Emulation of an APL machine on a System/370 is exemplified by
the APL Assist, a microprogram that enables APL expressions
and defined functions to be executed at the hardware level. This
paper discusses what the APL Assist does, how it works, and the
way it interacts with System[370 software. Execution times for
APL programs with and without the Assist are compared.

An APL emulator on System/370
by A. Hassitt and L. E. Lyon

There are several methods of executing programs written in
a high-level language. The most widely used is to compile the
programs into machine language. Another is to translate the pro-
grams into some intermediate form and then execute that form
interpretively. A third method is to build a machine to directly
execute either the high-level language or the intermediate form.

APL programs are executed by interpreters, as it is difficult and
perhaps impossible to compile APL.' The interpreters are suc-
cessful, but there are several reasons for wanting to build a
machine that would execute APL directly. Such a machine could
offer the possibility of a radically new architecture, it could af-
fect the way software is written and developed, and it could
speed APL execution.”

An ApL machine would differ from a conventional machine, like
a System/370, in that a conventional machine executes instruc-
tions. For example, the instruction A 2,B causes the word at
location B to be added to the word in register 2. The machine
knows nothing of the properties of the words; it simply performs
integer addition because the instruction specifies it. APL pro-
grams, however, do not contain instructions; they contain
expressions, statements, and functions. The expression B+C, for
example, is merely a request for the addition of B and C; the
machine would have to determine the following:

HASSITT AND LYON IBM SYST J

whether the addition is allowed (for example, the result
would be a domain error if either B or C were an array of
characters) ;

whether integer or floating point addition should be used;

whether one or both operands should be converted to float-
ing point form;

whether the operands are conformable (for example, if B is a
10-by-20 matrix, then ¢ must also be a 10-by-20 matrix, or
else it must contain only one element);

how many additions are required (for example, if B is a 10-
by-20 matrix and C is conformable, then 200 additions are
required).

Methods of executing APL expressions using software interpret-
ers are well known, but the possibility of execution at the hard-
ware level presents opportunities for developing new methods.
The outstanding example is a machine architecture designed by
P. S. Abrams.” Abrams’ design was purely theoretical; he made
no attempt to build the machine. However, Schroeder and
Vaughn® describe hardware intended to implement the Abrams
design.

In all APL systems,’ processing takes place in a piece of memory
called a workspace, which contains APL programs, data, and
control information, as well as some unused space. Each user
can have a library of many workspaces, but only one can be ac-
tive at a time. When APL execution begins, the user is provided
with a clear workspace —one containing some control informa-
tion but no programs or data. The user can enter programs into
the clear workspace, or he can replace it by loading a workspace
from his library. When the system is ready for input, the user
can type an APL command, he can define or edit an APL func-
tion, or he can type an APL statement. Statements, which are
executed immediately, may initiate extensive calculations by
calling previously defined APL functions.

The major components of an APL system are as follows:

¢ A supervisor communicates with the terminal, loads work-
spaces, services interrupts, and so on.
A translator accepts APL statements or functions, translates
them into internal form, and stores them in the active work-
space. (The external form of an APL statement or function is
not saved. A translation is not compilation, but simple one-
for-one mapping; it is analogous to the assembly process,
which converts assembler language instructions into binary
machine language instructions. The system saves a table of

NO. 4 + 1976 APL EMULATOR

APL systems

historical
background

user defined names so that the translator can easily translate
from internal to external form when a display of a function is
required.)

An interpreter carries out the interpretive execution of APL
statements.

One or more auxiliary processors communicate with the op-
erating system, disk files, input/output devices, and other
processors. A shared-memory processor provides common
storage for the auxiliary processors.* > ®

The problems and benefits of implementing APL in a micro-
program were investigated in 1973 by the present authors and
J. W. Lageschulte.” The work was done on a System/360 Model
25. It provided valuable experience, and the implementation
functioned correctly, but the machine was too small and too
slow to support a useful multi-user system. This work and the
work of Grant, Greenberg, and Redell,” for example, were at-
tempts to build a machine that would execute APL only.

On completing the Model 25 work, we set out to provide for
direct execution of APL on a multi-user machine that could sup-
port a virtual-memory operating system. We decided it would be
unreasonable to insist that the entire machine be dedicated to
APL. The result was a plan to supplement the microprogram on a
System/370 Model 145 so that the machine could directly exe-
cute both System/370 instructions and APL statements. Imple-
mentation of this plan led to development of the APL Assist mi-
croprogram,” which was made available to 1BM customers in
September 1974.

In this paper we describe what the APL. Assist does, we discuss
how it works and the way it interacts with System/370 software,
and we compare execution times for APL programs with and
without the Assist.

Microprograms

Some of the component parts of a System/370 central process-
ing unit are shown in Figure 1." The local storage contains gen-
eral purpose registers, floating point registers, and some working
registers for use by the microprograms. The control storage con-
tains the microprograms for executing System/370 instructions.

In many microprogrammed machines, the control and program
storages are physically separate and are implemented in different
technologies. Figure 1, however, is based on the Model 145,
which has a single storage divided into two parts. The boundary
can be moved, under microprogram control, to give a maximum
control storage of 64K bytes.

HASSITT AND LYON IBM SYST J

Figure 1 General microprogram flow

MICROPROGRAMS

READ SYSTEM/370 INSTRUCTION
FROM PROGRAM STORAGE -

TO LOCAL STORAGE
+ CONTROL REGISTER

[DECODE OPERATION TYPE J l l ll l ll
CONTROL
STORAGE — 1

CONTROL SIGNALS TO
FETCH OPERANDS FROM PROGRAM | CONTROL STORAGE,

STORAGE TO LOCAL STORAGE ARITHMETIC/LOGIC UNIT,

PROGRAM STORAGE,

BB LOCAL STORAGE, ETC.
SYSTEM /370

INSTRUCTION VIA LOCAL STORAGE
PROPER ROUTINE

BOUNDARY

OBJECT PROGRAMS (SYSTEM/370)

PROGRAM
STORAGE

ARITHMETIC/LOGIC UNIT

On a Model 145, microinstructions can perform simple opera-
tions such as register-to-register or register-to/from-storage
moves, 32-bit integer addition or subtraction, and 8-bit logical
functions. The hardware reads a System/370 instruction from
program storage, determines the operand types, fetches the op-
erands if appropriate, and branches to the appropriate micropro-
gram routine, which performs the sequence of elementary steps
that produce the results required by the instruction. This hard-
ware assisted simulation of a machine is referred to as emula-
tion—in this case, System/370 emulation. Some instructions
require only a few microprogram steps. For example, CR (com-
pare register) takes five steps requiring about .2 microsecond
each; total execution time, including the decoding time, is 1.578
microseconds. Other instructions take many steps; for example,
M (multiply) takes about 80 steps and has an execution time of
20.077 microseconds.

Installation of the APL Assist can be illustrated by the effect it
would have on the system represented by Figure 1. The bounda-
ry would have to be moved down by approximately 20000
bytes, one new microroutine would have to be added to handle a
new System/370 instruction called APLEC (APL Emulator Call),
and 50 new microroutines would have to be added to perform
the APL emulation. When the APLEC instruction is used, the
machine switches from System/370 emulation to APL emulation;
when the instruction has finished, the machine switches back to
System/370 emulation. The fact that the control and program
storages are separated by a movable boundary is not essential to
the APL Assist, but it does facilitate its installation.

1976 APL EMULATOR

Figure 2 APL execution with and without the APL Assist

WITH ASSIST WITHOUT ASSIST

MICROPROGRAMMING MICROPROGRAMMING
EMULATES APL EMULATES SYSTEM/370
STATEMENTS INSTRUCTIONS

SOFTWARE SIMULATES
EXECUTION OF APL
STATEMENTS

|

APL STATEMENTS APL STATEMENTS
IN PROGRAM STORAGE IN PROGRAM STORAGE

APL can be executed with or without the APL Assist. The dif-
ference between the two modes of execution is illustrated in
Figure 2.

The workspace

An APL workspace is divided into five sections: the address ta-
ble, the control words area, the stack, the data area, and the sys-
tem area. The use of the address table is discussed below. The
control words area contains status information such as the name
of the current function, the address of the next APL token to be
scanned, and the address of the top of the stack. The stack holds
temporary results during the execution of a statement. It also
holds the name of the calling function and the values of local
variables in all function calls. The data area contains the values
of APL variables and functions. The system area contains infor-

mation used by the translator and the system but not required by
the emulator; for example, the emulator never needs to know
external names.

Each external (user defined) name, such as ALPHA, is associat-
ed with an internal name. An internal name is simply a number
that is a multiple of four. For example, if numbers O through 96
were reserved for the system, the translator would allocate 100,
104, and so on as it encountered each new external name. A
name such as ALPHA could be used in several different ways in a
workspace; for example, it might be the name of a global func-
tion and also the name of a local variable. Each occurrence of
ALPHA would be translated into the same internal name, the
meaning of which would be determined by its context.

If an item such as ALPHA has an internal name #, then the word
at offset n from the base of the workspace is the address-table
entry for ALPAA. This word has one of the following forms:

Immediate form SvipuDV
Address form S vipu A

HASSITT AND LYON IBM SYST J

in which S is 4 bits long, D is 8 bits, V is 16 bits, A is 24 bits,
and v, i, p, and u are one bit each. S gives the syntactic class,
showing whether ALPHA is a variable, a niladic function, a monad-
ic function, or a dyadic function. Bit v shows whether ALPHA
has a value or not. Bit i distinguishes between the immediate and
address forms. Bit p has a value of 1 if ALPHA is a permanent
object, as opposed to a temporary intermediate result. Bit u is
unused. The immediate form is used if ALPHA is a scalar charac-
ter, a logical argument (0 or 1), or a small integer. In the immedi-
ate form, V gives the value of ALPHA, and D gives the data type
(character, logical, or integer). The address form is used for all
other cases. A is the address of the value block, which is stored
in the data area. The value block contains a descriptor that shows
whether the varaible represents a logical argument, an integer, a
real value, or a character string, and whether it is a scalar, a
vector, or an array. The value block also contains the element
count, the rank, the length of each dimension, and the value of
each element.

The formats for variables and functions used by ApL/CMS™ * are
quite different from those used in our earlier work,” although the
APL objects represented are used in much the same way. Some
of the differences are as follows: Logical values are stored 8 bits
per byte. The address table is 32 bits wide, rather than 16 bits as
in the Model 25. Information about the syntactic class is stored in
the address table, thereby avoiding an extra memory fetch dur-
ing a statement scan. When possible, the value is stored directly
in the address table. Addresses are 24 bits long, and the emula-
tor uses virtual addressing so that workspaces as large as 16

megabytes can be used. The maximum rank of any array is 63.
The maximum number of elements in any vector or array is
16 777 215. There are some additional data types, which are
described in a later section of this paper.

Using the APL emulator

Let WORKBASE denote a specific System/370 general purpose
register. Let NEXT denote a specific word in the control words
area of the workspace. APL/CMS puts the address of the begin-
ning of an APL statement into NEXT, it loads the address of the
base of the workspace into WORKBASE, and then it uses the
APLEC instruction, which causes the System/370 microprogram
to give control to the microprogram of the APL emulator. The
APL microprogram gets the address from NEXT and starts exe-
cuting the APL statement. It continues executing (possibly with
interrupts —see below) until it reaches the end of APL execution.
The ApL microprogram then sets the System/370 condition
code, possibly sets a return code in a register, and returns con-
trol to the System/370 microprogram. System/370 execution

NO. 4 - 1976 APL EMULATOR

examples
of APL
execution

then resumes with the instruction following APLEC. A condition
code of zero denotes a normal end of APL execution. A nonzero
condition code denotes an abnormal end or an interrupt of APL
execution, and a register shows the reason for the termination of
APLEC.

Assume that a user types the following function to find the vari-
ance of a vector of numbers:

V RESULT < VARIANCE X;N

[1] N <«pX

[2] RESULT <« (Nx+/X%2)-(+/X)*2
(3] RESULT < RESULT+NxN-1

v

The system translates the function into internal form and stores
it in the workspace. Suppose the user now types

ALPHA « 4 3 711 2

The system translates this statement into internal form, stores it
in the workspace, sets NEXT and WORKBASE, and calls the emu-
lator. The emulator assigns the vector to ALPHA and returns with
a zero condition code. Now the user types

BETA <« VARTANCE ALPHA

The system translates this statement into internal form, stores it
in the workspace, sets NEXT and WORKBASE, and calls the emula-

tor. Table 1 shows the relationship that exists at this stage
between internal and external names. Now assume that a, b,
¢ . . . denote addresses in the data area, and that the control
word NEXT contains c. The address table and the data area, then,
contain the information indicated in Table 2.

To give a specific example, the following hexadecimal numbers
are stored beginning at location c:

0074 0068 7001 0078 A001 0003

These numbers, respectively, are the internal name of ALPHA
(116 decimal is 74 hexadecimal), the internal name of VARI-
ANCE, the code for left arrow (this code and all others differ
from the codes used in our earlier work’), the internal name of
BETA, an end-of-statement marker, and an end-of-execution
marker.

When the APLEC instruction is issued, the APL emulator gets the
half-word from location ¢ (that is, the half-word 0074), finds it

to be the name of a variable, and puts it on the stack. The emu-

HASSITT AND LYON IBM SYST J

Table 1 Relationships between internal and external names

INTERNAL EXTERNAL

Decimal Hexadecimal

100 0064 RESULT
104 0068 VARTIANCE
108 006C X

112 0070 N

116 0074 ALPHA

120 0078 BETA

Table 2 Contents of address table and data area

ADDRESS TABLE

Location Contents

Decimal Hexadecimal

100 variable, no value

104 monadic function, in data area at location a
108 variable, no value

112 variable, no value

116 variable, value in data area at location b
120 variable, no value

DATA AREA

Location Contents

internal text for the function VARTANCE
an integer vector with elements 4 3 7 11 2
internal text for the statement BETA « VAIRANCE ALPHA

lator then gets the half-word from location ¢ + 2, finds it to be
the name of a monadic function, and calls the function. The
mechanism of scanning the statement, calling the function, etc.,
is similar to that reported earlier.” Next, the emulator executes
the statements of VARTANCE, returns the result, assigns the val-
ue to BETA, sees the end-of-statement marker, and, upon en-
countering the 0003, sets the condition code to zero and switch-
es back to System/370 mode.

At this stage, NEXT contains ¢ + 12, and the address-table entry
for BETA shows it to be a variable with a value. If the value
were an integer, it might be stored in the address table itself; in
this case, the value is a floating point number, so the address-
table entry contains the address of a value block in the data

No. 4 + 1976 APL EMULATOR

area. To summarize, the APL. emulator gets control when APLEC
is used, it carries out the calculation specified by the statements
and functions in the workspace, and finally it returns control to
the APL/CMS software.

As another example, if the user types
VARTANCE ALPHA
the internal hexadecimal code is simply

0074 0068 A001 0003

The emulator calls VARTANCE, calculates the result in the usual
way, returns from VARTANCE, and puts the result on the stack.
The combination of a result on the stack and the end-of-state-
ment marker causes the emulator to set the condition code to
nonzero, set the return code to print, and return to System/370
mode. APL/CMS detects the nonzero condition code and discov-
ers that printing is required. The item to be printed is indicated
by one word on the stack. This word has the same format as a
word in the address table. It contains either the value or the
address of the value to be printed. The system formats and
prints the item, then issues another APLEC. NEXT now contains
the value ¢ + 6, which it had on the print exit. The emulator
reads the next half-word, finds that it is the end-of-execution
marker, and makes a normal exit.

To consider one more example, if the user types

BETA « VARTANCE ‘PQRS

the emulator executes in the normal way until it gets to the +/X
in the second statement of VARTANCE. At that point it detects
the fact that X is a character variable and that +/ is therefore
undefined. The emulator sets the condition code to nonzero, sets
the return code to domain error, and returns to System/370
mode. At this stage, NEXT points to the item following the +.
Remember that the statement is stored in reverse order—the
emulator has scanned

2%)X/ +

and NEXT is now pointing to the (. The system can reverse
translate so as to display the statement in error, and it can use
NEXT to point to the token at which the error was detected. At
this stage, the changes in the address table are:

108 variable, value in data area at location d
112 variable, value in this word, value is integer 4

HASSITT AND LYON IBM SYST J

Location d in the data area begins a four-element vector, ‘PQRS".
The user can ask for the values of X or IV to be displayed. He
can also resume execution in the normal APL manner.

Interrupts and page faults

The time required for the execution of the APLEC instruction
depends on the APL functions specified in the workspace. Since
the operating system is multiprogramming many tasks, it is im-
perative for APLEC to be interruptable. There is a trigger in the
hardware which is set when an interrupt is pending. The emula-
tor tests this trigger at frequent internals, and when it is set, the
emulator stores status information in the workspace and allows
a normal System/370 interrupt to occur. The interrupt process is
not detectable by the program that issued the APLEC.

The ApL emulator handles page faults in a similar way. When a
page fault occurs, the emulator stores status information in the
workspace and allows the fault to pass to the operating system in
the normal way. Consider the case in which the emulator is eval-
uating A+B, where 4 and B are integer vectors of 20000 elements
each. The result will also contain 20000 elements. It would be
unreasonable for the emulator to require that 60 pages (20 pages
of 4096 bytes each for 4, 20 pages for B, and 20 pages for the
result) be in real memory simultaneously. The emulator requires
that at any one time, real memory contain only the first page of
the workspace and one page of 4 or B or the result. To avoid an
excessive number of page faults, however, the first workspace
page and one page each of 4, B, and the result should be in
memory simultaneously.

The AprL Assist does not modify the behavior of the address-
checking or protection mechanism. If, for example, an address-
table entry is in error and the APL Assist attempts to store data
in a protected area, then a System/370 protection exception
occurs.

File input/output

The design of APL®—~with a main processor to execute APL
statements, and one or more auxiliary processors for file input
and output —is readily adaptable to our situation if we consider
the emulator to be the main processor, and if we provide Sys-
tem/370 routines to act as auxiliary processors. The APL system
has to provide a facility that allows the main processor to share
an APL variable with an auxiliary processor. The following
statements illustrate the use of APL/CMS® auxiliary processor
110 to write the APL variables 4, B, and C as three separate rec-
ords in a file called TEST DATA:

NO. 4 + 1976 APL EMULATOR

X<'TEST DATA!
110 Osvo 'x!
XA

X<B

X<C

[SV0 is an APL system function; SVO stands for shared variable
offer. The emulator assigns the character string ‘TEST DATA’
into X. 1t begins executing the next statement in the normal way,
but discovers that [JSVO is a system function, sets a register to
indicate this, and exits. A System/370 program is used to pass
the value of X to the auxiliary processor, which uses the value to
name a CMS file. The ApL/CMS system records the fact that X is
a shared variable by changing the syntactic class of the address-
table entry of X from variable to shared variable. The system
then issues another APLEC to resume APL execution.

Execution now proceeds in the normal way until the emulator is
required to assign a value into X. Assigning a value into a shared
variable means that the new value must be stored in the work-
space and must also be sent to the auxiliary processor. The emu-
lator sets a register with the name of X, sets another register
with an indication that assign into shared variable is required,
and exits. The system passes the value of X to the auxiliary pro-
cessor and issues an APLEC to resume APL execution.

Completeness

The APL language has a large number of primitive functions.! In
other languages, functions such as matrix inversion and output
formatting are library routines, but in APL they are part of the
primitive function set. In any practical emulator there must be
limitations on the size of the control storage, and it may be im-
possible to emulate the whole of APL in the available space.
Even without a strict limit, we would have to recognize that the
control storage is a valuable resource and must not be used
wastefully.

Methods of implementing APL in a small amount of storage in-
clude restricting the number of data types and using simple, gen-
eral purpose algorithms. Both of these methods would have a
disastrous effect on performance. Our approach is to use many
data types, to strive for optimal efficiency in frequently used
functions, and to omit any function that would not benefit from
the use of microprogramming. The emulator provides a mecha-
nism for calling software routines to compute the value of func-
tions not provided in microprogramming. Most of these routines
are written in System/370 machine language, but a few are writ-
ten in APL. If the emulator requests the system to carry out

HASSITT AND LYON IBM SYST J

some function, the system can return either the name of the re-
sult or the name of an ApL function that can compute the result.

The emulator performs all the operations required for statement
scanning and syntactic analysis, for calling and returning from
functions, for getting and freeing blocks in the data area, and for
subscripting and the branching and assignment statements. It
performs most of the scalar operations on scalars, vectors, and
arrays. It performs all of the following functions: size, reshape,
ravel, catenate, laminate, compress, expand, index generator,
index of, membership, and reverse. It handles most uses of the
transpose function and some uses of the take, drop, rotate, re-
duce, and inner product and outer product, but for other uses it
calls on the software.

The emulator calls on the software for the translation part of
execute and all uses of encode, decode, grade, scan, format,
deal, and matrix invert There would have been no difficulty in
writing microinstructions for these functions had we chosen to
do so. For example, subscripting is handled by microprogram-
ming even though it is considerably more complicated than the
grade function, which we chose to implement in software.

Our decision to exclude any operation from the emulator was
based on a number of considerations. If an operation requires a
large amount of floating point arithmetic, it will not be executed
significantly faster by microprogramming. For this reason, matrix
inversions are handled completely by software in our system.
Similarly, logarithms are computed by software, but the initial
analysis, successive operand fetching, and storing of the re-
sult are done by a microprogram. In certain operations, such as
computing an inner product and encoding, the key to rapid exe-
cution lies in recognizing many special cases and then selecting
an algorithm that is especially suited to the case at hand. In
computing an inner product, there is not room in control storage
to optimize all cases, so certain common cases (in which one
argument is scalar or both arguments are vector) are handled by
microprograms, and software is used for the other cases.

Some APL operations require conversion between external and
internal form, and it is natural to exclude these operations from

the emulator. For example,

A<B+4(

requires the system to treat the character string C as an APL
expression in external form, convert it to internal form, execute
the internal form, add the result to B, and place the sum in A.
The emulator handles this operation by getting C, ascertaining
that it has a value, and passing this value to a software routine.

NO. 4 - 1976 APL EMULATOR

The software routine converts the value to internal form and
returns it to the emulator. The emulator executes the internal
form, adds the result to B, and stores the sum in 4.

Design considerations

In our system the layout of the workspace, the format of objects
in the workspace, and the encoding of operators and descriptors
were chosen to maximize execution efficiency and, where possi-
ble, to minimize the number of microinstructions. Many of the
decisions involved did not depend on the fact that we were using
microprogramming. For example, the storing of scalars in the
address table, rather than in the data area, improves execution
speed and reduces the possibility of page faulting in both micro-
program and software implementations.

The major aspects of microprogramming that influenced our de-
sign were that a test and branch on one or two bits is very fast
and fetching words from memory is relatively slow. In evaluat-
ing an expression such as 4aB (in which o is any APL primitive
function), the system must make tests such as “is o scalar or
mixed” and “‘is a a logical, comparision, or arithmetic opera-
tion.”

In a software implementation, one probably would encode o so
that the tests could be phrased “is a less than n1” and “is a less
than n2 or greater than n3” (where nl, n2, and n3 are integers).
This method would require two microinstructions for the first
test and four for the second. We chose the internal representa-

tion for o so that the tests could be phrased ‘‘branch according as
o bit 4 1s 0 or 1 and “branch according as a bits 5, 6 are 00,
01, 10 or 11.” These two tests take one microinstruction each.

A descriptor is associated with every variable that has a value.
The descriptor is either in the address table or in the first word
of the value block. If DA and DB denote the descriptors of 4
and B, then DA and DB are stored in a register at an early stage
in the evaluation of 4aB. The system must make the test “is 4 a
scalar or a one-element vector.” In a software implementation,
the test might be phrased ‘“if the element count of 4 is 1 and the
rank is less than 2, then the answer is yes.” This test would re-
quire two memory fetches. We chose the representation of DA
so that bits 1, 2, and 3 would identify 4 as follows:

bit1 2

A is a scalar

A is a one-element vector

A is a one-element array

A is a vector (zero or > 1 elements)
A is an array (zero or > 1 elements)

HASSITT AND LYON IBM SYST J

The test ““is A a scalar or a one-element vector” can now be
phrased in the single microinstruction “are DA bits 1, 2 equal
to 00.” If DC is the logical “or” of DA and DB, the test “‘are
DA and DB both scalar” becomes “‘is DC bit 3 equal to zero.”

On the System/370 Model 145, the APL emulator uses four
times the amount of control storage used in the System/360
Model 25 implementation. Much of this additional storage is
used in implementing many more functions in microprogram-
ming, but some is used for more sophisticated algorithms. As an
example, the internal representation uses a data structure called
the APV (arithmetic progression vector). This structure has a
special descriptor and three data words: V1, V72, E. The APV is
used to represent the integer vector with elements V1, V1+V2,
VA+2xV2 . . . VI+(E-1)xV2.

The emulator uses the Apv form in the following way: The ApL
expression «/ stands for the vector1,2,3 . . . J. If the emu-
lator encounters the expression «J, it produces an APV if J is
greater than 1. The Apv will have V1=1, V2=1, F=J. Many of
the emulator routines check for ApPv arguments and, where pos-
sible, produce an APV result. For example if an APV is multipled
by a scalar X, the result is formed by multiplying V1 and V2 by
X. If an Apv is to be reversed, then V1 is replaced by
V1+(E-1)XV2, and the sign of V2 is changed.

One advantage of the APV is that it saves E~2 words of memory.
It also saves time. For example, multiplication by a scalar re-
quires three rather than £ multiplications. (Two multiplications
are mentioned above, but the system also forms (V1xX)
+(V2xX)x(E-1) to check for integer overflow.) The major
reason for implementing Apvs is that they occur in many sub-
script expressions.

All subscript evaluation is done by a microprogram routine us-
ing the methods we have described elsewhere.'' Subscript evalu-
ation is complicated by the fact that arrays of ranks 1 through 63
can be subscripted. Each subscript can be a scalar, a vector, or
an array. To improve execution efficiency, it is important to rec-
ognize special cases dynamically. The time required to execute
ULV], for example, is a constant plus some factor times the
number of elements in V. The constant is almost independent of
the characteristics of U and V, but the factor is strongly depen-
dent on U and V. The emulator checks the form of V. If V is an
APV and its V2 part is unity, then the subscripted elements can
be moved in a single block. The gain in speed is particularly sig-
nificant if U is a logical vector; it takes fewer microprogram in-
structions to move 32 bits aligned on a word boundary than to
move a single bit. In many cases, array subscripts can be ana-
lyzed and reduced to simpler and more efficient forms."

NO. 4 ¢ 1976 APL EMULATOR

APL uses call by value when a defined function is invoked. Con-
sider the statement.

BETA < VARTANCE ALPHA
in which VARTANCE has the header

VRESULT <« VARIANCE X;N

The usual method of passing the value of ALPHA to X is to make
a copy of ALPHA and attach it to the address-table entry for X.
This method is simple and effective, but it is very inefficient if
ALPHA is a long vector.

A second method is to pass the address, instead of the value, of
ALPHA. This method appears to be simple, but it is not. Blocks
in the data area are assigned dynamically, and when the data
area is full, a garbage collection is done. A garbage collection
may change any or all addresses. There is another problem in
passing the address: the value of X may be changed, and this
must not change the value of ALPHA. Similarly the value of
ALPHA may change (since ALPHA is global in VARTANCE), and
this must not affect the value of X.

The solution used in the APL emulator is to define an object
called a synonym block. This block has a descriptor showing it
to be a synonym, and it has four half-words denoted here by N,
T, L, and R, which are internal names. This synonym block
states that N (that is, the variable with internal name N) is syn-
onymous with L and R, and that the value of N, L, and R can be
found in the block with name T. If N is synonymous with only
one other variable, either L or R is set to —1. If N is synony-
mous with more than two other variables, L and R form a chain
for passing from one synonym block to another.

In the example above, assume that X and ALPHA have internal
names 108 and 116, that T has internal name 200, and that a, b,
and ¢ denote addresses in the data area. Before the function call,
the address table contains

108 variable, no value
116 variable, value in the data area at location a

and the data area contains

location a value block for variable 116.

After the function call, the address table contains
108 variable, value in the data area at location b

HASSITT AND LYON IBM SYST 1

116 variable, value in the data area at location ¢
200 variable, value in the data area at location a

and the data area contains

location a value block for variable 200
location b synonym block 108 200 116 —1
location ¢ synonym block 116 200 —1 108

Note that these blocks (and all other blocks in the data area)
contain no addresses, so garbage collection is a simple and rapid
operation. The internal name T (the number 200 in the
example) does not have an external name; it is only used inter-
nally by the emulator. If an attempt is made to change the value
of ALPHA, the emulator will free the old value of ALFPHA. The
free routine will free the synonym block for ALPHA and it will
detect that ALPHA was synonymous with X, then it will look at
the synonym block for X and discover that there are no more
synonyms, so it will free the synonym block for X and the name
of T and cause the address-table entry for X to point directly to
the value block. The APL emulator uses synonyms in calling
functions and also in operations such as raveling an array, and in
some cases of assignment.

Performance

We measured the performance of the APL emulator by measur-
ing the CPU times required to execute 19 test problems, with and
without the emulator, on a dedicated machine. The problems
covered a wide range of applications in numerical analysis, sta-
tistics, linear programming, text processing, and compilation.
We compared three implementations of APL:

(A) APL/CMS running on a System/370 Model 145 with the
emulator installed;

(B) APL\360 running on the Model 145;

(C) APL/CMS running on the Model 145 using a software
interpreter instead of the emulator.

The test problems ran 2 to 20 times faster on system A than on
B. That is, one problem ran twice as fast and one ran 20 times as
fast, and the running times of the other problems were between
these extremes. Similarly, the test problems ran 1.5 to 2.5 times
faster on C than on B. These figures were obtained with one
user on the system. If there were many interactive users, the
system’s behavior would be controlled largely by operating-sys-
tem functions such as terminal handling, multiprogramming, and
virtual-memory paging. The average user would see little differ-

No. 4 - 1976 APL EMULATOR

ence between systems A and C, but a user executing a long APL
calculation on system A would, in most cases, see a dramatic
reduction in CPU time.

The performance figures indicate that, in a controlled environ-
ment (that is, with a single user on a dedicated system), CPU
time was reduced by an average factor of 2 because of new im-
plementation techniques (new method of syntactic analysis, use
of synonyms, APVs, etc.) and by an average factor of 5 because of
the use of microprogramming. However, there were wide varia-
tions in the amount of CPU-time reduction attributable to mi-
croprogramming. The reason for these variations is discussed
below.

The execution speed of particular statements is not necessarily a
good indicator of overall performance. The execution speed of
particular statements can be used, however, to illustrate some of
the factors that determine the relative performance of micropro-
gram and software execution of APL. We measured the execu-
tion time required by 13 specific APL statements, using APL/CMS
with and without the APL emulator installed. Table 3 shows the
results in terms of the ratio of execution time without the emula-
tor to execution time with the emulator. S, V, and 4 denote sca-
lar, vector, and array, respectively, and L, I, R, and C denote
logical, integer, real, and character. Trailing numbers denote
dimensions. For example, IV100 represents an integer vector
with 100 elements, and RA10_20 represents a 10-by-20 real ar-
ray. The last example in the table (the transposition of a 10-
dimensional array) is intended to show that the emulator does
not lose its power even in very complicated operations.

The execution times were measured on a system running many
jobs, so errors of as much as 10 percent can be expected. This
margin of error, however, is quite accurate enough for our pur-
pose. The times were measured as follows:

MA<M2</
T1<JAT
: >(0<M1<M1-1)/I1
T2<{JAT
: X« IS+IS
>(0<M2«M2-1)/L2
T3<0AT
TIME<((T3-T2)-(T2-T1))[2]1:M

The value of ¥ was made large enough so that it would average
the perturbations caused by input/output, page faults, and so on.

One way to check this timing method is as follows: The inner
loop used by the software in evaluating the statement

HASSITT AND LYON IBM SYST J

Table 3 Execution times of specific APL statements in terms of the ratio of time re-
quired without the APL emulator to time required with the emulator installed

STATEMENT RATIO

X <« IS+IS 12.56
X <« IV1004IV100 3.07
X « TA5_20+T45_20 3.23
X <« IV1000+IV1000 2.30
X < RS+RS 8.42
X < RV100+RV100 1.76
X « RS:RS 4.80
X « RV100+RV100 1.05
X « RA10_10BRA10_10 1.06
X <« Iv200[1$] 14.54
X <« IV200[IV100] 3.38
X < IV200[100] 6.54
X < ,8(10p2)pIV1024 2.67

X «+/IVN

consists of two instructions (indexed A and BXH) having an
execution time of 5.977 microseconds.”” We used the method
described above to time the execution of this statement with two
values of N: N = 1 and N = 1001. The difference between the
times was 6.098 milliseconds, an error of 2 percent.

Statements like those in Table 3 have the general form
A<BaC

in which a denotes any APL primitive function. The time re-
quired to execute such statements is typically indicated by an
equation of the form P + Qn, in which » is the number of ele-
ments in the result (except for functions like matrix divide and
grade), P is the time required to analyze the statement and the
operands and get space to store the result, and Q is the time
required to compute one element of the result.

The value of P when microprogram execution is used is typical-
ly ten times smaller than the time required when software is
used. The value of Q does not differ so greatly, and in many
cases the times for microprogram and software execution are
almost the same. It follows that if the number of elements is
small, then microprogram execution is significantly faster than
software. If n is 10 or 20, the relative performance depends on
the relative sizes of P and Q. In the examples shown in Table 3,
P is much larger than Q for integer addition, but about the same
for real division. If n is large, microprogram and software execu-
tion times usually are quite similar.

- 1976 APL EMULATOR

examples

Some software routines may use a special algorithm which
makes them faster than the corresponding microprograms. For
example, if LVZ1000 is a logical vector with 1000 zero ele-
ments, and LV01000 is a vector with 1000 ones, then the fol-
lowing execution-time ratios are obtained:

STATEMENT RATIO

X<+/LVZ1000 0.30
X«+/LV01000 1.17

The microprogram time depends on the number of elements,
whereas the software time depends primarily on the number of
ones.

Two examples serve to illustrate how these results apply to
complete programs. An FFT (fast Fourier transform) calculation
requires many floating point multiplications. It would be expect-
ed that microprogram and software execution would require
comparable times for an FFT on a long vector. For an FFT on
eight complex points, we have found microprogram execution to
be 4.6 times faster than software; but for 1024 complex points,
it is only 1.5 times faster. As a second example, the APLGOL
compiler,”” which is written in APL and uses no floating point
operations, has to break APLGOL statements into tokens which
are short vectors. It would be expected that microprogram exe-
cution would be significantly faster than software. Our test case
was to compile the APLGOL compiler itself; in this case, the

microprogram execution was 7.33 times faster than the software.

Summary

The architecture of an APL machine is radically different from
the architecture of a machine like the IBM System/370. The APL
Assist demonstrates that both architectures can be supported on
one central processing unit. It also shows how an APL emulator
can function in the environment provided by the vM and vS op-
erating systems without demanding any special privileges.

In many high-level languages, a compromise has been made
between making the language easy to use and enabling it to be
compiled. In APL this compromise has not been made. APL is
designed to be both powerful and easy to use; consequently it
cannot be compiled into conventional machine language instruc-
tions. The APL Assist shows that the machine can be designed
to fit the language. Making the machine fit the language does not
add anything to the language, but, as we have shown, it can re-
sult in an impressive improvement in execution speed.

HASSITT AND LYON IBM SYST 1

ACKNOWLEDGMENTS

We are grateful to many persons within 1BM, particularly those
who answered our many questions about the System/370 Model
145 microprogram and those who used and made comments on
successive versions of the APL emulator. This study would not
have been possible without the system software provided by
M. J. Beniston. Additional aid in developing and testing APL/CMS
was provided by J. W. Lageschulte and others. We are particu-
larly grateful to R. J. Creasy for advice and encouragement dur-
ing all phases of the study.

CITED REFERENCES AND FOOTNOTES

1. J. E. Nicholls, The Structure and Design of Programming Languages, The
Systems Programming Series, Addison-Wesley Publishing Co., Reading,
Massachusetts (1975).

. P. S. Abrams, An APL Muchine, Ph.D. thesis, Stanford University, Stan-
ford, California (1970); available as Document AD-706 741 from the Na-
tional Technical Information Service, United States Department of Com-
merce.

. S. C. Schroeder and L. E. Vaughn, “A high order language optimal execu-
tion processor,” Proceedings, ACM-IEEE Symposium on High-Level-Lan-
guage Computer Architecture, University of Maryland, November 1973,
pp. 109-116.

. APL Language, order number GC26-3847, IBM Systems Library, General
Products Division, Programming Publishing Department, 1501 California
Avenue, Palo Alto, California 94304 (1976).

. APLICMS User's Manual, Programming RPQ MF2608, order number
SC20-1846, IBM Scientific Center, APL/CMS Publications, 1530 Page
Mill Road, Palo Alto, California 94304 (1975).

. R. H. Lathwell, “System Formulation and APL Shared Variables,” IBM
Journal of Research and Development 17, No. 4, 353-359 (1973).

. A. Hassitt, J. W. Lageschulte, and L. E. Lyon, “Implementation of a high
level language machine,” Communications of the ACM 16, No. 4, 199-212
(1973).

. C. A. Grant, M. L. Greenberg, and D. D. Redell, ““A computer system
providing microcoded APL,” Proceedings, 6th APL Users Conference,
Anaheim, California, May 1974, pp. 173-179.

. The APL Assist was first made available as RPQ S00256 for the System/370
Model 145. The RPQ is used by APL/CMS (IBM Programming RPQ
MF2608, program number 5799-ALK), which runs under the CMS compo-
nent of VM/370. Subsequently, an APL Assist Feature (number 1005) was
developed for operation with VS APL(IBM program product 5748-AP1);
VS APL runs under both CMS and the VSPC program products (5746-XR3
for DOS/VS, 5740-XR5 for OS/VS1, and 5740-XR6 for OS/VS2). In
this paper, the term APL Assist refers to the RPQ—although for the most
part, the discussion applies to both because the RPQ and the Feature are
almost identical on the Model 145. The Assist Feature is available on Sys-
tem/370 Models 135, 138, 145, and 148.

. Figure 1 is reproduced from [Introduction to Microprogramming, out of
print, IBM Corporation (1971).

. A. Hassitt and L. E. Lyon, “Efficient Evaluation of Array Subscripts of Ar-
rays,” IBM Journal of Research and Development 16, No. 1,45-47 (1972).

. IBM System[370 Model 145 Functional Characteristics, order number
GA24-3557, IBM Systems Library, System Products Division, Department
K10, P.O. Box 6, Endicott, New York 13760 (1975).

. R. A. Kelley, “APLGOL, An Experimental Structured Programming Lan-
guage,” IBM Journal of Research and Development17,No. 1,69-73 (1973).

.4 - 1976 APL EMULATOR

378

GENERAL REFERENCES

Y. Chu (editor), High-level Language Computer Architecture, Academic Press,
New York (1975). Describes a number of machines designed to directly exe-
cute high-level languages.

P. M. Davies, “Readings in microprogramming,” IBM Systems Journal 11, No.
1, 1640 (1972). Provides an introduction to microprogramming and a survey
of the literature through 1971.

C. W. Gear, Computer Organization and Programming, McGraw-Hill Book
Company, New York (1969). Contains a chapter on machine design and micro-
programming.

A. B. Salisbury, Microprogrammable Computer Architectures, Elsevier Press,
New York (1975). Describes the microprogramming of several different ma-
chines.

Reprint Order No. G321-5041.

HASSITT AND LYON IBM SYST J

