
Emulation of an A PL machine on a System1370 is exempl$ed by
the A P L Assist, a microprogram that enables APL. expressions
and dejined functions to be executed at the hardware level. This
paper discusses what the APL Assist does, how it works, and the
way it interacts with System/370 software. Execution times for
A P L programs with and without the Assist are compared.

An APL emulator on System/370
by A. Hassitt and L. E. Lyon

There are several methods of executing programs written in
a high-level language. The most widely used is to compile the
programs into machine language. Another is to translate the pro-
grams into some intermediate form and then execute that form
interpretively. A third method is to build a machine to directly
execute either the high-level language or the intermediate form.

APL programs are executed by interpreters, as it is difficult and
perhaps impossible to compile APL.' The interpreters are suc-
cessful, but there are several reasons for wanting to build a
machine that would execute APL directly. Such a machine could
offer the possibility of a radically new architecture, it could af-
fect the way software is written and developed, and it could
speed APL execution"

An APL machine would differ from a conventional machine, like
a System/370, in that a conventional machine executes instruc-
tions. For example, the instruction A 2,B causes the word at
location B to be added to the word in register 2. The machine
knows nothing of the properties of the words; it simply performs
integer addition because the instruction specifies it. APL pro-
grams, however, do not contain instructions; they contain
expressions, statements, and functions. The expression B+C, for
example, is merely a request for the addition of B and C; the
machine would have to determine the following:

358 HASSITT AND LYON IBM SYST J

whether the addition is allowed (for example, the result
would be a domain error if either B or C were an array of
characters) ;

whether integer or floating point addition should be used;

whether one or both operands should be converted to float-
ing point form;

whether the operands are conformable (for example, if B is a
10-by-20 matrix, then C must also be a 10-by-20 matrix, or
else it must contain only one element) ;

how many additions are required (for example, if B is a 10-
by-20 matrix and C is conformable, then 200 additions are
required).

Methods of executing APL expressions using software interpret-
ers are well known, but the possibility of execution at the hard-
ware level presents opportunities for developing new methods.
The outstanding example is a machine architecture designed by
P. S. Abrams.' Abrams' design was purely theoretical; he made
no attempt to build the machine. However, Schroeder and
Vaughn3 describe hardware intended to implement the Abrams
design.

In all APL ~ y s t e m s , ~ processing takes place in a piece of memory APL systems
called a workspace, which contains APL programs, data, and
control information, as well as some unused space. Each user
can have a library of many workspaces, but only one can be ac-
tive at a time. When APL execution begins, the user is provided
with a clear workspace-one containing some control informa-
tion but no programs or data. The user can enter programs into
the clear workspace, or he can replace it by loading a workspace
from his library. When the system is ready for input, the user
can type an APL command, he can define or edit an APL func-
tion, or he can type an APL statement. Statements, which are
executed immediately, may initiate extensive calculations by
calling previously defined APL functions.

I The major components of an APL system are as follows:

A supervisor communicates with the terminal, loads work-
spaces, services interrupts, and so on.
A translator accepts APL statements or functions, translates
them into internal form. and stores them in the active work-

not saved. A translation is not compilation, but simple one-
for-one mapping: it is analogous to the assembly process,
which converts assembler language instructions into binary
machine language instructions. The system saves a table of

user defined names so that the translator can easily translate
from internal to external form when a display of a function is
required.)
An interpreter carries out the interpretive execution of APL
statements.
One or more auxiliary processors communicate with the op-
erating system, disk files, input/output devices, and other
processors. A shared-memory processor provides common
storage for the auxiliary processors. 4 , 5 , 6

historical The problems and benefits of implementing APL in a micro-
background program were investigated in 1973 by the present authors and

J. W. Lage~chulte.~ The work was done on a System/360 Model
25. It provided valuable experience, and the implementation
functioned correctly, but the machine was too small and too
slow to support a useful multi-user system. This work and the
work of Grant, Greenberg, and Redell,* for example, were at-
tempts to build a machine that would execute APL only.

On completing the Model 25 work, we set out to provide for
direct execution of APL on a multi-user machine that could sup-
port a virtual-memory operating system. We decided it would be
unreasonable to insist that the entire machine be dedicated to
APL. The result was a plan to supplement the microprogram on a
System/370 Model 145 so that the machine could directly exe-
cute both System/370 instructions and APL statements. Imple-
mentation of this plan led to development of the APL Assist mi-
croprogram,9 which was made available to IBM customers in
September 1974.

In this paper we describe what the APL Assist does, we discuss
how it works and the way it interacts with System/370 software,
and we compare execution times for APL programs with and
without the Assist.

I Microprograms

Some of the component parts of a System/370 central process-
ing unit are shown in Figure 1 ."' The local storage contains gen-
eral purpose registers, floating point registers, and some working
registers for use by the microprograms. The control storage con-
tains the microprograms for executing System/370 instructions.

In many microprogrammed machines, the control and program
storages are physically separate and are implemented in different
technologies. Figure 1, however, is based on the Model 145,
which has a single storage divided into two parts. The boundary
can be moved, under microprogram control, to give a maximum
control storage of 64K bytes.

I 360 HASSITT AND LYON IBM SYST J

Figure 1 General microprogram flow

CONTROL
STORAGE

BOUNDARY

STORAGE
PROGRAM

MICROPROGRAMS .c

FROM PROGRAM STORAGE * DECODE OPERATION TYPE

"
FETCH OPERANDS FROM PROGRAM

STORAGE TO LOCAL STORAGE

_I - EXECUTE

INSTRUCTION VIA
SYSTEM/37O

PROPER ROUTINE

OBJECT PROGRAMS (SYSTEM1370)

hrm; CONTROL REGISTER

~~

in which S is 4 bits long, D is 8 bits, V is 16 bits, A is 24 bits,
and v, i, p, and u are one bit each. S gives the syntactic class,
showing whether ALPHA is a variable, a niladic function, amonad-
ic function, or a dyadic function. Bit v shows whether ALPHA
has a value or not. Bit i distinguishes between the immediate and
address forms. Bit p has a value of 1 if ALPHA is a permanent
object, as opposed to a temporary intermediate result. Bit u is
unused. The immediate form is used if ALPHA is a scalar charac-
ter, a logical argument (0 or 1) , or a small integer. In the immedi-
ate form, V gives the value of ALPHA, and D gives the data type
(character, logical, or integer). The address form is used for all
other cases. A is the address of the value block, which is stored
in the data area. The value block contains a descriptor that shows
whether the varaible represents a logical argument, an integer, a
real value, or a character string, and whether it is a scalar, a
vector, or an array. The value block also contains the element
count, the rank, the length of each dimension, and the value of
each element.

The formats for variables and functions used by APL/CMS" are
quite different from those used in our earlier although the
APL objects represented are used in much the same way. Some
of the differences are as follows: Logical values are stored 8 bits
per byte. The address table is 32 bits wide, rather than 16 bits as
in the Model 25. Information about the syntactic class is stored in
the address table, thereby avoiding an extra memory fetch dur-
ing a statement scan. When possible, the value is stored directly
in the address table. Addresses are 24 bits long, and the emula-
tor uses virtual addressing so that workspaces as large as 16
megabytes can be used. The maximum rank of any array is 63.
The maximum number of elements in any vector or array is
16 777 215. There are some additional data types, which are
described in a later section of this paper.

Using the APL emulator

Let WORKBASE denote a specific System/370 general purpose
register. Let ND(T denote a specific word in the control words
area of the workspace. APL/CMS puts the address of the begin-
ning of an APL statement into NEXT, it loads the address of the
base of the workspace into WORKBASE, and then it uses the
APLEC instruction, which causes the System/370 microprogram
to give control to the microprogram of the APL emulator. The
APL microprogram gets the address from NEXT and starts exe-
cuting the APL statement. It continues executing (possibly with
interrupts - see below) until it reaches the end of APL execution.
The APL microprogram then sets the System/370 condition
code, possibly sets a return code in a register, and returns con-
trol to the System/370 microprogram. System/370 execution

NO. 4 . 1976 APL EMULATOR 363

then resumes with the instruction following APLEC. A condition
code of zero denotes a normal end of APL execution. A nonzero
condition code denotes an abnormal end or an interrupt of APL
execution, and a register shows the reason for the termination of
APLEC .

examples Assume that a user types the following function to find the vari-

execution
of APL ance of a vector of numbers:

V RESULT f VARIANCE X; N

C21 RESULT f (Nx+/X*2)-(+/X)*2
C3 I RESULT f RESlJLT'iNxN-1
V

[11 N f p X

The system translates the function into internal form and stores
it in the workspace. Suppose the user now types

A L P H A f 4 3 7 11 2

The system translates this statement into internal form, stores it
in the workspace, sets NEXT and WORKBASE, and calls the emu-
lator. The emulator assigns the vector to ALPHA and returns with
a zero condition code. Now the user types

BETA f VARIANCE ALPHA

The system translates this statement into internal form, stores it
in the workspace, sets NEXT and WORKBASE, and calls the emula-
tor. Table 1 shows the relationship that exists at this stage
between internal and external names. Now assume that a, b,
c . . . denote addresses in the data area, and that the control
word NEXT contains c. The address table and the data area, then,
contain the information indicated in Table 2.

To give a specific example, the following hexadecimal numbers
are stored beginning at location c:

0074006870010078AOOl0003

These numbers, respectively, are the internal name of ALPHA
(1 16 decimal is 74 hexadecimal), the internal name of VARI-
ANCE, the code for left arrow (this code and all others differ
from the codes used in our earlier work7), the internal name of
BETA, an end-of-statement marker, and an end-of-execution
marker.

When the APLEC instruction is issued, the APL emulator gets the
half-word from location c (that is, the half-word 0074), finds it
to be the name of a variable, and puts it on the stack. The emu-

364 HASSITT AND LYON IBM SYST J

area. To summarize, the APL emulator gets control when APLEC
is used, it carries out the calculation specified by the statements
and functions in the workspace, and finally it returns control to
the APL~CMS software.

As another example, if the user types

VARIANCE ALPHA

the internal hexadecimal code is simply

0074 0068 A001 0003

The emulator calls VARIANCE, calculates the result in the usual
way, returns from VARIANCE, and puts the result on the stack.
The combination of a result on the stack and the end-of-state-
ment marker causes the emulator to set the condition code to
nonzero, set the return code to print, and return to System/370
mode. APLlCMs detects the nonzero condition code and discov-
ers that printing is required. The item to be printed is indicated
by one word on the stack. This word has the same format as a
word in the address table. It contains either the value or the
address of the value to be printed. The system formats and
prints the item, then issues another APLEC. NEXT now contains
the value c + 6, which it had on the print exit. The emulator
reads the next half-word, finds that it is the end-of-execution
marker, and makes a normal exit.

To consider one more example, if the user types

BETA f VARIANCE ‘PQRS

the emulator executes in the normal way until it gets to the +/X
in the second statement of VARIANCE. At that point it detects
the fact that X is a character variable and that +/ is therefore
undefined. The emulator sets the condition code to nonzero, sets
the return code to domain error, and returns to System/370
mode. At this stage, NEXT points to the item following the +.
Remember that the statement is stored in reverse order- the
emulator has scanned

I 2 *) X / +

and NEXT is now pointing to the (. The system can reverse
translate so as to display the statement in error, and it can use
NEXT to point to the token at which the error was detected. At
this stage, the changes in the address table are:

108 variable, value in data area at location d
1 12 variable, value in this word, value is integer 4

366 HASSITT AND LYON IBM SYST J I

can also resume execution in the normal APL manner.

Interrupts and page faults

The time required for the execution of the APLEC instruction
depends on the APL functions specified in the workspace. Since
the operating system is multiprogramming many tasks, it is im-
perative for APLEC to be interruptable. There is a trigger in the
hardware which is set when an interrupt is pending. The emula-
tor tests this trigger at frequent internals, and when it is set, the
emulator stores status information in the workspace and allows
a normal System/370 interrupt to occur. The interrupt process is
not detectable by the program that issued the APLEC.

The APL emulator handles page faults in a similar way. When a
page fault occurs, the emulator stores status information in the
workspace and allows the fault to pass to the operating system in
the normal way. Consider the case in which the emulator is eval-
uating A+B, where A and B are integer vectors of 20000 elements
each. The result will also contain 20000 elements. It would be
unreasonable for the emulator to require that 60 pages (20 pages
of 4096 bytes each for A, 20 pages for B , and 20 pages for the
result) be in real memory simultaneously. The emulator requires
that at any one time, real memory contain only the first page of
the workspace and one page of A or B or the result. To avoid an
excessive number of page faults, however, the first workspace
page and one page each of A, B, and the result should be in
memory simultaneously.

The APL Assist does not modify the behavior of the address-
checking or protection mechanism. If, for example, an address-
table entry is in error and the APL Assist attempts to store data
in a protected area, then a System/370 protection exception
occurs.

File input/output

The design of APL'- with a main processor to execute APL
statements, and one or more auxiliary processors for file input
and output-is readily adaptable to our situation if we consider
the emulator to be the main processor, and if we provide Sys-
tem/370 routines to act as auxiliary processors. The APL system
has to provide a facility that allows the main processor to share
an APL variable with an auxiliary processor. The following
statements illustrate the use of APLICMS' auxiliary processor
1 10 to write the APL variables A, B, and C as three separate rec-
ords in a file called TEST DATA:

X-+' !TEST DATA'
110 asvo ' X '
X+A
X+B
X+€

USVO is an APL system function; SVO stands for shared variable
ofer . The emulator assigns the character string 'TEST DATA'
into X. It begins executing the next statement in the normal way,
but discovers that OSVO is a system function, sets a register to
indicate this, and exits. A System/370 program is used to pass
the value of X to the auxiliary processor, which uses the value to
name a CMS file. The APLKMS system records the fact that X is
a shared variable by changing the syntactic class of the address-
table entry of X from variable to shared variable. The system
then issues another APLEC to resume APL execution.

Execution now proceeds in the normal way until the emulator is
required to assign a value into X . Assigning a value into a shared
variable means that the new value must be stored in the work-
space and must also be sent to the auxiliary processor. The emu-
lator sets a register with the name of X , sets another register
with an indication that assign into shared variable is required,
and exits. The system passes the value of X to the auxiliary pro-
cessor and issues an APLEC to resume APL execution.

Completeness

The APL language has a large number of primitive f~nc t ions .~ In
other languages, functions such as matrix inversion and output
formatting are library routines, but in APL they are part of the
primitive function set. In any practical emulator there must be
limitations on the size of the control storage, and it may be im-
possible to emulate the whole of APL in the available space.
Even without a strict limit, we would have to recognize that the
control storage is a valuable resource and must not be used
wastefully.

Methods of implementing APL in a small amount of storage in-
clude restricting the number of data types and using simple, gen-
eral purpose algorithms. Both of these methods would have a
disastrous effect on performance. Our approach is to use many
data types, to strive for optimal efficiency in frequently used
functions, and to omit any function that would not benefit from
the use of microprogramming. The emulator provides a mecha-
nism for calling software routines to compute the value of func-
tions not provided in microprogramming. Most of these routines
are written in System/370 machine language, but a few are writ-

1 sult or the name of an APL function that can compute the result.

’ The emulator performs all the operations required for statement
scanning and syntactic analysis, for calling and returning from
functions, for getting and freeing blocks in the data area, and for
subscripting and the branching and assignment statements. It
performs most of the scalar operations on scalars, vectors, and
arrays. It performs all of the following functions: size, reshape,
ravel, catenate, laminate, compress, expand, index generator,
index of, membership, and reverse. It handles most uses of the
transpose function and some uses of the take, drop, rotate, re-
duce, and inner product and outer product, but for other uses it
calls on the software.

The emulator calls on the software for the translation part of
execute and all uses of encode, decode, grade, scan, format,
deal, and matrix invert There would have been no difficulty in
writing microinstructions for these functions had we chosen to
do so. For example, subscripting is handled by microprogram-
ming even though it is considerably more complicated than the
grade function, which we chose to implement in software.

Our decision to exclude any operation from the emulator was
based on a number of considerations. If an operation requires a
large amount of floating point arithmetic, it will not be executed
significantly faster by microprogramming. For this reason, matrix
inversions are handled completely by software in our system.
Similarly, logarithms are computed by software, but the initial
analysis, successive operand fetching, and storing of the re-
sult are done by a microprogram. In certain operations, such as
computing an inner product and encoding, the key to rapid exe-
cution lies in recognizing many special cases and then selecting
an algorithm that is especially suited to the case at hand. In
computing an inner product, there is not room in control storage
to optimize all cases, so certain common cases (in which one
argument is scalar or both arguments are vector) are handled by
microprograms, and software is used for the other cases.

Some APL operations require conversion between external and
internal form, and it is natural to exclude these operations from
the emulator. For examtde.

requires the system to treat the character string C as an APL
expression in external form, convert it to internal form, execute
the internal form, add the result to B, and place the sum in A.
The emulator handles this operation by getting C, ascertaining
that it has a value, and passing this value to a software routine.

NO. 4 . 1976 APL EMULATOR 369

The software routine converts the value to internal form and
returns it to the emulator. The emulator executes the internal
form, adds the result to B, and stores the sum in A.

I Design considerations

In our system the layout of the workspace, the format of objects
in the workspace, and the encoding of operators and descriptors
were chosen to maximize execution efficiency and, where possi-
ble, to minimize the number of microinstructions. Many of the
decisions involved did not depend on the fact that we were using
microprogramming. For example, the storing of scalars in the
address table, rather than in the data area, improves execution
speed and reduces the possibility of page faulting in both micro-
program and software implementations.

The major aspects of microprogramming that influenced our de-
sign were that a test and branch on one or two bits is very fast
and fetching words from memory is relatively slow. In evaluat-
ing an expression such as AaB (in which a is any APL primitive
function), the system must make tests such as “is a scalar or
mixed” and “is ct a logical, comparision, or arithmetic opera-
tion.”

In a software implementation, one probably would encode a so
that the tests could be phrased “is a less than n l ” and “is a less
than n2 or greater than n3” (where n 1, n2, and n3 are integers).
This method would require two microinstructions for the first
test and four for the second. We chose the internal representa-
tion for a so that the tests could be phrased “branch according as
a bit 4 is 0 or 1” and “branch according as a bits 5 , 6 are 00,
0 1, 10 or 1 1 .” These two tests take one microinstruction each.

A descriptor is associated with every variable that has a value.
The descriptor is either in the address table or in the first word
of the value block. If DA and DB denote the descriptors of A
and B, then DA and DB are stored in a register at an early stage
in the evaluation of AaB. The system must make the test “is A a
scalar or a one-element vector.” In a software implementation,
the test might be phrased “if the element count of A is 1 and the
rank is less than 2, then the answer is yes.” This test would re-
quire two memory fetches. We chose the representation of DA
so that bits 1 , 2, and 3 would identify A as follows:

bit 1 2 3 I
0 0 0 A is a scalar
0 0 1 A is a one-element vector
0 1 1 A is a one-element array
1 0 1 A is a vector (zero or > 1 elements)
1 1 1 A is an array (zero or > 1 elements)

I 370 HASSITT AND LYON IBM SYST J I

The test “is A a scalar or a one-element vector” can now be
phrased in the single microinstruction “are DA bits 1 , 2 equal
to 00.” If DC is the logical “or” of DA and DB, the test “are
DA and DB both scalar” becomes “is DC bit 3 equal to zero.”

On the System/370 Model 145, the APL emulator uses four
times the amount of control storage used in the System/360
Model 25 implementation. Much of this additional storage is
used in implementing many more functions in microprogram-
ming, but some is used for more sophisticated algorithms. As an
example, the internal representation uses a data structure called
the APV (arithmetic progression vector). This structure has a
special descriptor and three data words: V l , V 2 , E. The APV is
used to represent the integer vector with elements V I V I + V 2
V1+2XV2 . . . V I + (E - l) X V 2 .

The emulator uses the APV form in the following way: The APL
expression LJ stands for the vector 1 , 2 , 3 . . . J. If the emu-
lator encounters the expression LJ, it produces an APV if J is
greater than 1. The APV will have V l = l V 2 = l , E=J. Many of
the emulator routines check for APV arguments and, where pos-
sible, produce an APV result. For example if an APV is multipled
by a scalar X, the result is formed by multiplying V I and V2 by
X. If an APV is to be reversed, then V l is replaced by
V I + (E-1)XV2, and the sign of V2 is changed.

I One advantage of the APV is that it saves E-2 words of memory.
It also saves time. For example, multiplication by a scalar re-
quires three rather than E multiplications. (Two multiplications
are mentioned above, but the system also forms (V l x X)
+ (V 2 x X) x (E - 1) to check for integer overflow.) The major
reason for implementing APVS is that they occur in many sub-
script expressions.

All subscript evaluation is done by a microprogram routine us-
ing the methods we have described elsewhere.” Subscript evalu-
ation is complicated by the fact that arrays of ranks 1 through 63
can be subscripted. Each subscript can be a scalar, a vector, or
an array. To improve execution efficiency, it is important to rec-
ognize special cases dynamically. The time required to execute
UCVl, for example, is a constant plus some factor times the
number of elements in V . The constant is almost independent of
the characteristics of U and V , but the factor is strongly depen-
dent on U and V. The emulator checks the form of V . If V is an
APV and its V2 part is unity, then the subscripted elements can
be moved in a single block. The gain in speed is particularly sig-
nificant if U is a logical vector; it takes fewer microprogram in-
structions to move 32 bits aligned on a word boundary than to
move a single bit. In many cases, array subscripts can be ana-
lyzed and reduced to simpler and more efficient forms.”

NO. 4 - 1976 APL EMULATOR 371

1 16 variable, value in the data area at location c
200 variable, value in the data area at location a

and the data area contains

location a value block for variable 200
location b synonym block 108 200 1 16 -1
location c synonym block 1 I6 200 -1 108

Note that these blocks (and all other blocks in the data area)
contain no addresses, so garbage collection is a simple and rapid
operation. The internal name T (the number 200 in the
example) does not have an external name; it is only used inter-
nally by the emulator. If an attempt is made to change the value
of ALPHA, the emulator will free the old value of ALPHA. The
free routine will free the synonym block for ALPHA and it will
detect that ALPHA was synonymous with X, then it will look at
the synonym block for X and discover that there are no more
synonyms, so it will free the synonym block for X and the name
of T and cause the address-table entry for X to point directly to
the value block. The APL emulator uses synonyms in calling
functions and also in operations such as raveling an array, and in
some cases of assignment.

Performance

We measured the performance of the APL emulator by measur-
ing the CPU times required to execute 19 test problems, with and
without the emulator, on a dedicated machine. The problems
covered a wide range of applications in numerical analysis, sta-
tistics, linear programming, text processing, and compilation.
We compared three implementations of APL:

(A) APL~CMS running on a System/370 Model 145 with the
emulator installed;

(B) A ~ ~ \ 3 6 0 running on the Model 145;

(C) APLlCMs running on the Model 145 using a software
interpreter instead of the emulator.

The test problems ran 2 to 20 times faster on system A than on
B. That is, one problem ran twice as fast and one ran 20 times as
fast, and the running times of the other problems were between
these extremes. Similarly, the test problems ran 1.5 to 2.5 times
faster on C than on B. These figures were obtained with one
user on the system. If there were many interactive users, the
system’s behavior would be controlled largely by operating-sys-
tem functions such as terminal handling, multiprogramming, and
virtual-memory paging. The average user would see little differ-

NO. 4 . 1976 APL EMULATOR 373

Some software routines may use a special algorithm which
makes them faster than the corresponding microprograms. For
example, if LVZIOOO is a logical vector with 1000 zero ele-
ments, and LVOIOOO is a vector with 1000 ones, then the fol-
lowing execution-time ratios are obtained:

I STATEMENT RATIO

X++/LVZIOOO 0.30
X++/LVOIOOO 1.17

The microprogram time depends on the number of elements,
whereas the software time depends primarily on the number of
ones.

examples Two examples serve to illustrate how these results apply to
complete programs. An FFT (fast Fourier transform) calculation
requires many floating point multiplications. It would be expect-
ed that microprogram and software execution would require
comparable times for an FFT on a long vector. For an FFT on
eight complex points, we have found microprogram execution to
be 4.6 times faster than software; but for 1024 complex points,
it is only 1.5 times faster. As a second example, the APLGOL
compiler,'3 which is written in APL and uses no floating point
operations, has to break APLGOL statements into tokens which
are short vectors. It would be expected that microprogram exe-
cution would be significantly faster than softwaie. Our test case
was to compile the APLGOL compiler itself; in this case, the
microprogram execution was 7.33 times faster than the software.

Summary

The architecture of an APL machine is radically different from
the architecture of a machine like the IBM System/370. The APL
Assist demonstrates that both architectures can be supported on
one central processing unit. It also shows how an APL emulator
can function in the environment provided by the VM and vs op-
erating systems without demanding any special privileges.

I In many high-level languages, a compromise has been made
between making the language easy to use and enabling it to be
compiled. In APL this compromise has not been made. APL is
designed to be both powerful and easy to use; consequently it
cannot be compiled into conventional machine language instruc-
tions. The APL Assist shows that the machine can be designed
to fit the language. Making the machine fit the language does not
add anything to the language, but, as we have shown, it can re-
sult in an impressive improvement in execution speed.

316 HASSITT AND LYON IBM SYST 1

378 HASSITT AND LYON

