Discussed is a program design language—a form of pseudo-
code —that has been developed and used to organize, teach,
document, and develop software systems. An example of top-
down program design illustrates the key steps in using the lan-
guage: determining the requirements, abstracting the functions,
expanding the functions, and verifying the functions.

Syntax and conventions of the language are given in an appendix.

Top-down development using a program design language
by P. Van Leer

The McDonnell Douglas Automation Company (MCAUTO ™),
which is a division of the McDonnell Douglas Corporation,
provides data processing services to the other divisions within
the corporation as well as nationwide commercial data-process-
ing services. Each division of McDonnell Douglas has its own
systems analysts for business applications. The systems analysts
determine user requirements and develop appropriate application
system designs. Specifications for the system designs usually in-
clude a prose overview, descriptions of input and output files,
screen layouts, report layouts, and logic specifications. MCAUTO
personnel may assist the divisional analysts with the specifica-
tions or may develop the system designs. In either case, MCAUTO
personnel are responsible for refining the system design, program
design as necessary, coding, testing, and writing documentation
necessary for the operation and maintenance of the systems.
Thus programmers in MCAUTO are presented with system specifi-
cations of varying levels of detail, in which any two systems may
be defined at different levels of detail, especially with reference to
program logic.

Early in 1973, MCAUTO established a pilot test task force to de-
termine how and to what extent they could use various im-
proved programming techniques that had been developed by
that time. A result of that task force was the development and
teaching of structured programming and other improved pro-
gramming techniques. Most of the programming techniques that
were known' in 1973 were tried simultaneously. The conclu-
sion” was that the new techniques showed promise. but too

No. 2 - 1976 A PROGRAM DESIGN LANGUAGE

much had been attempted at one time. Accordingly, the instruc-
tion continued in 1974, concentrating on structured program-
ming, top-down programming, structured walk throughs, and
program design language, the latter being the subject of this
paper. As a result of this further effort’, use of these four tech-
niques has become a stated policy at MCAUTO. This investigation
into the other techniques continued in 1975, with Hierarchy plus
Input Process Output (HIPO) also showing great promise as a
system analyst tool.#

The logic specification standards that have been used at MCAU-
TO are roughly equivalent to detailed flowcharts, in which num-
bered English sentences are substituted for the various flowchart
symbols. As detailed flowcharts were formerly used to create the
required detail, so were logic specification standards. Although
flowcharts and logic specification standards proved adequate for
smaller and less complex applications, it was recognized in the
early 1970s that more complex applications are correspondingly
more difficult to describe and specify by the use of flowcharts.
That increasing size and complexity of applications had gradually
outgrown the capability and scope of earlier logic specifications
was the primary condition that set the stage for the new technique
of using a program design language.

Program design language

The program design language that is presented in this paper is a
tool for designing programs in detail prior to coding. At MCAU-
TO, the program design language is used both as a language and
as a program development methodology. The program design
language is syntactically simple and supports structured control
figures® tailored for pL/1 and cOBOL. The syntax of the language
is described in the Appendix. Top-down program development
methodology and elements of stepwise refinement® and levels of
abstraction are used with the program design languages.” The
methodology is described in this paper. At MCAUTO, program-
mers use the program design language in conjunction with struc-
tured walkthroughs, top-down implementation,” and structured
programming.”* Although the value of the program design lan-
guage has not been evaluated apart from the other techniques,
the language is believed to be a major contributor to increased
productivity.

The program design language, as a form of pseudocode, has the
following characteristics:

¢ Notation is used to state program logic and function in an
easy-to-read, top-to-bottom fashion.

s It is not a compilable language.

VAN LEER IBM SYST J

It is an informal method of expressing structured program-
ming logic.

It is similar to a programming language (such as COBOL or
pL/1), but is not bound by formal syntactical language rules.
Conventions exist that pertain to the use of structured figures
and indentation to aid in the visual perception of the logic.
The primary purpose is to enable one to express ideas in
natural English prose.

The language permits concentration on logical solutions to
problems, rather than the form and constraints within which
the solutions must be stated.

The language uses flowchart replacements, program docu-
mentation, and technical communication at all levels.
Program design is expressed readably, and can be converted
easily to executable code.

The program design language was initially used to teach struc-
tured programming to the programmers. As a teaching aid, the
language helped the programmers make the transition to think-
ing in terms of a hierarchy of routines that consisted of basic
structured figures. When programmers started to implement
application systems using flow charts and other earlier methods
in which the programs were of the nonhierarchical and nonstruc-
tured type, the refining process included making hierarchical and
structured program designs. Using the program design language
rather than structured flowcharts or structuring the standard log-
ic specifications proved to be the easiest way to improve the
program design. Continued use and refinement of the language
has established it as the medium of choice for either creating or
refining a detailed program design. Although more experience

with HIPO is needed, it presently appears that HIPO' may be-
come the medium of choice for system design, and further be-
come an excellent input for detailed program design. In time,
HIPO may be as useful to analysts as the program design lan-
guage is to programmers.

Top-down program design

Simplicity is a key attribute to the program design language syn-
tax, conventions for which are given in the Appendix. In gen-
eral, when the language is written according to the guidelines to
be discussed in this paper, statements in the language are easy to
transform into programs. More importantly, the simplicity frees
the designer, who is usually a programmer, to concentrate on
developing the detailed logic of a program. While the systematic
application of the program design language facilitates program
design, the language is not a simplistic means of doing the whole
job of programming. Detailed program design is an iterative pro-
cess, with the possibility that details discovered in the later

NO. 2 - 1976 A PROGRAM DESIGN LANGUAGE

stages of design may lead to modifications in previous portions.
Although experience in using the language and familiarity with
the application may reduce the impact of such incidents, one
should usually plan to complete a detailed design before starting
to code a program. Since the program design language is easier
to change (or rewrite) than actual code, cleaning up a program
design in that language is usually more cost-effective than clean-
ing up program code. The primary objective in defining a pro-
cedure for the systematic application of the program design lan-
guage is to provide a general scheme of things to be done during
detailed program design.

The systematic application of the language is to apply the princi-
ples of top-down programming to the detailed program design
function, which we term ‘“‘top-down program design.” This im-
plies that the process of program design can be described as a
hierarchy of discrete functions, which further implies that the
work product (the program design) should be a hierarchy of dis-
crete units that ease program implementation in a top-down
manner.

According to program design language conventions, the discrete
units in the case of program design are one-entry-one-eXxit rou-
tines (as in structured programming) that are no larger than one
page. In most cases, all the detailed logic for a program does not
fit on one page, a fact that leads to a squeezing down of detail
into lower-level routines, and results in a number of hierarchical-
ly related routines. The syntax and conventions of the program
design language promote a program design that meets the objec-
tives of top-down programming. An example that shows the
squeezing of detail into lower-level routines and the formation of
hierarchically related routines is given in the following section.

Top-down program design example

The top-down design process may be regarded as having the fol-
lowing three distinct phases:

¢ Determining requirements.
e Abstracting functions.
¢ Expanding functions.

Obviously, the time and effort needed for each of these phases
depends on the designer’s experience and ability. Likewise, the
particular way in which the functions are designed depends on
the amount and organization of the source information. If the
source data for a program design do not include completed file
designs, report layouts, and user input definitions, then the appli-
cation system design is not ready to be expanded into a detailed

VAN LEER IBM SYST J

program design. Moreover, a system design should include, as
necessary, functions that the program should perform and any
constraints on the program (such as field edits or sequences of
calculations). Even after assuming that one has at least the mini-
mum system-level specification for the program, there may still
be wide variations in the level and volume of details and in the
organization of those details. The optimum system specification
is a hierarchy of user-oriented functions that includes only those
details that are directly related to a user’s requirements.

The establishment of practical guidelines for the optimal level of
detail and organization for system-level specifications requires
the active cooperation of both analysts and programmers.
Whether done by analysts or programmers, the following three
basic functions of detailed program design must still be per-
formed: determine the requirements, abstract the functions, and
expand the functions.

AN

At the time of a detailed program design, the determining of pro-
gram requirements consists primarily of studying the system
specifications for the program. Any items that are vague, miss-
ing, undefined, or contradictory should be clarified before plung-
ing into detailed program design. If the system specifications do
not, at some point, provide a simple statement of user require-
ments, then write down such items as they become apparent.
This point is crucial because the abstractive process shouid be
in terms of the user’s requirements. Likely sources are the defini-
tions of output reports, files, screens, etc. The report specifica-
tions for a simple report generation program might yield the
following functions:

& Accumulate total sales for each salesman.
& Accumulate total sales for each district.
« Accumulate total sales for all districts.

Examination of the input specification for the program might
reveal the following constraints:

« The sales file has only one kind of record.

» Each sales record includes salesman name and number, and
district number.
Sales records are in order by salesman identification within
each district.
There may be several sales records for a salesman.

Additional constraints, such as “‘skip to new page after printing
a district total”” might be found.

If it is assumed that the specifications at the source specification
level of detail do not express the user’s requirements, the objec-

No. 2 - 1976 A PROGRAM DESIGN LANGUAGE

determining
requirements

abstracting
functions

tive is to build a complete list at this level. It is not necessary to
organize the list. Rather, one should concentrate on discovering
all the functions that the user wants to be performed. Assuming
this criterion, one might reasonably eliminate all the previously
listed functions and constraints except the following:

Accumulate total sales for each salesman.
Accumulate total sales for each district.
Accumulate total sales for all districts.

Skip to new page after printing a district total.

At this point, a discussion with the analyst or user might be
profitable. In any case, the requirements should be thoroughly
understood, so that abstracting the functions—which is dis-
cussed in the following section —may be started.

Abstracting the fugctions consists of discriminating between
functions that are subfunctions and those that are main func-
tions. To begin abstracting the functions, one first decides
whether there is one function in the list that implies all the
others. If there is none, then the programmer invents such a
comprehensive function (i.e., he abstracts a general statement).
For example, the report program function might be to “Summa-
rize Sales,” which implies that all the other sales functions are
subfunctions. In that case, what are the relationships among the
five functions on a main and subfunction basis? A good starting
point for decision making is to organize the list by grouping all
functions that have related inputs or outputs and by ranking
each group in a most-general-to-most-detailed order. Since the
report program has only one input file and one output report,
grouping is not necessary. Ranking the sales functions yields the
following general-to-detailed list:

1. Accumulate total sales for all districts.

2. Accumulate total sales for each district.

3. Skip to new page after printing district total.
4. Accumulate total sales for each salesman.

It appears that 2 and 3 are at the same functional level; that is, 1
implies 2 and 3 implies 4. This relationship suggests some minor
reordering, which is brought out by the following list:

I. Accumulate total sales for all districts.

2. Accumulate total sales for each district.

4. Accumulate total sales for each salesman.
3. Skip to new page after printing district total.

Compare the new list with the report layout and note that there
is a good match-up, especially if the basic functions are expand-

VAN LEER IBM SYST I

ed to designate the various totals that are to be printed as fol-
lows:

A1l. Accumulate total sales for all districts.

BI. Accumulate total sales for each district.

ClI. Accumulate total sales for each salesman.
C2. Print total sales for each salesman.

B2. Print total sales for each district.

B3. Skip to new page after printing district total.
A2. Print total sales for all districts.

At this point, the following three functional levels have been
identified: all districts, each district, and each salesman. Each
functional level contains a mixture of relatively simple functions,
e.g., print and skip; and more general functions, e.g., accumu-
late. Generally, one cannot code a program from abstractions of
function at this level. Definitions of the too-general functions
must be expanded until all functions are sufficiently defined.

The expanding of functions consists of repeating the following
four basic steps until all functions in the design have been suffi-
ciently simplified to be coded: selection, analysis, specification,
and verification. The appropriate point at which to stop depends
on a programmer’s familiarity with the program design language,
structured programming, and the functions. Usually, the greater
a programmer’s experience with the program design language,
the higher will be the level of detail that he uses. That is, when a
programmer first starts using the language, more detailed defini-
tions are needed (and written) than are needed after he has be-
come accustomed to using the language. If a next lower level of
expansion of named functions results in program design lan-
guage statements that are program code, then the current level
of expansion is probably sufficient. Of course, if all the state-
ments can already be transferred into code on a one-for-one ba-
sis, the design is complete.

Selecting a function is the first step in expanding the functions.
Expansion shouid generally be accomplished in a top-down
manner. That is, expand the highest level (as yet undefined)
function next. When faced with a choice of undefined functions
at the same level, the main-line, or most important function, is
usually expanded first. In the program example used in this pa-
per, the function labeled A1 is the natural candidate for being
expanded first. Since the expansion of Al may produce another
function that needs expansion, it is premature to assert that B1
should be expanded next. After having selected a function, the
next step is to analyze it.

Analyzing a function is the process of deciding what must be
done to accomplish a given function. This is sometimes referred

NO. 2 - 1976 A PROGRAM DESIGN LANGUAGE

expanding
functions

162

to as breaking a function down into subfunctions. In the event
that major subfunctions have already been determined, analysis
may consist of defining supportive subfunctions. For example,
B1, B2, and B3 are major subfunctions of Al. Supportive sub-
functions of A1 might be the following:

Set total for all districts to zero.
Add district sales to grand total.

Since A is the highest level in the program, the following data
processing functions must also be done:

Open files.
Close files.

After the subfunctions have been identified, their relationships
to one another can be specified.

Specifying relationships of the various subfunctions is accom-
plished by using the appropriate conditions and structured con-
trol figures. Specification may be done by using existing data
variables, or it may require the definition of new data variables.
New data variables should be noted as such, to facilitate both
the eventual coding of a function and the expansion of lower-
level functions during design. In effect, subfunctions and their
relationships to one another should constitute a complete defini- .
tion of function. For example, the A level might be specified as
follows:

Summarize sales
Open files.
Set total for all districts to zero.
DO WHILE more sales data.
Accumulate total for a district.
Add total for district to total for all districts.
ENDDO
Print total sales for all districts.
Close files.

In this example, the statement ““Accumulate total for a district”
refers to the B- and c-level functions. We, therefore, proceed
with the selection, analysis, and specification of the B- and
C-level functions.

Accumulate total for a district
Set total for a district to zero.
Set current district to district in sales record.
DO WHILE current district matches district in sales record.
And more sales data.
Accumulate total for a salesman.

VAN LEER IBM SYST)

Add total for a salesman to total for a district.
ENDDO
Print total for a district.
Skip to a new page.

Accumulate total for a salesman
Set total for a salesman to zero.
Set current salesman to salesman in sales record.
DO WHILE current salesman matches salesman in sales record:
And current district matches district in sales record.
And more sales data.
Add sales data to total for a salesman
Read sales record
ENDDO
Print total for a salesman.

A programmer who is experienced in structured programming
should find the specification and expansions just given relatively
easy to code. Although some of the loop conditions have only
been named (e.g., more sales data), their expansion into code
should not pose a great problem. Before doing any coding, how-
ever, a little desk checking is often found to be of value.

Seldom can practical programs be completely defined on a single
page using the program design language. More likely, the first
page of material that is written in that language names the func-
tions that are to be expanded on another page. The first- (or
highest-) level page of program design language statements de-
fines the environment of the lower-level function. After the
completion of one page in that language, it is often useful to take
a checkpont and verify the completeness and correctness of a
function that is defined by the program design language. In doing
the verification, it may be helpful to list the various combina-
tions of inputs needed to test a routine, in effect, to define —at
least in part—what must be done to test the program. In any
event, one last thorough examination of a unit of design descrip-
tion before proceeding to lower-level design or coding may save
subsequent rework. For example, attempting to process even
one record by the example report program reveals the need for a
read-sales-record statement before the first DO WHILE at the
highest level, i.e., Summarize sales.

Experience and conclusions

At MCAUTO, the following major advantages of using the pro-
gram design language instead of traditional techniques for de-
tailed program design have been observed:

s Ease of writing programs.

NO. 2 -+ 1976 A PROGRAM DESIGN LANGUAGE

verification

~ Ease of changing programs.
~» Transferability into structured code in a top-down manner.
~» Ease of reading programs, especially by nonprogrammers.

The readability aspect contributes to the effectiveness of struc-
tured walkthroughs for nonprogrammers. Since the program de-
sign language is inherently hierarchical and structured, it also
contributes to the success of top-down development and struc-
tured programming. Although further experience is needed, it
appears that the functional orientation of HIPO also lends itself
to expansion into the program design language. Thus the use of
the language contributes to the successful use of the other pro-
gramming techniques.

The systematic application of the program design language is not
a cookbook checklist for designing programs. In practice, the
individual steps—especially those involved in expanding a de-
sign —tend to be done simultaneously, rather than sequentially.
Initially, the program designer may be slowed down by his unfa-
miliarity with manipulating DO WHILEs and IF THEN ELSES to
accomplish his purpose without recourse to GOTOs. With experi-
ence, program designs are usually created more readily than
otherwise. The resultant designs are typically of better quality
than traditional program designs. The better quality of programs
designed using the program design language is reflected in rela-
tive ease of implementation and maintenance, and by the ab-
sence of production errors.

ACKNOWLEDGMENTS

The author extends his thanks and appreciation to the MCAUTO
programmers for their interest and perseverence during our
mutual learning period. He especially thanks Charles E. Holmes
(McAUTO St. Louis), John E. Hiles (MCAUTO West), and
E. Jean Bland (1BM, St. Louis) for the imagination, dedication,
and leadership that contributed to the successful adaptation of
the methods discussed in this paper.

CITED REFERENCES

1. F. T. Baker, “Chief programmer team management of production program-
ming,” IBM Systems Journal 11, No. 1, 56-73 (1972).

2. C. E. Holmes and L. W. Miller, Proceedings, 37th Meeting of GUIDE Inter-
national, Boston, Massachusetts, October 28 -November 2, 1973 (560-
575).

3. C. E. Holmes, Proceedings, 39th Meeting of GUIDE [nternational, Ana-
heim, California, November 3-8, 1974 (689-700).

4, HIPO —A Design Aid and Documentation Technique, Order No. GC20-
1851, IBM Corporation, Data Processing Division, White Plains, New York
10604.

. Improved Programming Technologies—An Overview, IBM Systems Refer-
ence Library, Order No. GC20-1850, IBM Corporation, Data Processing
Division, White Plains, New York 10604.

VAN LEER IBM SYST J

6. N. Wirth, Systematic Programming: An [ntroduction, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1973).

7. E. W. Dijkstra, “The structure of T.H.E. multiprogramming system,” Com-
munications of the ACM 11, No. 5, 341-346 (1968).

Appendix

The syntax of the program design language includes provisions
for expressing the three basic logic constructs (or figures) of
structured programming: SEQUENCE, IF THEN ELSE, and DO
WHILE. In the program design language, these constructs have
been augmented with the PERFORM UNTIL and CASE constructs.
Each logic construct has a definite and simple syntax. In addi-
tion to the statement syntax, conventions have been established
for the use of indentation and the size of self-contained units of
the program design language. The SEQUENCE construct is used
to describe any action or work that is followed by the next se-
quential construct. In control structure forms, SEQUENCE is rep-
resented by the function of a subroutine block as shown in
Figure 1, where f is the action or work to be done. Syntactically,
SEQUENCE represents a simple English sentence, with at least a
verb and an object. In practice, the language is most meaningful
when action-oriented statements with objects that are natural to
the problem are used. Compare, for example, the following sen-
tences: “Print.” with “Print Xyz.” and with “Print gross sales
for salesman.”

The IF THEN ELSE construct is used to describe binary deci-
sions. In its most general form, that logic construct is used to
describe the conditions under which one of two actions are to be
taken. The control structure for IF THEN ELSE is given in Figure
2. The symbol is the predicate (or list of conditions), and fand g
are alternative actions. Note that f and g may include any of the
logic constructs, and are not limited to being the SEQUENCE
construct. The general syntax of the IF THEN ELSE construct is
as follows:

The IF, THEN, ELSE, and ENDIF should always be vertically
aligned and displayed in all capitals for ease of reading. When p
consists of multiple simple conditions, each condition should be
written on a separate line, and all conditions should be vertically
aligned, as, for example, in the following way:

No. 2 - 1976 A PROGRAM DESIGN LANGUAGE

Figure 1

Control structure for
the SEQUENCE logic

construct

Control structu
the IF THEN
logic construct

re for

ELSE

O-

Figure 3 Control structure for
the DO WHILE logic
construct

=9

Figure 4 Control structure for

the PERFORM UNTIL

logic construct

IF No more data or
Different department.
THEN Print total department sales.
ELSE Add sale amount to total department sales.
ENDIF

The IF and ENDIF conditions are required. When, however, ei-
ther the THEN or the ELSE clause is not needed, they may be
omitted. In other words, the following are syntactically valid
forms of the IF THEN ELSE logic construct.

IF p

THEN f

ENDIF

and

IF

ELSE

ENDIF

The DO WHILE logic construct is used to describe the repetition
of an action under prescribed conditions (looping). The control
structure for DO WHILE is shown in Figure 3, where p is the
predicate (or list of conditions) and f is the action to be taken.
(Note that Figure 3 is a decision loop in which the action is taken
when a condition is true.)

The program design language syntax of the DO WHILE construct
is as follows:

DO WHILE
f
ENDDO

where the DO WHILE and ENDDO conditions are vertically
aligned and capitalized. Consider the following pseudo code
sequence that is based on the example in the body of this paper:

DO WHILE More data and
Same district:
Accumulate district sales total.
Read next sales record.
ENDDO

The PERFORM UNTIL construct is used to describe looping, when
COBOL is the target language for implementation. Control struc-
ture for PERFORM UNTIL is shown in Figure 4, where p is the
predicate, and f is the action to be taken. PERFORM UNTIL dif-
fers from the DO WHILE in that the PERFORM UNTIL loop exits
when p is true, rather than when p is false. In effect, DO WHILE
p is equivalent to PERFORM UNTIL not p. By using a PERFORM

VAN LEER IBM SYST J

UNTIL in the program design language, p may be written exactly
as it is written in COBOL, thus avoiding the errors that might
occur in doing a Boolean inversion of p from the DO WHILE of
the program design language to the PERFORM UNTIL of COBOL.
The program design language syntax of the PERFORM UNTIL
logic construct is given as follows:

PERFORM UNTIL p
f
ENDLOOP

where the PERFORM UNTIL and ENDLOOP are vertically aligned
and capitalized. An example fragment taken from the text and
expressed in the program design language is as follows:

PERFORM UNTIL No more data or
Different district:
Accumulate district sales total.
Read next sales record.
ENDLOOP

In comparing this fragment with the DO WHILE example, note
that the loop conditions have been inverted.

The CASE logic construct is used to simulate a branch table. In
the appropriate situation, CASE can be an efficient and effective
alternative to multiple levels of nested IF THEN ELSE statements.
This construct may be applicable when one of » functions is to
be executed, depending on the value of a single variable. The
control structure for the CASE construct is shown in Figure 5A.
Figure 5B is the IF THEN ELSE logical equivalent of the CASE
construct.

The program design language syntax of the CASE construct is
given as follows:

CASE variable OF
Value 1: fl
Value 2: Value 3: 2
Value 4: 3

L]
Value n: fm
ENDCASE

Here, “variable” is the variable to be checked for the various
“values,” and “value i is a specific value of the variable to as-
sociate with the execution of the function f;, which appears on
the same line. Note that there may be more values »n than there

NO. 2 - 1976 A PROGRAM DESIGN LANGUAGE

Figure 5 Control structure for the CASE logic construct
A. General f, case

B. Functional equivalent f, case

\r

are unique functions m, and it is assumed that ‘“‘variable” has
been checked for valid values. Colons are used to delimit the
values, as in the following example:

CASE SALES CODE OF
el CASH SALE
REVOLVING CHARGE SALE
DEFERRED PAYMENT PLAN SALE
MDSE DAMAGED RETURN
: WRONG MDSE SENT AND RETURNED
ENDCASE

The keywords CASE and ENDCASE are vertically aligned and
capitalized.

VAN LEER IBM SYST J

The indentation conventions in the program design language as
used in this paper are to align vertically concatenated logic
constructs and to indent any nested logic constructs. Two logic
constructs are said to be concatenated when one immediately
follows the other. The following fragments of program design
language are concatenated:

IF p
THEN f
ELSE g
ENDIF
DOWHILE

h
ENDDO

where DO WHILE follows IF THEN ELSE.

Two logic constructs are said to be nested when one is con-
tained within the other. For example, suppose function f were
expanded, then we might have the following nested statements:

IF p
THEN DO WHILE
2
ENDDO
ELSE g
ENDIF

where f2 is nested within a DO WHILE, which, in turn, is nested
within the IF THEN ELSE. If f2 were expanded into two conca-
tenated sequence constructs, the following structure might re-
sult:

IF p
THEN DO WHILE q
f21
22
ENDDO
ELSE g
ENDIF

In applying the indentation rules, a basic unit of indentation
{usually three spaces) should be used consistently. These guide-
lines, coupled with the use of meaningful and application-orien-
ted names help to make the design easy to read.

The idea of unit size of program design language has been men-
tioned in the body of the paper. It is based partly on conve-
nience and partly on a perceived, but not well documented ob-
servation of human attention span and ability to abstract and

NO. 2 ¢ 1976 A PROGRAM DESIGN LANGUAGE

synthesize information. A convention has, therefore, been
adopted. Simply stated, the convention is that a single unit
should not exceed one page of standard 8 1/2 X 11 inch paper.
Furthermore, each logic construct should end on the same page
on which it begins. In practice, this results in a package of one-
page units where voluminous nested functions are represented
by simple names —where they are used —that are then defined in
detail on separate pages. Essentially, the program design con-
sists of a number of subroutines that are hierarchically related.

Reprint Order No. G321-5032.

170 VAN LEER IBM SYST

