreter size is the  one allowing permanent 
presence of all interpreter modules in real memory and  equals 
about 36K words.  In this case,  supervising time would be re- 

26 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST I 



Table 1 Performance measurements 

Primitive function  CPU  Time  (microseconds) 
Argument 

Boolean  Integer  Flooting  Literul 
Point 

Dyadic 
+ 

Monadic + 
- 
7 
X 

r 
N 

I 

Other operations 4*4 
4x30 
4x.5 

750 
650 
900 
800 

1 100 
800 
650 
650 
550 

550 
3 50 

450 
650 
350 
650 

- 

- 
- 
- 

500 
700 
600 

1300 
11 800 

900 
1250 

750 

100 
150 

7450 
3 00 
550 

300 

5  400 
55 100 

- 

- 

- 

500 
2050 
1350 
9 100 

18 000 
1550 
- 
- 
1150 

100 
250 

1000 
1950 

900 

- 

- 

- 
- 

72 100 

duced  to a  minimum,  being  a fraction of APL execution  time. 
Minimum  System/7  memory  size  to  attain  this  condition  (with a 
work-space  size of 6K words)  would  thus  be  equal  to 48K 
words.  The maximum  System/7  memory  size of 64K words 
would then allow an APLD system  to  operate  at  maximum  speed 
with an available  work  space of 22K words. 

The maximum  recommended virtual storage  relation ( 1 :2.5),  
corresponding  to 1 16 modules  simultaneously in memory,  would 
be  possible  for a  minimum System/7  memory  size of 28K words 
(with a work  space of 6 K  words).  Supervising  time would then 
be  one  to  two times as much as APL execution  time.  The maxi- 
mum  Systeml7  memory  size of 64K words would  allow in this 
case a reasonable  speed  for  an APL system  with  an  available 
work  space of 42K words. 

Table 1 depicts  the  performance  measurements in terms of APL 
execution  time  for different  primitive  functions. The  measure- 
ments  were  taken by executing  the following APL functions: 

v Z t G  
c11 2472 opo 
c21 It0 
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V Z+F 
I11 Kt0 
C21 TtElAIC2 31 
C3l L:A+X,Y 
C41  +(2OO#K+K+l)/L 
[SI Zt0.001~OKC2 31-T 

Function F computes  the APL execution time and  total time 
needed  to  execute 200 times the  loop  formed by instructions in 
lines 3 and 4, which include the function whose performance we 
are measuring (in  the  example,  concatenation). Different primi- 
tive functions may be  tested by changing line 3 in function F. 
Function G takes six different measurements by means of F and 
gives the average of the six measurements as its result.  Times 
are obtained in seconds. 

The loop  execution time is obtained by substituting line 3 of 
function F by L:A +- X and executing G again. The difference 
between  the preceding measurement  and  this time is the net time 
to execute  the given function.  Times given in the  table  have 
been  obtained by dividing the resulting APL execution time by 
200, and in most  cases  (where  applicable),  correspond  to  the 
operation of the tested primitive function  on  one or two  vectors 
of two  elements. 

Times  obtained are comparable  to  those of APL running on a 
System/360  Model 50. If we  take  into  account  the  response 
degradation  due to supervisor time, the APL/7 system  response 
would be similar to that of APL on a System/360 Model 40. 

Time-sharing 

Although the  development of a single terminal system was an 
option  considered  to be useful in itself, it was  decided  to imple- 
ment a time-sharing system.  As terminals for our prototype, we 
chose I/O typewriters (IBM Model 735, with slightly modified 
correspondence wiring) driven through a modified standard  ter- 
minal control program" and  accepting  the  connection of up  to 
four  terminals. 

Again,  the classical solution was too  cumbersome  for  our simple 
System/7. With a standard time-slicing method, it would have 
been necessary  not only to handle specially dedicated  clocks, 
queues,  etc.  but also to  solve  other problems related to  the inter- 
ruption  and resumption of the  execution of modules while they 
are needed, with the  corresponding need of saving internal vari- 
ables,  etc. 

28 ALFONSECA,  TAVERA,  AND  CASAJUANA IBM SYST J 



the system  to  reduce supervising time in order  to gain calcula- 
tion time,  we took advantage of the  fact  that  between  two  con- 
secutive modules the  control is always  transferred  to  the  super- 
visor, in the following way. By fixing the maximum number of 
consecutive calls to  the  supervisor allowed to  each  user,  a time- 

, sharing controller was constructed, which is called by the vir- 
tual interpreter  supervisor  whenever  a  user  either: (a) exhausts 
the allowed number of calls or (b) goes into  the wait state be- 
cause of an I/O request  to  the  terminal. 

The time-sharing controller  then goes into  a  cycle until it  finds 
the first user requesting the  interpreter. If this one and the cur- 
rently active  user  are the same, nothing is done, and control is 
given to him. In  the opposite  case,  the  active work space is 
swapped out, and the new user work space is swapped in, 
whereupon he becomes  the  active  user. Reenterability of the 
interpreter was, of course,  required. 

Disk file management  and  sensor-based input/output 

The rlo operations with a System/7  can be classified into two 
groups: disk file operations  and analog-digital I/O operations. 
Two approaches  were  considered: 

1. To extend  the APL language with special I/O (quad) symbols. 
2. To include the  shared variable concept (or a subset of it) and 

to build an auxiliary processor  to handle the I/O operations. 

Approach 2 was chosen  since it does not require modification of 
the APL language, and  an auxiliary processor, called TSI07, was 
designed. This auxiliary processor is contained in a disk and is 
loaded into main memory through the  same paging algorithm 
used to manage the  interpreter.  The same module slots in real 
memory are shared by both the interpreter  and  the auxiliary 
processor. 

to  cooperate, if they share  one or more variables. Such shared variables 
variables constitute  an interface between  the  processors through 
which information may be passed to be used by each for its own 
purposes.  In  particular, variables may be shared between an APL 
work space  and some other  processor  that is part of the overall 
APL system  to  achieve  a variety of effects including the  control 
and utilization of peripheral  devices  (e.g., magnetic disk storage 

At any  instant, a shared variable has only one  value:  the  last  as- I 



ever, a  processor using a  shared variable will  find its value dif- 
ferent  from  what it  might have  set  earlier. For example, let X be 
a variable shared by processors  A  and B: 

Processor A Processor B 
x+2 

2 x x  

x+3 
4 

2 x x  
6 

Sharing can be retracted by the monadic function W .  applied 
to  the variable name. After this function is executed,  the vari- 
able  stops being shared.  Retraction of sharing is automatic  upon 
completion of the  function in which it was defined if the  connec- 
tion to  the  computer is interrupted, if the  user signs off or loads 
a new work space, if the variable is erased,  or if it is a local vari- 
able. 

disk file The auxiliary processor, TS107, allows the A P L / ~  user  access  to 
operations disk files, in this  case, IBM 5022 files. Six different operations are 

allowed: sequential  read/write, indexed read/write,  delete,  and 
rename. The system  operator has access  to every file. Other 
users may read  from  every file but  can  write,  delete,  and  rename 
only their own files, which must be defined as members of a di- 
rectorized  data  set. The directorized data sets  must be defined 
outside of the APL/7 system,  and  the  System/7  operator may do 
it by means of standard utilities. The user may create new mem- 
bers to his directorized file. 

auxiliary Any user may  sign on to  the auxiliary processor by sharing any 
processor number of variables with it. A variable is offered to  the auxiliary 

sign on processor by means of the following sentence: 

99 aSV0 ‘name of the variable’. 

The result of this expression is a 1 if the variable has been cor- 
rectly offered, and a 0 in the opposite  case.  A variable is retract- 
ed by using the same  procedure as in APLSV. 

auxiliary When a variable has just been  shared,  the auxiliary processor 
processor expects  the variable to  be assigned a command. The commands 

commands are  character  strings  that explain to  the auxiliary processor  the 
disk file operation  desired as well as  the necessary  parameters  to 
define where  and how this Operation must  be  done. A command 
may have  any  one of the following forms: 

SR vol,dsn,mn{ ,code} 
IR vol,dsn,mn,DAT+identifier{,code} 
IW vol,dsn,mn,DAT+-identifier{,code} 
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SW  vol,dsn,mn 

DL vol,dsn,mn 
RN vol,dsn,mn,nn 

The commands  consist of the following parts: 

1. The operation  code: 

SR: sequential file reading (records  are read in the  order 

SW:  sequential file writing (records  are sequentially written 

IR: indexed file reading (records  are read in any  order  the 

IW: indexed file reading and/or writing (records  are  either 

DL: file deletion. 
RN : file renaming. 

they are  encountered). 

on  the  disk). 

user  specifies). 

read or written in the  order  the  user  specifies). 

Immediately after  the  operation  code,  at  least  a blank is ex- 
pected. 

2. The complete file name, consisting of the following subparts, 
separated by commas: 

vol: disk name. 
dsn: file name. 
mn: member  name if a member must be accessed. If this is 

not  the  case,  and  more  parameters  must  be given in the 
command,  the  absence of the member name  must  be in- 
dicated by writing two  consecutive  commas. 

nn: in case of renaming, the new name is given at the end of 
the command. 

The four  subparts  stated  above  are positional. Their  order  can- 
not be changed. 

3. The file parameters,  separated by commas. The following 
ones  are  accepted: 

Disposition (NEW, OLD). If this  parameter is not given, OLD 
is assumed, meaning that  the  accessed file already exists. 
NEW must be stated  to  create  a new member (sw) and is only 
accepted with this  operation  code. (See Example 1 in Fig- 
ure 5 . )  
Record organization (FX, TX). If  it  is not given,  the old orga- 
nization is assumed. In  case  the member is being created, this 

NO. 1 * 1977 APL/7 





I Figure 6 Example 2 

READING A DATA SET 
X+"SR APL7,APL70166,MYMB,Af 
X 

THE  ABOVE  CREATED  MEMBER IS OPENED  FOR APL 
0 

Space: This parameter  must  always  be given in the  case of an 
SW operation. It is stated  as S +- n,  where n is the  number of 
sectors  to be assigned to  the  member (the size of the  file). 
Data variable: DAT +- name of the variable. In the  case of 
I R ~ W  operations (see Example 3 in Figure 7) ,  two  variables 
must be  shared. One will be the control variable as explained 
above which now is first assigned the opening command and 
afterwards  the indexing subcommands.  Each indexing sub- 
command consists of a  vector of two  integers: the first one is 
0 or 1 depending  on the kind  of operation (read  or  write)  to 
be performed on  the  contents of the  record indicated by the 
second  element of the  subcommand. 

If it  is a read operation,  the  contents of the indicated record 
are read  into the  data variable. If  it is a  write  operation,  the 
contents of the  data variable will be written  into  the  record. 
The  data variable should have  been  shared  before the com- 
mand is assigned to  the control variable. 

All the preceding parameters are not positional, but keyword 
controlled,  and they may be given in any desired  order.  Exam- 
ples of various  operations are shown in Figures 5, 6, and 7. 

The problem of controlling analog-digital sensors  presents  the sensor-based 
following properties: I/O 

The theoretical solution of the problem in this context com- 
monly gives rise  to matrical equations;  a  sophisticated math- 
ematical support is thus  needed. 



Figure 7 Example 3 

INDEED ACCESS TO A DATA SET.  
99nsVO'Y I 

X-+'lW APL7,APL70166,MYMB,A,DAT+Y1 
X 

x 4  1 (SUBCOMMAND MEANING 0: READ AND 

1 

0 (THE  FILE I S  OPEN  FOR INDEED  ACCESS) 

1: RECORD  NUMBER 1) 
X 

Y (RECORD NUMBER 1 H A S  BEEN READ 
0 (THE OPERATION I S  SUCCESSFUL ) 

INTO THE DATA VARIABLE Y) 
ABCDMWQ 

xto 0 (READ RECORD 0 )  
X 

Y (IVOW RECORD  NUMBER 0 H A S  BEEN 
0 

READ INTO Y) 
1 2  
3 4  

Y t l  2 3 4 
x+1 0 (THE VALUE OF Y I S  WRITTEN I N  

X 

xto 0 (THE V A U E  OF RECORD 0 I S  READ 

RECORD 0 1 

0 

INTO Y) 
X 

0 
Y 

1 2 3 4  
Y t o  
X+l 6 (THE CURRENT VALUE OF Y IS  

X 
WRITTEN IN RECORD 6 )  

0 

Interactive  systems  are  convenient, allowing the  user  to 
respond immediately to any eventuality.  Therefore,  a  more 
direct  control  on  the  process  under  consideration is feasible. 
Response time is a must only for  concrete  applications. 

The sensor-based  operations  can  be divided into the following 
classes: 

Analog input reading (AI) .  
Analog output writing (AO). 
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Digital input reading (DI )  . 
Digital output writing ( D O ) .  

For sensor-based  applications” on System/7,  the I/O module is 
the  basic building block. Each module is self-contained,  that is, 
it houses all the  electrical/mechanical  components  necessary to 
serve  the I/O operations  (analog  input, analog output, digital 
input, digital output) and  to  connect  the  System/7 internal inter- 
face.  An I/O module may be physically placed in any module 
position of enclosure. 

An I/O point is a two-wire  connection. The points of the  same 
type (analog/digital I /o) ,  which are placed in the  same module, 
are reunited in groups  that can be simultaneously accessed. 

The following is an  example of a command for  an analog input 
read: 

AIMOD=5,POINT=14,INW=200,NVAL=10 
The command indicates  that  we  want to read at analog input 
point number 14, located in the  System/7 module 5 ,  10 consecu- 
tive values separated by an interval of 200 microseconds.  In  the 
case  where  the interval is not specified, a  standard value is 
applied. The result of the  operation is an APL vector  whose 
dimension is equal to NVAL and whose values are  the  desired 
readings in millivolts. 

A command example for an analog output follows: 

A0 MOD=5 ,POINT=1 ,INW=200 

This  example indicates the wish to  output  consecutively  through 
the analog output point number 1 in the  System/7 module 5 ,  the 
elements of an APL vector, with an interval of 200 microse- 
conds. 

A command example  for digital input reading without  process 
interrupt: 

D I  MOD=S,GRP=3,BITS=5 7 6 %,NVAL=1O,IN!l”=200 

This  example  commands  that the bits,  numbers 5 ,  7, 6, and 8 of 
digital input group number 3 in System/7 module number 5 ,  must 
be read  consecutively 10 times, with an  interval of 200 micro- 
seconds. The result will be given as  an APL binary matrix where 
the  rows  represent  the  successive readings and  the  four  columns 
correspond  to  the values of the specified bits in the  order in- 
dicated. 

A command example  for digital input reading with process  inter- 
rupt: 

NO. 1 . 1977 

analog input 

analog output 



I DIMOD=5,GRP=O,BITS=O,REF#O 
It means  that as  soon  as bit 0 in the digital input group number 0 
in System/7 module 5 has a value of 1 (REF # 0) , an interruption 
must  be  produced. The REF parameter is a  reference  to which 
the digital input is compared. As soon as the given condition is 
satisfied, an  interruption is triggered. 

To solve  this  case,  two new system  variables, B V  and OXV have 
been  added to  the system. OxV is to be assigned an  executable 
character matrix prior to  the starting of the interruption  process. 
When the interruption is served, B V  will be assigned a code, 
which identifies the point where the  interruption  has been de- 
tected. 

Let 2 be a shared  variable that has  been assigned a digital input 
command with process  interrupt: 

Zt ' DI location,  bits,  reference,  interrupt  control ' 
The next  step is to ask if the command has  been  accepted.  This 
question  requires an  access  to 2, an  access  that  enables  the in- 
terruption. I 
When the interruption  arrives, the  current  execution is halted, 
and  the  interruption is served in another  level,  that is to  say, @EV 
is assigned a code  that identifies the  point  where  the  interruption 
has  been  produced. The system  returns  to  its  previous level of 
interruption  and  execution is resumed.  Every time a  user  access- 
es the virtual  storage  supervisor, @EV is scanned. If an interrup- 
tion has  been  produced, the APL function being executed is sus- 
pended and OXV is executed. If OXV is an empty  array,  the  ter- 
minal is opened. The effect in this case is equivalent to pressing 
the  attention  key. If several  interruptions are  to  be successively 
input with the  same  command,  the variable Z has to  be  accessed 
after  every  interruption is served to enable the  next  interruption. 

digital output The following is a command example  for digital output writing: 

DO MOD=5 ,GRP=3 ,BITS=5 7 6 8 ,IIvIzr=200 

It means  that  we  want to write the elements of an APL binary 
matrix  (it  must  be a four-column matrix,  each column for  every 
element of BITS), and  every 200 microseconds send the  succes- 
sive rows of the matrix through  the bits 5 ,  7, 6, and 8 respec- 
tively) of digital output  group  number 3 ,  located in System/7 
module number 5.  

application As an example,  we  present  the following case  to  be solved: 
example Every 10 milliseconds, digital input group number 2, in Sys- 

tem/7 module 5 ,  must be read until the reading has  taken place 
100 times. Then  the arithmetic  average of the  read  values  must 
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be  computed,  and  the  output  sent  through analog output  number 
0 in System/7 module number 3 .  Each input reading will be  con- 
sidered as a positive integer with 16 binary digits. The process 
must begin when bit 0 in the digital input  group  number 0 in 
module 5 is set. 

The following APL function would solve this example: 

V DIRW; A 
C11 PI LET X,Y, Z BE VARIABLES SHARED WITH THE AUXILIARY PROCESSOR 
121 UXV f 3 l l p  ' A c 0 . 0 5 x 2 1 X   Y f ( + / A ) : p A  +L I 

C3l X f ' D I  MOD=5 ,GRP=2 ,WAL=lOO , I ~ ~ = l O O O O '  
C41 + (X*O)/E 
151 Y+ ' A 0  MOD=3  ,PT=O ' 
C6l + (Y#O)/E 
C71 Z f ' D I  MOD=5  ,GRP=O  ,BI!Z'S=O ,REF*O' 
C81 L :  + ( Z # O ) / E  
C91 +L+1 
[ I O ]  E :  'ERROR' 

V 

Line 3 opens  the digital input  group 2 in module 5 ,  and line 5 
opens  the analog output point 0 in module 3. Line 7 means  that 
as  soon  as bit 0 in the digital input group 0 in module 5 has a 
value of 1 (REF f 0) , an interruption  must  be  produced.  Line 8 
enables the interruption. 

Line 9 is a closed loop. The system is waiting for  the interrup- 
tion to  come. When that  happens, LiEV is set,  and at the  next call 
to  the supervisor, OXV (whose value had been set in line 2) is 
executed.  Now,  the 16 bits of the digital input  group 2 are read 
100 times, with an interval of 10 milliseconds; they are coded 
into decimal base, multiplied by a scalar  factor 0.05, and as- 
signed to  a local variable A .  In  the second line of OXV, the arith- 
metic average of A is assigned to Y ,  and  the  output goes through 
the analog output. 

The last line in OXV is a return  to L,  where a new access  to Z is 
made to enable the next  interruption,  and the whole process will 








