
Examined m e relationships between the methodology of com-
posite design and six widely used programming languages.
Strengths and "eaknesses of composite design fucilities of these
languuges are discussed. Based on this experience, language
facilities jbr greater use of the potential of composite design are
suggested.

Composite design facilities of six programming languages
by G. J. Myers

Composite design' is a program design technology that has the
aim of structuring a program into a hierarchy of highly indepen-
dent modules. Composite design has been used successfully to
produce programs of high reliability and lower development,
maintenance, and modification costs than might have been possi-
ble without its use. This design methodology has been used to
produce applications ranging from payroll programs to report-
writing programs, manufacturing-control systems to aerospace
ground-support systems, and data management systems to testing
tools. In reviewing such programming projects, it became ap-
parent that certain programming languages and/or language fea-
tures had eased or impeded the application of composite design.
The purpose of this paper is to compare features of certain com-
mon programming languages, so that a data processing organiza-
tion can improve its design standards and select appropriate
programming languages for their applications.

Although the reader is assumed to have a working knowledge of
composite design, a short review of the major principles is
worthwhile. Composite design consists of two major sets of
principles: 1. a set of principles that specify the desirable and
undesirable attributes of a program structure; and 2. a set of
decomposition or partitioning techniques that guide designers in
a top-down definition of the hierarchical structure of programs.
The first set of principles includes module strength, a measure
of the "goodness" of a single program module, and module cou-
pling, a measure of the interconnections between pairs of mod-
ules. Also, a set of additional guidelines covers such consider-
ations as module size and predictable modules.

Modules with high strength fall into the following two catego-
ries: functional-strength modules and informational-strength

212 MYERS IBM SYST J

of independent modules; 2. a feeling (sometimes valid, some-
times not) that calls to internal procedures are more efficient
than calls to separate modules; and 3 . the use of a language that
does not provide the concept of independent modules. Although
the use of internal procedures as a substitute for modules is not
recommended, it is worthwhile to take account of this feature of
languages.

Argument transmission mechanisms vary from language to lan-
guage. The four most common mechanisms are transmission by
vejevence, value, name, and valuelresult. These mechanisms are
of interest because they can restrict the means by which data are
transmitted between modules and-as shown in the Appendix-
argument transmission mechanisms can affect the results re-
turned by a module. That is, it is possible to construct modules
that can have four different results, depending on the argument
transmission mechanism used.

Since an informational strength module is a useful concept, the
language should provide the concept of multiple entry point
modules. Although the use of global data is contradictory to the
objectives of composite design, it is worthwhile to examine the
manner by which each language deals with global data. A key
consideration is that a programmer should have to specifically
define a variable as global. That is, the default condition should
not be global.

If internal procedures are used, the question of data scoping ar-
ises. This raises the question of whether variables can be locally
defined within the internal procedure. A related question is
whether an internal procedure can share variables with its en-
closing procedure, other than by receiving them as parameters
(which further implies a form of external or common coupling).

The use of recursive modules is encouraged, where applicable in
composite design. Thus the question of whether the language
provides the concept of recursion is of interest.

When a set of modules references a data structure -which im-
plies common or stamp coupling - a compile-time macrofacility is
useful, so that the structure need only be defined once. This
definition can be copied into the modules by the compiler.

Language comparison

The programming languages that are analyzed and their compos-
ite-design oriented features compared are the following: PL/I,
FORTRAN IV, COBOL, APL, RPG 11, and ALGOL 60. Although as-

The COBOL language, which was designed in the early 1960s,
is used extensively in business data processing applications.

COBOL subprograms meet the definition of a module. The
provision of COBOL subprograms, however, is a relatively
recent addition to the language, and is not supported by all
compilers.

A performed paragraph (or section) is an internal pro-
cedure. No arguments, however, can be passed to a per-
formed paragraph. For this reason, it is not recommended
that performed paragraphs be used as substitutes for modules
in composite design because module interfaces are not ex-
plicitly identified in the code (i.e., all performed paragraphs
become common coupled).

The argument transmission mechanism in CALL statements
to subprograms is in the form of transmissions by reference.

Subprograms can have multiple entry points.

COBOL is an interesting language, in that there is no concept
of global data among modules. Thus the only provision for
sharing data between two rpodules is by passing arguments.
On the other hand, if performed paragraphs are used as sub-
stitutes for modules, then all data within a program is global
data.

Variables cannot be locally declared within an internal pro-
cedure (performed paragraph). All names in the internal
procedure refer to variables in the data division of the mod-
ule.

Recursion is not permitted.

The COPY statement provides a compile-time copying facility.

The APL language, which evolved during the 1960s, is oriented
toward interactive terminal environments and toward vector and
array processing.

The APLfunction meets the definition of a module.

APL has no concept of internal procedures.

Argument transmission is by value. APL is restrictive, how-
ever, in that it permits a maximum of two input arguments to
a module and one output argument. There are ways around
this restriction, but none of them is desirable. A set of vari-
ables can be packaged into a vector or an array and then

NO. 3 . 1976 LANGUAGE DESIGN FACILITIES

passed as a single argument, but this is considered to be
tricky or obscure coding, and it does not work in all cases.
For example, a single argument is not sufficient when one
wishes to return two results such as an array and a scalar
variable that contains an error return code. The alternative is
to define the variables to be global, which is also an undesir-
able choice. At least one implementation of APL has recog-
nized this problem and has removed the restriction by allow-
ing additional arguments to be transmitted by name.4 Also, a
version of APL that is termed APL.SV allows the user to simu-
late the effect of transmission by name by using an execute
operator.

APL modules cannot have multiple entry points. Hence, in-
formational strength modules are not possible.

In APL, any variable that is not explicitly named in the func-
tion header is defined as global. Hence, the default attribute
is global. This fact contradicts the goal mentioned earlier, and
is a common source of programming errors. In APL global
variables are not necessarily known throughout the entire
program; their scope is dynamic. When a global variable is
referenced, the stack of currently suspended module activa-
tions is searched until a module is found in which the vari-
able is declared as being local. The global variable now refers
to this local variable. If the search does not encounter a
module that contains this variable as a local variable, the
variable becomes global to the entire program.

APL modules can be recursive.

There is no compile-time copying facility.

RPG II The Report Generator I1 (RPG 11) language is oriented toward
report-writing appiications, which tend to be relatively small
(e.g., under 100 statements). Therefore, composite design is
usually of limited value to such applications. In this environ-
ment, the following points are noted.

RPG does not provide the module concept because an RPG
program consists of a single module.

An RPG subroutine is an internal procedure.

Argument transmission mechanisms are not available be-
cause arguments cannot be passed to subroutines.

Subroutines cannot have multiple entry points.

218 MYERS I B M SYST 1

The concept of global data does not apply because of the
absence of modules.

Subroutines cannot have private locally declared data; all
names in the program are known by all subroutines.

Subroutines may not be recursive.

A compile-time facility for defining data structures is not
applicable because of the absence of modules.

ALGOL, which is oriented toward scientific applications, has ALGOL
evolved since the late 1950s. Today ALGOL and its dialects are
used extensively in university environments, and are used some-
what less in industry.

ALGOL does not provide the module concept, and, therefore,
an ALGOL program cannot be composed of separately com-
piled modules. (A later version --ALGOL 68 -removes this
restriction.)

An ALGOL subprogram is an internal procedure.

Subroutines cannot have multiple entry points.

The default argument transmission mechanism is that of
transmission by name. The mechanism can be changed to
transmission by value, by specifying the parameter as such
in the procedure header.

The concept of global data does not apply because of the
absence of modules.

Variables can be locally declared in internal procedures. If a
variable is not explicitly declared, it refers to the variable of
the same name found by searching outward through the stat-
ic block structure of the program.

Internal procedures can be recursive.

There is no compile-time copying facility.

Summary and experience

A summary and comparison of language attributes is given in
Table 1. Of the six languages surveyed, PL/I and FORTRAN are
best suited to composite design. COBOL is also well suited, pro-
vided that modules are represented as subprograms, and not as

This modification has several advantages. It improves the read-
ability of the source code because the statement conveys more
information than the following conventional statement:

CALL MODXYZ (A,B,C,D);

It also gives the compiler more opportunities to detect errors. A
few compilers perform a static analysis of the source code to
find situations wherein a variable is referenced before it is set.
Compilers cannot do this analysis on argument and parameter
variables because they currently have no way of distinguishing
arguments that are altered by a CALL statement and parameters
that have a defined initial value. The suggested change to the
CALL and PROCEDURE statements makes the distinction clear.
Also, arguments in a CALL statement that appear as inputs and
not outputs could thus be protected against alteration in the
called module.

There should be barriers among the entry points in an informa-
tional strength module. An informational strength module can be
viewed as the grouping together of all functional strength mod-
ules that have knowledge of a common data structure, thus “hid-
ing” that data structure in a single module. The code for each
entry point should be as independent as possible. Variable
names and parameter names are preferably local to each entry
point. Code connections among entry points (e.g., GO TOS)
should be prohibited, and the only information shared by the
entry points is a single declaration of the hidden data structure.

Such a barrier can be achieved in PL/L by enclosing the code for
each entry point in a BEGIN block, but there are two difficulties to
doing this. The BEGIN statement adds additional execution over-
head, and the ENTRY statement must be placed outside the BE-
GIN block. This means that parameter names cannot be private-
ly known to each entry point, whereas a new language construct
might be devised to achieve these goals.

Entry points in an informational strength module should be
viewed as “peers.” In PL/I, however, one of these points is arbi-
trarily designated as the “main” entry point (the PROCEDURE
name). This may seem like a trivial observation, but it does dis-
tort the intended structure of the module. One can avoid this
problem by beginning each function with an ENTRY statement,
and then giving the module an arbitrary procedure name (and
hoping that no other modules ever call the procedure name). A
better solution is to define language constructs that allow a
module to have a arbitrary name (a name than cannot be called)
and that allow multiple peer entry points.

Languages might be more adaptable to composite design if they
were to support a new data type, called nume. In using informa-

NO. 3 . 1976 LANGUAGE DESIGN FACILITIES 221

tional strength modules to hide data structures, one usually passes
these data structures throughout the program. Only the informa-
tional strength modules, however, can know anything about the
attributes and organization of fields within the structures.

The way to do this in PL/I is by using the POINTER data type.
Pointer variables - because of their generality -are a frequent
cause of errors.“ The name data type can provide a method of
passing a variable or data structure among modules without
knowing anything about its attributes or organization. A module
that declares a variable as a name should not be permitted to
alter the variable nor to use it as anything but an argument or
parameter.

Mechanisms might be provided to control access to global data.
One problem associated with the use of global variables in large
programs is that a programmer can decide to reference glohal
variables by simply adding a declaration to a module. This
makes it difficult for the project to control which modules
should access which data. The situation is less severe with non-
global data, since the programmer must obtain the cooperation
of the programmers of other modules. The implication here is
simply that programmers often take short cuts when faced with
the pressures of meeting schedules or correcting errors.

Each global variable should have an owning module that uses
a language construct to define the modules that can reference
the variable and the types of references that can be made (e.g.,
read-only). Since the compiler cannot check the program for
adherence, the linkage editor could perform the checks (i.e.,
when the linkage editor is about to resolve an external reference
to a global variable, it determines whether the owning module
has permitted such a reference).

CITED REFERENCES
I . G. J . Myers, Relirlhle Sqft~.crre Through Composite Design, New York:

Petrocelli/Charter (1975). Also see W. P. Stevens, G . J . Myers, and L. L.
Constantine, “Structured Design,” I B M Systems Jorrrnal 13, No. 2, 1 15- 139
(1974).

2. D. L. Parnas, “On the criteria to be used in decomposing systems into mod-
ules.” Cornrnunicufions o j f / w A C M 15, No. 12, 1053- 1058 (1972).

3. G . J. Myers, Syftwcrre Rrl irrbi l i ry: Principles and Practices, New York: Wiley-
Interscience, forthcoming.

4. R. Zaks, D. Steingart, and J . Moore, “A Firmware APL Time-sharing Sys-
tem,” Proc,rrdings o j t h e 1971 Spring Joint Computer Conference, Montvale,
N. J. AFlPS Press, 179- 190 (1971).

Appendix

An argument transmission mechanism defines the method by
which data are transmitted between a calling module and the

222 MYERS IBM SYST J

called module. An argument is the name of an item of data, as it
is known to the calling module, and a parameter is the name of
an item of data, as it is known to the called module. The termi-
nology can often be confusing because arguments are often
known as actual parameters, and parameters are often described
as formal parameters or dummy arguments. The four principal
transmission mechanisms are defined as follows:

Transmission by reference is a mechanism in which the ad-
dress of the argument is transmitted to the called module.
Hence, any reference in the called module to the parameter
becomes a reference to the location of the argument in the
calling module.

Transmission by value is a mechanism in which the value of
the argument is transmitted to the called module. In other
words, the current value of the argument is assigned to the
parameter. This is usually implemented by copying the value
of the argument into a temporary location, and then transmit-
ting the address of that location.

Transmission by name is a mechanism in which the name of
the argument is transmitted. This can be viewed as the tex-
tual substitution of the character string that represents the
argument for all occurrences of the parameter in the called
module. For examples, if the arguments are X and Y + 7 and
the parameters are A and B, then all occurrences of A in the
called module are replaced by the name X, and all occur-
rences of B are replaced by the expression Y + 7.

Although this is the proper way to view transmission by
name, it is not implemented quite as has been described. The
modules are, of course, executed in their object code, not in
their source code representation. In the object code repre-
sentations, every reference to a parameter is compiled into a
call upon a special subprogram that evaluates the address
and/or value of the corresponding argument.

Transmission by value result is a mechanism that is similar in
implementation to transmission by value, and similar in effect
to transmission by reference. When the call is executed, the
value of the argument is transmitted. When the called module
returns to the calling module, however, the value of the pa-
rameter is stored in the location of the argument.

To illustrate the differences among the four mechanisms, and
point out the importance of understanding the mechanisms that
a given language provides, the following contrived program (in a

Table 2 Results of four argument
transmission mechanisms

Printed
Mechunism.s Vuluc.s

A R
~ "

Reference 6 12
Value 5 0
Name 7 14
Value/Result 2 7

on which mechanism is used. In the program, variable A is a
global variable.

GLOBAL A
B = O
A ' 1
CALL ISUB (B,A,A i- 3)
PRINT A,B
E N D

ISUB PROC (X,Y.Z)
GLOBAL A
Y ' Y + I
A = A + Z
X = Y + A
E N D

Table 2 illustrates the four possible results.

Reprint Order No. (3321-5034

224 MYERS IBM SYST J

