Discussed is an experimental, specialized data-base system de-
veloped for users who do not require the sophisticated resources
of the large data-base systems but do require many of the capa-
bilities they provide. Data manipulation and retrieval within a
data base are made available for the nonprogrammer user. The
function and design attributes of the system are described in-
cluding the reasons for basing the system on APL functions.

A user-oriented data-base retrieval system
by A. U. Jones

Potential users of data-base systems range from those with small
quantities of tabular data that is organized in a simple manner to
those with large amounts of highly organized, complexly struc-
tured data and related data files. The current and available data-
base systems tend to be oriented more to the user with require-
ments for complex systems rather than for simple ones. Those
users with the lesser requirements in terms of system sophistica-
tion, while still requiring many of the capabilities of a larger sys-
tem, need them on a smaller, more immediate, and direct scale.
They require the capabilities without having to face such com-
plexities as data description languages, file definition require-
ments, space utilization and allocation considerations, among
others.

To these users, the data-base definition and manipulation capa-
bilities of the system are more important than the structure and
efficiency of the underlying techniques with which the system
organizes and manages the data base. They do not usually have
the time or the expertise to undertake the task of subsetting,
modifying, or adapting the more general-purpose data-base sys-
tems for their specific applications. As a result, they are often
faced with the necessity of designing their own systems in order
to achieve the required simplicity, flexibility, and applicability.
It was for this type of user, who needs a general-purpose system
on a smaller, more user-oriented scale, that a specialized system
called the Data Base Retrieval System was created.

JONES IBM SYST J

The Data Base Retrieval System (DBRS) is an experimental,
interactive system' that provides facilities for using a terminal to
maintain information in a data base and to generate reports from
it. DBRS is comprised of APL (A Programming Language) func-
tions, and is designed to be used by people who have little
knowledge of APL.” DBRS offers a straightforward, command-
oriented interface that appears to the user to be tailored specifi-
cally to each unique data base that is established. Major facili-
ties include: data-base definition; data entry, update, and listing;
arithmetic computation; selective retrieval; and formatted re-
port generation. This paper describes DBRS and the rationale
for various design decisions and implementation considerations
that occurred during its development. In addition, the paper dis-
cusses some of the benefits as well as limitations of using ApL**
as the base system and implementation language, and presents,
from the designer’s viewpoint, the characteristics of a user-ori-
ented data-base system. The appendix contains a sample termi-
nal session illustrating the primary DBRS functions and should
be referred to when it may be necessary to clarify any questions
on the actual facilities provided by the system.

System objectives and user functional requirements

DBRS was originally conceived as a system that would provide
logical search and selection capabilities for data maintained in an
interactive, on-line terminal system environment. It was intended
to be a generalized tool, although developed as a specialized
data-base system, that would replace any similar existing sys-
tems, or would eliminate the need to create additional special-
purpose, application-oriented systems. It was expected that
many of the users would be nonprogrammers. Therefore, DBRS
was designed to provide the following functional capabilities:

s [Establish the format of the data and the size and structure of
the data base.
Add and delete data and modify data-base content.
Retrieve data on a selective basis and display the results.
Generate reports utilizing user-specified formats.
Provide facilities for data analysis and computation.

The manner in which these capabilities were to be presented to
the user was also bounded by the following usability objectives:

s Completely interactive with all facilities available at the ter-
minals.
Simple and easy to use, including easy-to-remember com-
mand syntax with standard defaults and suitable error mes-
sages.
Not oriented or limited to specific types of applications.

No. 1 -« 1977

implementation
language

* A minimal investment in terms of system installation, educa-
tion, and implementation effort.

General design considerations

The overall DBRS design philosophy was to provide a system to
help complete a job in a manner suitable to the user. This ap-
proach is preferred over one that forces the user to do the job in
the manner determined by the system. A very important consid-
eration in the design was the desire to provide a user interface
that would be suitable for nondata-processing users, including
secretaries and administrative personnel, as well as program-
mers and APL users.

APL was chosen as the implementation language because of its
interactive capabilities and the ease with which commands can
be defined by the implementor and expressed by the user in an
“English-sentence-like” fashion.

User communication with the system is based on words and
phrases that appear to be directions and commands for data-
base manipulation. In reality, these statements specify APL func-
tion calls and related parameters. The obvious advantage is that
the user need not know the APL language nor be a programmer
to use the system. Nevertheless, the more experienced user can
take advantage of APL knowledge to extend the basic DBRS
functions or add additional functions as appropriate to the needs
of specific applications. Thus, the system can be a useful tool for
both the APL expert and the less-experienced terminal user,
without appearing to be too simple or too complex for either.
This duality is accomplished, in general, by providing a compre-
hensive set of commands (APL functions) that allow the user to
maintain complete control over the data base without realizing
that APL is being used.

In contrast, the experienced APL user might find it more expedi-
ent to use APL facilities directly for some of the data-base manip-
ulation; the user is not prevented nor constrained by DBRS
from so doing. The ease with which this user-oriented capability
was accomplished reflects well on both the structure and design
of ApPL and the implementation of DBRS.

The data-base environment

One of the characteristics that distinguishes DBRS from other
data-base systems is the maintenance of data in a form directly

JONES IBM SYST J

representative of the manner in which the user defined the data
base. While there is nothing inherent in the DBRS interface nor in
APL that would prevent a more complex data storage scheme,
the choice was made to use the most simple available data struc-
ture. Had this not been done, it would have been much more
difficult for the user who is familiar with APL to access the data
directly or to expand on DBRS capabilities with additional func-
tions. It would also have made the implementation of DBRS itself
much more complex. A more sophisticated data structure would
probably have necessitated a secondary level of functions within
DBRS that did the actual data-base management. In its current
format, all DBRS functions reference the data directly; there are
no “pointers” or definition items contained within the data.

The data-base structure supported by DBRS is a two-dimensional
array (or table) containing character data. A single user-defined
format consisting of fixed-length fields is imposed over each row
of the array through the use of global control variables con-
structed when the user defines the characteristics of the data. A
field is merely a set of contiguous columns and may contain any
data chosen by the user. All data is maintained in character
form; therefore, the user does not have to distinguish between
numeric and character (or alphanumeric) data—a number is
always a number, at least as the user views it. This choice of
data format was not necessarily the most efficient in terms of
storage usage (numeric data can usually be expressed in less
space) or implementation strategy (DBRS must convert to inter-
nal numeric form for arithmetic processing). However, it was
decided that this format was better for DBRS because (1) the
user’s data can be kept in a single array, (2) the user does not
have to explicitly declare the format of the fields, and (3) the
user is not restricted to the type of data that can be put into any
field.

The decision to restrict data bases to fixed-length fields was
made in the interests of keeping both the user interface and the
design of DBRS straightforward and consistent. Hierarchical
structures or fields with multiple elements can be handled by
entering the same item repeatedly, with appropriate variations in
field content. Variable-length, text-like fields can be developed
by defining a field for the maximum length of data expected, or
by having a field in the data base that contains a note or refer-
ence to text that is kept elsewhere. Thus, what might appear to
be a lack of facilities or a limitation of the system can be over-

come in various ways without compromising the objectives of -

DBRS. Special functions for handling fields with variable content
and of varying length (data storage and text-processing
functions) are not necessary; the existing functions can be ap-
plied equally to all fields.

No. 1 - 1977

data-base
structure

prompting

The data-base command language

Design of the DBRS command syntax was intended to be as
“patural” as possible from the user’s viewpoint. In the case of
one-word commands (with or without parameters), the word is
always spelled out. For example, PRINT is used instead of an
abbreviation like PRNT. Commands requiring two parameters
are structured with extra functions so that the resulting phrase
appears to be an imperative command rather than an ApL func-
tion with left and right arguments. Examples of this are:

FIND COST EQUAL 10 (rather than COST FIND 10)
MOVE 25 AFTER 3 (rather than 25 MOVE 3)

In cases where more than two parameters are required, or where
the command might be repeated with some of the parameters
changed, the functions are designed to “prompt” for input. It is
tempting from the designer’s standpoint to have only one func-
tion doing all the work of some area, i.e., data-base modification,
and to let the user’s replies determine the specific work to be
done, thereby ‘‘tailoring” the function to each request made.
However, replying to multiple prompts can be tedious from the
user’s standpoint, particularly if the command involves a fairly
straightforward operation. The prompts merely move the user to
the proper part of the function, possibly after executing some
portion common to all operations of the function. Therefore, it
was decided to provide different functions in DBRS for each spe-
cific operation, repeating code or using common subroutines as
necessary. The system also accomplishes the prompting in an
order that appears most obvious to the user, rather than in a way
that was easiest for the implementor.

In all cases where inputs are requested, standard default values
or actions are predefined. Usually, all the user has to do is reply
with a carriage return to indicate use of the default value, or
have no action or change take place. Functions that actually
change the data base are designed to allow display of the current
content of the data base before changes are made. This ‘““second
chance” is especially important when the user requests that por-
tions of the data base be deleted, since there is no way to re-
cover data if the request was in error (unless the user has saved
a backup copy).

Data-base definition and manipulation facilities

One of the primary purposes of DBRS is to provide facilities for
the user to manage data in an APL work space by using user-ori-
ented commands rather than APL expressions. The first step in
this process occurs during the user’s definition of the data-base
structure.

JONES IBM SYST J

After specifying the number of fields in the data base and the
maximum size to be allowed for each one, the user is asked to
supply a name for each field. It is up to the user tc select appro-
priate names that have meaning related to the content of the
data or reflect the way the data is visualized. These names are
used directly in all DBRS commands to reference fields (sets of
columns) within the data base. DBRS converts each field name to
an APL function that produces, as an explicit result, a number
representing the relative order of this field within the set of fields
defined for the data base. The “‘field number” is used by DBRS
functions as an index to other tables of control information
about the data base, such as the table containing the character
representation of the field name. The field number is used pri-
marily, along with other contro) information, to generate a vec-
tor of column numbers that becomes the second subscript of any
reference to the data-base array. Entries in the data base are ref-
erenced by their line/row number (the first subscript of the array
reference), which is always the relative position of the entry
within the data-base array. Thus, the user can address the data
base both ‘“horizontally” by entry, and/or “vertically” by de-
fined field name, depending on the desired data-base subset.

In addition to data entry and deletion capabilities, DBRS also
provides functions that allow data modification in specific fields
in specific lines, as well as multiple fields in multiple lines of the
data base. Since all modification functions (replace, duplicate,
and text edit) ask the user to specify the field names and entry/
line number to be changed, and since all data is maintained in
character form, only one set of functions is needed for data-base
maintenance. As a result, the DBRS functions (commands) ap-
pear to be tailored to the user’s own set of field names, when, in
fact, they are for general-purpose use from the viewpoint of the
implementor as well as the user.

Data retrieval and arithmetic computations

The use of field names as a means of “customizing” commands
for the user was an important consideration in the design of both
the retrieval and computational facilities. Retrieval, in the case
of DBRS, means the ability to address, or select, portions of the
data base as a result of searching for specific values in the data.
Logical operations such as “equal,” “less than,” and “‘greater
than” form the basis for these selections, which result from
comparisons of data-base field content to literal values specified
in the command. Additional operators aliow searching for spe-
cific character strings within a field. The general command for-
mat is:

LE Y

FIND fieldname operator ‘literal value’

No. 1 - 1977

arithmetic
computation

Examples of actual use are:
FIND UNITPRICE LT 29’ or FIND SUBJECT CONTAINS ‘SYSTEM’

In reality, the actual search of the data base is done by the “op-
erator” function (LT or CONTAINS in the example), and the field
name and literal value are its left and right arguments. The FIND
function merely converts the binary vector that is the explicit
output of the operator into a numeric vector containing a list of
line numbers that met the specified selection criteria.

A furthgr application of this same procedure allows the user to
combine search criteria using the logical connectives AND and
OR. An example is:

FIND (NAME EQ ‘SMITH’) AND CLASS EQ ‘SOPH’

which would find all sophomores with the name of Smith in a
student data base. In this case, the AND function expects binary
vectors as input and produces a single binary vector as output,
which is what the FIND function requires as input. Note that
parentheses are required in order to cause APL to execute the
functions in the desired manner.

The commands to execute the arithmetic computation facilities
provided by DBRS are structured in nearly the same manner as
the commands for retrieval, The full statement format is:

COMPUTE fieldname AS fieldname operation fieldname FOR lines

A specific example is:
COMPUTE COST AS PRICE TIMES QUANTITY FOR ALL

which generates entries in the coST field for ALL lines in the
data base by multiplying the value in the PRICE field by the value
in the QUANTITY fields. Since the “operation” functions are de-
signed to allow literal values as well as field names as argu-
ments, it is possible to perform multiple operations within the
same command. For example:

COMPUTE C AS A PLUS (D MINUS (‘3.5 TIMES F)) FOR LIST

will insert a computed value [A + (D — 3.5% F)] in field C for
all the lines contained in the vector LIST. The FOR, AS, and
COMPUTE functions perform special operations related to select-
ing entries and storing results in the data base, setting switches
and global variables as required. In fact, the purpose of COM-
PUTE is primarily to provide a verb for the command, although it
does do some cleanup work at the end of the computation se-
quence. In any case, the overall effect is to provide the user a
customized command for doing arithmetic operations. The nec-
essary indexing and character/numeric conversion are done au-
tomatically.

JONES IBM SYST J

Data display

Since data is in character form and is stored line by line as rows
of an array, it would be easy enough for the user to display the
content of the data base simply by typing the array name, using
subscripts if desired. However, listing the data with spacing
between fields, or generating a formatted report using only basic
APL array referencing, is quite a bit more complex. Therefore,
DBRS provides two means of displaying data-base content. The
PRINT function produces a simple listing of the lines that the
user specifies, printing the fields in the order they appear in the
data base, with a single space between fields. This spacing is
easily achieved because the data base is allocated by DBRS with
one more column than the user defines. Since it always contains
a blank, spacing can be inserted in a printed line by using a vec-
tor as the second subscript of the array reference and including
the number of the extra column whenever a space is required.
No matter how the user has defined the fields, formatting
(spacing) can be achieved without additional complexity in the
function implementation.

Facilities are also provided by DBRS that allow the user to print
selective fields, in any order desired, with variable spacing be-
tween them. As in printing, the actual formatting is achieved by
constructing a vector referencing the data-base columns (in-
cluding the blank column for spacing purposes) in the desired
order. The REPORT function also allows the user to specify titles,
column headings, and page sizes, as well as providing a facility
for saving these definitions and referencing them when needed.
In effect, by using combinations of the FIND, COMPUTE, and/or
REPORT functions, the user can create a “program’ within the
confines of the data-base system.

Development experience —the APL environment

Preceding sections of this paper have suggested that APL pro-
vides a favorable environment in which to develop a user-ori-
ented interactive system. The primary advantage was in permit-
ting an interface to be developed that did not require the user to
become knowledgeable about APL. At the same time, the DBRS
designers were able to use all of the capabilities and features of
APL, with the need to conserve space being the only major re-
striction, since all data and functions reside in the user’s work
space. For example, in order to avoid ““WS FULL” situations, the
logical search functions check the amount of working area avail-
able and do element-by-element comparisons rather than using
the more appropriate inner product array operations if sufficient
space is not available.

No. 1 - 1977

APL
capability

Users with APL expertise can easily modify DBRS functions to
suit their own needs or write additional functions within the
framework of DBRS, since there is only one level of functions to
deal with. All DBRS functions are designed to be executed di-
rectly, and any function can reference the data base and use the
global control variables; there is no higher-level monitor or
lower-level access method surrounding the functions.

This type of design does have some drawbacks. Perhaps the
most significant drawback is that each function, or combination
of functions such as the COMPUTE sequence, is independent of
the others and is expected to reach normal completion each time
it is executed. If a function should inadvertently be interrupted,
the data base might be left in an undesirable state since it is not
possible in APL to have a supervisor-like program to intercept
control on error situations or when functions do not complete
normally. For example, the occurrence of an interruption while
lines are being moved around within the data base could cause
some lines to be lost entirely if they were stored in temporary
variables during the move operation. While it would have been
possible to include additional checking or a special function to
be executed when an interruption occurs, it was decided not to
do this since the user will know the interruption occurred, and
will have to take corrective action, if only to clear the State Indi-
cator.

Actually, users need some minimal knowledge of APL, since sys-
tem commands such as)LOAD and)SAVE must be executed di-
rectly by the user. Also, since lack of working area can become
a problem if the data base has been defined near the maximum
calculated by DBRS, knowledge of)ERASE and)COPY com-
mands is helpful. DBRS function groups are set up to be deleted
if space is needed and are copied back in when required. It is the
user’s responsibility to monitor the work-space area, since APL
does not permit system commands to be executed within func-
tions.

Experience with the system indicates that most users tend to use
DBRS ‘““‘as i1s” even when they have some knowledge of or expe-
rience in writing APL functions. The most common change, if
any, has been the implementation of user-defined functions that
combine selection (FIND commands) and reporting in a single
function with predefined search criteria. There have been in-
stances, however, where DBRS has been combined with other sys-
tems either as a “front-end” processor for ease of data entry, or
as an output processor because of the capabilities for selection
and formatted report generation. Since the system was designed
to be open-ended and modifiable, such uses have been encour-
aged.

JONES IBM SYST J

Summary

This paper has described the function and design attributes of a
user-oriented data manipulation and retrieval system intended
for the nonprogrammer user. The acceptance of the system, by
those who have used it, is sufficient to demonstrate its feasibility
to maintain small-to-moderate-size data bases for users who do
not require the resources of larger data-base systems for routine
tasks. The considerations and techniques given here relate spe-
cifically to DBRS, but should be applicable in principle to similar
systems. The prime advantages of this approach have been:

Ability of the user to use the system without need for assis-
tance from system or programmer personnel.

Immediate, on-line data-base definition, data entry, and re-
porting capabilities.

Fase of change and new function definition within the sys-
tem, both for the users and the designers.

The following guidelines were found to be especially helpful and
are suggested as considerations for designers of user-oriented
systems:

. Try to envision the user’s perspective when designing or
modifying systems —the design that is easiest to implement
will probably not be the easiest to use.

. Try it yourself —what appears to be a superior design on pa-

per doesn’t always turn out that way when you try to apply it
to a real-life problem.

ACKNOWLEDGMENTS

The author acknowledges the contributions of C. E. Mahood of
the Endicott laboratory of the System Products Division as co-
developer, with the author, of the Data Base Retrieval System
described in this article. Also acknowledged is the management
support and direction provided by J. W. Owens.

CITED REFERENCES AND FOOTNOTE

1. DBRS is a system developed by 1BM for internal use and is not available for
distribution outside of IBM.

2. C. E. Mahood, “Data Base Retrieval System (DBRS), A personalized data
base system for the APL user,” APL 76, Ottawa, Canada (September 20—
22, 1976).

. APL Language, No. GC26-3847, IBM Corporation, Data Processing Divi-
sion, White Plains, New York.

. APL Shared Variables User's Guide, No. SH20-1460, IBM Corporation,
Data Processing Division, White Plains, New York.

No. 1 - 1977

Appendix: Example of a DBRS terminal session

Initialization

NEWAA
ENTER, IN SEQUENTIAL ORDER, THE MAXIMUM NUMBER OF CHARACTERS FOR EACH FIELD.
(TYPE RESPONSE ON ONE LINE WITH A BLANK BETWEEN EACH ENTRY)
:
128820468
THIS DATA BASE WILL HAVE 66 CHARACTERS PER ITEM AND CAN HAVE A MAXIMUM
OF 564 ITEMS OF 7 FIELDS EACH. ENTER DFSIRED MAXIMUM NUMBER OF ITEMS,
0:
100
ENTER THE NAME OF EACH FIELD IN SEQUENTIAL ORDER,
ONE NAME PER LINE FOLLOWED BY A CARRIAGE RETURN(CR)
(NAMES USED MUST BE UNIQUE WITHIN THE WORKSPACE)
NAME
PHONE
DATE
STATUS
AMT1
AMT2
BALANCE
INITIALIZATION COMPLETE

Data entry

ENTER
FIELD NAMES:

NNNNNNRNNNNNPPPPPPPPDDDDDDDDSSSSSS 555555555555 SSAAAA*% %% %% BBBBBBBB
MAHOOD,C.E. 789-342210/23/750N-TIME 4,22 43,12
RUSH,A.E. 788-009812/13/T4LATE .98 1,01
JONES,E.E, 555-000101/12/76 4.56

USED
3 ITEMS OUT OF 100

PROMPT
FIELD NAMES:
NAME
DATE

NAME :ARBIT,E.R.
DATE :11/01/74
NAME :BALL,S.
DATE :

NAME :

INSERT
AFTER WHICH LINE?0
FIELD NAMES:

NNNNNNNNNNNNPPPPPPPPDDDDDDDDSSS55555555555555555AAAA*» %+ %+ BBBBBBBB
JONES,A.U. 888-098701/01/760K
OPALD,S. OK S.u4

DONE

PRINT ALL
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
1 JONES,A.U. 888-0987 01/01/76 0K
2 OPALD,S. OK S.uk
3 MAHOOD,C.E. +789-3u42 210/23/7 SON-TIME 4,2 2 43,12
4 RUSH,A.E. 788-0098 12/13/74 LATE .98 1,01
S JONES,E.E. 555-0001 01/12/76 4,56
6 ARBIT,E.R. 11/01/74
7 BALL,S.

JONES IBM SYST J

Data modification

REENTER
STARTING WITH WHICH LINE?3
FIELD NAMES:

NNNNNKNNNNNNPPPPPPPPDDDDDDDDSSSSSS55555S55S5555SAAAA**» *»« BBBEBBBB
MAHOOD,C.E, 789-342210/23/7SON-TIME 4,22 43,12

PRINT 3 4
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
3 MAHOOD,C.E. 789-3422 10/23/75 ON-TIME 4,22 43,12
4 RUSH,A.E. 788-0098 12/13/74 LATE .98 1,01

MOD
LINE:7
FIELD:DATE
IS:
DATE :09/09/74
FIFELD: AMT1
Is:
AMT1 :5,00
FIELD:
LINE:

PRINT 7
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
7 BALL,S. 09/09/74 5.00

REPLACE
LINES:2 3
FIELD NAMFES:
STATUS
AMT2

S5555555558555555555AAAAAA
ITEM NO.2

OK

NOW LATE 2,33
ITEM NO,3

ON-TIME

ALSO LATE

DONE

LINES:

PRINT 2 3
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
2 OPALD,S. NOW LATE S.44 2,33
3 MAHOOD,C.E. 789-3422 10/23/75 ALSO LATE 4,22 44,56

EDIT
LINES:6
FIELD:NAME
ITEM NO, 6 FIELD IS:ARBIT,E.R,
OLD PHRASE:AR
NEW PHRASE:BAR
DONE
LINES:

PRINT &
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
6 BARBIT,E.R, 11/01/74

- 1977

Search and retrieval

FIND AMT1 LE '3,22!
3 ITEMS

PRINT LIST
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
1 JONES A U. 888-0987 01/01/76 OK
4 RUSH,AE, 788-0098 12/13/74 LATE .98 1.01
6 BARBIT,E.R. 11/01/74

FIND (NAME BEGINS 'J') AND AMT1 LE '0,uy’
1 ITEMS

PRINT LIST
ITEM NAME PHONE DATE STATUS AMT1 AMT2 BALANCE
1 JONES,A.U, 888-0987 01/01/76 0K

PROMPT
FIELD NAMES:
NAME

NAME :%xTOTAL
NAME

Computations
COMPUTE LASTENTRY AS SUM AMT1, AMT2 FOR 1 THRU LASTENTRY-1
COMPUTE BALANCE AS AMT1 PLUS AMT2 FOR ALL

PRINT ALL

PHONE DATE STATUS AMT1 AMT2 BALANCE
JONES,A.U. 888-0987 01/01/76 0K .00
OPALD,S. NOW LATE 5.44% 72,33 3,11
MAHOOD,C.E. 789-3422 10/23/75 ALSO LATE 4,22 44,56 48,78
RUSH,A.E. 788-0098 12/13/74% LATE .98 1,01 1,99
JONES,E.E. 555-0001 01/12/76 4,56 4.56
BARBIT ,E.R. 11/01/74 .00
BALL,S. 08/09/74 5.00 5,00
**xTOTAL 20.2 63,44

Defined reports

DEFREPORT
TITLES CAN BE UP TO 120 CHARS.
REPORT NO. 1
TITLE:SAMPLE BALANCE SHEET
HEADER LINE 1
NAME OF USER NORMAL EXTRA BALANCE
HEADER LINE 2
HOURS HOURS IN TOTAL
FIELD NAMES:
NAME
AMTL
AMT?2
BALANCE
DATE

FIELD SPACING:3 2 4

REPORT NO, 2
TITLE:

IBM SYST I

REPORT 1
ENTER LINE NOS.:ALL
PRINT LINE NOS.?N
NO. OF LINES /PAGE?56
POSITION PAPER, THEN HIT CR

SAMPLE BALANCE SHEET 15.41,53 07/20/76 PAGE 1

NAME OF USER NORMAL EXTRA BALANCE DATE
HOURS HOURS IN TOTAL

JONES,AU. .00 01/01/76
OPALD,S. 5,44 72,33 3,11

MAHOOD,C E. 4,22 44,56 48,78 10/23/75
RUSH,A.E. .98 1.01 1,99 12/13/74
JONES,E.E. 4,56 4,56 01/12/76
BARBIT,E.R. .00 11/01/74
BALL,S. 5,00 5.00 09/09/74
*xTOTAL 20.2 43,24 63,44

Reprint Order No. G321-5042.

