
Emulation of an A PL machine  on  a  System1370  is  exempl$ed  by 
the A P L  Assist,  a  microprogram  that  enables APL. expressions 
and  dejined  functions  to  be  executed  at  the  hardware  level.  This 
paper  discusses  what  the APL Assist  does,  how  it  works,  and  the 
way  it  interacts  with  System/370  software.  Execution  times  for 
A P L  programs  with  and  without  the  Assist  are  compared. 

An  APL emulator on System/370 
by A. Hassitt  and  L. E. Lyon 

There  are several  methods of executing programs  written in 
a high-level language. The most widely used is to compile the 
programs into machine language. Another is to translate  the  pro- 
grams  into  some  intermediate form and then execute  that form 
interpretively. A third method is to build a machine to directly 
execute  either  the high-level language or  the intermediate  form. 

APL programs are executed by interpreters,  as it is difficult and 
perhaps impossible to compile APL.' The interpreters  are  suc- 
cessful,  but  there  are  several  reasons  for wanting to build a 
machine that would execute APL directly.  Such  a machine could 
offer the possibility of a radically new architecture, it could af- 
fect the way software is written  and  developed,  and it could 
speed APL execution" 

An APL machine would differ from a conventional machine, like 
a  System/370, in that a conventional machine executes  instruc- 
tions. For example,  the  instruction A 2,B causes  the word at 
location B to be added to the word in register 2. The machine 
knows nothing of the  properties of the  words; it simply performs 
integer addition because  the  instruction specifies it. APL pro- 
grams,  however,  do  not  contain  instructions;  they  contain 
expressions,  statements,  and  functions. The expression B+C, for 
example, is merely a  request  for  the addition of B and C; the 
machine would have  to  determine  the following: 
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whether  the addition is allowed (for example,  the  result 
would be  a domain error if either B or C were  an  array of 
characters) ; 

whether integer or floating point addition should be  used; 

whether  one or  both operands should be converted  to float- 
ing point form; 

whether  the  operands are conformable  (for  example, if B is a 
10-by-20 matrix, then C must also be a 10-by-20 matrix, or 
else it must  contain only one  element) ; 

how many additions are required (for  example, if B is a 10- 
by-20 matrix and C is conformable, then 200  additions are 
required). 

Methods of executing APL expressions using software  interpret- 
ers  are well known, but  the possibility of execution  at  the  hard- 
ware level presents  opportunities for developing new methods. 
The outstanding  example is a machine architecture designed by 
P. S. Abrams.' Abrams' design was purely theoretical; he made 
no attempt  to build the machine. However,  Schroeder  and 
Vaughn3 describe  hardware  intended  to implement the  Abrams 
design. 

In all APL ~ y s t e m s , ~  processing  takes place in a piece of memory APL systems 
called a  workspace, which contains APL programs,  data,  and 
control information, as well as some unused space.  Each  user 
can  have  a library of many workspaces,  but only one  can  be  ac- 
tive at a time. When APL execution begins, the  user is provided 
with a  clear  workspace-one containing some control informa- 
tion but no programs or  data.  The user  can  enter programs into 
the clear  workspace, or he can  replace it by loading a workspace 
from his library. When the  system is ready for  input,  the  user 
can  type  an APL command, he can define or edit  an APL func- 
tion, or he can  type  an APL statement.  Statements, which are 
executed immediately, may initiate extensive calculations by 
calling previously defined APL functions. 

I The major components of an APL system are  as follows: 

A  supervisor  communicates with the terminal, loads work- 
spaces,  services  interrupts, and so on. 
A  translator  accepts APL statements  or  functions,  translates 
them into internal form. and stores them in the  active  work- 

not saved.  A  translation is not compilation, but simple one- 
for-one mapping: it is analogous to  the assembly process, 
which converts  assembler language instructions  into binary 
machine language instructions. The system  saves  a table of 



user defined names so that  the  translator  can easily translate 
from internal to  external form when a display of a  function is 
required.) 
An  interpreter  carries  out  the  interpretive  execution of APL 
statements. 
One  or more auxiliary processors  communicate with the op- 
erating system, disk files, input/output  devices,  and  other 
processors. A shared-memory  processor provides common 
storage  for  the auxiliary processors. 4 ,  5 ,  6 

historical The problems and benefits of implementing APL in a micro- 
background program were investigated in 1973 by the  present  authors  and 

J. W. Lage~chulte.~  The work was  done on a  System/360 Model 
25. It provided valuable experience,  and  the implementation 
functioned correctly,  but  the machine was  too small and too 
slow to  support  a useful multi-user system.  This  work and the 
work of Grant,  Greenberg,  and Redell,* for  example,  were  at- 
tempts  to build a machine that would execute APL only. 

On completing the Model 25 work, we set  out  to provide for 
direct  execution of APL on a multi-user machine that could sup- 
port  a virtual-memory operating  system. We decided it would be 
unreasonable  to insist that  the  entire machine be dedicated  to 
APL. The result was a plan to  supplement  the microprogram on  a 
System/370 Model 145 so that  the machine could directly  exe- 
cute  both  System/370  instructions and APL statements. Imple- 
mentation of this plan led to  development of the APL Assist mi- 
croprogram,9 which was made available to IBM customers in 
September  1974. 

In this paper we describe  what  the APL Assist  does, we discuss 
how it works and the way it interacts with System/370  software, 
and we  compare  execution times for APL programs with and 
without  the  Assist. 

I Microprograms 

Some of the  component  parts of a  System/370  central  process- 
ing unit are  shown in Figure 1 ."' The local storage  contains gen- 
eral purpose  registers, floating point registers, and some working 
registers  for use by the microprograms. The control  storage  con- 
tains the microprograms for executing System/370  instructions. 

In many microprogrammed machines, the  control and program 
storages  are physically separate and are implemented in different 
technologies. Figure 1, however, is based  on  the Model 145, 
which has a single storage divided into  two  parts. The boundary 
can be  moved,  under microprogram control,  to give a maximum 
control  storage of 64K  bytes. 
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Figure 1 General microprogram flow 
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in which S is 4 bits long, D is 8 bits, V is  16 bits,  A is 24 bits, 
and  v, i, p,  and u are  one bit each. S gives the  syntactic  class, 
showing whether ALPHA is a  variable, a niladic function, amonad- 
ic  function, or a  dyadic  function. Bit v  shows  whether ALPHA 
has  a value or not. Bit i distinguishes between  the immediate and 
address forms. Bit p  has  a value of 1 if ALPHA is a  permanent 
object, as opposed  to a temporary  intermediate  result. Bit u is 
unused. The immediate form is used if ALPHA is a  scalar  charac- 
ter, a logical argument (0 or  1 ) , or a small integer. In  the immedi- 
ate  form, V gives the value of ALPHA, and D gives the  data  type 
(character, logical, or  integer).  The  address form is used for all 
other  cases.  A is the  address of the value block, which is stored 
in the data  area. The value block contains a descriptor  that  shows 
whether  the varaible represents  a logical argument,  an  integer, a 
real  value,  or  a  character  string,  and  whether it is a  scalar, a 
vector,  or an array. The value block also  contains  the  element 
count,  the  rank,  the length of each dimension, and  the  value of 
each element. 

The formats  for variables and functions used by APL/CMS" are 
quite different from those used in our earlier although the 
APL objects  represented are used in much the  same way. Some 
of the differences are  as follows: Logical values are stored 8 bits 
per byte. The address  table is 32 bits wide, rather  than 16 bits as 
in the Model 25. Information  about  the  syntactic  class is stored in 
the  address  table,  thereby avoiding an  extra memory fetch  dur- 
ing a  statement  scan. When possible, the  value is stored directly 
in the  address table. Addresses are 24 bits long, and  the emula- 
tor  uses virtual addressing  so  that  workspaces as large as 16 
megabytes can be used. The maximum rank of any  array is 63. 
The maximum number of elements in any vector  or  array is 
16 777 215. There  are some additional data  types, which are 
described in a later  section of this  paper. 

Using the APL emulator 

Let WORKBASE denote  a specific System/370  general  purpose 
register.  Let ND(T denote  a specific word in the  control  words 
area of the  workspace. APL/CMS puts  the  address of the begin- 
ning of an APL statement  into NEXT, it loads the  address of the 
base of the  workspace  into WORKBASE, and  then it uses  the 
APLEC instruction, which causes the System/370 microprogram 
to give control to the microprogram of the APL emulator. The 
APL microprogram gets  the  address from NEXT and starts  exe- 
cuting the APL statement. It continues executing (possibly with 
interrupts - see  below) until it reaches  the  end of APL execution. 
The APL microprogram then sets  the  System/370 condition 
code, possibly sets  a  return  code in a  register,  and  returns  con- 
trol  to  the  System/370 microprogram. System/370  execution 
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then  resumes with the  instruction following APLEC. A condition 
code of zero  denotes  a normal end of APL execution.  A  nonzero 
condition code  denotes  an  abnormal  end  or  an  interrupt of APL 
execution,  and  a  register  shows  the  reason  for  the termination of 
APLEC . 

examples Assume  that  a  user  types  the following function  to find the vari- 

execution 
of APL ance of a vector of numbers: 

V RESULT f VARIANCE X; N 

C21 RESULT f (Nx+/X*2)-(+/X)*2 
C3 I RESULT f RESlJLT'iNxN-1 
V 

[11 N f p X  

The system  translates  the  function  into internal form and stores 
it  in the  workspace.  Suppose  the  user now types 

A L P H A f 4  3 7 11 2 

The system  translates this statement  into internal form,  stores it 
in the  workspace,  sets NEXT and WORKBASE, and calls the emu- 
lator. The emulator assigns the  vector  to ALPHA and  returns with 
a  zero condition code. Now  the user  types 

BETA f VARIANCE ALPHA 

The system  translates  this  statement  into internal form,  stores it 
in the  workspace,  sets NEXT and WORKBASE, and calls the emula- 
tor.  Table 1 shows  the  relationship  that  exists at this  stage 
between internal and  external  names. Now assume  that a, b, 
c . . . denote  addresses in the  data  area,  and  that  the  control 
word NEXT contains  c. The  address  table and the  data  area,  then, 
contain  the information indicated in Table 2. 

To give a specific example,  the following hexadecimal numbers 
are stored beginning at location c: 

0074006870010078AOOl0003 

These numbers,  respectively, are  the internal name of ALPHA 
( 1 16 decimal is 74  hexadecimal),  the internal name of VARI- 
ANCE, the  code  for left arrow  (this  code  and all others differ 
from the  codes used in our  earlier work7), the internal name of 
BETA, an  end-of-statement  marker,  and  an end-of-execution 
marker. 

When the APLEC instruction is issued,  the APL emulator  gets  the 
half-word from location c (that is,  the half-word 0074), finds it 
to be the name of a variable, and puts it on  the  stack.  The emu- 
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area. To summarize,  the APL emulator  gets  control when APLEC 
is used, it carries  out  the calculation specified by the  statements 
and  functions in the  workspace, and finally  it returns  control  to 
the APL~CMS software. 

As  another example, if the  user  types 

VARIANCE ALPHA 

the internal hexadecimal code is simply 

0074  0068 A001 0003 

The emulator calls VARIANCE, calculates  the  result in the usual 
way,  returns from VARIANCE, and  puts  the  result  on  the  stack. 
The combination of a  result on the  stack and the  end-of-state- 
ment marker  causes  the  emulator to set  the condition code  to 
nonzero,  set  the  return  code  to print, and  return  to  System/370 
mode. APLlCMs detects  the  nonzero condition code  and discov- 
ers  that printing is required. The item to be printed is indicated 
by one word on  the  stack.  This word has  the  same  format  as a 
word in the  address  table. It contains  either  the  value  or  the 
address of the value to  be printed. The system  formats  and 
prints  the  item,  then  issues  another APLEC. NEXT now contains 
the value c + 6, which it had on  the print exit. The emulator 
reads  the  next half-word, finds that it  is the end-of-execution 
marker, and makes a normal exit. 

To consider  one more example, if the  user  types 

BETA f VARIANCE ‘PQRS 

the  emulator  executes in the normal way until it gets  to  the +/X 
in the second statement of VARIANCE. At  that  point it detects 
the  fact  that X is a  character variable and that +/ is therefore 
undefined. The emulator  sets  the condition code to nonzero,  sets 
the  return  code  to domain  error, and returns  to  System/370 
mode. At this stage, NEXT points  to the item following the +. 
Remember  that  the  statement is stored in reverse  order-  the 
emulator  has  scanned 

I 2 *  ) X / +  

and NEXT is now pointing to  the (. The system  can  reverse 
translate so as to display the  statement in error,  and it can use 
NEXT to point to  the  token at which the  error was detected. At 
this  stage,  the  changes in the  address  table  are: 

108 variable,  value in data  area  at location d 
1 12 variable, value in this  word,  value is integer 4 
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can also  resume  execution in the normal APL manner. 

Interrupts and page faults 

The time required for  the  execution of the APLEC instruction 
depends  on  the APL functions specified in the  workspace.  Since 
the  operating  system is multiprogramming many tasks, it  is  im- 
perative  for APLEC to be interruptable. There is a trigger in the 
hardware which is set when an  interrupt is pending. The emula- 
tor  tests  this trigger at frequent  internals,  and when it is set,  the 
emulator  stores  status information in the  workspace and allows 
a normal System/370  interrupt  to  occur. The interrupt  process is 
not  detectable by the program that issued the APLEC. 

The APL emulator handles page faults in a similar way. When a 
page fault  occurs,  the  emulator  stores  status information in the 
workspace  and allows the fault to  pass  to the operating  system in 
the normal way. Consider  the  case in which the  emulator is eval- 
uating A+B, where A and  B are integer  vectors of 20000 elements 
each. The result will also  contain 20000 elements. It would be 
unreasonable  for  the  emulator  to  require  that 60 pages (20 pages 
of 4096 bytes  each  for A, 20 pages for B ,  and 20 pages for  the 
result) be in real memory simultaneously. The emulator  requires 
that  at  any  one time, real memory contain only the first page of 
the  workspace  and  one page of A or B or  the  result. To avoid an 
excessive  number of page faults,  however,  the first workspace 
page and one page each of A, B, and  the  result should be in 
memory simultaneously. 

The APL Assist  does  not modify the  behavior of the address- 
checking or  protection mechanism. If, for example,  an  address- 
table  entry is in error and the APL Assist  attempts to store  data 
in a  protected  area,  then a System/370  protection  exception 
occurs. 

File input/output 

The design of APL'- with a main processor  to  execute APL 
statements, and one  or more auxiliary processors  for file input 
and output-is readily adaptable  to  our  situation if we  consider 
the  emulator to be  the main processor,  and if we  provide  Sys- 
tem/370  routines  to  act  as auxiliary processors. The APL system 
has to provide a facility that allows the main processor  to  share 
an APL variable with an auxiliary processor. The following 
statements  illustrate  the use of APLICMS' auxiliary processor 
1 10 to  write  the APL variables A, B, and C as three  separate  rec- 
ords in a file called TEST DATA: 



X-+' !TEST  DATA' 
110 asvo ' X '  
X+A 
X+B 
X+€ 

USVO is an APL system  function; SVO stands for shared  variable 
ofer .  The emulator assigns the  character string 'TEST DATA' 
into X. It begins executing the  next  statement in the normal way, 
but  discovers  that OSVO is a  system  function,  sets  a  register to 
indicate this, and exits. A System/370 program is used to pass 
the value of X to  the auxiliary processor, which uses  the value to 
name  a CMS file. The APLKMS  system  records  the  fact  that X is 
a  shared variable by changing the  syntactic  class of the  address- 
table  entry of X from variable to shared  variable. The system 
then  issues  another APLEC to  resume APL execution. 

Execution now proceeds in the normal way until the  emulator is 
required  to assign a value into X .  Assigning a value into  a  shared 
variable means that  the new value must be stored in the  work- 
space  and must also be sent  to  the auxiliary processor. The emu- 
lator  sets  a register with the name of X ,  sets  another register 
with an indication that assign into shared  variable is required, 
and  exits. The system  passes  the value of X to the auxiliary pro- 
cessor and issues  an APLEC to resume APL execution. 

Completeness 

The APL language has a large number of primitive f~nc t ions .~  In 
other languages, functions  such as matrix inversion and output 
formatting are library routines,  but in APL they  are  part of the 
primitive function set.  In any practical emulator  there must be 
limitations on the size of the  control  storage, and it may be im- 
possible to  emulate  the whole of APL in the available space. 
Even without a strict limit, we  would have  to recognize that  the 
control  storage is a valuable resource and must  not  be used 
wastefully. 

Methods of implementing APL in a small amount of storage in- 
clude  restricting  the  number of data  types  and using simple, gen- 
eral  purpose algorithms. Both of these  methods would have  a 
disastrous effect on performance.  Our  approach is to use many 
data  types,  to  strive for optimal efficiency  in frequently used 
functions, and to omit any function that would not benefit from 
the use of microprogramming. The emulator  provides a mecha- 
nism for calling software  routines  to  compute  the value of func- 
tions  not provided in microprogramming. Most of these  routines 
are written in System/370 machine language, but a few are writ- 



1 sult  or  the name of an APL function that can compute  the result. 

’ The emulator performs all the  operations required for statement 
scanning and  syntactic  analysis,  for calling and returning from 
functions,  for getting and freeing blocks in the  data  area, and for 
subscripting and the branching and assignment statements. It 
performs most of the  scalar  operations on scalars,  vectors,  and 
arrays. It performs all  of the following functions:  size,  reshape, 
ravel,  catenate, laminate, compress,  expand, index generator, 
index of, membership, and reverse. It handles most uses of the 
transpose function and some uses of the  take,  drop,  rotate,  re- 
duce, and inner product and outer  product,  but  for  other  uses it 
calls on the  software. 

The emulator calls on  the  software for the translation part of 
execute  and all uses of encode,  decode,  grade,  scan,  format, 
deal,  and matrix invert There would have been no difficulty in 
writing microinstructions  for  these  functions had we  chosen to 
do so. For example, subscripting is handled by microprogram- 
ming even though it  is considerably more complicated than the 
grade function, which we  chose  to implement in software. 

Our  decision  to  exclude any operation from the  emulator was 
based on  a number of considerations. If an operation  requires a 
large amount of  floating point arithmetic, it will not be executed 
significantly faster by microprogramming. For this reason, matrix 
inversions are handled completely by software in our  system. 
Similarly, logarithms are computed by software, but the initial 
analysis,  successive  operand  fetching, and storing of the re- 
sult  are  done by a microprogram. In certain operations, such as 
computing an inner product and encoding, the key to rapid exe- 
cution lies in recognizing many special cases and then selecting 
an algorithm that is especially suited to the  case  at hand. In 
computing an inner product,  there is not room in control  storage 
to optimize all cases, so certain common cases  (in which one 
argument is scalar or both arguments  are  vector)  are handled by 
microprograms, and software is used for the  other  cases. 

Some APL operations require conversion between external and 
internal form, and it is natural to  exclude  these  operations from 
the  emulator.  For examtde. 

requires  the  system  to  treat  the  character string C as  an APL 
expression in external  form,  convert it to internal form,  execute 
the internal form, add the result to B, and place the sum in A. 
The emulator handles this operation by getting C, ascertaining 
that it has  a value, and passing this value to a  software  routine. 
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The software  routine  converts  the value to internal form and 
returns it to  the  emulator. The emulator  executes  the internal 
form,  adds  the  result to B, and  stores  the sum in A. 

I Design  considerations 

In our  system  the  layout of the  workspace,  the  format of objects 
in the  workspace, and the encoding of operators and descriptors 
were  chosen  to maximize execution efficiency and,  where possi- 
ble,  to minimize the number of microinstructions. Many of the 
decisions involved did not  depend  on the fact  that we were using 
microprogramming. For example,  the  storing of scalars in the 
address  table,  rather  than in the  data  area,  improves  execution 
speed  and  reduces  the possibility of page faulting in both micro- 
program and software  implementations. 

The major aspects of microprogramming that influenced our de- 
sign were  that  a  test  and  branch on one  or two bits is very  fast 
and fetching words from memory is relatively slow. In  evaluat- 
ing an  expression  such as AaB (in which a is any APL primitive 
function),  the  system  must make tests  such  as  “is a scalar or 
mixed” and “is ct a logical, comparision,  or  arithmetic  opera- 
tion.” 

In  a  software implementation, one probably would encode a so 
that  the  tests could be phrased  “is a less  than n l ”  and  “is a less 
than  n2  or  greater  than  n3”  (where  n 1, n2, and n3 are  integers). 
This method would require  two microinstructions for  the first 
test and four  for  the  second. We chose  the internal representa- 
tion for a so that  the  tests could be  phrased  “branch  according as 
a bit 4 is 0 or 1” and  “branch  according as a bits 5 ,  6 are 00, 
0 1, 10 or 1 1 .” These two  tests  take  one microinstruction each. 

A descriptor is associated with every variable that  has a value. 
The  descriptor is either in the  address  table  or in the first word 
of the value block. If DA and DB denote  the  descriptors of A 
and B, then DA and DB are  stored in a register at an early stage 
in the  evaluation of  AaB. The system  must make the  test  “is A a 
scalar or a  one-element  vector.”  In a software implementation, 
the  test might be phrased “if the  element  count of A is 1 and the 
rank is less than 2,  then  the  answer is yes.”  This  test would re- 
quire  two memory fetches. We chose  the  representation of DA 
so that bits 1 ,  2, and 3 would identify A as follows: 

bit 1 2  3 I 
0 0 0 A is a  scalar 
0 0 1 A is a  one-element  vector 
0 1 1 A is a  one-element  array 
1 0 1 A is a  vector (zero  or > 1 elements) 
1 1 1 A is an  array  (zero  or > 1 elements) 

I 370 HASSITT AND LYON IBM SYST J I 



The test  “is A a  scalar  or  a  one-element  vector”  can now be 
phrased in the single microinstruction “are DA bits 1 ,  2  equal 
to 00.” If DC is the logical “or” of DA and DB, the  test  “are 
DA and DB both scalar”  becomes  “is DC bit 3  equal to zero.” 

On  the  System/370 Model 145,  the APL emulator  uses  four 
times the  amount of control  storage used in the  System/360 
Model 25 implementation. Much of this additional storage is 
used in implementing many more functions in microprogram- 
ming, but  some is used for more sophisticated algorithms. As  an 
example,  the internal representation  uses  a data  structure called 
the APV (arithmetic progression vector).  This  structure has  a 
special descriptor  and  three  data words: V l ,   V 2 ,  E. The APV is 
used to  represent  the  integer  vector with elements V I   V I + V 2  
V1+2XV2 . . . V I + ( E - l ) X V 2 .  

The emulator  uses  the APV form in the following way: The APL 
expression LJ stands  for  the  vector 1 , 2 , 3  . . . J. If the emu- 
lator  encounters  the  expression LJ, it produces  an APV if J is 
greater  than 1. The APV will have V l = l   V 2 = l  , E=J. Many of 
the  emulator  routines  check  for APV arguments  and,  where  pos- 
sible, produce an APV result. For example if an APV is multipled 
by  a  scalar X, the  result is formed by multiplying V I  and V2 by 
X. If an APV is to  be  reversed,  then V l  is replaced by 
V I +  (E-1 )XV2, and  the sign of V2 is changed. 

I One advantage of the APV is that it saves E-2 words of memory. 
It also saves time. For example, multiplication by a  scalar  re- 
quires  three  rather  than E multiplications. (Two multiplications 
are mentioned above,  but  the  system  also  forms ( V l x X )  
+ ( V 2 x X ) x   ( E - 1 )  to  check  for integer overflow.) The major 
reason  for implementing APVS is that they occur in  many sub- 
script  expressions. 

All subscript  evaluation is done by a microprogram routine us- 
ing the  methods we have  described  elsewhere.”  Subscript  evalu- 
ation is complicated by the  fact  that  arrays of ranks 1 through 63 
can  be  subscripted.  Each  subscript  can  be  a  scalar,  a  vector, or 
an  array. To improve  execution efficiency, it  is important  to  rec- 
ognize special cases dynamically. The time required to execute 
UCVl, for  example, is a  constant plus some factor times the 
number of elements in V .  The  constant is almost independent of 
the  characteristics of U and V ,  but  the  factor is strongly depen- 
dent  on U and V.  The emulator  checks  the form of V .  If V is an 
APV and its V2 part is unity,  then  the  subscripted  elements  can 
be moved in a single block. The gain in speed is particularly sig- 
nificant if U is a logical vector; it takes  fewer microprogram in- 
structions  to move 32 bits aligned on  a word boundary  than  to 
move a single bit. In many cases,  array  subscripts  can be ana- 
lyzed and  reduced  to simpler and more efficient forms.” 
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1 16 variable, value in the  data  area  at location c 
200 variable, value in the  data  area  at location a 

and the  data  area  contains 

location a value block for variable 200 
location b synonym block 108 200 1 16 -1 
location c synonym block 1 I6 200 -1 108 

Note  that  these blocks (and all other blocks in the  data  area) 
contain no addresses,  so garbage collection is a simple and rapid 
operation. The internal name T (the number 200 in the 
example)  does not have  an  external  name; it is only used inter- 
nally  by the  emulator. If an  attempt is made to change the value 
of ALPHA, the  emulator will free  the old value of ALPHA. The 
free routine will free  the  synonym block for ALPHA and it  will 
detect  that ALPHA was synonymous with X, then it  will look at 
the  synonym block for X and discover  that  there are no more 
synonyms, so it  will free  the  synonym block for X and the name 
of T and cause  the  address-table  entry for X to point directly to 
the value block. The APL emulator uses synonyms in calling 
functions and also in operations  such  as raveling an  array,  and in 
some cases of assignment. 

Performance 

We measured  the performance of the APL emulator by measur- 
ing the CPU times required to  execute 19 test problems, with and 
without  the  emulator, on a  dedicated machine. The problems 
covered a wide range of applications in numerical analysis,  sta- 
tistics, linear programming, text processing, and compilation. 
We compared  three implementations of APL: 

( A )  APL~CMS running on a  System/370 Model 145 with the 
emulator  installed; 

( B )  A ~ ~ \ 3 6 0  running on  the Model 145; 

(C)  APLlCMs running on the Model 145 using a  software 
interpreter instead of the  emulator. 

The test problems ran 2 to 20 times faster on system A than on 
B. That is, one problem ran twice as  fast and one  ran 20 times as 
fast, and the running times of the  other problems were between 
these  extremes. Similarly, the  test problems ran 1.5 to 2.5 times 
faster  on C than  on B. These figures were obtained with one 
user on the  system. If there  were many interactive  users,  the 
system’s behavior would be controlled largely by operating-sys- 
tem functions such as terminal handling, multiprogramming, and 
virtual-memory paging. The average  user would see little differ- 
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Some  software  routines may use a special algorithm which 
makes them faster  than  the  corresponding microprograms. For 
example, if LVZIOOO is a logical vector with 1000  zero ele- 
ments, and LVOIOOO is a  vector with 1000 ones,  then  the fol- 
lowing execution-time  ratios are obtained: 

I STATEMENT  RATIO 

X++/LVZIOOO 0.30 
X++/LVOIOOO 1.17 

The microprogram time depends on the  number of elements, 
whereas  the  software time depends primarily on the  number of 
ones. 

examples Two examples  serve  to illustrate how these  results apply to 
complete  programs. An FFT (fast  Fourier  transform) calculation 
requires many floating point multiplications. It would be  expect- 
ed that microprogram and software execution would require 
comparable times for an FFT on a long vector. For an FFT on 
eight complex points, we have found microprogram execution  to 
be 4.6 times faster  than  software;  but  for  1024 complex points, 
it  is only 1.5 times faster.  As a second example,  the APLGOL 
compiler,'3 which is written in APL and uses no floating point 
operations,  has  to  break APLGOL statements  into  tokens which 
are  short  vectors. It would be  expected  that microprogram exe- 
cution would be significantly faster  than  softwaie.  Our  test  case 
was to compile the APLGOL compiler itself; in this case,  the 
microprogram execution  was 7.33 times faster  than  the software. 

Summary 

The architecture of an APL machine is radically different from 
the  architecture of a machine like the IBM System/370.  The APL 
Assist  demonstrates  that both architectures can be  supported  on 
one  central processing unit. It also shows how an APL emulator 
can function in the  environment provided by the VM and vs op- 
erating  systems without demanding any special privileges. 

I In many high-level languages, a  compromise  has been made 
between making the language easy  to  use  and enabling it to be 
compiled. In APL this compromise has not been made. APL is 
designed to be both powerful and easy  to  use;  consequently it 
cannot be compiled into  conventional machine language instruc- 
tions. The APL Assist  shows  that  the machine can  be designed 
to fit the language. Making the machine fit the language does  not 
add anything to  the language, but,  as we have  shown, it can  re- 
sult in an impressive improvement in execution  speed. 
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