
This paper provides a nontechnicul introduction to queuing
network concepts, a short introduction to results of research
into analytical modeling methodology, and u set of simple but
typical examples that illustrute the upplication of that methodol-
ogy to problems of computer perfbrmunce.

Interactive modeling of computer systems
by M. Reiser

The objectives of this paper are to introduce concepts of the
theory of queuing networks, to describe an APL program - called
QNET4-for the solution of queuing network problems, and to
give examples of the analysis of computer systems using the
methods of QNET~. In the process of constructing models, we
wish to clearly distinguish between modeling and methods of
solution.

Modeling is the process of mapping a real system into a suitable
abstract representation, such as an equation or a queuing dia-
gram. It is the modeler who decides those aspects of a system
that are sufficiently important to be represented. Modeling, espe-
cially on a high level of abstraction, is a difficult endeavor. Much
remains to be done to establish a proven modeling methodology.

Methods of solutions are necessary to provide numerical results.
A method of solution is usually capable of solving a certain class
of models. (Such a class of models is sometimes called an ab-
stract model.) The abstract model of this paper is the network of
queues. Algebraic and simulation methods are two important
methods of solution of such models. The APL program discussed
in this paper, which we call Q N E T ~ , is an implementation of the
algebraic method of solution. Note that we view simulation as a
method of solution, not as a model class that is distinct from the
class of algebraic (or analytic) models.

Queues and queuing networks

The term queue denotes an individual resource of the queuing
network. Several queues are connected into a queuing network
by “routing,” which is described later in this paper. A queue
consists of the following three elements: a waiting room, a set of
servers or processors, and a queue discipline, i.e., a rule for de-
termining the scheduling of service to jobs.

NO. 4 * 1976 INTERACTIVE MODELING 309

Figure 1 A queue with two A diagram of a queue is provided in Figure 1. The waiting room
and a waiting of a queue may be subdivided into a set of local classes, each of

classes). Classes such as priority may also be used by the queue

room that is organized
into two classes which may have its own workload characteristics (workload

WAITING QUEUE SERVEKS
ROOM DISCIPLINE a job places a work demand (or service demand) on the queue.

The work demand is a random variable that is generated by a
stochastic process. The method to be discussed here requires
that a process be a renewal process, which is to say that suc-
cessive work demands are independent samples drawn from a
distribution, called the Work Demand Distribution (WDD), as
illustrated by Figure 2.

Figure z A work demand is as- Note that each class may have its own WDD. Work demands are
signed to a newly ar- measured in such units as numbers of instructions (path

lengths), or numbers of bytes to be transmitted (record size), or

called work rate or service rate. Examples of rate units are Mil-

a * second (KBPS) , baud or rate of telegraphic transmission, or
other such quantities. We allow the rate to be a function of the
queue size.

Jobs are scheduled to receive service by a rule called queue dis-
cipline, and stay at the queue until all work is done. Completed
jobs depart instantly. The queue discipline may subdivide the
work into several slices (e.g., round robin scheduling). In the
case of multiple servers, the queue discipline also assigns serv-
ers. The queue discipline may make use of the local classes
(e.g., priority), and/or the discipline may impose an ordering on
the jobs in the waiting room (e.g., order of arrival).

Our definition of the service mechanism differs somewhat from
the standard queuing literature where service times and their dis-
tributions are more customary. In the simple case of constant
work rate C and First Come First Served (FCFS), Last Come
First Served (LCFS), Priority (PR), or Infinite Servers (IS)
queue discipline, service times T, and work demands m are sim-
ply related by the following expression:

CT= m (1)

A large literature exists on the single-queue solution, which is
available under quite general assumptions; an excellent introduc-
tion is given in Reference 1.

rived Class 1 job

SAMPLE other such quantities. Servers provide work at a given speed, "[;, WDD, CLASS l lions of Instructions Per Second (MIPS) , thousands of bytes per

network of A network of queues is a multiresource system that has the fol-
queues lowing characteristics:

310 REISER IBM SYST J

A set of queues-as just described -each having its own dis-
tinct service mechanism.
An arrival process that describes job arrival at the network
(open network) ; or a fixed set of jobs that stays indefinitely in
the network (closed network).
A rule, called routing, that governs the way jobs proceed
through the network.

It is often convenient to view routing as a sequence of decisions
that are made upon arrival and after each service completion.
For example, a routing may specify that a class i job after ser-
vice completion at queue n may join queue m as a class j job.
Schematically, such a transition may be depicted by the arrow
as shown in Figure 3 .

If all classes have distinct names, queue names need not be giv-
en to uniquely specify a transition. The transition of Figure 3 is
designated by the following notation:

i+j (2)

Here the rectangular boxes symbolize queues, and the ovals are
classes within the queues. Routing imposes a structure on the
queuing system that may be represented by a directed graph, an
example of which is given in Figure 4. The routing may define
classes of nodes, such that no transitions can occur from one
class into another. Such classes are termed chains. Figure 4
shows a routing with two chains, one of which is open and the
other closed. In Figure 4, nodes are local classes, and edges
show feasible transitions. Note the use of local classes to obtain
the figure-8 pattern in chain 1.

Without loss of generality, we can assume that routing transi-
tions are instantaneous. A routing rule is said to be stare inde-
pendent if the sequential decisions are not influenced by queue
sizes or service processes. The term stochastic routing or proba-
bilistic routing refers to a state-independent routing rule by
which, after each service completion, a successor class is select-
ed at random.

Denote a stochastic routing transition formally as follows:

i + j ; p (3)

where p is the probability that class j is chosen as successor of
class i. As a consequence of the way in which a network of
queues is defined, the event that a job is simultaneously at more
than one queue is prohibited.

The queuing network model, as previously discussed, is a very
general one, and simulation is the principal method for its solu-
tion. Thus, further restrictions must be imposed to make the

NO. 4 - 1976 INTERACTIVE MODELING

problem yield to a mathematical analysis. In this section, a class
of queuing networks, called separable queuing networks, is de-
fined and discussed. Such networks are also termed locally bal-
anced networks or networks that have a product-form solution.

A first significant simplification becomes possible by making the
state space enumerable, by restricting the class of distributions
to those that can be realized by exponential stages.' This class
of queuing systems is sometimes called Markovian queuing net-
works. The stationary queue size distribution of a Markovian
queuing system, if it exists, is given by a system of homogeneous
linear equations, called balance equations. This, it seems, is
familiar mathematical ground, well suited for the digital com-
puter. Unfortunately the number of equations is either infinite
(open networks) or grows combinatorially with the size of the
network (closed networks). Thus the general class of Markovi-
an networks is severely computationally limited.

Since the solution of the single-queue problem is available under
rather general assumptions, such as the G I / G / ~ queue-a single
resource system with a general independent arrival process,
general service process, and one server - one might expect that
a network solution could be synthethized from such general indi-
vidual queue solutions. This decomposition approach does not
work in general, however, since the superposition of output pro-
cesses of queues that feed another queue is far more general
than the renewal input process on which the G I / G / ~ solution is
based. Some approximate methods that ignore the structure of
the sum process have been ~uggested.~

The only way to obtain a general class of queuing network mod-
els that is not computationally limited is to impose further re-
strictions, such that the solution of the balance equations can be
obtained a priori. Such networks are called separable because
the balance equations can be solved by separation of variables
techniques. A rather large class of separable networks is dis-
cussed in References 4-6, and that class of queue networks is
now outlined.

There are N queues labeled 1, 2, . . ., N that are organized
into M classes, 1, 2 , . . ., M .
Jobs proceed through the queues, according to a stochastic
routing rule, by means of which the routing may be decom-
posable into chains that are either open and driven by Poisson
streams or closed with a fixed population.
A queue has one or several identical servers that are speci-
fied by their work rate, which may be a function of the local
queue size.
The following queue disciplines and Work Demand Dis-
tributions (WDD) are admissible:

312 REISER IBM SYST J I

I A. A First Come First Served (FCFS) queue where all job Figure 5 A first come first served

classes share the same exponential WDD (homogeneous queue with an expo-

workload) is illustrated in Figure 5.
B. A Preemptive Resume Last Come First Served (LCFSPR)

with general, class-dependent WDDS is illustrated in
Figure 6. O\ f 0 CLASS'

pendent WDDS serves all jobs at the queue simulta- YL' 0 CLASS2

neously with an individual rate that is inversely propor-
tional to the queue size. Figure 7 illustrates a processor-
shared queue in which three jobs are executing simulta-
neously, each one with an individual rate of C / 3 . Note
that the work demands are sampled from two different
distributions. If a new job arrives, each job executes at an
individual rate of C/4. The processor-shared queue disci-
pline may be viewed as a limiting case of round-robin
scheduling, where the quantum size shrinks to zero.

D. NO queuing with class-dependent general delay time dis- Figure 6 A last come first served

tribution is a queue that is also called Infinite Servers and queue with a preemp-

is abbreviated as IS. In such a queue, a job is held for a

nential work demand
distribution

~

C. A Processor Shared (PS) server with general class de- wan,

tive resume discipline

random amount of time, regardless of congestion.

It is a particularly interesting feature of the solution of separable
networks that only the mean work demand enters into the solu- w D D 2 ~ q LO CLASS2

tion. Thus, in those cases where a general distribution is al-
lowed, the form of this distribution is irrelevant. We call such
queue disciplines robust; LCFSPR, PS, and IS are robust, whereas
FCFS is not. We shall show later in this paper that robustness is
very important in practice. The theory of separable queuing
networks allows essentially the evaluation of the joint queue size
distribution. The following are performance measures that can
be obtained:

Marginal queue size distribution. Figure 7 Processor-shared queue

Mean queue size.
Utilization. W D D 1 ~ o h ~ < r ' A c c l

Average chain population.
Throughput. w m Z ~ o f g 0 0 0 CLASS2

Average response times.

Although the class of separable networks is much larger than
that of exponential server model^,^ there are still many impor-
tant system and workload features that have to be sacrificed for
separability. In particular, we have no results for the following
conditions:

B

I

FCFS queues with general WDDS and heterogeneous work-

Priorities.
Blocking or limited access to subsystems.

load.

NO. 4 * 1976 INTERACTIVE MODELING 3 13

Figure 8 Example of a protocol with error messages and the use of the HOW function

E V A L

~ ERR: CODES 4*
W H A T : QUEUE WRONG CODE

WHAT: HOW 4 USER ASKS FOR ASSISTANCE
ERROR MESSAGE

PO AVERAGE NR O F J O B S IN G I V E N C H A I N .
R T A V E R A G E R E S P O N S E T I M E ,
A L L A L L O F T H E A B O V E .

TRY A G A I N : Q L 4 SECOND CHANCE

tocol, he can call for a detailed explanation by querying with Figure 9 Routing description

HOW. After the comment is printed, the user is given a second statements

chance to answer properly.

All input data are thoroughly checked for validity. Errors are
detected at the earliest possible moment. An error message is FORK

given, followed by a repetition of the faulty part of the protocol.
An example of an error message together with the use of the
HOW function is given in Figure 8.

SIMPLE @%@
2-7 2-7.0 9

2 - 3 5 7 2 - 3 5 7 , 0 1 0 2 0 3

Question answering in the dialogue mode is straightforward, JUNCTloN

except for the definition of the routing. The notation for routing
transitions is slightly generalized and is the basis of the Q N E T ~
routing description language. Figure 9 shows the four possible PARALLEL @--L@@”%@
simple statements of the routing description language. Each “
statement has the following two forms: without probabilities 3 2-57 3 2-57; 0 10.4

(left column) and with explicit probabilities (right column). Sim-
ple routing description statements can be linked together as
shown in Figure 10. In this fashion, it is often possible to define
a whole chain in just one line. Note that the chaining of state-
ments is optional. When the chaining of routing description
statements is used, each “to part” serves as a “from part” of
the next arrow.

3 5 7 - 2 3 5 7 * 2 : 0 1 0 . 2 0 4

Besides the dialogue mode, there is a set of functions designed Figure 10 Example chaining of

to interface QNET~ with application programs. These functions routing description

are organized into four groups as follows: statements

Initialization:
EIW to define a Q N E T ~ environment.
DEFCH to define a routing chain.
DEFQ to define a queue.
Set or change parameters:
CHAR arrival rate.
CKPO population of closed chains.
CHPR work rate (processing rate).
CHWD work demand.
CHRO routing.

I NO. 4 * 1976 INTERACTIVE MODEl.1NCi 3 15 I

Figure 1 1 Central computer in-
stallation

C
C

ENTRAL SERVICE COMPLEX
PU+SCP

DATA SETS

APPLICATION A APPLICATION B

316

Computation:

Evaluation of results:
SOLV to compute output tables.

PO population of chains (For an open chain, PO returns the
mean number of jobs in the chain. For a closed chain, PO
returns the assigned number of jobs as given in SEWP.) .
QD marginal queue-size distribution.
QL mean queue size.
RT response times (For an open chain, RT returns the mean
time a job spends in the system. For a closed chain, RT re-
turns the mean time measured from the moment a job leaves
a given class until the same job returns to the same class for
next time.).
P throughput (measured in job completions/time unit).
UT utilization.

All functions provide data and sequencing checks. For more
details we refer to the user’s description’ of QNET4.

Methods of analyzing a central computer installation

Discussed now are example models for various aspects of a cen-
tral computer installation, such as the one portrayed in Figure
11. The installation consists of applications with their devices
and also a central service complex. The central service complex
is composed of one or several central processing units (CPUS), a
system control program (SCP), and system input/output (I/o)
devices. Indicated also are important queues and components of
the SCP. Incoming jobs join the control complex in a job queue
(JOB-Q), and are selected for execution by a component of the
SCP called the scheduler (SCH). Those jobs that have been se-
lected move to the multiprogramming queue (MP-Q), where they
share the active resources, such as the CPU and the system de-
vices. Scheduling of those resources is performed by a com-
ponent termed the dispatcher (DISP). The number of jobs in the
multiprogramming queue is called the level of multiprogram-
ming. In some systems, the multiprogramming queue is divided
into an IN-queue and an OUT-queue. In this case, only those jobs
in the IN-queue constitute the level of multiprogramming. Move-
ment of jobs between IN and OUT queues is called swapping.

The work of the CPU is divided into system tasks and applica-
tion tasks. A running application program is frequently inter-
rupted because the CPU has to perform a system service. The
nature of such an interruption is, in general, too complex to be
taken into account in a high-level model. The system “over-
head” is treated summarily by assigning to the processor an
efective work rate. Such an effective work rate has to be fur-
nished by measurement and/or empirical models. In order for

REISER IBM SYST J

Figure 14 SEW,? protocol for the finite source model of Figure 13

S E T U P

C L O S E D C H A I R S : 1
OPEN C H A I N S : 0
C L A S S E S : 7

Q U E U E S : 2 l 4
C H A I N : 1 (C L O S E D)
R O U T I N G :
(1) 1+2*1
(2)

QUEUE: 1

S T I M E S : 3 4
T Y P E : I S

Q U E U E : 2

R A T E : . 5 4
T Y P E : P S

WORK DMNDS: .I 4 PATH LENGTH (MILLIONS OF INSTRUCTIONS)

C H A I N P O P : 2 0 4 NUMBER OF TERMINALS
CPUT = 0.9711

THINK TIME (5)

MIPSRATE

Figure 16 Finite source model
with two chains

318

Figure 15 List of results (E v f i) for the finite source model of Figure 13

E V A L
W H A T : A L L

PO : 2 0 CHAIN POPULATION

Q 1 Q L :
Q 2 Q L : i:ki) AVERAGEQUEUESIZE

9 1 UT:
Q 2 : ii:) UTILIZATION (FRACTION OF BUSY TIME)

Q 1 T P : Q2 f p : ::::) THROUGHPUT (JOBS/s)

R f :
C L A S S : 1,) RESPONSE TIME(s) (CLASS 1 AND CLASS 2)

computer systems.’ The last line in Figure 14, which is the
amount of CPU time used, is also a message to acknowledge that
the system is now ready to list results.

It is important to note that both the distribution of think times
and the distribution of path length can be general. Only in the
case of FCFS queuing at the CPU is one forced to make an
exponential assumption.

The next example attempts to bring greater realism to the finite
source system model by considering two subsystems, e.g., IMS
and APL. Such systems can be represented by two closed chains,
as shown in Figure 16. Assume that both chains are of the same
priority level at the CPU and assume the following parameter
values:

Number Of APL terminals: 15.
Number of IMS terminals: 5 .
Mean think time APL: 1 s.
Mean think time IMS: 15 s.

REISER IBM SYST J

Figure 17 2%'mP protocol for finite source model with two chains

S E T U P

C L O S E D C H A I N S : 2
O P E N C H A I N S : 0
C L A S S E S : 4

SIZE OF NETWORK

QUEUES: 3 I
C H A I N : 1 (C L O S E D) 4 ROUTING, APL SYSTEM

R O U T i N G :
C L A S S E S : 1 3

C H A I N : 2 (C L O S E D) 4 ROUTING, IMS SYSTEM

R O U T I N G :
C L A S S E S : 2 4

(1) 2+"2
(2)

QUEUE: 1 4 APL TERMINALS
T Y P E : IS
C L A S S E S : 1
S T I M E S : 1 t THlNK TlME APL (s)

T Y P E : I S
QUEUE: 2 4 .n 1MS TERMlNALS

C L A S S E S : 2
S T I M E S : 1 5 4 THlNK TlME IMS (5)

QUEUE: 3 1. CPU

R A T E : . 4 4
T Y P E : PS

C L A S S E S : 3 4
WORK DMNDS: .01 .2 4 PATH LENGTH (MILLIONSOF INSTRUCTIONS)

CPUT = 0 . 7 6 3 4

C H A I N P O P : 1 5 5 4 NUMBER OF TERMlNALS

EFFECTlVE MIPS RATE

CPU TlME FOR RUN (5)

Mean path length APL: 0.01 millions of instructions.
Mean path length IMS: 0.2 millions of instructions.
Effective MIPS rate: 0.4.

The SETUP protocol for the two-chain finite source model is giv-
en in Figure 17, and the results obtained by EVAL are shown in
Figure 18. Note that in the output, queue length, throughput,
and response times are broken down into classes.

In the two-chain model, we have made use of the class and two-chain
chain concepts in order to model heterogeneous workloads and finite
disjoint subsystems. The absence, however, of priority queue source
disciplines from the class of separable networks has forced the model
assumption that both APL and IMS are on the same priority level.
In many instances, such an assumption is not realistic. For ex-
ample, assume that the APL system takes preemptive priority
over the IMS system. Thus, the APL system "sees" the full pro-
cessing rate C of the CPU, a premise that permits the construc-
tion of an individual finite source model similar to the basic finite
source model in Figure 13. The IMS system receives the remain-
ing work capacity that on the average is given by the following
equation:

where U,,, is the utilization obtained from the APL model. The

NO. 4 1976 INTERACTIVE MODELING 3 19

Figure 18 List of results (E V m) for finite source model with two chains

EVA L
WHAT: ALL

CH2 FU: 3’) - CHI Po: e AVERAGE CHAIN POPULATION

Q 2 Q L : 4.71
a1 Q L : 14.3

0 3 CLASS:
TOT } AVERAGEQUEUESIZE

QL: 0.617 0.293 0.q7

01 U T : 0.955
02 U T : 0.941
03 UT: 0. 515

UTILIZATION (FRACTION OF BUSY TIME)

Dl TP: 111.3
Q2 TP: 0.314

TP: 14.3 0.314 14.6

RT : @.047:) CHI C L A S S : RESPONSE TIMES, CHAIN 1 (5)

C R 2 C L A S S :
RT :

RESPONSE TIMES, CHAIN 2 (5)

Figure 19 Decomposition of a
finite source model
with two chains into a
high and low prior-
ity model

processing of IMS transactions, however, is not homogeneous;
bursts of processing alternate with idle periods. If we ignore the
effects of this nonhomogeneity, we can construct a second finite
source model for IMS with a processing rate given by Equation
4. This decomposition of the original problem into parts that are
compatible with the QNET4 class of networks is shown schemati-
cally in Figure 19.

Clearly the assumption of smoothed processing in the low-
priority model introduces an error that can be estimated by re-
placing the finite source with an infinite (or Poisson) source and
using results of the Poisson arrival process, exponential service
process, one server, with priority discipline (MIMIIIPRI) queue
theory. There results the following expression for the relative
error of the mean waiting time:

where m3 is the mean path length APL, m4 is the mean path
length IMS, and

(throughput APL) m3
C P3 =

Equation 5 reveals that E is always positive, which means that
the smoothing out of the IMS processing produces optimistic
results for the response times. The error, however, never ex-
ceeds one-hundred percent and remains small if p3 is small (light
APL load), and/or if the APL path length is much shorter than
the IMS path length.

In most practical cases, high-priority transactions tend to be
shorter than low-priority transactions, and, hence m3/m4 < 1 . In

3 20 REISER IBM SYST J

Table 1 Results of the hierarchical research QNET4 model compared with simulation
results obtained by APLOMB

C = 0.4 c = 0.2

QNET4 .537 1.6

APLOMB ,526, .539, ,553 1.58, 1.62, 1.65
Mean queue
Size APL

"

QN ET4 . 3 1 3 1.44

APLOMB .262, .306, ,349 1.42, 1.55, 1.68
Mean queue
Size IMS

Error
(Equation 5)

2.75% 9.4%

the given example, we find p3 = 0.363, malm, = 0.05, and E =
2.75 percent by Equation 5 .

We have compared the analytical modeling (Q N E T ~) approxi-
mate solution with simulation results obtained by a queuing
network simulation method that is known as APLOMB.~' Results
summarized in Table 1 show that the simple hierarchical Q N E T ~
model is as accurate as simulating 100,000 transactions. Execu-
tion times of APLOMB simulations compared with Q N E T ~ are in
the approximate ratio of fifty to one. The three numbers in the
APLOMB row represent a 95 percent confidence interval with a
point estimate.

Multiprogramming was introduced to increase resource utiliza-
tion by overlapping CPU processing with 1l0 operations. A simple
cyclic queue model to evaluate multiprogramming performance
is among the earliest analytic computer models." This cyclic
queue model has been generalized into the so-called centra]
server modeL1'

We now concentrate on the subsystem CPU, I/O, and dispatcher
as shown in Figure 20, where MP-Q is a multiprogramming
queue. The level of multiprogramming must be carefully con-
trolled in order to optimize performance, and is typically much
smaller than the number of source terminals.

In the central server model, interest does not focus on source
terminals and job queue (JOB-Q) scheduling. In fact, a fixed level
of multiprogramming K is assumed. It is also useful to break up
the multiprogramming queue into a CPU queue and several de-
vice queues, as illustrated for a typical central server model with
N rlo devices in Figure 2 1.

NO. 4 * 1976 INTERACTIVE MODELING

Figure 20 Computer system as
seen by the manager
of a multiprogram-
ming queue

SOURCE
TERMINALS

Figure 21 A central server model

r NEWJOB

central
server
model

321

Figure 23 A. APL function for the central server model of Figure 22, a n d 6 . results
for a multiprogramming level of 10

L

c

11 R INPUT PARAMETERS
V Z t C E N T R A L S E R V E R K

2 1 R K : L E V E L OF MULTIPROGRAMMING

4 1 R MDRUM: PATH LENGTH BETWEEN 1 1 0 TO DRUM
3 1 R MJOB: JOB PATH LENGTH

5 1 R MDISK: PATH LENGTH BETWEEN I10 T O D I S K
6 1 A C: E F F I C T I V E M I P S R A T E C P l l

1 0 1 R

1 2 1 MCPU+li((liMJOB)i(1iMDRUM)+(l;MDISK))
111 R PATH LENGTH OF CPU B U R S T

1 3 1 R PROBABILITY FOR BRANCH <<NEW JOB,,
1 4 1 PNEWJOBcMCPUtMJOB
1 5
1 6
1 7
1 8
1 9

J R P R O B A B I L I T Y F O R - B R A N C H CPU+DRUM
1 PDURMcMCPUiMDRUM
1 A P R O B A B I L I T Y F O R BRANCH C P O - t D i S K
1 P D I S K c M C P U i M D I S K
I R S E T NUMBER OF Q U E U E S (N) AND

2 0 1 A NUMBER OF C L A S S E S - 1 8)

2 2 1 n SET NUMBER O F C L O S E D (& C) A N D
2 3 1 R OPEN C H A I N S 1 LO_)
2 5 1 LQcO
2 6 1 0 DEFINE ENVIRONMENT
2 7 1 E N >

2 1 1 @+Et3

2u1 L C C 1

2 8 j R S E T R O U T I N G
2 9 1 1 CHRO 3 3 pPNEWJOB,FDURM,PDISK,1,O,O,1,0,0
3 0 1 R S E T P R O C E S S I N G R A T E Q U E U E 1 (C P U)
3 1 I 1 C R P R C
3 2 1 R S E T WORKDEMAND QUEUE 1
3 3 J 1 CHWL MCPU
3 4 I R S E T S E R V I C E T I M E S O F D E V I C E S

f 367 3 CHWL T D I S K

I 3 8 1 CHPO K
1 3 7 1 A S E T L E V E L OF MULTIPROGRAMMING

1 4 0 1 S O L Y
1 3 9 1 R COMPUTE I N T E R N A L T A B L E S

1 4 1 1 R COMPUTE THROUGHPUT OF BRANCH <<NEW JOB,,
C 4 2 1 Z c P N E W J O B x T P 1

v
(A)

MJOBr .1

M D I S K + . 0 1
Ct.15 EFFECTIVE MIPS RATE

~~~~~~: ," } DEVICE ACCESS TIMES ( 5 )  

C E N T R A L S E R V E R  10 

PATH  LENGTHS (MILLIONS OF INSTRUCTIONS) 

0 . 9 9 7  JOB COMPLETION RATE (JOBS/s) 

1B) 

scheduling disciplines tend  to  be more robust  than  the FCFS 
discipline. Additionally, deviations from the  exponential  distri- 
bution at  the CPU (coefficient of variation greater  than  one)  and 
at  the I/O devices (coefficient of variation less  than  one)  have an 
opposite effect on  performance  measures  and  tend to cancel 
each  other.  The central  server  example  considered  here  has 
been kept simple. Clearly,  chains  and  classes  can  be used to 
model a heterogeneous  workload,  and  decomposition may be 
used in the  case of priorities. 

The finite source model and  the  central  server model both  repre- 
sent  certain  aspects of the basic  computer installation shown in 
Figure 11. We shall now combine both models to  arrive  at a 
more realistic  representation of the  overall  system. For simplici- 
ty,  assume  that the workload consists of statistically identical 
jobs  that  are  generated by a  set of K terminals.  Jobs  join  the  sys- 

NO. 4 - 1976 INTERACTIVE MODELING 



Figure 24 Finite source central 

server model with K 
terminals and M ini- 

tiators 

M  INITIATORS 1 

3 24 

tem in one  job queue. There  are M initiators  that  select  jobs 
from the  job  queue  for inclusion in the multiprogramming set. 
Clearly the  number of initiators  puts an  upper limit on  the multi- 
programming level.  Figure  24  represents  the  hypothetical finite- 
source-central-server  computer  system. 

Typically, the number of active  sources is much greater  than  the 
number of initiators  (i.e., K > M )  . An  attempt to map the sys- 
tem structure of Figure 24 into  a Q N E T ~  model immediately raises 
the problem of limiting the level of multiprogramming to  at 
most M .  

Use of a  decomposition  technique is again recommended. Ob- 
serve  that time constants of terminals and  the  scheduler are typi- 
cally one  or two  orders of magnitude larger than  those of the 
CPU and r/o devices.  Therefore,  the CPU-I/O subsystem  reaches 
equilibrium much faster  than  subsystems  that  consist of termi- 
nals and the  job  queue.  Therefore, try to  represent  the CPU-I/O 
complex by one  equivalent  queue in the  terminal-scheduler 
submodel. The  rate of this  equivalent  queue is obtained from a 
central  server model. The throughput of the  central  server mod- 
el determines  the  rate of the  equivalent  queue.  Since  throughput 
depends on the level of multiprogramming, we  have  a  queue- 
dependent  server in the finite source model that  represents  ter- 
minals and  schedulers.  This hierarchical decomposition is shown 
schematically in Figure 25. We call the finite source model the 
outer  model and  the  central  server model the inner  model. The 
inner model of Figure 25 is the  same as  the  one of Figure 22. 

The hierarchical  decomposition of Figure 25  is also a possible 
device  to  combine QNET4 with simulation. Suppose  there is a 
complicated algorithm for  the  computation of priorities in the 
job  queue. If the goal is to  evaluate  such  an algorithm, one can- 
not  use Q N E T ~  for  the  outer model. Given  that  the  central 
server model is adequate,  one  can  reduce  the complexity of a 
simulation model and its necessary running time by representing 
the cpu-rlo complex by an equivalent  queue  exactly as in Figure 
25. Savings are particularly great if the  time  constants of outer 
and  inner models differ markedly (which is the  necessary condi- 
tion for  the  hierarchical  decomposition  to work). 

An  error  analysis of the hierarchical model is difficult. Under  the 
additional  assumptions of an infinite source and a single rlo de- 
vice,  an  analytical solution has been obtained." This solution 
confirms the intuitively appealing requirement  that  the  inner 
model be  faster  than  the  outer model. For a given and fixed load 
and CPU and I/O device,  we find that  the  exact solution con- 
verges to  the  one of the hierarchical QNET4 models if the  aver- 
age number of I/O accesses  tends to infinity. (As a consequence, 
the  speeds of the CPU and I/O device  also  tend to infinity.) 

REISER IBM SYST 1 



w 

Concluding remarks 

NEW JOB A 



Approximate decomposition and smoothing out of discontinuous 
service  have  proved  to  be powerful techniques  for overcoming 
some of the shortcomings of the basic model. The processor 
sharing approximation to  the round-robin scheduling discipline 
and the treatment of preemptive priorities in the multichain cen- 
tral server model have  been examples of smoothed processing. 
Decomposition  has  been used successfully for modeling various 
types of systems,  such  as  the following: 

Blocking limited access  to  subsystems. 
Simultaneous  occupancy of resources  (e.g.,  channels  that are 
held simultaneously with the  devices). 
Multiprocessor  systems with locking and  storage  interfer- 
ence. 

Decomposition  also allows combinations of analytic  and simula- 
tion models. References 17 and 18 are additional discussions of 
modeling and queuing systems  on  an  introductory level. 

ACKNOWLEDGMENT 

The author is in debt  to  the many people in IBM who  have 
helped in the  research  and debugging of Q N E T ~ .  In particular, 
the  contributions of D. Wong, H. Kobayashi, K. F. Finckemeier, 
A.  Mecklenburg, S. Kiss, G. S. Shedler,  and R. Downs  are 
deeply  appreciated. 

CITED  REFERENCES 
1. L. Kleinrock, Queuing Systems,  Volume I :  Theory, John Wiley and Sons 

Inc.,  New  York,  New  York (1975). 
2. D. R.  COX,  “A  use of complex  probabilities in the  theory of stochastic pro- 

cesses,” Proceedings of the  Cambridge  Philosophical  Society 51, 3  13 - 3  19 
(1955). 

3. M.  Reiser  and H. Kobayashi, “Accuracy of the diffusion approximation for 
some queuing  systems,” IBM  Journal of Research  and  Development 18, 
No. 2,  110-  124  (1974). 

4. J.  R.  Jackson, “Jobshop-like  queuing systems,” Management  Science 10, 

5.  F. Baskett, K. M.  Chandy, R. R.  Muntz,  and F. G. Palacios, “Open, closed 
and mixed networks of queues with  different classes of customers,” Journal 
of the A C M  22, No. 2,  248 - 260 ( 1975). 

6. M.  Reiser  and H. Kobayashi, “Queuing  networks with multiple closed 
chains: Theory  and computational  algorithms,” ZBM Journal of Research 
and  Development 19, No. 3,283-294 ( 1975). 

7. M. Reiser, Numerical  Methods in Separable  Queuing  Networks, Report 
RCS842, IBM  Thomas  J.  Watson  Research  Center, P.O. Box 218, York- 
town  Heights, New  York 10598 

8. M.  Reiser, QNET4  User’s  Guide, Report RA71, IBM  Thomas  J. Watson 
Research  Center, P.O. Box 218, Yorktown  Heights,  New  York, 10598. 

9. A. L. Scherr, An  Analysis of Time-shared  Computing  Systems, MIT Press, 
Cambridge, Massachusetts ( 1967). 

IO. C.   H.  Sauer, “Simulation  analysis of generalized  queuing networks,” 1975 
Summer  Simulation  Conference, 75-81  (1975). 

1 1. D. P. Gaver, “Probability  models for multiprogramming computer  systems,” 
Journal of the A C M  14, No. 3,  423-438  (1967). 

131-142  (1963). 

326 REISER IBM SYST J 



INTERACTIVE MODELING 327 


