This paper provides a nontechnical introduction to queuing
network concepts, a short introduction to results of research
into analytical modeling methodology, and a set of simple but
typical examples that illustrate the application of that methodol-
ogy to problems of computer performance.

Interactive modeling of computer systems
by M. Reiser

The objectives of this paper are to introduce concepts of the
theory of queuing networks, to describe an APL program — called
QNET4—for the solution of queuing network problems, and to
give examples of the analysis of computer systems using the
methods of QNET4. In the process of constructing models, we
wish to clearly distinguish between modeling and methods of
solution.

Modeling is the process of mapping a real system into a suitable
abstract representation, such as an equation or a queuing dia-
gram. It is the modeler who decides those aspects of a system
that are sufficiently important to be represented. Modeling, espe-
cially on a high level of abstraction, is a difficult endeavor. Much
remains to be done to establish a proven modeling methodology.

Methods of solutions are necessary to provide numerical results.
A method of solution is usually capable of solving a certain class
of models. (Such a class of models is sometimes called an ab-
stract model.) The abstract model of this paper is the network of
queues. Algebraic and simulation methods are two important
methods of solution of such models. The APL program discussed
in this paper, which we call QNET4, is an implementation of the
algebraic method of solution. Note that we view simulation as a
method of solution, not as a model class that is distinct from the
class of algebraic (or analytic) models.

Queues and queuing networks

The term gueue denotes an individual resource of the queuing
network. Several queues are connected into a queuing network

Lo}

by “routing,” which is described later in this paper. A queue
consists of the following three elements: a waiting room, a set of
servers or processors, and a queue discipline, i.e., a rule for de-
termining the scheduling of service to jobs.
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Figure 1
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A diagram of a queue is provided in Figure 1. The waiting room
of a queue may be subdivided into a set of local classes, each of
which may have its own workload characteristics (workload
classes). Classes such as priority may also be used by the queue
discipline. To further specify a queue, assume a service mecha-
nism by which jobs arrive as members of one of the queue’s lo-
cal classes. (Multiple arrivals are to be excluded.) Upon arrival,
a job places a work demand (or service demand) on the queue.
The work demand is a random variable that is generated by a
stochastic process. The method to be discussed here requires
that a process be a renewal process, which is to say that suc-
cessive work demands are independent samples drawn from a
distribution, called the Work Demand Distribution (WDD), as
illustrated by Figure 2.

Note that each class may have its own wbDD. Work demands are
measured in such units as numbers of instructions (path
lengths), or numbers of bytes to be transmitted (record size), or
other such quantities. Servers provide work at a given speed,
called work rate or service rate. Examples of rate units are Mil-
lions of Instructions Per Second (MIPS), thousands of bytes per
second (KBPS), baud or rate of telegraphic transmission, or
other such quantities. We allow the rate to be a function of the
queue size,

Jobs are scheduled to receive service by a rule called queue dis-
cipline, and stay at the queue until all work is done. Completed
jobs depart instantly. The queue discipline may subdivide the
work into several slices (e.g., round robin scheduling). In the
case of multiple servers, the queue discipline also assigns serv-
ers. The queue discipline may make use of the local classes
(e.g., priority), and/or the discipline may impose an ordering on
the jobs in the waiting room (e.g., order of arrival).

Our definition of the service mechanism differs somewhat from
the standard queuing literature where service times and their dis-
tributions are more customary. In the simple case of constant
work rate C and First Come First Served (FCFs), Last Come
First Served (LCFS), Priority (PR), or Infinite Servers (IS)
queue discipline, service times 7, and work demands m are sim-
ply related by the following expression:

Cr=m (D)

A large literature exists on the single-queue solution, which is
available under quite general assumptions; an excellent introduc-
tion is given in Reference 1.

A network of queues is a multiresource system that has the fol-
lowing characteristics:
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e A set of queues —as just described — each having its own dis- Figure 3 Routing transition j — |
tinct service mechanism.

¢ An arrival process that describes job arrival at the network
(open network) ; or a fixed set of jobs that stays indefinitely in
the network (closed network).

* A rule, called routing, that governs the way jobs proceed
through the network.

QUEUE QUEUE
n m

It is often convenient to view routing as a sequence of decisions
that are made upon arrival and after each service completion.
For example, a routing may specify that a class i job after ser-
vice completion at queue n may join queue m as a class j job.
Schematically, such a transition may be depicted by the arrow
as shown in Figure 3.

If all classes have distinct names, queue names need not be giv-
en to uniquely specify a transition. The transition of Figure 3 is
designated by the following notation:

i—j (2)

Here the rectangular boxes symbolize queues, and the ovals are Figure 4 Example of o routing
classes within the queues. Routing imposes a structure on the graph

queuing system that may be represented by a directed graph, an CHAIN2
example of which is given in Figure 4. The routing may define y

classes of nodes, such that no transitions can occur from one D&
class into another. Such classes are termed chains. Figure 4 () -
shows a routing with two chains, one of which is open and the

other closed. In Figure 4, nodes are local classes, and edges
show feasible transitions. Note the use of local classes to obtain

the figure-8 pattern in chain 1. CHAINI
Without loss of generality, we can assume that routing transi- b
tions are instantaneous. A routing rule is said to be state inde-

pendent if the sequential decisions are not influenced by queue -
sizes or service processes. The term stochastic routing or proba-

bilistic routing refers to a state-independent routing rule by

which, after each service completion, a successor class is select-

ed at random.

Denote a stochastic routing transition formally as follows:
i—>j;p (3)

where p is the probability that class j is chosen as successor of
class i. As a consequence of the way in which a network of
queues is defined, the event that a job is simultaneously at more
than one queue is prohibited.

The queuing network model, as previously discussed, is a very separable
general one, and simulation is the principal method for its solu-  queuing

tion. Thus, further restrictions must be imposed to make the  networks
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problem yield to a mathematical analysis. In this section, a class
of queuing networks, called separable queuing networks, is de-
fined and discussed. Such networks are also termed locally bal-
anced networks or networks that have a product-form solution.

A first significant simplification becomes possible by making the
state space enumerable, by restricting the class of distributions
to those that can be realized by exponential stages.” This class
of queuing systems is sometimes called Markovian queuing net-
works. The stationary queue size distribution of a Markovian
queuing system, if it exists, is given by a system of homogeneous
linear equations, called balance equations. This, it seems, is
familiar mathematical ground, well suited for the digital com-
puter. Unfortunately the number of equations is either infinite
(open networks) or grows combinatorially with the size of the
network (closed networks). Thus the general class of Markovi-
an networks is severely computationally limited.

Since the solution of the single-queue problem is available under
rather general assumptions, such as the G1/G/1 queue—a single
resource system with a general independent arrival process,
general service process, and one server—one might expect that
a network solution could be synthethized from such general indi-
vidual queue solutions. This decomposition approach does not
work in general, however, since the superposition of output pro-
cesses of queues that feed another queue is far more general
than the renewal input process on which the GI/G/1 solution is
based. Some approximate methods that ignore the structure of
the sum process have been suggested.’

The only way to obtain a general class of queuing network mod-
els that is not computationally limited is to impose further re-
strictions, such that the solution of the balance equations can be
obtained a priori. Such networks are called separable because
the balance equations can be solved by separation of variables
techniques. A rather large class of separable networks is dis-
cussed in References 4-6, and that class of queue networks is
now outlined.

There are N queues labeled 1, 2, -, N that are organized
into M classes, 1, 2,---, M.

Jobs proceed through the queues, according to a stochastic
routing rule, by means of which the routing may be decom-
posable into chains that are either open and driven by Poisson
streams or closed with a fixed population.

A queue has one or several identical servers that are speci-
fied by their work rate, which may be a function of the local
queue size.

The following queue disciplines and Work Demand Dis-
tributions (WDD) are admissible:
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A. A First Come First Served (FCFS) queue where all job
classes share the same exponential wpD (homogeneous
workload) is illustrated in Figure 5.

. A Preemptive Resume Last Come First Served (LCFSPR)
with general, class-dependent wDDs is illustrated in
Figure 6.

. A Processor Shared (ps) server with general class de-
pendent wDDs serves all jobs at the queue simulta-
neously with an individual rate that is inversely propor-
tional to the queue size. Figure 7 illustrates a processor-
shared queue in which three jobs are executing simulta-
neously, each one with an individual rate of C/3. Note
that the work demands are sampled from two different
distributions. If a new job arrives, each job executes at an
individual rate of C/4. The processor-shared queue disci-
pline may be viewed as a limiting case of round-robin
scheduling, where the quantum size shrinks to zero.

. No queuing with class-dependent general delay time dis-
tribution is a queue that is also called Infinite Servers and
is abbreviated as 1S. In such a queue, a job is held for a
random amount of time, regardless of congestion.

It is a particularly interesting feature of the solution of separable
networks that only the mean work demand enters into the solu-
tion. Thus, in those cases where a general distribution is al-
lowed, the form of this distribution is irrelevant. We call such
queue disciplines robust; LCFSPR, PS, and IS are robust, whereas
FCFS is not. We shall show later in this paper that robustness is
very important in practice. The theory of separable queuing
networks allows essentially the evaluation of the joint queue size
distribution. The following are performance measures that can
be obtained:

Marginal queue size distribution.
Mean queue size.

Utilization.

Average chain population.
Throughput.

Average response times.

Although the class of separable networks is much larger than
that of exponential server models,’ there are still many impor-
tant system and workload features that have to be sacrificed for

separability. In particular, we have no results for the following
conditions:

* FCFS queues with general wDDs and heterogeneous work-
load.

¢ Priorities.
e Blocking or limited access to subsystems.
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¢ Simultaneous occupancy of resources.
¢ Waiting time distribution (other than mean).
¢ Transient solutions.

Fortunately, the modeler can often cope with those missing fea-
tures by appropriate decomposition into subproblems that are
compatible with the class of separable networks. Such a decom-
position does not yield exact results, but in many cases it yields
reasonably good approximations. We illustrate this approach in
later sections.

A method for the solution of separable queuing networks

It is the object of QNET4 to embody the general class of separa-
ble queuing networks as described in the previous section. Effi-
ciency, accuracy, and ease of use are key requirements. Al-
though QNET4 is directed toward a methodology of computer
performance analysis, it has led to a basic method of queuing
network solution, rather than a special-purpose computer model-
ing technique. In other words, the technique being discussed
does not map hardware boxes (e.g., CPUs, disks, or channels)
and software structures (e.g., modules, calling sequences, or
path lengths) into queuing primitives. The QNET4 research has
led to a basic solution method for analytic models. This method
may also be useful in conjunction with simulation methods, ei-
ther to reduce the number of runs in a parametric study or to
construct hybrid analytic/simulative models.

The numerical algorithms used in QNET4 are based on an exact
theory.” At no point are such approximations as iterative
methods or inaccurate decompositions used. Error analysis
shows that results approximate machine precision for all practi-
cally relevant problems.

QNET4 provides a dialogue mode and a subroutine interface to
user-written programs. No knowledge of the APL language is
required to use our technique in the dialogue mode. There are
only the following four parameter-free commands, whose func-
tions are self-evident:

SETUP.
EVAL.
CHANGE.
LIST.

Once a command is invoked, the user is guided through a proto-
col of questions that are brief, but not always self-explanatory.
If a user does not know how to proceed at any point in the pro-
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Figure 8 Example of a protocol with error messages and the use of the HOW function

EVAL
WHAT: QUEUE =
ERRE: CODES -
WHAT: HOW

WRONG CODE
ERROR MESSAGE

SELECT CHANGE (CODE|LIST OF CODES)

&L AVERAGE QUEUE SIZE,

TP THROUGHPUT,

Ur  UTILIZATION,

PO AVERAGE NR OF JOBS IN GIVEN CHAIW,
RT AVERAGE RESPONSE TIME,

ALL ALL OF THE ABOVE.

TUTORIAL COMMENT

TRY AGAIN:QL SECOND CHANCE

tocol, he can call for a detailed explanation by querying with
HOW. After the comment is printed, the user is given a second
chance to answer properly.

All input data are thoroughly checked for validity. Errors are
detected at the earliest possible moment. An error message is
given, followed by a repetition of the faulty part of the protocol.
An example of an error message together with the use of the
HOW function is given in Figure 8.

Question answering in the dialogue mode is straightforward,
except for the definition of the routing. The notation for routing
transitions is slightly generalized and is the basis of the QNET4
routing description language. Figure 9 shows the four possible
simple statements of the routing description language. Each
statement has the following two forms: without probabilities
(left column) and with explicit probabilities (right column). Sim-

ple routing description statements can be linked together as
shown in Figure 10. In this fashion, it is often possible to define
a whole chain in just one line. Note that the chaining of state-
ments is optional. When the chaining of routing description
statements is used, each ‘“‘to part” serves as a ‘“from part” of
the next arrow.

Besides the dialogue mode, there is a set of functions designed
to interface QNET4 with application programs. These functions
are organized into four groups as follows:

Initialization:

ENV to define a QNET4 environment.
DEFCH to define a routing chain.
DEF@ to define a queue.

Set or change parameters:

CHAR arrival rate.

CHPO population of closed chains.
CHPR work rate (processing rate).
CHWD work demand.

CHRO routing.

NOo. 4 - 1976 INTERACTIVE MODELING

USER ASKS FOR ASSISTANCE

Figure 9 Routing description
statements

OI®C0.9®

2 2=7,0.9

7
1737 01
3 62
FORK @ O Egi®
@ @
2+357 20357010203
®\ Q1
JUNCTION (?.71@ 032

357+2:0.10204

SIMPLE

@_1_>®©0J®
@1®@0.4®

32»57 32»57:0.104

PARALLEL

Figure 10 Example chaining of
routing description
statements

1+2;0.9+368,0.10.10.8%+49 7»5»1+3;0.1




Figure 11  Central computer in-

stallation
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s Computation:
SOLV to compute output tables.

¢ Evaluation of results:
PO population of chains (For an open chain, PO returns the
mean number of jobs in the chain. For a closed chain, PO
returns the assigned number of jobs as given in SETUP.).
&D marginal queue-size distribution.
@L mean queue size.
RT response times (For an open chain, T returns the mean
time a job spends in the system. For a closed chain, 5T re-
turns the mean time measured from the moment a job leaves
a given class until the same job returns to the same class for
next time.).
TP throughput (measured in job completions/time unit).
UT utilization.

All functions provide data and sequencing checks. For more
details we refer to the user’s description® of QNET4.

Methods of analyzing a central computer installation

Discussed now are example models for various aspects of a cen-
tral computer installation, such as the one portrayed in Figure
11. The installation consists of applications with their devices
and also a central service complex. The central service complex
is composed of one or several central processing units (CPUs), a
system control program (SCP), and system input/output (1/O)
devices. Indicated also are important queues and components of
the scp. Incoming jobs join the control complex in a job queue
(JOB-Q), and are selected for execution by a component of the
scp called the scheduler (SCH). Those jobs that have been se-
lected move to the multiprogramming queue (MP-Q), where they
share the active resources, such as the CPU and the system de-
vices. Scheduling of those resources is performed by a com-
ponent termed the dispatcher (DISP). The number of jobs in the
multiprogramming queue is called the level of multiprogram-
ming. In some systems, the multiprogramming queue is divided
into an IN-queue and an OUT-queue. In this case, only those jobs
in the IN-queue constitute the level of multiprogramming. Move-
ment of jobs between IN and OUT queues is called swapping.

The work of the CPU is divided into system tasks and applica-
tion tasks. A running application program is frequently inter-
rupted because the CPU has to perform a system service. The
nature of such an interruption is, in general, too complex to be
taken into account in a high-level model. The system ‘“‘over-
head” is treated summarily by assigning to the processor an
effective work rate. Such an effective work rate has to be fur-
nished by measurement and/or empirical models. In order for
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this approach to be valid, one assumes that interruptions are
frequent but short, so that the processing power left over for the
applications is reasonably homogeneous in time. This condition
is vsually well satisfied. A similar approach is used later on,
when we discuss ways to model priority queues at the CPU.

In this section, we study ways of modeling finite sources, such
as a set of K terminals by an IS queue (infinite servers), and a
closed chain. To begin, Figure 11 is shown redrawn and simpli-
fied in Figure 12 at a very gross level, where there is only one
application, and attention is focused on the K source terminals
that drive the system. CPU, system control program (SCp), and
1/0 devices are all lumped into one aggregate resource that is
modeled by one queue. Assume that the system is multipro-
grammed and employs an unspecified time slicing scheduling
algorithm, then choose the Processor Shared (ps) queue disci-
pline that has been shown to be an idealized model for time-
sharing scheduling algorithms. On the gross level of detail of
Figure 12, the whole CPU-1/0 complex is characterized by one
effective Millions-of-Instructions-Per-Second (MIPS) quantity.

Jobs are submitted to the cpU from a group of K source termi-
nals. During the execution of a job, its input terminal remains
locked. Jobs are assumed to be statistically identical and charac-
terized by a path length (i.e., the number of instructions to be
executed). After job completion, a given terminal is ready to
submit a new job. The time between job completion and new job
submission is called the terminal’s think time.

In terms of the QNET4 primitives, the model in Figure 12 has
been reconfigured as shown in Figure 13. Here, the bank of
source terminals is represented by the IS queue, and the number
of active terminals equals the population in the closed chain. We
assume the following values for the parameters:

Number of (active) terminals: 20.

Mean think time: 3 s.

Effective MipS rate: 0.5

Mean path length: 0.1 million instructions.

Note that the work rate and the work demand must be measured
in commensurable units (i.e., if the work rate is given in MIPS,
then the work demand has to be measured in millions of
instructions).

The protocol of the SETUP command for the finite source model
of Figure 13 is given in Figure 14. Results obtained by EVAL are
shown in Figure 15. The simple finite source model with one 1S
queue and one other queue is also known as machine repairman
problem, one of the first queuing models used in the analysis of
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Figure 14 SETUP protocol for the finite source model of Figure 13

SETUP

CLOSED CHAINS:1
OPEN CHAINS: 0
CLASSES: 2
QUEUES: 2

DEFINE SIZE OF NETWORK

CHAIN: 1

ROUTING:

(1) 1+2+1
(2}

(CLOSED})

QUEUE: 1
TYPE: IS
STIMES: 3

THINK TIME (s)

QUEUE: 2

TYPE: P8

RATE: .5 -
WORK DMNDS: .1

MIPS RATE
PATH LENGTH (MILLIONS OF INSTRUCTIONS)

CHAIN POP: 20 -
CPUT = 0.47u

NUMBER OF TERMINALS

Figure 15 List of resuvlts (EVAL) for the finite source model of Figure 13

EVAL
WHAT: ALL

PO: 20 CHAIN POPULATION
Q1
Q2 AVERAGE QUEUE SIZE
Q1
Q2 UTILIZATION (FRACTION OF BUSY TIME)
Q1

02 THROUGHPUT (JOBS/s)

RESPONSE TIME(s) (CLASS 1 AND CLASS 2)

computer systems.” The last line in Figure 14, which is the
amount of CPU time used, is also a message to acknowledge that
the system is now ready to list results.

It is important to note that both the distribution of think times
and the distribution of path length can be general. Only in the
case of FCFS queuing at the CPU is one forced to make an
exponential assumption.

The next example attempts to bring greater realism to the finite
source system model by considering two subsystems, e.g., IMS
and APL. Such systems can be represented by two closed chains,
as shown in Figure 16. Assume that both chains are of the same
priority level at the CPU and assume the following parameter
values:

Number of APL terminals: 15.
Number of IMS terminals: 5.
Mean think time APL: 1 s.
Mean think time IMS: 15 s.
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Figure 17 SETUP protocol for finite source model with two chains

SETUP

CLOSED CHAINS:2
OPEN CHAINS:0
CLASSES: 4
QUEUES: 3

SIZE OF NETWORK

CHAIN: 1 (CLOSED) - ROUTING, APL SYSTEM
CLASSES: 1 3

ROUTING:

(1) 1-3-1

(2)

CHAIN: 2 (CLOSED) - ROUTING, IMS SYSTEM
CLASSES: 2 4

ROUTING:

(1) 2+4-2

(2)

QUEVE: i APL TERMINALS
TYPE: IS

CLASSES: 1

STIMES: 1 THINK TIME APL (s)

QUEUE: 2 - IMS TERMINALS
TYPE: IS

CLASSES: 2

STIMES: 15 THINK TIME IMS (s)

QUEUE: 3 CPU

TYPE: PS5

RATE: .4 = EFFECTIVE MIPS RATE

CLASSES: 3 4

WORK DMNDS: .01 .2 - PATH LENGTH (MILLIONS OF INSTRUCTIONS)

CHAIN POP: 15 5§ NUMBER OF TERMINALS
CPUT = 0.763 - CPU TIME FOR RUN (s)

e Mean path length ApL: 0.01 millions of instructions.
e Mean path length iMS: 0.2 millions of instructions.
o Effective MIPS rate: 0.4.

The SETUP protocol for the two-chain finite source model is giv-
en in Figure 17, and the results obtained by EVAL are shown in
Figure 18. Note that in the output, queue length, throughput,
and response times are broken down into classes.

In the two-chain model, we have made use of the class and two-chain
chain concepts in order to model heterogeneous workloads and finite
disjoint subsystems. The absence, however, of priority queue source
disciplines from the class of separable networks has forced the model
assumption that both ApPL and IMS are on the same priority level.

In many instances, such an assumption is not realistic. For ex-

ample, assume that the APL system takes preemptive priority

over the IMS system. Thus, the APL system ‘‘sees’ the full pro-

cessing rate C of the CPU, a premise that permits the construc-

tion of an individual finite source model similar to the basic finite

source model in Figure 13. The IMS system receives the remain-

ing work capacity that on the average is given by the following

equation:

Cus= U= Uy C (4)

where U, is the utilization obtained from the ApL model. The
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Figure 19 Decomposition of a
finite source model
with two chains into a
high and low prior-
ity model
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Figure 18 List of results (EVAL) for finite source model with two chains

EVAL
ALL

R:
P

QL: .
QL: . } AVERAGE QUEUE SIZE

AVERAGE CHAIN POPULATION

CLASS: 4 TOT
QL .677 0.2933 0,97

ur: -925%
ur: . 941 - UTILIZATION (FRACTION OF BUSY TIME)
ur: . 515

CL/iSS: 3 4 ror

7p 14,3
TP 0.314 THROUGHPUT (JOB/s)
TF: 14,3 0.314 14,6

CLASS: 13 } —» RESPONSE TIMES, CHAIN 1 (s)

RT: 0.0873 1

CLASS:
RT:

o RESPONSE TIMES, CHAIN 2 (s)

processing of IMS transactions, however, is not homogeneous;
bursts of processing alternate with idle periods. If we ignore the
effects of this nonhomogeneity, we can construct a second finite
source model for IMS with a processing rate given by Equation
4. This decomposition of the original problem into parts that are
compatible with the QNET4 class of networks is shown schemati-
cally in Figure 19.

Clearly the assumption of smoothed processing in the low-
priority model introduces an error that can be estimated by re-
placing the finite source with an infinite (or Poisson) source and
using results of the Poisson arrival process, exponential service
process, one server, with priority discipline (M/M/1/PRI) queue
theory. There results the following expression for the relative
error of the mean waiting time:

(my/m,)p,

= (5)
1= py+ (my/m,)p,

where m, is the mean path length APL, m, is the mean path
length 1MS, and

(throughput APL)m,
Py = C

(6)

Equation 5 reveals that E is always positive, which means that
the smoothing out of the IMS processing produces optimistic
results for the response times. The error, however, never ex-
ceeds one-hundred percent and remains small if p, is small (light
APL load), and/or if the APL path length is much shorter than
the IMS path length.

In most practical cases, high-priority transactions tend to be
shorter than low-priority transactions, and, hence m,/m, < 1. In
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Table 1 Results of the hierarchical research QNET4 model compared with simulation

results obtained by APLOMB

cC=04 C=02

QNET4 .537 1.6
Mean queue
Size APL

APLOMB .526, .539, .553 1.58, 1.62, 1.65

QNET4 313 1.44
Mean queue
Size IMS

APLOMB 262, .306, .349 1.42, 1.55, 1.68

Error 2.75% 9.4%

(Equation 5)

the given example, we find p, = 0.363, my/m, = 0.05, and E =
2.75 percent by Equation 5.

We have compared the analytical modeling (QNET4) approxi-
mate solution with simulation results obtained by a queuing
network simulation method that is known as APLOMB."® Results
summarized in Table 1 show that the simple hierarchical QNET4
model is as accurate as simulating 100,000 transactions. Execu-
tion times of APLOMB simulations compared with QNET4 are in
the approximate ratio of fifty to one. The three numbers in the
APLOMB row represent a 95 percent confidence interval with a
point estimate.

Multiprogramming was introduced to increase resource utiliza-
tion by overlapping CPU processing with 1/0 operations. A simple
cyclic queue model to evaluate multiprogramming performance
is among the earliest analytic computer models."" This cyclic
queue model has been generalized into the so-called central
server model."”

We now concentrate on the subsystem CPU, 1/0, and dispatcher
as shown in Figure 20, where MP-Q is a multiprogramming
queue. The level of multiprogramming must be carefully con-
trolled in order to optimize performance, and is typically much
smaller than the number of source terminals.

In the central server model, interest does not focus on source
terminals and job queue (JOB-Q) scheduling. In fact, a fixed level
of multiprogramming K is assumed. It is also useful to break up
the multiprogramming queue into a CPU queue and several de-
vice queues, as illustrated for a typical central server model with
N 1/0 devices in Figure 21.
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Figure 20 Computer system as
seen by the manager
of a multiprogram-
ming queue
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Figure 21 A central server model
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Figure 22 A central server model
expressed in QNET4
methodology

The assumption of a fixed multiprogramming level leads to a
closed network whose population equals the multiprogramming
level. In Figure 21, each device is modeled by a single queue, a
representation that requires the assumption that channels are
not heavily utilized (otherwise queues representing channels
would have to be introduced). The cyclic routing between CPU
and 1/0 devices originates in the fact that computation intervals
(also called CPU bursts) and 1/0 accesses alternate for a given
job. It is assumed that there is no CPU-1/O overlapping for indi-
vidual jobs, an assumption that has been shown to be empiri-
cally valid in many cases. The routing transition around the CPU
labeled “new job” represents the event that a job has finished pro-
cessing and departs. To maintain the level of multiprogramming,
a new job must be immediately injected. Since jobs are statisti-
cally identical, we can achieve instantaneous replacement by the
routing loop around the CPU. The throughput in that loop is the
job completion rate of the system.

Workload and system parameters of the central server model are
as follows:

Level of multiprogramming K.

Mean path length of a job is m millions of instructions.
Mean path length between 1/0 operations to device n is m
millions of instructions.

Access time of device nis 7, s.

Effective MiIPS rate of cpU is C.

n

Under exponential assumptions, we can derive the path length
of a CPU burst as follows:

_ 1
N S+ 1/ m+ o+ 1 my,

m

(7)

The probability that after completion of a CPU burst a job
branches to 1/0 device n (n=1,2,---, N) is

Py =mg,,/m, (8)

The probability of the branch “new job” is expressed as fol-
lows:

pnew job = mcpu/m (9)

An APL program for the simple central server model of Figure
22 is given in Figure 23; use of the QNET4 subroutine interface is
made.

There exists a large literature on the central server model, yet
validation results are relatively rare. There is increasing evi-
dence that the central server model provides good results, even
in cases where the distributions deviate from the exponential
assumptions.””’* This may be explained by the fact that practical
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Figure 23 A. APL function for the central server model of Figure 22, and B. results
for a multiprogramming level of 10

v Z+CENTRALSERVER K
[11 a INPUT PARAMETERS
[2] K: LEVEL OF MULTIPROGRAMMING
[33 MJOB: JOB PATH LENGTH
[41 MDRUM: PATH LENGTH BETWEEN I/0 TO DRUM
[5] MDISK: PATH LENGTH BETWEEN I/0 TO DISK
[6] C: EFFICTIVE MIPS RATE CPU
[71 TDRUM: MEAN DRUM ACCESS TIME
[8l TDISK: MEAN DISK ACCESS TIME
[9] =& RESULTS: 2: THROUGHPUT
£10] n
(11]) & PATH LENGTH OF CPU BURST
[12) MCPU«1+((1+MJOBY+(1+MDRUM)+(1+MDISK))
[13] @& PROBABILITY FOR BRANCH <<NEW JOB>>
[14] PNEWJOB«MCPU:MJOB
[15] a PROBABILITY FOR BRANCH CPU~DRUM
{161 PDURM+«MCPU+MDRUM
{171 a PROBABILITY FOR BRANCH CPU~DISK
[18] PDISK+MCPU+MDISK
[19] a SET NUMBER OF QUEUES(YN) AND
[20] a NUMBER OF CLASSES (M)
[213 M«l+3
[22] n SET NUMBER OF CLOSED(LL) AND
[23] a OPEN CHAINS (LQ)
{241 LC«1
[25] Lg<«0
[26]1 o DEFINE ENVIRONMENT
[27] ENV
(28] a SET ROUTING
[29] 1 CHRO 3 3 pPNEWJOB,PDURM,PDISK,1,0,0,1,0,0
[30) a SET PROCESSING RATE QUEUE 1 (CPU)
(31] 1 CHPR ¢
{32) m SET WORKDEMAND QUEUE 1
{33] 1 CHWL MCPU
[34]) a SET SERVICE TIMES OF DEVICES
[35] 2 CHWL TDRUM
[36] 3 CHWL TDISK
[37] a SET LEVEL OF MULTIPROGRAMMING
[38] CHPO K
[39] n COMPUTE INTERNAL TABLES
[u0]l 8oLV
[41] a COMPUTE THROUGHPUT OF BRANCH <<NEW JOB>>
[42] Z«PNEWJOBXTP 1

v

(R)

MJ0B« .1

MDRUM<.005 PATH LENGTHS (MILLIONS OF INSTRUCTIONS)
MDISK<.01

C+.75 EFFECTIVE MIPS RATE

TDRUM<«.03
TDISK<. 1 DEVICE ACCESS TIMES (s)

CENTRALSERVER 10

0.997 JOB COMPLETION RATE (JOBS/s)
(B)

scheduling disciplines tend to be more robust than the FCFS
discipline. Additionally, deviations from the exponential distri-
bution at the CPU (coefficient of variation greater than one) and
at the 1/0 devices (coefficient of variation less than one) have an
opposite effect on performance measures and tend to cancel
each other. The central server example considered here has
been kept simple. Clearly, chains and classes can be used to
model a heterogeneous workload, and decomposition may be
used in the case of priorities.

The finite source model and the central server model both repre-
sent certain aspects of the basic computer installation shown in
Figure 11. We shall now combine both models to arrive at a
more realistic representation of the overall system. For simplici-
ty, assume that the workload consists of statistically identical
jobs that are generated by a set of K terminals. Jobs join the sys-
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Figure 24
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tem in one job queue. There are M initiators that select jobs
from the job queue for inclusion in the multiprogramming set.
Clearly the number of initiators puts an upper limit on the multi-
programming level. Figure 24 represents the hypothetical finite-
source-central-server computer system.

Typically, the number of active sources is much greater than the
number of initiators (i.e., K > M). An attempt to map the sys-
tem structure of Figure 24 into a QNET4 model immediately raises
the problem of limiting the level of multiprogramming to at
most M.

Use of a decomposition technique is again recommended. Ob-
serve that time constants of terminals and the scheduler are typi-
cally one or two orders of magnitude larger than those of the
CPU and I/0 devices. Therefore, the CPU-1/0 subsystem reaches
equilibrium much faster than subsystems that consist of termi-
nals and the job queue. Therefore, try to represent the CPU-1/O
complex by one equivalent queue in the terminal-scheduler
submodel. The rate of this equivalent queue is obtained from a
central server model. The throughput of the central server mod-
el determines the rate of the equivalent queue. Since throughput
depends on the level of multiprogramming, we have a queue-
dependent server in the finite source model that represents ter-
minals and schedulers. This hierarchical decomposition is shown
schematically in Figure 25. We call the finite source model the
outer model and the central server model the inner model. The
inner model of Figure 25 is the same as the one of Figure 22.

The hierarchical decomposition of Figure 25 is also a possible
device to combine QNET4 with simulation. Suppose there is a
complicated algorithm for the computation of priorities in the
job queue. If the goal is to evaluate such an algorithm, one can-
not use QNET4 for the outer model. Given that the central
server model is adequate, one can reduce the complexity of a
simulation model and its necessary running time by representing
the CPU-1/0 complex by an equivalent queue exactly as in Figure
25. Savings are particularly great if the time constants of outer
and inner models differ markedly (which is the necessary condi-
tion for the hierarchical decomposition to work).

An error analysis of the hierarchical model is difficult. Under the
additional assumptions of an infinite source and a single 1/0 de-
vice, an analytical solution has been obtained."® This solution
confirms the intuitively appealing requirement that the inner
model be faster than the outer model. For a given and fixed load
and cprU and 1/0 device, we find that the exact solution con-
verges to the one of the hierarchical QNET4 models if the aver-
age number of 1/0 accesses tends to infinity. (As a consequence,
the speeds of the CpU and 1/0 device also tend to infinity.)
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Figure 25 Hierarchical central server finite source model
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Concluding remarks

Considerable progress has been made in the use of queuing net-
works for high-level system models. We have discussed an ex-
ample of a computer system model that might be useful in a
configuration study or as a host model in teleprocessing network
design. Other areas where queuing network models have been
successful are the following:

Storage hierarchy design.

System bus design.

Multiprocessor system evaluation (including storage interfer-
ence and locking) .

Teleprocessing network design.

Present day state of the art in solutions of queuing systems still
does not provide for some important system features, such as
priority disciplines and blocking. As far as general service-time
distributions (or work demand distributions) are concerned, we
have witnessed some considerable progress in recent years. The
inclusion of the Processor Shared servers (PS), Infinite Servers
(18), and Last Come, First Served (LCFSPR) queue disciplines
into the class of solvable models, and the resulting understanding
of the phenomenon of robustness has largely reduced the suspi-
cion with which the exponential distribution was formerly
treated.
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Approximate decomposition and smoothing out of discontinuous
service have proved to be powerful techniques for overcoming
some of the shortcomings of the basic model. The processor
sharing approximation to the round-robin scheduling discipline
and the treatment of preemptive priorities in the multichain cen-
tral server model have been examples of smoothed processing.
Decomposition has been used successfully for modeling various
types of systems, such as the following:

Blocking limited access to subsystems.

Simultaneous occupancy of resources (e.g., channels that are
held simultaneously with the devices).

Multiprocessor systems with locking and storage interfer-
ence.

Decomposition also allows combinations of analytic and simula-
tion models. References 17 and 18 are additional discussions of
modeling and queuing systems on an introductory level.
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