
The design and implementation of an experimental A P L system
on the small, sensor-based System17 is described. Emphasis is
placed on the solution to the problem ofjitting a full A P L system
into a small computer.

The system has been extended through an !Io auxiliary proces-
sor to make it possible to use APL in the management and con-
trol of the System17 sensor-based I I O operations.

An APL interpreter and system for a small computer
by M. Alfonseca, M. L. Tavera, and R. Casajuana

~ystem/7' is a small-size, special-purpose IBM computer for sen-
sor-based applications. It has a limited memory of two to 64 kilo-
words, 16 bits per word, not being byte-oriented. Its arithmetic
unit includes an accumulator, one instruction address register,
and seven work registers as well as several indicators. The cen-
tral processing unit (CPU) is hardwired (not microprogrammed) ,
with a fast cycle of 400 nanoseconds, and accepts up to about 40
machine language instructions where bit and byte handling, fixed
point multiplication and division, and all the floating point
operations are absent. Only fixed point 16-bit integer numbers
are supported.

The standard peripheral equipment is likewise limited: small
capacity disks (1.2 megawords) ,' a tape attachment, slow card
reader and punch, matrix printer, and a teletype console. How-
ever, telecommunication equipment and sensor-based input-out-
put (110) equipment are available in large variety, including di-
rect CPU attachment to other computer systems, and analog and
digital input and output. Four levels of operation, with four
complete arithmetic unit register sets, are supported in order to
serve the different Ilo interruptions.

The computer was originally meant to be used primarily as an
intelligent, sensor-controller terminal, connected to a host com-
puter (e.g., the System/370 series) where the preprocessed data
would be sent and further processed. Therefore, it was an-
nounced with almost no stand-alone software, including only a

18 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

disk support system and a primitive assembler with the absence
of any operating system, but a sophisticated assembler and a
FORTRAN compiler as well as an automatic program generator
(a pL/I-based interactive support program to help users design
their application programs) could be used at the host computer
to prepare System/7 programs. As time proceeded, stand-alone
software began to increase, and the aforementioned assembler
and FORTRAN compiler were made available within the configu-
ration, as well as a sensor-controller programming system
(LABS/73) .

Before much of this had happened, we had come to the conclu-
sion that a stand-alone System/7 provided with an interactive,
sensor-based, high-level control language was justifiable. Yet,
process control applications for which System/7 may be applica-
ble could be eased if this high-level language had a matrix-han-
dling facility, because process control problems commonly give
rise to matrix equations. We chose APL for our implementation
for the following reasons:

APL4 is a highly sophisticated high-level language, having a
large number of symbolic built-in functions (primitive
functions) and operators that render it possible to write
complicated programs within a simple syntax in a concise
form.
Primitive APL functions and operators take arrays as well

, as scalars as their working objects, so that loopless programs
may be written, in this way counteracting the loss in transla-
tion time inherent to interpretive systems as compared to
compiling systems. Besides, many of the common array-han-

trix products, matrix inverses, and so forth, so that the lan-
guage is especially useful for problems having to do with
matrix computation, as is the case with process control and
other sensor-based related problems.
APL systems usually give the user access to an active work
space in the main memory where he may store and execute
his defined functions and variables. He may further save those
work spaces in a disk library and recall them at his will, in
this way giving to each user a flexible and easy procedure
for building and using his own application packages.
The APL shared variable facility (see below) makes it very
easy to include language extensions in the form of auxiliary
processors built to cope with special tasks. This ability
would be especially important in our case, for the sensor-
based I/O capabilities of the System/7 had to be, and were
not, dealt with in the standard APL language definition as was
necessary if this language were to be the answer to our
needs.

I dling operations are primitives to the language, such as ma-

NO. 1 1977 APL/7 19

Figure 1 System structure

SYSTEM INITIATION c
* TIME-SHARING

SUPERVISOR -
A

7 7 ~

*
SWAPPING

PAGING
SUPERVISOR 4 INTERPRETER

PROGRAM
TYPING

71 TERMINAL

The implementation of a full APL system in a small computer met
a number of difficulties. Although several attempts have been
made along this line, such as the APL- 1 1 305 and the A P L - ~ ~ sys-
tems, all of them had tried to implement only a subset of the lan-
g ~ a g e , ~ whereas in our case, our purpose was precisely the op-
posite, that is to say: to enhance the language. Besides, it was
just not possible to take the APLSV source code and translate it
into System/7 instructions, because several APLSV features were
not desirable, such as multiple active work spaces, while the
absence of most arithmetic operations in System/7 machine lan-
guage rendered the translation impossible. It was also our pur-
pose to design our own algorithms in order to try to optimize
several features for storage occupation, thus leading, for in-
stance, to our having developed a double table-driven syntax ana-
lyzer unlike any of the APL implementations known to us. This
analyzer uses the well-known transition matrix approach: but
splits up the table into two parts to save space.

The implementation of an APL system on a small computer, such
as System/7, presented the following challenges:

Representation and management of data.

20 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

The difficulty of fitting a full APL system into a small-size

Implementation of a time-sharing system.
Management of peripherals.

The Computer Science Department of the IBM Scientific Center
of Madrid has built an experimental system," called A P L / ~ , im-
plementing the full API, language on a 16K-word SystemI7, with
r/o typewriters (IBM Model 735) as terminals, connected
through the digital I/O groups of the System/7. The objectives of
the work were:

To demonstrate the feasibility of solving the aforementioned
problems.
To provide our System/7 with an interactive high-level lan-
guage.
To extend APL to sensor management in order to analyze its
suitability for process control and laboratory automation ap-
plications.

computer.

The system has been completely designed and implemented.
Figure 1 shows the general structure of the system. The subse-
quent sections of this paper describe the development of the
APL/? system in meeting the objectives.

Data representation and management

The previously mentioned arithmetic limitations presented us
our first problem in the internal representation and handling of
the different data types (characters and numeric) existing in APL
(giving rise internally to Boolean, integer, floating point num-
bers, and characters), since the System/7 features only permit
the management of integers.

For floating point numbers, instead of the classical solution of
simulating binary floating point arithmetic, we considered a
pseudo-decimal approach. A floating point number is represent-
ed in four consecutive System/7 words, the first containing the
exponent (base 10) and the other three the mantissa in base lo4
(i.e., each of them is a fixed point integer smaller in absolute
value than lo4) ; the sign is carried by the three mantissa words.

If we call wl, w2, w3, and w4 the contents of these words in the
order indicated, the represented floating point number value
would be taken as:

10"' X ((w, X 10') + (w3 X io4) + w4)
This representation allows up to 12 decimal digit numbers with
an exponent up to +9999.

NO. 1 . 1977 APL/?

NUMBER
OF

WORDS

TYPE
AND
RANK

Figure 2 General internal data format

~

1 WORD 1 WORD AS MANY WORDS
AS RANK

AS MANY VALUES
AS PRODUCT
OF DIMENSIONS

DIMENSIONS I VALUES

A right-justified normalization was used so that the representa-
tion is unique and with minimal exponents. This representation
gives rise to the following advantages:

It is possible for the system programmer to process the expo-
nent part directly.
The register overflow condition cannot happen when adding
or subtracting two numbers in this representation, since
twice IO4 is less then 32767, which is the maximum positive
number a Systeml7 register may contain.
Larger exponents are possible, with respect to most pro-
gramming languages, and correspondingly reduced the possi-
bility of real overflow (numbers larger than the maximum
allowable.)
Any integer number with less than 13 digits is represented
exactly, with no truncation error, reducing to a minimum the
need for comparison tolerances.
The process of translation into external characters (decimal)
is simplified.

The general internal format of the data is shown in Figure 2.
Depending on the type, the values occupy the following
amounts:

Type 3 (characters) 1 byte (l/z word) per data item
Type 2 (floating point) 4 words per data item
Type 1 (integer) 1 word per data item
Type 0 (Boolean) 1 bit per data item

In the first and fourth cases, if the number of values is such that
they do not fill a whole word length (odd number of characters,
number of Boolean values not multiple of 16), the last word is
left-justified and the rest of the word is not used. In this way, it
is possible to process the APL object (scalar, vector, matrix,
high-order arrays) from left to right, and to know, from the type,
whether the processor must look for data every bit, byte, word,
or group of four words, starting after the dimensions, the num-
ber of which is also given in the same word as the type.

ALFONSECA, TAVERA, AND CASAIUANA IBM SYST’ J

The work of writing the code for the primitive functions started
by designing the basic arithmetic and logic subroutines using this
internal representation. Thus, later on it was possible to under-
take the task (anyway tedious) of the design of algorithms,
some of them standard, some new, for the huge amount of more
sophisticated operators existing in the APL language.

Size of the system

The small size of the main storage, reduced in our case to 16K
words (16 bits per word) and in the largest possible System/7 to
64K words, made it necessary to find a feasible solution for the
problem of squeezing a complete APL system into that size. “Stan-
dard” APL systems run on a minimum of 128K bytes, approxi-
mately equivalent to the largest possible System/7 main storage
(APLSV, for instance, needs a minimum of 256K bytes).

Up to now, there has been some work in the direction of imple-
menting APL in small machines (e.g., the IBM 1130 computer:
the S y ~ t e m / 3 ~) , but all of them solved the size problem by re-
ducing the APL power, using only a subset of it. Our intention
was to have a full APL system, with no reduction in the applica-
bility compared to the standard ones. Our approach was a vir-
tual memory allocation processor controlling a modular inter-
preter. Response time would be traded off against work-space
size.

Since the System/7 is not a microprogrammable machine and
I has no virtual storage hardware processor, the virtual memory

allocation had to be software simulated. The problem was
solved through the following steps, which describe the paging
algorithm:

1 . The interpreter code was written in modules, a module being
defined as a relocatable program occupying up to 128 words.
Since these modules will be transferred to the main storage
and given control in different situations depending on the APL
programs to be executed, the modules had to be strictly relo-
catable, and hence, all the System/7 instructions that use as
arguments absolute addresses had to be avoided when the
code was written.

Given the relocatibility requirement, the size of 128 words is a
compromise between the number of I/O operations, which ob-
viously increases as the size of the modules decreases, and the
simplicity of the programming task, since the System/7 in-
structions permit direct references (relative addressing) to
other instructions in the program provided the difference

Figure 3 Structure of the interpreter

n n

I t
I FUNCTION

PRIMITIVE
SYNTAX

ANALYZER

DEFINED

EXECUTION EXECUTION
FUNCTION

U U U

Despite the restrictions, 128 was found to be a quite adequate
size to fit the programs for the very basic (and hence very of-
ten called) APL operations. If a larger size had been used, the
modules would have been able to contain more than one of
these basic operations, and time would have been wasted in
transferring the code to main storage for these extra opera-
tions when only one of them was requested.

2. Transference of control from one module to another must
always be done via the supervisor. The transference of con-
trol can be called in coroutine mode (no return) or in subrou-
tine mode (with return to the point immediately after the call
when the subroutine execution is completed). A macroin-
struction (pseudo supervisor call) was built for this purpose.
Its argument must be the number of the requested module,
positive for a coroutine call, negative for a subroutine call.

3. The virtual interpreter supervisor has access to a table con-
taining as many words as there are modules contained in the
real memory allocated to the interpreter. Each word in the
table is related to a real module address and contains either
zero if that space is empty or the module number, seizing it if
it is not, with an indication (the sign) about the state of the
module in question: positive if it is no longer needed in real
storage for the moment, negative if it is still needed.

4. Whenever a pseudo supervisor call is issued, the supervisor
searches the module table for the appearance of the request-
ed module number. In the case where it is found, it is given

24 ALFONSECA, TAVERA, AND CASAJUANA IBM SYSI’ J

control immediately. In the opposite case, a new search is
done to seek either an empty space or one occupied by a pro-
gram no longer needed. Then the requested module is read
from the interpreter disk file onto the assigned space, the
module table is updated, and the program is given control.

5. Parameters are passed from one module to another by means
of the registers of the System/7. Their values are saved by
the supervisor and restored in such a way that when control
is given to a coroutine or subroutine, the registers have the
same values as before the call, and the same is true for the
return of a subroutine. No matter how many intetmediate
nested calls have appeared during the subroutine exekution,
when control is resumed, the registers contain the same val-
ues as before the call. Figure 3 presents the structure of the
interpreter.

Implementation and performance

A full APL interpreter has been built, including the primitive
functions and operators added to the APLSV system. It also in-
cludes a set of APL system functions and variables,4 and a work-
space management system consisting of a work-space library
containing a directory where information is stored concerning
the degree of library occupation, users, and public library num-
bers, and the work spaces related to each. The rest of the file
contains the actual work spaces. The APL command language
has been implemented to manage the work-space library and the
active work space.

Our APL/7 prototype runs on a System/7 provided with only
16K words of memory. This memory is split up between the
different parts of the system as Figure 4 indicates. The supervi-
sor is resident in memory, controlling time-sharing and virtual
interpreter allocation.

Control blocks are provided for each APL terminal to be used for
disk file and sensor-based operations. They consist of a number
of words containing information about the I/O processes. The
modular interpreter table contains the number of those modules
present in memory at any time (see above). The total size of
this section of the system (in our prototype, 5.373K) depends
on the number of terminals connected (up to four) and I/O oper-
ations allowed (number of control blocks) as well as on real in-
terpreter size (size of the module table).

The number of modules simultaneously present in memory is
the number of times 128 is contained in the real interpreter
memory size. The number is also the size of the module table in

NO. 1 1977 APL/7

Figure 4 Division of memory

25

WORK SPACE

t"--
INTERPRETER

STORAGE

0 SUPERVISOR
0 CONTROL BLOCKS
0 MODULE TABLE

f
i
f
.
m

f
P

.
I

words, this number influencing the relation of APL execution
time to supervising time, and therefore the speed of the system.

A trade-off can be made between the space allocated in main
storage for the interpreter (response time) and the work-space
size, within reasonable limits. For a general system, minimum
space for the interpreter is established as 4K words. Work-space
size should be larger than 6 K words, smaller than 48K words,
and a multiple of 3K words, because this is the length of a disk
track.

A configuration program has been built that conversationally
asks the operator of the system his desired configuration in
terms of the number of terminals, number of rlo control blocks,
and work-space size. The program then calculates the real inter-
preter size, and if it is within the limits, the new configuration is
written up in the system loader.

The complete APL interpreter and auxiliary processor comprise
289 (128 words) modules. Our prototype allows the simulta-
neous presence in real memory of 37 modules. Thus, the
real/virtual relation is equal to 1:7.8, much worse than the nor-
mal maximum recommended relation in standard virtual storage
systems.

With this configuration, performance tests were run, separating
APL execution time from supervising time. An average relation
of about 1:30 between both times was observed, the results de-
pending on the APL primitive function to be tested.

A second test panoply was run with a different APLh configura-
tion. In this case, work-space size was reduced to only 3K
words, supervisor and control blocks remaining the same. The
number of modules in real memory was thus incremented to 6 1 ,
corresponding to a real/virtual relation of 1:4.7. In this case, the
average relation between APL execution time and supervising
time was equal to about 1 :3, APL execution time remaining the
same as in the preceding case, as expected. Supervising time
was thus shortened by one order of magnitude, meaning that
disk I/O operations were drastically reduced.

No other performance tests were run on the supervising time
response, because the small size of our System/7 did not allow
the necessary flexibility.In any case, it is possible to theoretical-
ly calculate the effect of further increases of real interpreter size
on the system response.

The maximum interpreter size is the one allowing permanent
presence of all interpreter modules in real memory and equals
about 36K words. In this case, supervising time would be re-

26 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST I

Table 1 Performance measurements

Primitive function CPU Time (microseconds)
Argument

Boolean Integer Flooting Literul
Point

Dyadic
+

Monadic +
-
7
X

r
N

I

Other operations 4*4
4x30
4x.5

750
650
900
800

1 100
800
650
650
550

550
3 50

450
650
350
650

-

-
-
-

500
700
600

1300
11 800

900
1250

750

100
150

7450
3 00
550

300

5 400
55 100

-

-

-

500
2050
1350
9 100

18 000
1550
-
-
1150

100
250

1000
1950

900

-

-

-
-

72 100

duced to a minimum, being a fraction of APL execution time.
Minimum System/7 memory size to attain this condition (with a
work-space size of 6K words) would thus be equal to 48K
words. The maximum System/7 memory size of 64K words
would then allow an APLD system to operate at maximum speed
with an available work space of 22K words.

The maximum recommended virtual storage relation (1 :2.5),
corresponding to 1 16 modules simultaneously in memory, would
be possible for a minimum System/7 memory size of 28K words
(with a work space of 6 K words). Supervising time would then
be one to two times as much as APL execution time. The maxi-
mum Systeml7 memory size of 64K words would allow in this
case a reasonable speed for an APL system with an available
work space of 42K words.

Table 1 depicts the performance measurements in terms of APL
execution time for different primitive functions. The measure-
ments were taken by executing the following APL functions:

v Z t G
c11 2472 opo
c21 It0

A P L / ~ 27

V Z+F
I11 Kt0
C21 TtElAIC2 31
C3l L:A+X,Y
C41 +(2OO#K+K+l)/L
[SI Zt0.001~OKC2 31-T

Function F computes the APL execution time and total time
needed to execute 200 times the loop formed by instructions in
lines 3 and 4, which include the function whose performance we
are measuring (in the example, concatenation). Different primi-
tive functions may be tested by changing line 3 in function F.
Function G takes six different measurements by means of F and
gives the average of the six measurements as its result. Times
are obtained in seconds.

The loop execution time is obtained by substituting line 3 of
function F by L:A +- X and executing G again. The difference
between the preceding measurement and this time is the net time
to execute the given function. Times given in the table have
been obtained by dividing the resulting APL execution time by
200, and in most cases (where applicable), correspond to the
operation of the tested primitive function on one or two vectors
of two elements.

Times obtained are comparable to those of APL running on a
System/360 Model 50. If we take into account the response
degradation due to supervisor time, the APL/7 system response
would be similar to that of APL on a System/360 Model 40.

Time-sharing

Although the development of a single terminal system was an
option considered to be useful in itself, it was decided to imple-
ment a time-sharing system. As terminals for our prototype, we
chose I/O typewriters (IBM Model 735, with slightly modified
correspondence wiring) driven through a modified standard ter-
minal control program" and accepting the connection of up to
four terminals.

Again, the classical solution was too cumbersome for our simple
System/7. With a standard time-slicing method, it would have
been necessary not only to handle specially dedicated clocks,
queues, etc. but also to solve other problems related to the inter-
ruption and resumption of the execution of modules while they
are needed, with the corresponding need of saving internal vari-
ables, etc.

28 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

the system to reduce supervising time in order to gain calcula-
tion time, we took advantage of the fact that between two con-
secutive modules the control is always transferred to the super-
visor, in the following way. By fixing the maximum number of
consecutive calls to the supervisor allowed to each user, a time-

, sharing controller was constructed, which is called by the vir-
tual interpreter supervisor whenever a user either: (a) exhausts
the allowed number of calls or (b) goes into the wait state be-
cause of an I/O request to the terminal.

The time-sharing controller then goes into a cycle until it finds
the first user requesting the interpreter. If this one and the cur-
rently active user are the same, nothing is done, and control is
given to him. In the opposite case, the active work space is
swapped out, and the new user work space is swapped in,
whereupon he becomes the active user. Reenterability of the
interpreter was, of course, required.

Disk file management and sensor-based input/output

The rlo operations with a System/7 can be classified into two
groups: disk file operations and analog-digital I/O operations.
Two approaches were considered:

1. To extend the APL language with special I/O (quad) symbols.
2. To include the shared variable concept (or a subset of it) and

to build an auxiliary processor to handle the I/O operations.

Approach 2 was chosen since it does not require modification of
the APL language, and an auxiliary processor, called TSI07, was
designed. This auxiliary processor is contained in a disk and is
loaded into main memory through the same paging algorithm
used to manage the interpreter. The same module slots in real
memory are shared by both the interpreter and the auxiliary
processor.

to cooperate, if they share one or more variables. Such shared variables
variables constitute an interface between the processors through
which information may be passed to be used by each for its own
purposes. In particular, variables may be shared between an APL
work space and some other processor that is part of the overall
APL system to achieve a variety of effects including the control
and utilization of peripheral devices (e.g., magnetic disk storage

At any instant, a shared variable has only one value: the last as- I

ever, a processor using a shared variable will find its value dif-
ferent from what it might have set earlier. For example, let X be
a variable shared by processors A and B:

Processor A Processor B
x+2

2 x x

x+3
4

2 x x
6

Sharing can be retracted by the monadic function W . applied
to the variable name. After this function is executed, the vari-
able stops being shared. Retraction of sharing is automatic upon
completion of the function in which it was defined if the connec-
tion to the computer is interrupted, if the user signs off or loads
a new work space, if the variable is erased, or if it is a local vari-
able.

disk file The auxiliary processor, TS107, allows the A P L / ~ user access to
operations disk files, in this case, IBM 5022 files. Six different operations are

allowed: sequential read/write, indexed read/write, delete, and
rename. The system operator has access to every file. Other
users may read from every file but can write, delete, and rename
only their own files, which must be defined as members of a di-
rectorized data set. The directorized data sets must be defined
outside of the APL/7 system, and the System/7 operator may do
it by means of standard utilities. The user may create new mem-
bers to his directorized file.

auxiliary Any user may sign on to the auxiliary processor by sharing any
processor number of variables with it. A variable is offered to the auxiliary

sign on processor by means of the following sentence:

99 aSV0 ‘name of the variable’.

The result of this expression is a 1 if the variable has been cor-
rectly offered, and a 0 in the opposite case. A variable is retract-
ed by using the same procedure as in APLSV.

auxiliary When a variable has just been shared, the auxiliary processor
processor expects the variable to be assigned a command. The commands

commands are character strings that explain to the auxiliary processor the
disk file operation desired as well as the necessary parameters to
define where and how this Operation must be done. A command
may have any one of the following forms:

SR vol,dsn,mn{ ,code}
IR vol,dsn,mn,DAT+identifier{,code}
IW vol,dsn,mn,DAT+-identifier{,code}

30 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

SW vol,dsn,mn

DL vol,dsn,mn
RN vol,dsn,mn,nn

The commands consist of the following parts:

1. The operation code:

SR: sequential file reading (records are read in the order

SW: sequential file writing (records are sequentially written

IR: indexed file reading (records are read in any order the

IW: indexed file reading and/or writing (records are either

DL: file deletion.
RN : file renaming.

they are encountered).

on the disk).

user specifies).

read or written in the order the user specifies).

Immediately after the operation code, at least a blank is ex-
pected.

2. The complete file name, consisting of the following subparts,
separated by commas:

vol: disk name.
dsn: file name.
mn: member name if a member must be accessed. If this is

not the case, and more parameters must be given in the
command, the absence of the member name must be in-
dicated by writing two consecutive commas.

nn: in case of renaming, the new name is given at the end of
the command.

The four subparts stated above are positional. Their order can-
not be changed.

3. The file parameters, separated by commas. The following
ones are accepted:

Disposition (NEW, OLD). If this parameter is not given, OLD
is assumed, meaning that the accessed file already exists.
NEW must be stated to create a new member (sw) and is only
accepted with this operation code. (See Example 1 in Fig-
ure 5 .)
Record organization (FX, TX). If it is not given, the old orga-
nization is assumed. In case the member is being created, this

NO. 1 * 1977 APL/7

I Figure 6 Example 2

READING A DATA SET
X+"SR APL7,APL70166,MYMB,Af
X

THE ABOVE CREATED MEMBER IS OPENED FOR APL
0

Space: This parameter must always be given in the case of an
SW operation. It is stated as S +- n, where n is the number of
sectors to be assigned to the member (the size of the file).
Data variable: DAT +- name of the variable. In the case of
I R ~ W operations (see Example 3 in Figure 7) , two variables
must be shared. One will be the control variable as explained
above which now is first assigned the opening command and
afterwards the indexing subcommands. Each indexing sub-
command consists of a vector of two integers: the first one is
0 or 1 depending on the kind of operation (read or write) to
be performed on the contents of the record indicated by the
second element of the subcommand.

If it is a read operation, the contents of the indicated record
are read into the data variable. If it is a write operation, the
contents of the data variable will be written into the record.
The data variable should have been shared before the com-
mand is assigned to the control variable.

All the preceding parameters are not positional, but keyword
controlled, and they may be given in any desired order. Exam-
ples of various operations are shown in Figures 5, 6, and 7.

The problem of controlling analog-digital sensors presents the sensor-based
following properties: I/O

The theoretical solution of the problem in this context com-
monly gives rise to matrical equations; a sophisticated math-
ematical support is thus needed.

Figure 7 Example 3

INDEED ACCESS TO A DATA SET.
99nsVO'Y I

X-+'lW APL7,APL70166,MYMB,A,DAT+Y1
X

x 4 1 (SUBCOMMAND MEANING 0: READ AND

1

0 (THE FILE I S OPEN FOR INDEED ACCESS)

1: RECORD NUMBER 1)
X

Y (RECORD NUMBER 1 H A S BEEN READ
0 (THE OPERATION I S SUCCESSFUL)

INTO THE DATA VARIABLE Y)
ABCDMWQ

xto 0 (READ RECORD 0)
X

Y (IVOW RECORD NUMBER 0 H A S BEEN
0

READ INTO Y)
1 2
3 4

Y t l 2 3 4
x+1 0 (THE VALUE OF Y I S WRITTEN I N

X

xto 0 (THE V A U E OF RECORD 0 I S READ

RECORD 0 1

0

INTO Y)
X

0
Y

1 2 3 4
Y t o
X+l 6 (THE CURRENT VALUE OF Y IS

X
WRITTEN IN RECORD 6)

0

Interactive systems are convenient, allowing the user to
respond immediately to any eventuality. Therefore, a more
direct control on the process under consideration is feasible.
Response time is a must only for concrete applications.

The sensor-based operations can be divided into the following
classes:

Analog input reading (AI) .
Analog output writing (AO).

34 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

Digital input reading (DI) .
Digital output writing (D O) .

For sensor-based applications” on System/7, the I/O module is
the basic building block. Each module is self-contained, that is,
it houses all the electrical/mechanical components necessary to
serve the I/O operations (analog input, analog output, digital
input, digital output) and to connect the System/7 internal inter-
face. An I/O module may be physically placed in any module
position of enclosure.

An I/O point is a two-wire connection. The points of the same
type (analog/digital I /o) , which are placed in the same module,
are reunited in groups that can be simultaneously accessed.

The following is an example of a command for an analog input
read:

AIMOD=5,POINT=14,INW=200,NVAL=10
The command indicates that we want to read at analog input
point number 14, located in the System/7 module 5 , 10 consecu-
tive values separated by an interval of 200 microseconds. In the
case where the interval is not specified, a standard value is
applied. The result of the operation is an APL vector whose
dimension is equal to NVAL and whose values are the desired
readings in millivolts.

A command example for an analog output follows:

A0 MOD=5 ,POINT=1 ,INW=200

This example indicates the wish to output consecutively through
the analog output point number 1 in the System/7 module 5 , the
elements of an APL vector, with an interval of 200 microse-
conds.

A command example for digital input reading without process
interrupt:

D I MOD=S,GRP=3,BITS=5 7 6 %,NVAL=1O,IN!l”=200

This example commands that the bits, numbers 5 , 7, 6, and 8 of
digital input group number 3 in System/7 module number 5 , must
be read consecutively 10 times, with an interval of 200 micro-
seconds. The result will be given as an APL binary matrix where
the rows represent the successive readings and the four columns
correspond to the values of the specified bits in the order in-
dicated.

A command example for digital input reading with process inter-
rupt:

NO. 1 . 1977

analog input

analog output

I DIMOD=5,GRP=O,BITS=O,REF#O
It means that as soon as bit 0 in the digital input group number 0
in System/7 module 5 has a value of 1 (REF # 0) , an interruption
must be produced. The REF parameter is a reference to which
the digital input is compared. As soon as the given condition is
satisfied, an interruption is triggered.

To solve this case, two new system variables, B V and OXV have
been added to the system. OxV is to be assigned an executable
character matrix prior to the starting of the interruption process.
When the interruption is served, B V will be assigned a code,
which identifies the point where the interruption has been de-
tected.

Let 2 be a shared variable that has been assigned a digital input
command with process interrupt:

Zt ' DI location, bits, reference, interrupt control '
The next step is to ask if the command has been accepted. This
question requires an access to 2, an access that enables the in-
terruption. I
When the interruption arrives, the current execution is halted,
and the interruption is served in another level, that is to say, @EV
is assigned a code that identifies the point where the interruption
has been produced. The system returns to its previous level of
interruption and execution is resumed. Every time a user access-
es the virtual storage supervisor, @EV is scanned. If an interrup-
tion has been produced, the APL function being executed is sus-
pended and OXV is executed. If OXV is an empty array, the ter-
minal is opened. The effect in this case is equivalent to pressing
the attention key. If several interruptions are to be successively
input with the same command, the variable Z has to be accessed
after every interruption is served to enable the next interruption.

digital output The following is a command example for digital output writing:

DO MOD=5 ,GRP=3 ,BITS=5 7 6 8 ,IIvIzr=200

It means that we want to write the elements of an APL binary
matrix (it must be a four-column matrix, each column for every
element of BITS), and every 200 microseconds send the succes-
sive rows of the matrix through the bits 5 , 7, 6, and 8 respec-
tively) of digital output group number 3 , located in System/7
module number 5.

application As an example, we present the following case to be solved:
example Every 10 milliseconds, digital input group number 2, in Sys-

tem/7 module 5 , must be read until the reading has taken place
100 times. Then the arithmetic average of the read values must

36 ALFONSECA, TAVERA, AND CASAJUANA IBM SYST J

be computed, and the output sent through analog output number
0 in System/7 module number 3 . Each input reading will be con-
sidered as a positive integer with 16 binary digits. The process
must begin when bit 0 in the digital input group number 0 in
module 5 is set.

The following APL function would solve this example:

V DIRW; A
C11 PI LET X,Y, Z BE VARIABLES SHARED WITH THE AUXILIARY PROCESSOR
121 UXV f 3 l l p ' A c 0 . 0 5 x 2 1 X Y f (+ / A) : p A +L I

C3l X f ' D I MOD=5 ,GRP=2 ,WAL=lOO , I ~ ~ = l O O O O '
C41 + (X*O)/E
151 Y+ ' A 0 MOD=3 ,PT=O '
C6l + (Y#O)/E
C71 Z f ' D I MOD=5 ,GRP=O ,BI!Z'S=O ,REF*O'
C81 L : + (Z # O) / E
C91 +L+1
[I O] E : 'ERROR'

V

Line 3 opens the digital input group 2 in module 5 , and line 5
opens the analog output point 0 in module 3. Line 7 means that
as soon as bit 0 in the digital input group 0 in module 5 has a
value of 1 (REF f 0) , an interruption must be produced. Line 8
enables the interruption.

Line 9 is a closed loop. The system is waiting for the interrup-
tion to come. When that happens, LiEV is set, and at the next call
to the supervisor, OXV (whose value had been set in line 2) is
executed. Now, the 16 bits of the digital input group 2 are read
100 times, with an interval of 10 milliseconds; they are coded
into decimal base, multiplied by a scalar factor 0.05, and as-
signed to a local variable A . In the second line of OXV, the arith-
metic average of A is assigned to Y , and the output goes through
the analog output.

The last line in OXV is a return to L, where a new access to Z is
made to enable the next interruption, and the whole process will

