Examined are relationships between the methodology of com-
posite design and six widely used programming languages.
Strengths and weaknesses of composite design facilities of these
languages are discussed. Based on this experience, language
facilities for greater use of the potential of composite design are
suggested.

Composite design facilities of six programming languages
by G. J. Myers

Composite design' is a program design technology that has the
aim of structuring a program into a hierarchy of highly indepen-
dent modules. Composite design has been used successfully to
produce programs of high reliability and lower development,
maintenance, and modification costs than might have been possi-
ble without its use. This design methodology has been used to
produce applications ranging from payroll programs to report-
writing programs, manufacturing-control systems to aerospace
ground-support systems, and data management systems to testing
tools. In reviewing such programming projects, it became ap-
parent that certain programming languages and/or language fea-
tures had eased or impeded the application of composite design.
The purpose of this paper is to compare features of certain com-
mon programming languages, so that a data processing organiza-
tion can improve its design standards and select appropriate
programming languages for their applications.

Although the reader is assumed to have a working knowledge of
composite design, a short review of the major principles is
worthwhile. Composite design consists of two major sets of
principles: 1. a set of principles that specify the desirable and
undesirable attributes of a program structure; and 2. a set of
decomposition or partitioning techniques that guide designers in
a top-down definition of the hierarchical structure of programs.
The first set of principles includes module strength, a measure
of the “goodness” of a single program module, and module cou-
pling, a measure of the interconnections between pairs of mod-
ules. Also, a set of additional guidelines covers such consider-
ations as module size and predictable modules.

Modules with high strength fall into the following two catego-
ries: functional-strength modules and informational-strength

MYERS IBM SYST J

modules. A functional-strength module performs a single well-
defined function. An informational-strength module is one that
performs multiple functions, wherein each function is represented
by a unique entry point, and performs a given transformation on
the same data structure. The informational-strength module is a
powerful concept because it implements the concept of informa-
tion-hiding,” that is, the hiding of all knowledge of the organiza-
tion of a particular data structure within a single module. The
informational-strength module does not violate the single-entry-
single-exit guideline of structured programming because there
are no control-flow connections among the program statements
associated with each entry point.

The goal of module coupling is to minimize interconnections
between modules. The goal is that, where one module calls an-
other module, all data referenced by the two modules are passed
as arguments, and the arguments represent simple variables, or
homogeneous lists and or arrays. Other less desirable types of
module coupling, in order of decreasing desirability, are the fol-
lowing: two modules that reference the same nonglobal data
structure (stamp coupling); one module that controls the logic
of another (control coupling); two modules that reference the
same global variable (external coupling) or global structure
(common coupling) ; and one module that directly references the
insides of another (content coupling).

Language features

To make it possible to analyze several different programming

languages, a set of common language features that are related to
the use of composite design are now defined. In the succeeding
section, languages are compared on the basis of these features.

Since the basic construction unit of composite design is the
module, the language should permit programs to be partitioned
into modules. A module has the following three attributes:

» Itis a closed subroutine.
« It has the potential of being independently compiled.
» It may be called by any other module in the program.

Occasionally users of composite design use internal procedures
or subroutines as substitutes for modules. An internal procedure
is a closed subroutine that is either not capable of being indepen-
dently compiled or not capable of being called from every point
within the program. When internal procedures are used as sub-
stitutes for modules, there are three prevalent explanations:

No. 3 - 1976 LANGUAGE DESIGN FACILITIES

1. lack of a program development library to control large numbers
of independent modules; 2. a feeling (sometimes valid, some-
times not) that calls to internal procedures are more efficient
than calls to separate modules; and 3. the use of a language that
does not provide the concept of independent modules. Although
the use of internal procedures as a substitute for modules is not
recommended, it is worthwhile to take account of this feature of
languages.

Argument transmission mechanisms vary from language to lan-
guage. The four most common mechanisms are transmission by
reference, value, name, and valuel[result. These mechanisms are
of interest because they can restrict the means by which data are
transmitted between modules and —as shown in the Appendix —
argument transmission mechanisms can affect the results re-
turned by a module. That is, it is possible to construct modules
that can have four different results, depending on the argument
transmission mechanism used.

Since an informational strength module is a useful concept, the
language should provide the concept of multiple entry point
modules. Although the use of global data is contradictory to the
objectives of composite design, it is worthwhile to examine the
manner by which each language deals with global data. A key
consideration is that a programmer should have to specifically
define a variable as global. That is, the default condition should
not be global.

If internal procedures are used, the question of data scoping ar-
ises. This raises the question of whether variables can be locally
defined within the internal procedure. A related question is
whether an internal procedure can share variables with its en-
closing procedure, other than by receiving them as parameters
(which further implies a form of external or common coupling).

The use of recursive modules is encouraged, where applicable in
composite design. Thus the question of whether the language
provides the concept of recursion is of interest.

When a set of modules references a data structure —which im-
plies common or stamp coupling —a compile-time macrofacility is
useful, so that the structure need only be defined once. This
definition can be copied into the modules by the compiler.

Language comparison
The programming languages that are analyzed and their compos-

ite-design oriented features compared are the following: PL/I,
FORTRAN 1V, COBOL, APL, RPG II, and ALGOL 60. Although as-

MYERS IBM SYST J

sembler languages are also widely used, they are not considered
here because assembler languages give the programmer direct
access to the computer. Analysis of the assembler language fea-
tures cannot be done because such analyses would depend on
the structure of each individual program. The author believes
that the use of assembler language should be discouraged® be-
cause the efficient use of higher level languages greatly reduces
any advantage of assembler languages. Also the use of higher
level languages facilitates the trend toward program simplicity
and programmer communication.

A complete comparison of language features is not always possi-
ble, since there are some differences among compilers. Where
such a difference has occurred, the language —as implemented in
the 1BM compilers for System/370 —is used.

PL/ is a multipurpose language, rich in its ability to express al-
gorithms, that was developed in the middle 1960s. The design of
pL/1 draws constructively from the concepts of FORTRAN, CO-
BOL, and ALGOL.

PL/1 external procedures and functions meet the definition of
a module.

PL/I internal procedures and functions meet the definition of
an internal procedure.

The default argument transmission mechanism is by refer-
ence. The default-argument transmission mechanism changes
to transmission by value when the argument is enclosed in an
extra-set of parentheses, in a CALL statement or function ref-
erence. Default argument transmission is also by value when
a number of other conditions arise, such as when the argu-
ment is a constant or an argument involves operators. Simi-
larly, transmission is by value when the attributes of the ar-
gument conflict with those of the corresponding parameters,
and the called procedure is internal.

PL/1 modules can have multiple entry points.

The name of a variable becomes global by specifying the
EXTERNAL attribute in its declaration.

Variables can be locally declared in internal procedures. If a
variable is not explicitly declared, that variable refers to the
variable of the same name, which is found by searching out-
ward through the static block structure of the external pro-
cedure.

+ 1976 LANGUAGE DESIGN FACILITIES

FORTRAN

* PL/I modules can be recursive, although they must be explic-
itly identified as such.

The INCLUDE statement provides a compile-time copying
facility.

Arguments can be statement labels and entry names. Such
arguments are not recommended, since they represent con-
trol coupling.

FORTRAN, which is the first programming language to be called a
“language,” was so designated by John Backus at the 1957 West-
ern Joint Computer Conference. The FORTRAN language is ori-
ented toward numeric and scientific applications.

FORTRAN subroutines and function subprograms meet the
definition of a module.

FORTRAN has no concept of internal procedures. Strictly
speaking, the statement function is an internal procedure, but
it can only consist of one statement.

The default argument transmission mechanism is by value
result, and the mechanism can be changed to transmission by
reference by enclosing the parameter in slashes in the called
module. In many FORTRAN compilers, the mechanism is
always that of transmission by reference.

FORTRAN 1V modules may have multiple entry points.

The COMMON statement defines global variables. In the
blank common statement, the names of the variables are not
global. The global variables are placed in a single global
block of storage and are referenced by their relative position.
Hence, a global variable can be referenced with different
names in different modules, a fact that is frequently a source
of programming errors. In a labeled common statement, vari-
ables are placed in named blocks of storage, and these names
are globally known.

Data scoping, as a language feature, does not apply to FOR-
TRAN 1V because of the absence of internal procedures.

Recursion is similarly not permitted.

There is no compile time copying facility.

Arguments may be statement numbers or module names,
which, again is a situation of control coupling.

IBM SYST J

The CcOBOL language, which was designed in the early 1960s,
is used extensively in business data processing applications.

COBOL subprograms meet the definition of a module. The
provision of COBOL subprograms, however, is a relatively
recent addition to the language, and is not supported by all
compilers.

A performed paragraph (or section) is an internal pro-
cedure. No arguments, however, can be passed to a per-
formed paragraph. For this reason, it is not recommended
that performed paragraphs be used as substitutes for modules
in composite design because module interfaces are not ex-
plicitly identified in the code (i.e., all performed paragraphs
become common coupled).

The argument transmission mechanism in CALL statements
to subprograms is in the form of transmissions by reference.

Subprograms can have multiple entry points.

COBOL is an interesting language, in that there is no concept
of global data among modules. Thus the only provision for
sharing data between two modules is by passing arguments.
On the other hand, if performed paragraphs are used as sub-
stitutes for modules, then all data within a program is global
data.

Variables cannot be locally declared within an internal pro-
cedure (performed paragraph). All names in the internal
procedure refer to variables in the data division of the mod-
ule.

Recursion is not permitted.

The coPY statement provides a compile-time copying facility.

The APL language, which evolved during the 1960s, is oriented
toward interactive terminal environments and toward vector and
array processing.

NO.

The APL function meets the definition of a module.
APL has no concept of internal procedures.

Argument transmission is by value. APL is restrictive, how-
ever, in that it permits a maximum of two input arguments to
a module and one output argument. There are ways around
this restriction, but none of them is desirable. A set of vari-
ables can be packaged into a vector or an array and then

3 - 1976 LANGUAGE DESIGN FACILITIES

passed as a single argument, but this is considered to be
tricky or obscure coding, and it does not work in all cases.
For example, a single argument is not sufficient when one
wishes to return two results such as an array and a scalar
variable that contains an error return code. The alternative is
to define the variables to be global, which is also an undesir-
able choice. At least one implementation of APL has recog-
nized this problem and has removed the restriction by allow-
ing additional arguments to be transmitted by name.” Also, a
version of APL that is termed APL.SV allows the user to simu-
late the effect of transmission by name by using an execute
operator.

APL modules cannot have multiple entry points. Hence, in-
formational strength modules are not possible.

In APL, any variable that is not explicitly named in the func-
tion header is defined as global. Hence, the default attribute
is global. This fact contradicts the goal mentioned earlier, and
is a common source of programming errors. In APL global
variables are not necessarily known throughout the entire
program; their scope is dynamic. When a global variable is
referenced, the stack of currently suspended module activa-
tions is searched until a module is found in which the vari-
able is declared as being local. The global variable now refers
to this local variable. If the search does not encounter a
module that contains this variable as a local variable, the
variable becomes global to the entire program.

APL modules can be recursive.

There is no compile-time copying facility.

The Report Generator Il (RPG I1) language is oriented toward
report-writing appiications, which tend to be relatively small
(e.g., under 100 statements). Therefore, composite design is
usually of limited value to such applications. In this environ-
ment, the following points are noted.

RPG does not provide the module concept because an RPG
program consists of a single module.

An RPG subroutine is an internal procedure.

Argument transmission mechanisms are not available be-
cause arguments cannot be passed to subroutines.

Subroutines cannot have multiple entry points.

MYERS IBM SYST J

The concept of global data does not apply because of the
absence of modules.

Subroutines cannot have private locally declared data; all
names in the program are known by all subroutines.

Subroutines may not be recursive.

A compile-time facility for defining data structures is not
applicable because of the absence of modules.

ALGOL, which is oriented toward scientific applications, has
evolved since the late 1950s. Today ALGOL and its dialects are
used extensively in university environments, and are used some-
what less in industry.

ALGOL does not provide the module concept, and, therefore,
an ALGOL program cannot be composed of separately com-
piled modules. (A later version —ALGOL 68 —removes this
restriction.)

An ALGOL subprogram is an internal procedure.

Subroutines cannot have multiple entry points.

The default argument transmission mechanism is that of
transmission by name. The mechanism can be changed to
transmission by value, by specifying the parameter as such

in the procedure header.

The concept of global data does not apply because of the
absence of modules.

Variables can be locally declared in internal procedures. If a
variable is not explicitly declared, it refers to the variable of
the same name found by searching outward through the stat-
ic block structure of the program.

Internal procedures can be recursive.

There is no compile-time copying facility.

Summary and experience

A summary and comparison of language attributes is given in
Table 1. Of the six languages surveyed, PL/l and FORTRAN are
best suited to composite design. COBOL is also well suited, pro-
vided that modules are represented as subprograms, and not as
performed paragraphs. Composite design can be used with APL,

No. 3 -+ 1976 LANGUAGE DESIGN FACILITIES

Table 1 Summary of language attributes

PL/I Fortran 1V Cobol Algol 60

. Modules Yes Yes Yes No

. Internal Yes No Yes Yes
procedures (parameter-less)

. Argument Reference Value/result Reference Name
mechanism value reference value

. Multiple Yes Yes Yes No No No
entry
points

. Global Yes Yes No Yes Not applicable Not
data (the default) applicable

. Data Static Not Static Dynamic Static Static
scoping by block applicable not by block by block not by block by block

optional not optional optional not optional optional

. Recursion Yes No No Yes No Yes

. Compile- Yes No Yes No No No
time
inclusion

although the APL problems discussed often cause undesirable
compromises to be made. Composite design does not lend itself
well to the design of RPG and ALGOL program: both lack the
concept of a module, and RPG lacks the concept of arguments
and parameters.

Features of current languages have been analyzed in light of
composite design. We might also explore relationships from an-
other view: Are there features that could further facilitate the
use of composite design? Features are contemplated here that
might clarify module interfaces, enhance the use of information-
al strength modules, and lead to automatic detection of certain
classes of programming errors. Since PL/I seems to be the lan-
guage that is most suitable for use with composite design, that
language is used to exemplify the author’s experience.

CALL and PROCEDURE statements should distinguish those argu-
ments that are inputs (i.e., their values at the time of the call
have some significance) and those that are outputs (i.e., their
values may be changed by the called module).

A vital part of the composite design process is the identification
of module interfaces, including an identification of objects that
are inputs and those that are outputs. It would be good if this
design information were carried forth into the program’s source
code. One way to do this is to alter the CALL statement to the
following:

CALL MODXYZ IN (A,B,C) OUT (C,D);

and make a similar change to the PROCEDURE statement.

IBM SYST J

This modification has several advantages. It improves the read-
ability of the source code because the statement conveys more
information than the following conventional statement:

CALL MODXYZ (A,B,C,D);

It also gives the compiler more opportunities to detect errors. A
few compilers perform a static analysis of the source code to
find situations wherein a variable is referenced before it is set.
Compilers cannot do this analysis on argument and parameter
variables because they currently have no way of distinguishing
arguments that are altered by a CALL statement and parameters
that have a defined initial value. The suggested change to the
CALL and PROCEDURE statements makes the distinction clear.
Also, arguments in a CALL statement that appear as inputs and
not outputs could thus be protected against alteration in the
called module.

There should be barriers among the entry points in an informa-
tional strength module. An informational strength module can be
viewed as the grouping together of all functional strength mod-
ules that have knowledge of a common data structure, thus “hid-
ing” that data structure in a single module. The code for each
entry point should be as independent as possible. Variable
names and parameter names are preferably local to each entry
point. Code connections among entry points (e.g., GO TOs)
should be prohibited, and the only information shared by the
entry points is a single declaration of the hidden data structure.

Such a barrier can be achieved in PL/L by enclosing the code for
each entry point in a BEGIN block, but there are two difficulties to
doing this. The BEGIN statement adds additional execution over-
head, and the ENTRY statement must be placed outside the BE-
GIN block. This means that parameter names cannot be private-
ly known to each entry point, whereas a new language construct
might be devised to achieve these goals.

Entry points in an informational strength module should be
viewed as “peers.” In PL/I, however, one of these points is arbi-
trarily designated as the ‘““main” entry point (the PROCEDURE
name). This may seem like a trivial observation, but it does dis-
tort the intended structure of the module. One can avoid this
problem by beginning each function with an ENTRY statement,
and then giving the module an arbitrary procedure name (and
hoping that no other modules ever call the procedure name). A
better solution is to define language constructs that allow a
module to have a arbitrary name (a name than cannot be called)
and that allow multiple peer entry points.

Languages might be more adaptable to composite design if they
were to support a new data type, called name. In using informa-

- 1976 LANGUAGE DESIGN FACILITIES

tional strength modules to hide data structures, one usually passes
these data structures throughout the program. Only the informa-
tional strength modules, however, can know anything about the
attributes and organization of fields within the structures.

The way to do this in PL/T is by using the POINTER data type.
Pointer variables—because of their generality —are a frequent
cause of errors.” The name data type can provide a method of
passing a variable or data structure among modules without
knowing anything about its attributes or organization. A module
that declares a variable as a name should not be permitted to
alter the variable nor to use it as anything but an argument or
parameter.

Mechanisms might be provided to control access to global data.
One problem associated with the use of global variables in large
programs is that a programmer can decide to reference global
variables by simply adding a declaration to a module. This
makes it difficult for the project to control which modules
should access which data. The situation is less severe with non-
global data, since the programmer must obtain the cooperation
of the programmers of other modules. The implication here is
simply that programmers often take short cuts when faced with
the pressures of meeting schedules or correcting errors.

Each global variable should have an owning module that uses
a language construct to define the modules that can reference
the variable and the types of references that can be made (e.g.,
read-only). Since the compiler cannot check the program for
adherence, the linkage editor could perform the checks (i.e.,
when the linkage editor is about to resolve an external reference
to a global variable, it determines whether the owning module
has permitted such a reference).

CITED REFERENCES

1. G. J. Myers, Reliable Software Through Composite Design, New York:
Petrocelli/Charter (1975). Also see W. P. Stevens, G. J. Myers, and L. L.
Constantine, “Structured Design,”” IBM Systems Journal 13, No. 2, 115-139
(1974).

. D. L. Parnas, “On the criteria to be used in decomposing systems into mod-
ules.” Communications of the ACM 15, No. 12, 1053 - 1058 (1972).

. G. 1. Myers, Software Reliability: Principles and Practices, New York: Wiley-
Interscience, forthcoming.

. R. Zaks, D. Steingart, and J. Moore, “A Firmware APL Time-Sharing Sys-
tem,” Proceedings of the 1971 Spring Joint Computer Conference, Montvale,
N. J. AFIPS Press, 179-190 (1971).

Appendix

An argument transmission mechanism defines the method by
which data are transmitted between a calling module and the

MYERS IBM SYST J

called module. An argument is the name of an item of data, as it
is known to the calling module, and a parameter is the name of
an item of data, as it is known to the called module. The termi-
nology can often be confusing because arguments are often
known as actual parameters, and parameters are often described
as formal parameters or dummy arguments. The four principal
transmission mechanisms are defined as follows:

e Transmission by reference is a mechanism in which the ad-
dress of the argument is transmitted to the called module.
Hence, any reference in the called module to the parameter
becomes a reference to the location of the argument in the
calling module.

Transmission by value is a mechanism in which the value of
the argument is transmitted to the called module. In other
words, the current value of the argument is assigned to the
parameter. This is usually implemented by copying the value
of the argument into a temporary location, and then transmit-
ting the address of that location.

Transmission by name is a mechanism in which the name of
the argument is transmitted. This can be viewed as the tex-
tual substitution of the character string that represents the
argument for all occurrences of the parameter in the called
module. For examples, if the arguments are X and Y + 7 and
the parameters are A and B, then all occurrences of A in the
called module are replaced by the name X, and all occur-
rences of B are replaced by the expression Y + 7.

Although this is the proper way to view transmission by
name, it is not implemented quite as has been described. The
modules are, of course, executed in their object code, not in
their source code representation. In the object code repre-
sentations, every reference to a parameter is compiled into a
call upon a special subprogram that evaluates the address
and/or value of the corresponding argument.

Transmission by value result is a mechanism that is similar in
implementation to transmission by value, and similar in effect
to transmission by reference. When the call is executed, the
value of the argument is transmitted. When the called module
returns to the calling module, however, the value of the pa-
rameter is stored in the location of the argument.

To illustrate the differences among the four mechanisms, and
point out the importance of understanding the mechanisms that
a given language provides, the following contrived program (in a
hypothetical language) produces four different results depending

NO. 3 + 1976 LANGUAGE DESIGN FACILITIES

Table 2 Results of four argument on Which mechanism is used. In the program, variable A is a
transmission mechanisms global variable.

Printed GLOBAL A
=90
_ A=1
Reference CALL ISUB (B.AA + 3)
Value PRINT A B

Name
Value/Result END

Mechanisms Values
B

ISUB PROC (X,Y.Z)
GLOBAL A
Y=Y+ 1
A=A+2Z
X=Y+A

END

Table 2 illustrates the four possible results.

Reprint Order No. G321-5034

IBM SYST I

