
This  paper  provides  a  nontechnicul  introduction  to  queuing 
network  concepts,  a  short  introduction to results of research 
into  analytical  modeling  methodology,  and u set of simple  but 
typical  examples  that  illustrute  the  upplication of that  methodol- 
ogy  to  problems of computer  perfbrmunce. 

Interactive modeling of computer systems 
by M. Reiser 

The objectives of this paper are  to introduce  concepts of the 
theory of queuing networks,  to  describe  an APL program - called 
QNET4-for the solution of queuing network  problems,  and  to 
give examples of the analysis of computer  systems using the 
methods of QNET~. In the  process of constructing models, we 
wish to clearly distinguish between modeling and  methods of 
solution. 

Modeling is the  process of mapping a real system  into  a suitable 
abstract  representation,  such  as an equation or a queuing dia- 
gram. It is the modeler who decides  those  aspects of a  system 
that are sufficiently important  to be represented. Modeling, espe- 
cially on a high  level of abstraction, is a difficult endeavor. Much 
remains to be done  to  establish  a  proven modeling methodology. 

Methods of solutions are  necessary  to provide numerical results. 
A method of solution is usually capable of solving a  certain  class 
of models. (Such  a  class of models is sometimes called an ab- 
stract  model.) The  abstract model of this paper is the  network of 
queues. Algebraic and simulation methods are  two  important 
methods of solution of such models. The APL program discussed 
in this paper, which we call Q N E T ~ ,  is an implementation of the 
algebraic method of solution. Note that we  view simulation as a 
method of solution,  not  as  a model class  that is distinct from the 
class of algebraic (or analytic) models. 

Queues  and queuing networks 

The term queue denotes  an individual resource of the queuing 
network.  Several  queues  are  connected  into  a queuing network 
by “routing,” which is described later in this  paper.  A  queue 
consists of the following three  elements:  a waiting room,  a  set of 
servers or  processors, and  a  queue discipline, i.e.,  a rule for  de- 
termining the scheduling of service  to  jobs. 
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Figure 1 A queue with two A diagram of a  queue is provided in Figure 1. The waiting room 
and a waiting of a  queue may be subdivided into  a  set of local classes,  each of 

classes). Classes  such  as priority may also be used by the  queue 

room that is organized 
into two classes which may have its own workload characteristics  (workload 

WAITING QUEUE SERVEKS 
ROOM DISCIPLINE a job places a work  demand (or service  demand)  on  the  queue. 

The work demand is a  random variable that is generated by a 
stochastic  process. The method  to be discussed  here  requires 
that a process be a renewal process, which is to  say  that  suc- 
cessive work demands are independent  samples  drawn from a 
distribution, called the Work Demand  Distribution (WDD), as 
illustrated by Figure 2. 

Figure z A work demand is as- Note  that  each class may have its own WDD. Work demands  are 
signed to a newly  ar- measured in such  units  as  numbers of instructions (path 

lengths), or numbers of bytes  to be transmitted  (record size),  or 

called work  rate or service  rate. Examples of rate  units are Mil- 

a * second (KBPS) ,  baud or  rate of telegraphic transmission, or 
other  such  quantities. We allow the  rate  to  be  a  function of the 
queue  size. 

Jobs  are  scheduled  to  receive  service by a rule called queue dis- 
cipline, and  stay at  the  queue until all work is done.  Completed 
jobs  depart  instantly. The queue discipline may subdivide the 
work  into  several slices (e.g., round robin scheduling).  In  the 
case of multiple servers,  the  queue discipline also assigns serv- 
ers. The queue discipline may make use of the local classes 
(e.g., priority),  and/or  the discipline may impose an ordering on 
the  jobs in the waiting room  (e.g.,  order of arrival). 

Our definition of the  service mechanism differs somewhat from 
the standard queuing literature  where service  times and  their dis- 
tributions are more  customary. In  the simple case of constant 
work  rate  C and First  Come  First  Served  (FCFS),  Last Come 
First  Served (LCFS), Priority (PR), or Infinite Servers (IS) 
queue discipline, service times T, and work demands m are sim- 
ply related by the following expression: 

CT= m (1) 

A large literature  exists  on  the single-queue solution, which is 
available under  quite  general  assumptions; an excellent  introduc- 
tion is given in Reference 1. 

rived Class 1 job 

SAMPLE other  such  quantities.  Servers  provide  work at a given speed, "[;, WDD, CLASS l lions of Instructions Per Second (MIPS) ,  thousands of bytes  per 

network of A network of queues is a  multiresource  system  that  has  the fol- 
queues lowing characteristics: 
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A set of queues-as  just  described  -each having its own dis- 
tinct  service mechanism. 
An arrival process  that  describes job arrival at  the network 
(open  network) ; or a fixed set of jobs that  stays indefinitely in 
the network  (closed network). 
A rule, called routing, that  governs  the way jobs  proceed 
through the  network. 

It is often  convenient  to view routing as a  sequence of decisions 
that  are made upon arrival and after  each  service completion. 
For example, a routing may specify that a class i job after  ser- 
vice completion at  queue n may join  queue m as a  class j job. 
Schematically, such  a  transition may be depicted by the  arrow 
as shown in Figure 3 .  

If  all classes  have  distinct  names,  queue names need not be giv- 
en  to uniquely specify a transition. The transition of Figure 3 is 
designated by the following notation: 

i+j (2) 

Here  the rectangular boxes symbolize queues,  and  the  ovals are 
classes within the  queues. Routing imposes a structure  on  the 
queuing system  that may be  represented by a  directed  graph,  an 
example of which is given in Figure 4. The routing may define 
classes of nodes,  such  that  no  transitions  can  occur from one 
class  into  another.  Such  classes are termed chains. Figure 4 
shows  a routing with two  chains, one of which is open and the 
other  closed.  In  Figure 4, nodes are local classes,  and edges 
show feasible transitions. Note the  use of local classes  to  obtain 
the figure-8 pattern in chain 1. 

Without loss of generality, we  can  assume  that routing transi- 
tions are instantaneous. A routing rule is said to  be stare inde- 
pendent if the sequential decisions are not influenced by queue 
sizes or service  processes. The term stochastic routing or proba- 
bilistic routing refers to a  state-independent routing rule by 
which,  after  each  service  completion,  a  successor  class is select- 
ed at random. 

Denote a stochastic routing transition formally as follows: 

i + j ; p  ( 3 )  

where p is the probability that  class j is chosen as  successor of 
class i. As  a  consequence of the way in which a  network of 
queues is defined, the  event  that  a  job is simultaneously at more 
than  one  queue is prohibited. 

The queuing network model, as previously discussed, is a  very 
general one,  and simulation is the principal method for its solu- 
tion. Thus,  further  restrictions  must be imposed to make the 
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problem yield to a mathematical analysis. In this section,  a  class 
of queuing networks, called separable  queuing  networks, is de- 
fined and  discussed.  Such  networks are also  termed locally bal- 
anced  networks  or  networks  that  have  a  product-form  solution. 

A first significant simplification becomes possible by making the 
state  space  enumerable, by restricting  the  class of distributions 
to  those  that  can  be realized by exponential stages.' This  class 
of queuing systems is sometimes called Markovian  queuing  net- 
works. The stationary  queue  size  distribution of a Markovian 
queuing system, if it exists, is given by a system of homogeneous 
linear  equations, called balance  equations. This, it seems, is 
familiar mathematical ground, well suited for  the digital com- 
puter.  Unfortunately  the  number of equations is either infinite 
(open  networks)  or grows combinatorially with the size of the 
network  (closed networks).  Thus  the general  class of Markovi- 
an networks is severely computationally limited. 

Since  the solution of the single-queue problem is available under 
rather general assumptions,  such  as the G I / G / ~  queue-a single 
resource  system with a general independent  arrival  process, 
general  service  process,  and  one  server - one might expect  that 
a  network solution could be synthethized from such general indi- 
vidual queue  solutions.  This  decomposition  approach  does  not 
work in general,  however,  since  the  superposition of output  pro- 
cesses of queues  that  feed  another  queue is far  more general 
than the renewal input process on which the G I / G / ~  solution is 
based.  Some  approximate  methods  that ignore the  structure of 
the  sum  process  have been ~uggested.~ 

The only way to  obtain  a general class of queuing network mod- 
els that is not computationally limited is to  impose  further  re- 
strictions,  such  that  the solution of the  balance  equations  can be 
obtained  a priori. Such  networks are called separable because 
the  balance  equations  can  be solved by separation of variables 
techniques. A rather large class of separable  networks is dis- 
cussed in References 4-6, and  that  class of queue  networks is 
now outlined. 

There  are N queues labeled 1, 2, . . ., N that are organized 
into M classes, 1, 2 , .  . ., M .  
Jobs  proceed through the  queues,  according  to a stochastic 
routing rule, by means of which the routing may be decom- 
posable  into chains that  are  either  open  and  driven by Poisson 
streams or closed with a fixed population. 
A queue  has  one  or  several identical servers  that  are speci- 
fied by their work rate, which may be  a  function of the local 
queue  size. 
The following queue disciplines and Work Demand  Dis- 
tributions (WDD) are admissible: 
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I A. A  First  Come  First  Served (FCFS) queue  where all job Figure 5 A first  come  first served 

classes  share  the  same  exponential WDD (homogeneous queue with an expo- 

workload) is illustrated in Figure 5.  
B. A  Preemptive  Resume  Last  Come  First  Served (LCFSPR) 

with general,  class-dependent WDDS is illustrated in 
Figure 6. O\ f 0  CLASS' 

pendent WDDS serves all jobs  at  the  queue simulta- YL' 0 CLASS2 

neously with an individual rate  that is inversely propor- 
tional to the  queue size. Figure 7 illustrates  a  processor- 
shared  queue in which three  jobs  are  executing simulta- 
neously,  each  one with an individual rate of C / 3 .  Note 
that  the  work  demands  are sampled from two different 
distributions. If a new job arrives,  each job executes at an 
individual rate of C/4. The processor-shared  queue disci- 
pline may be viewed as a limiting case of round-robin 
scheduling, where  the  quantum size shrinks  to  zero. 

D. NO queuing with class-dependent  general delay time dis- Figure 6 A last come  first served 

tribution is a queue  that is also called Infinite  Servers  and queue with a preemp- 

is abbreviated  as IS. In  such  a  queue, a job is held for a 

nential work demand 
distribution 

~ 

C. A  Processor  Shared (PS)  server with general class  de- wan, 

tive resume discipline 

random  amount of time,  regardless of congestion. 

It is a particularly interesting  feature of the solution of separable 
networks  that only the mean work demand  enters  into  the solu- w D D 2 ~ q  LO CLASS2 

tion. Thus, in those  cases  where a general distribution is al- 
lowed,  the form of this distribution is irrelevant. We call such 
queue disciplines robust; LCFSPR, PS, and IS  are  robust,  whereas 
FCFS is not. We shall show  later in this paper  that  robustness is 
very  important in practice. The theory of separable queuing 
networks allows essentially the evaluation  of  the  joint  queue size 
distribution. The following are performance  measures  that  can 
be  obtained: 

Marginal queue  size  distribution. Figure 7 Processor-shared queue 

Mean  queue  size. 
Utilization. W D D 1 ~ o h ~ <  r ' A c c l  

Average chain population. 
Throughput. w m Z ~ o f g  0 0 0 CLASS2 

Average  response  times. 

Although the  class of separable  networks is much larger than 
that of exponential  server  model^,^ there are still many impor- 
tant  system and workload features  that  have  to be sacrificed for 
separability. In particular, we have no results  for  the following 
conditions: 

B 

I 

FCFS queues with general WDDS and heterogeneous  work- 

Priorities. 
Blocking or limited access  to  subsystems. 

load. 
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Figure 8 Example of a protocol with error messages and  the use of the HOW function 

E V A L  

~ ERR:   CODES 4* 
W H A T :  QUEUE WRONG CODE 

WHAT: HOW 4 USER ASKS FOR ASSISTANCE 
ERROR MESSAGE 

PO AVERAGE  NR O F  J O B S  IN G I V E N   C H A I N .  
R T   A V E R A G E   R E S P O N S E   T I M E ,  
A L L   A L L  O F  T H E  A B O V E .  

TRY A G A I N : Q L  4 SECOND  CHANCE 

tocol, he can call for a detailed  explanation by querying with Figure 9 Routing description 

HOW. After  the  comment is printed,  the  user is given a second statements 

chance to answer properly. 

All input data  are thoroughly checked  for validity. Errors  are 
detected at  the earliest possible moment. An  error message is FORK 

given, followed by a repetition of the faulty part of the  protocol. 
An  example of an  error message together with the  use of the 
HOW function is given in Figure 8. 

SIMPLE @%@ 
2-7 2-7.0 9 

2 - 3 5 7  2 - 3 5 7 , 0 1 0 2 0 3  

Question answering in the dialogue mode is straightforward, JUNCTloN 

except  for  the definition of the routing. The notation  for routing 
transitions is  slightly generalized and is the basis of the Q N E T ~  
routing description language. Figure 9 shows  the  four possible PARALLEL @--L@@”%@ 
simple statements of the routing description language. Each “ 
statement has the following two  forms:  without probabilities 3 2-57 3 2-57; 0 10.4 

(left  column) and with explicit probabilities (right column). Sim- 
ple routing description  statements  can  be linked together as 
shown in Figure 10. In this fashion, it  is often possible to define 
a whole chain in just  one line. Note that  the chaining of state- 
ments is optional. When the chaining of routing description 
statements is used,  each  “to  part”  serves as a “from part” of 
the  next  arrow. 

3 5 7 - 2   3 5 7 * 2 : 0 1 0 . 2 0 4  

Besides the dialogue mode, there is a  set of functions designed Figure 10 Example chaining of 

to  interface QNET~ with application programs. These functions routing description 

are organized into  four  groups as follows: statements 

Initialization: 
EIW to define a Q N E T ~  environment. 
DEFCH to define a routing chain. 
DEFQ to define a queue. 
Set  or change  parameters: 
CHAR arrival rate. 
CKPO population of closed chains. 
CHPR work rate  (processing rate). 
CHWD work demand. 
CHRO routing. 
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Figure 1 1  Central computer in- 
stallation 

C 
C 

ENTRAL SERVICE COMPLEX 
PU+SCP 

DATA SETS 

APPLICATION  A  APPLICATION B 
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Computation: 

Evaluation of results: 
SOLV to  compute  output  tables. 

PO population of chains (For an  open  chain, PO returns  the 
mean number of jobs in the  chain. For a closed chain, PO 
returns  the assigned number of jobs  as given in SEWP.) . 
QD marginal queue-size  distribution. 
QL mean queue size. 
RT response times (For an  open  chain, RT returns  the mean 
time a job spends in the system. For a closed chain, RT re- 
turns  the mean time measured from the moment a job leaves 
a given class until the  same job  returns  to  the same  class for 
next  time.). 
P throughput  (measured in job completions/time unit). 
UT utilization. 

All functions  provide  data  and sequencing checks. For more 
details  we  refer to  the user’s description’ of QNET4. 

Methods of analyzing a central computer installation 

Discussed now are example models for  various  aspects of a cen- 
tral  computer installation, such as  the  one  portrayed in Figure 
11. The installation consists of applications with their  devices 
and  also  a  central  service  complex. The central  service complex 
is composed of one  or several  central processing units (CPUS), a 
system  control program (SCP), and  system  input/output (I/o) 
devices.  Indicated  also are important  queues  and  components of 
the  SCP. Incoming jobs  join  the  control complex in a job queue 
(JOB-Q), and are selected  for  execution by a component of the 
SCP called the  scheduler  (SCH). Those  jobs  that have been se- 
lected  move  to  the multiprogramming queue  (MP-Q),  where  they 
share  the  active  resources,  such  as  the CPU and  the  system  de- 
vices. Scheduling of those  resources is performed by a com- 
ponent  termed  the  dispatcher (DISP). The number of jobs in the 
multiprogramming queue is called the level of multiprogram- 
ming. In some systems,  the multiprogramming queue is divided 
into  an IN-queue and an OUT-queue. In  this  case, only those  jobs 
in the IN-queue constitute the level of multiprogramming. Move- 
ment of jobs between IN and OUT queues is called swapping. 

The work of the CPU is divided into  system  tasks  and applica- 
tion tasks.  A running application program is frequently inter- 
rupted  because  the CPU has  to perform a  system  service. The 
nature of such  an  interruption  is, in general,  too complex to be 
taken  into  account in a high-level model. The system  “over- 
head” is treated summarily by assigning to  the processor  an 
efective work rate. Such  an effective work  rate  has to  be fur- 
nished by measurement  and/or empirical models. In  order  for 
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Figure 14 SEW,? protocol  for  the  finite source model of Figure 13 

S E T U P  

C L O S E D   C H A I R S :  1 
OPEN C H A I N S :  0 
C L A S S E S :  7 

Q U E U E S :  2 l 4  
C H A I N :  1 ( C L O S E D )  
R O U T I N G :  
(1) 1+2*1 
( 2 )  

QUEUE: 1 

S T I M E S :  3 4 
T Y P E :  I S  

Q U E U E :  2 

R A T E :  . 5  4 
T Y P E :   P S  

WORK DMNDS: .I 4 PATH  LENGTH  (MILLIONS OF INSTRUCTIONS) 

C H A I N   P O P :  2 0  4 NUMBER OF TERMINALS 
CPUT = 0.9711 

THINK  TIME ( 5 )  

MIPSRATE 

Figure 16 Finite source model 
with two chains 
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Figure 15 List of results ( E v f i )  for  the  finite source model of Figure 13 

E V A L  
W H A T :   A L L  

PO : 2 0  CHAIN  POPULATION 

Q 1   Q L :  
Q 2  Q L :  i:ki ) AVERAGEQUEUESIZE 

9 1  UT: 
Q 2  : ii: ) UTILIZATION (FRACTION OF  BUSY  TIME) 

Q 1   T P :  Q2 f p :  :::: ) THROUGHPUT (JOBS/s) 

R f :  
C L A S S  : 1, ) RESPONSE TIME(s) (CLASS 1 AND  CLASS 2) 

computer systems.’ The last line in Figure 14, which is the 
amount of CPU time used, is also  a message to acknowledge that 
the system is now ready  to list results. 

It is important  to  note  that  both  the  distribution of think times 
and the distribution of path length can be general. Only in the 
case of FCFS queuing at  the CPU is one forced to make  an 
exponential  assumption. 

The next  example  attempts to bring greater realism to  the finite 
source  system model by considering two  subsystems, e.g., IMS 
and APL. Such  systems  can  be  represented by two  closed  chains, 
as shown in Figure 16. Assume  that  both  chains  are of the  same 
priority level at  the CPU and  assume  the following parameter 
values: 

Number Of APL terminals: 15. 
Number of IMS terminals: 5 .  
Mean think time APL: 1 s. 
Mean think time IMS: 15 s. 
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Figure 17 2%'mP protocol for finite source model  with two chains 

S E T U P  

C L O S E D   C H A I N S :  2 
O P E N   C H A I N S :  0 
C L A S S E S :  4 

SIZE OF NETWORK 

QUEUES: 3 I 
C H A I N :  1 ( C L O S E D )  4 ROUTING, APL SYSTEM 

R O U T i N G :  
C L A S S E S :  1 3 

C H A I N :  2 ( C L O S E D )  4 ROUTING,  IMS SYSTEM 

R O U T I N G :  
C L A S S E S :  2 4 

(1) 2+"2 
( 2 )  

QUEUE: 1 4 APL TERMINALS 
T Y P E :  IS 
C L A S S E S :  1 
S T I M E S :  1 t THlNK  TlME APL (s) 

T Y P E :  I S  
QUEUE: 2 4 .n 1MS TERMlNALS 

C L A S S E S :  2 
S T I M E S :  1 5  4 THlNK  TlME  IMS ( 5 )  

QUEUE: 3 1. CPU 

R A T E :  . 4  4 
T Y P E :  PS 

C L A S S E S :  3 4 
WORK DMNDS: .01 .2 4 PATH LENGTH  (MILLIONSOF  INSTRUCTIONS) 

CPUT = 0 . 7 6 3  4 

C H A I N   P O P :  1 5  5 4 NUMBER OF TERMlNALS 

EFFECTlVE MIPS RATE 

CPU TlME FOR RUN ( 5 )  

Mean  path length APL: 0.01 millions of instructions. 
Mean  path length IMS: 0.2 millions of instructions. 
Effective MIPS rate: 0.4. 

The SETUP protocol  for  the two-chain finite source model is giv- 
en in Figure 17, and  the  results  obtained by EVAL are shown in 
Figure 18. Note  that in the  output,  queue  length,  throughput, 
and response times are broken  down  into  classes. 

In  the two-chain model, we have made use of the  class  and two-chain 
chain concepts in order  to model heterogeneous workloads and finite 
disjoint subsystems. The  absence, however, of priority queue source 
disciplines from the  class of separable  networks  has  forced  the model 
assumption  that  both APL and IMS are on the  same priority level. 
In many instances,  such  an  assumption is not realistic. For ex- 
ample,  assume  that  the APL system  takes  preemptive priority 
over  the IMS system. Thus,  the APL system "sees" the full pro- 
cessing rate C of the CPU, a premise that  permits  the  construc- 
tion of an individual finite source model similar to the basic finite 
source model in Figure 13. The IMS system  receives  the  remain- 
ing work  capacity  that  on  the  average is given by the following 
equation: 

where U,,, is the utilization obtained from the APL model. The 
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Figure 18 List of results ( E V m )  for  finite source model with two chains 

EVA L 
WHAT:   ALL 

CH2 FU: 3’ ) -  CHI Po: e AVERAGE CHAIN POPULATION 

Q 2  Q L :  4.71 
a1 Q L :  14.3 

0 3  CLASS:  
TOT } AVERAGEQUEUESIZE 

QL: 0.617 0.293 0.q7  

01 U T :  0.955 
02 U T :  0.941 
03 UT: 0. 515 

UTILIZATION (FRACTION OF  BUSY TIME) 

Dl TP: 111.3 
Q2 TP: 0.314 

TP: 14.3 0.314  14.6 

RT : @.047: ) CHI C L A S S :  RESPONSE TIMES, CHAIN 1 (5 )  

C R 2   C L A S S :  
RT : 

RESPONSE TIMES, CHAIN 2 ( 5 )  

Figure 19 Decomposition of a 
finite source model 
with two chains into  a 
high  and low prior- 
ity  model 

processing of IMS transactions,  however, is not  homogeneous; 
bursts of processing  alternate with idle periods. If we ignore the 
effects of this  nonhomogeneity, we can  construct  a  second finite 
source model for IMS with a processing rate given by Equation 
4. This  decomposition of the original problem into  parts  that  are 
compatible with the QNET4 class of networks is shown  schemati- 
cally in Figure 19. 

Clearly the  assumption of smoothed  processing in the low- 
priority model introduces  an  error  that  can  be  estimated by re- 
placing the finite source with an infinite (or Poisson)  source  and 
using results of the  Poisson  arrival  process,  exponential  service 
process,  one  server, with priority discipline (MIMIIIPRI) queue 
theory. There results the following expression  for  the  relative 
error of the mean waiting time: 

where m3 is  the mean path length APL, m4 is the mean path 
length IMS, and 

(throughput APL) m3 
C P3 = 

Equation 5 reveals  that E is always  positive, which means  that 
the smoothing out of the IMS processing  produces optimistic 
results  for  the  response times. The error,  however,  never  ex- 
ceeds  one-hundred  percent  and  remains small if p3 is small (light 
APL load),  and/or if the APL path length is much shorter  than 
the IMS path length. 

In most practical cases, high-priority transactions  tend  to  be 
shorter  than low-priority transactions,  and,  hence m3/m4 < 1 .  In 
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Table 1 Results of the  hierarchical  research  QNET4  model  compared with simulation 
results obtained  by APLOMB 

C = 0.4 c = 0.2 

QNET4 .537 1.6 

APLOMB ,526,  .539,  ,553 1.58, 1.62, 1.65 
Mean  queue 
Size APL 

" 

QN ET4 . 3 1 3  1.44 

APLOMB .262,  .306,  ,349 1.42, 1.55, 1.68 
Mean queue 
Size IMS 

Error 
(Equation 5 )  

2.75%  9.4% 

the given example,  we find p3 = 0.363, malm, = 0.05, and E = 
2.75 percent by Equation 5 .  

We have compared the analytical modeling ( Q N E T ~ )  approxi- 
mate solution with simulation results  obtained by a queuing 
network simulation method that is known as APLOMB.~' Results 
summarized in Table 1 show  that the simple hierarchical Q N E T ~  
model is as  accurate  as simulating 100,000 transactions.  Execu- 
tion times of APLOMB simulations compared with Q N E T ~  are in 
the  approximate  ratio of  fifty to one. The  three numbers in the 
APLOMB row represent  a 95 percent confidence interval with a 
point  estimate. 

Multiprogramming was introduced  to  increase  resource utiliza- 
tion by overlapping CPU processing with 1l0 operations. A simple 
cyclic queue model to evaluate multiprogramming performance 
is among the  earliest  analytic  computer models." This  cyclic 
queue model has been generalized into  the so-called centra] 
server modeL1' 

We  now concentrate on the  subsystem CPU, I/O, and dispatcher 
as shown in Figure 20, where MP-Q is a multiprogramming 
queue. The level of multiprogramming must be carefully con- 
trolled in order  to optimize performance,  and is typically much 
smaller than  the  number of source  terminals. 

In  the  central  server model, interest  does  not  focus  on  source 
terminals and job  queue (JOB-Q) scheduling. In  fact, a fixed level 
of multiprogramming K is assumed. It is also useful to break up 
the multiprogramming queue  into a CPU queue  and  several  de- 
vice queues,  as illustrated for  a typical central  server model with 
N rlo devices in Figure 2 1. 

NO. 4 * 1976 INTERACTIVE MODELING 

Figure 20 Computer system as 
seen by  the  manager 
of a  multiprogram- 
ming queue 
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Figure 23 A. APL function  for  the  central server model of Figure 22, a n d  6 .  results 
for a multiprogramming  level  of 10 
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scheduling disciplines tend  to  be more robust  than  the FCFS 
discipline. Additionally, deviations from the  exponential  distri- 
bution at  the CPU (coefficient of variation greater  than  one)  and 
at  the I/O devices (coefficient of variation less  than  one)  have an 
opposite effect on  performance  measures  and  tend to cancel 
each  other.  The central  server  example  considered  here  has 
been kept simple. Clearly,  chains  and  classes  can  be used to 
model a heterogeneous  workload,  and  decomposition may be 
used in the  case of priorities. 

The finite source model and  the  central  server model both  repre- 
sent  certain  aspects of the basic  computer installation shown in 
Figure 11. We shall now combine both models to  arrive  at a 
more realistic  representation of the  overall  system. For simplici- 
ty,  assume  that the workload consists of statistically identical 
jobs  that  are  generated by a  set of K terminals.  Jobs  join  the  sys- 
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Figure 24 Finite source central 

server model with K 
terminals and M ini- 

tiators 

M  INITIATORS 1 

3 24 

tem in one  job queue. There  are M initiators  that  select  jobs 
from the  job  queue  for inclusion in the multiprogramming set. 
Clearly the  number of initiators  puts an  upper limit on  the multi- 
programming level.  Figure  24  represents  the  hypothetical finite- 
source-central-server  computer  system. 

Typically, the number of active  sources is much greater  than  the 
number of initiators  (i.e., K > M )  . An  attempt to map the sys- 
tem structure of Figure 24 into  a Q N E T ~  model immediately raises 
the problem of limiting the level of multiprogramming to  at 
most M .  

Use of a  decomposition  technique is again recommended. Ob- 
serve  that time constants of terminals and  the  scheduler are typi- 
cally one  or two  orders of magnitude larger than  those of the 
CPU and r/o devices.  Therefore,  the CPU-I/O subsystem  reaches 
equilibrium much faster  than  subsystems  that  consist of termi- 
nals and the  job  queue.  Therefore, try to  represent  the CPU-I/O 
complex by one  equivalent  queue in the  terminal-scheduler 
submodel. The  rate of this  equivalent  queue is obtained from a 
central  server model. The throughput of the  central  server mod- 
el determines  the  rate of the  equivalent  queue.  Since  throughput 
depends on the level of multiprogramming, we  have  a  queue- 
dependent  server in the finite source model that  represents  ter- 
minals and  schedulers.  This hierarchical decomposition is shown 
schematically in Figure 25. We call the finite source model the 
outer  model and  the  central  server model the inner  model. The 
inner model of Figure 25 is the  same as  the  one of Figure 22. 

The hierarchical  decomposition of Figure 25  is also a possible 
device  to  combine QNET4 with simulation. Suppose  there is a 
complicated algorithm for  the  computation of priorities in the 
job  queue. If the goal is to  evaluate  such  an algorithm, one can- 
not  use Q N E T ~  for  the  outer model. Given  that  the  central 
server model is adequate,  one  can  reduce  the complexity of a 
simulation model and its necessary running time by representing 
the cpu-rlo complex by an equivalent  queue  exactly as in Figure 
25. Savings are particularly great if the  time  constants of outer 
and  inner models differ markedly (which is the  necessary condi- 
tion for  the  hierarchical  decomposition  to work). 

An  error  analysis of the hierarchical model is difficult. Under  the 
additional  assumptions of an infinite source and a single rlo de- 
vice,  an  analytical solution has been obtained." This solution 
confirms the intuitively appealing requirement  that  the  inner 
model be  faster  than  the  outer model. For a given and fixed load 
and CPU and I/O device,  we find that  the  exact solution con- 
verges to  the  one of the hierarchical QNET4 models if the  aver- 
age number of I/O accesses  tends to infinity. (As a consequence, 
the  speeds of the CPU and I/O device  also  tend to infinity.) 
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Approximate decomposition and smoothing out of discontinuous 
service  have  proved  to  be powerful techniques  for overcoming 
some of the shortcomings of the basic model. The processor 
sharing approximation to  the round-robin scheduling discipline 
and the treatment of preemptive priorities in the multichain cen- 
tral server model have  been examples of smoothed processing. 
Decomposition  has  been used successfully for modeling various 
types of systems,  such  as  the following: 

Blocking limited access  to  subsystems. 
Simultaneous  occupancy of resources  (e.g.,  channels  that are 
held simultaneously with the  devices). 
Multiprocessor  systems with locking and  storage  interfer- 
ence. 

Decomposition  also allows combinations of analytic  and simula- 
tion models. References 17 and 18 are additional discussions of 
modeling and queuing systems  on  an  introductory level. 
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