Discussed is a procedure of hierarchical functional design by
which programming projects can be analyzed into system, pro-
gram, and module levels. It is shown that program design is
made more efficient by applying Hierarchy plus Input-Process-
Output (HIPO) techniques at each level to form an integrated
view of all levels.

HIPO and integrated program design
by J. F. Stay

By the mid-1970s, programming appears to be reaching a stage
of refinement and cost-effectiveness such that regular business
management and control methods can be applied to it. Top-
down development, structured programming, chief programmer
teams, structured walk throughs, Hierarchy plus Input-Process-
Output (HIPO), and structured design have taken us a long way
toward transforming ‘‘a private art into a public practice.”’ As a

result, a body of programming knowledge and methods that are
teachable and practicable has been building. This paper discuss-
es the integration of several programming methods by means of
an example.

Most of the change in system development has been directed hierarchical
toward the programming effort. Although programming errors functional
are the direct cause of many rework costs, perhaps one third of design
the rework ultimately can be traced back to errors in the analysis

and design phases of a project.” Since maintenance can account

for as much as seventy precent of all programming costs, more

emphasis must be placed on the quality of analysis and design.

Structured design and HIPO are useful techniques for organizing

the application design process. This article describes how these

two methods can be integrated to create a hierarchical functional

design. This integrated method allows an application system to

be specified from the highest functional level of a conceptual

design to the lowest detailed level in a coded routine, using a

single method and format. Both the concepts and the techniques

of hierarchical functional design can be employed effectively

throughout a development cycle in the following phases:

NO. 2 - 1976 HIPO AND INTEGRATED PROGRAM DESIGN

HIPO: Hierarchy plus
Input Process Output
(A) Schematic diagram
of a hierarchy chart
(B) Schematic diagram
of an input-process-out-
put chart

PROCESS OUTPUT

4.0
INPUT

>

example

Requirement definition.

System analysis.

System design.

Program design.

Detailed module design.

System and program documentation.

This paper presents a basis for the thought processes involved in
designing a system through the use of these techniques. Al-
though this paper does not explain the design techniques in de-
tail, the references provide practical help.

Two techniques for achieving functional design are the follow-
ing:

e Hierarchy plus Input-Process-Output (HIPO)
e Structured design

HIPO, a technique for use in the top-down design of systems,
was developed originally as a documentation tool. HIPO charts
continue to serve as the final programming documentation. HIPO
consists of two basic components: a hierarchy chart, which
shows how each function is divided into subfunctions; and in-
put-process-output charts, which express each function in the
hierarchy in terms of its input and output. These two types of
charts are illustrated in Figure 1.

The HIPO design process is an iterative top-down activity in
which it is essential that the hierarchy chart and the input-pro-
cess-output charts be developed concurrently, so as to create a
functional breakdown. The example of COMPUTE PAYABLE
AMOUNT is followed through its development process as part of
an accounts payable system.

The first step is to describe a given function as a series of steps,
in terms of their inputs and outputs. The input-process-output
chart for the example of COMPUTE PAYABLE AMOUNT is shown
in Figure 2.

Having completed the input-process-chart, it is possible to move
to the next level of the hierarchy. The COMPUTE PAYABLE
AMOUNT hierarchy now appears as shown in Figure 3. It is now
possibie to develop an input-process-output chart for each of the
boxes at the level shown in Figure 3. If additional definitions are
required, the recommended approach is to make each line on the
input-process-output chart a box on the next level of the hier-
archy. This process causes the developer to focus on the level of
function that is being defined.

IBM SYST J

Figure 2 HIPO chart for COMPUTE PAYABLE AMOUNT function

COMPUTE
PAYABLE
AMOUNT

INPUT PROCESS QUTPUT

PURCHASE ORDERS |] . VALIDATE RECEIPT . ERROR MESSAGE
ITEMS
RECEIPTS VALID RECEIPTS

PRICE MASTER] . COMPUTE ITEM GROSS ITEM
EXTENDED PRICE PRICE

. SUM GROSS TOTAL GROSS
PAYABLE AMOUNT

VENDOR TERMS] . COMPUTE DISCOUNTED] NET PAYABLE
PAYABLE AMOUNT

Structured design

The hierarchy plus input-process-output charting is that part of
the hierarchical functional design process by which a problem
description is made. The other component is structured design.
Structured design® is a set of techniques for converting from a
problem description to a functional, modular program structure.
Myers* uses the term composite design in reference to the
“structure attribute of a program, in terms of module, data, and
task structure and module interfaces.” This goes beyond the
concept of modular design and addresses how a program module
is designed, the proper scope of function of a module, and the
appropriate communication between modules.

Two concepts of structured design are module strength (rela-
tionships within a module) and module coupling (relationship
between modules). The way in which functions are grouped
within modules determines the strength of the modules. A mod-
ule may consist of a group of related functions, such as all edit-
ing functions, functions grouped according to the procedure of
the problem, or all functions related to a data set.

Functional strength is the grouping of all steps to perform a sin-
gle function. Although any application may contain modules that
have some or all of these strengths, the objective is to produce
modules that have functional strength. Functional strength does
not apply only to the lowest modular level. A module may call
other modules to perform subordinate functions, but if the up-
per-level module performs a single function and performs it
completely, the module probably has functional strength. For
example, the module COMPUTE PAYABLE AMOUNT might con-
sist of the following statements (in pseudo-code):

NO. 2 - 1976 HIPO AND INTEGRATED PROGRAM DESIGN

Figure 3 COMPUTE PAYABLE AMOUNT function hierarchy

COMPUTE
PAYABLE
AMOUNT

5.2.1

1

I |

VALIDATE RECEIPT COMPUTE ITEM SUM GROSS COMPUTE DISCOUNTED
ITEMS EXTENDED PRICE PAYABLE AMOUNT PAYABLE AMOUNT

52.1.1 5.2.12 5.2.1.3 5.2.1.4

COMPUTE-PAY-AMT (RECEIPT, PAYABLE, RETURN-CODE);
DO WHILE MORE-ITEMS; GET PRICE-MASTER;
CALL VALIDATE-ITEM (RECEIPT-ITEM);
CALL EXTEND-PRICE (RECEIPT-ITEM, PRICE);
CALL SUM-AMOUNT (PRICE, TOTAL-PRICE);
CALL COMPUTE-DISCOUNTED (TOTAL-PRICE,
DISCOUNT-RATE, PAYABLE);
END DO;
END;

This module performs very few functions by itself. However, it
transforms one input (RECEIPT) into one output (PAYABLE) com-
pletely; at the same time it does no unrelated processing. There-
fore, this module is said to have functional strength.

Interactions between modules, termed module coupling, may
be as varied as interactions within a module. The extreme of
module coupling exists when one module directly modifies an
instruction in another module.

The preferred relationship between modules is data coupling. In
data coupling, each module simply passes application data, usu-
ally as parameters to the next lower-level module. Use of artifi-
cial switches and indicators is avoided. When a calling module
passes switches, indicators, or other control information to an-
other module, these items must only communicate the status of
the calling program. The calling program should not assume that
it knows what the called program will do, based on this control
information. A serious problem in program maintenance results
when a simple change to a module changes the meaning of an
item of control that has an unsuspected effect on the logic flow
of one or more other modules.

This paper does not treat structured design in depth but only
with sufficient detail to carry the concepts of functional strength
and data coupling into earlier stages of the design process. The
reader may find References 3 and 4 to be of valuable assistance
in module design.

STAY IBM SYST J

Hierarchical functional design

Hierarchical functional design addresses mental processes that
may be applied to the application analysis and design tasks.
Hierarchical functional design applies the design concepts of func-
tional strength and data coupling to the functional decomposi-
tion and graphic techniques of HIPO to provide a single method-
ology that allows an application design to develop in an orderly
manner from a clear statement of the requirement to an intelligi-
ble, well constructed set of application functions. A system that
is designed through the use of hierarchical functional design is
implemented in a top-down manner. Modules should have a sin-
gle entry point and a single exit point; they should be small; and
they should use the SEQUENCE, IF-THEN-ELSE, and DO-WHILE
concepts of structured programming. Hierarchical functional
design can be used in all phases of the development cycle, and
thereby provide a visable system that is suitable for a design
walk through. The chief programmer team concept is also sup-
ported, since functional breakdown with clearly defined inter-
faces allows modules to be delegated to developers or to other
teams, with the common understanding that is required for pro-
grams to integrate properly.

Hierarchical functional design employs the following three de-
sign concepts:

e A functional design in which the computer solution is struc-
tured in terms of the user’s function.
An iterative process in which each level of design is validat-
ed against the level above it.

Conceptual levels of design, in which each level emphasizes
a particular aspect of the problem solution.

A computer system can be viewed as a single function that can
be divided (or decomposed) into a hierarchy of sets of succes-
sively lower-level functions until the elemental functions are
described. An understanding of the meaning of the term ‘“‘func-
tion” is necessary for further discussion. Function can be de-
fined as an action upon an object, or, for our purposes, the trans-
formation of some input data to some return data.” A statement
of function describes what is done rather than how it is done.
Since a function is also singular, it is defined with a simple declar-
ative statement that consists of only one verb and one object.
Both the verb and the object may be conditional.

A function should also have the characteristics that are defined
for structured design. A function should be completely defined
in one place, and relationships among functions should be pri-
marily data relationships. Thus the concepts of structured design
are valid for designing systems as well as modules. Functional

No. 2+ 1976 HIPO AND INTEGRATED PROGRAM DESIGN

functional
design

iterative
process

design, then, consists of stating what is to be done in terms of
data in and out. A high-level functional statement is reduced to a
set of more detailed low-level statements, in a verb-object for-
mat. The set of lower-level statements must equal the function
of the higher-ievel statement. In the accounts payable example
that is used in this paper, the high-level function is COMPUTE
PAYABLE AMOUNT. This function is stated in terms of its input
data (purchase receipt) and its output (net payable amount). In
this case, the output may simply be passed to another function.
The function COMPUTE PAYABLE AMOUNT is then reduced to
the following four functional statements:

VALIDATE RECEIPT ITEMS

COMPUTE ITEM EXTENDED PRICE

SUM GROSS PAYABLE AMOUNT

COMPUTE DISCOUNTED PAYABLE AMOUNT

Each of these statements can then be expressed in terms of its
input and output data. This set is an explicit statement of the
steps required to perform the function COMPUTE PAYABLE
AMOUNT.

This is only one example of the way in which a function may be
subdivided. The structuring of subfunctions requires analytical
skill and imagination, and each analyst may define the subcom-
ponents of a function slightly differently. It is important, how-
ever, that the definition of a function determine the functions
that are subordinate to it. The function COMPUTE PAYABLE
AMOUNT could not legitimately have a subordinate function
that, for example, updates the inventory balance.

The design of an application should be an orderly growth pro-
cess from inception to implementation. During development,
frequent reviews should be conducted so that a given design
always meets its objective. Design has usually been done at
least twice before a system is complete and running. First, a
functional design has been made to provide an understanding
between the user and the programming department. Then a logic
design has been made, from which programming could proceed.
With hierarchical functional design, the function is the logic, and
redundant effort may thus be avoided.

Hierarchical functional design is an evolving, top-down process.
The first step is a translation of a statement of need into a func-
tional statement of system objectives. As information about a
required system is gathered, that information is organized ac-
cording to the functional structure. The first statement should
contain display screen formats, report layouts, perhaps a two-
level hierarchy chart, and a single level of HIPO charts. The ana-
lyst should walk through these charts with the customer to veri-

STAY IBM SYST J

fy that this level of design conforms with the requirement. As
the process of design moves to areas such as file access
methods, record layout, and message traffic, definitions in suc-
cessively lower levels the hierarchy may cause upper levels to
change. This is typical of the program development process and
is the reason for continuing discussion with the customer. This
is the iterative process —the refining of the higher levels of de-
sign as the more detailed levels are developed. As the iteration
of detail progresses downward, the impact on the top-level de-
sign should become minimal. Because of the successive itera-
tions of assessing the upward impact of design decisions, the
result is a stable, intelligible, and maintainable design.

Levels of the design hierarchy

As an application is divided into functions and each function in
turn is subdivided, the hierarchy proceeds toward greater detail.
All levels of the system are described as functions, and can be
grouped into three categories, proceeding from the broadest to
the finest level of detail, as follows:

& System
& Program
s Module

These three levels are conceptual, and are not a physical part of
the design. Each conceptual level may represent multiple levels
on the hierarchy chart, and any given box on a chart may be
both the bottom of one conceptual level and the top of the next
level.

The system level of the hierarchy contains the major component
parts of the application, and is the view that a department man-
ager might have of the application. A system might contain mul-
tiple system levels: Accounts payable is a component of a mate-
rial control system, and in turn, the subsystems of accounts
payable itself would be contained within the system level. This
level of hierarchy is started by structuring the original statement
of requirement for an application. The analysis phase of a project
may result in a system-level hierarchy such as that in the exam-
ple in Figure 4. Each box in Figure 4 can be stated in functional
terms, and can be represented by a HIPO chart. Although the
terms of the user may differ somewhat from those on the chart,
the functional statement should be used because it is more ex-
plicit than the common term. For example, the term ACCOUNTS
PAYABLE may be simply a subset of the general ledger, or it
may be a complete system for managing the payment of vendor
accounts. The functional term MANAGE VENDOR ACCOUNTS
makes the objective of this application more clear.

NO. 2 + 1976 HIPO AND INTEGRATED PROGRAM DESIGN

system
level

program
level

module
level

150

Figure 4 System level of the accounts payable application

MATERIAL
CONTROL
SYSTEM

—
I |

MAINTAIN MANAGE
CONTROL INVENTORY PURCHASE VENDOR

INVENTORY ACCOUNTS MATERIALS ACCOUNTS
2.0 3.0 4.0 5.0

VERIFY PAY ANALYZE
MATERIAL VENDOR PAYABLES
RECEIPTS CASH FLOW

5.1 52 53
T

The system level normally does not include the representation
of any executable computer instructions, but rather it provides a
conceptual view of the application. Input and output are defined
in terms of forms, files, and reports, which are a user’s view of
the data. If it appears that the user manager’s view of the struc-
ture of an application does not provide the basis for program
design, it should be mentioned that one of the primary objectives
of functional design is to have a single view of the application
that represents both the user’s requirement and the program de-
sign. Although functions defined at the top level may be grouped
differently for program design, they should all still exist with the
same basic relationships in the computer implementation. This is
the key to building systems that can be readily maintained and
enhanced.

The program level of the hierarchy shows the highest level of
segmenting of the computer system. The program level may also
be characterized as the end-user level, and represents the level
of tasks initiated by a terminal operator in an interactive applica-
tion, or batch programs in a batch application.

In the accounts payable application, consider the boxes below
MANAGE VENDOR ACCOUNTS as tasks or programs. An exam-
ple program level (one of the boxes in the accounts payable
application) is shown in Figure 5. The program or task level is a
result of the general design phase of a development project. In-
put and output for this level are usually defined as records or
groups of records, messages, and report lines. Since this level
normally represents executable computer instructions, it is rec-
ommended that program and module names be assigned to the
boxes.

Detailed program design occurs at the module level. Since de-
sign is an iterative process, detailed module design may expose

STAY IBM SYST J

Figure 5 Program level of the accounts payable application

MANAGE
VENDOR
ACCOUNTS

50

|

VERIFY ANALYZE
MATERIAL VE%’BVOR PAYABLES
RECEIPTS CASH FLOW

51 5.3

|
I]

COMPUTE
PAYABLE LUE}TDDGAETRES
AMOUNT

52.1
T

flaws or required restructuring of the more general design. It is
essential that the upper-level HIPO charts be revised and revali-
dated before continuing with the design process. Design modifi-
cation may be required when a low-level change causes the
higher-level design to do something different from that which the
user requires.

The module level represents an executable segment of program
code that is usually compiled as a unit. This unit of code is typi-
cally called an “object module’ to distinguish it from a “‘load
module,” which may be created by linking several functional
modules together. At the module level of the hierarchy, the de-
sign is sufficiently detailed that program code can be written di-
rectly from the design. In the accounts payable application, two
levels of modules are shown in Figure 6 below COMPUTE PAY-
ABLE AMOUNT, which can be related to the program level in
Figure 5.

The module level is the product of the specification phase of
development. Input and output at this level are fields of data or
parameters from or to other modules. The module level should
represent a functional statement that can be completely grasped
within a normal attention span. When translated into executable
code, a module should usually contain fewer than fifty lines of
structured high-level language statements. The HIPO chart at the
module level may contain structured English (pseudo-code)
statements to explain complex logic. In addition, where neces-
sary, the extended description section of the HIPO chart may
provide implementation notes as discussed in Reference 5.

The purpose of these conceptual levels is to reflect the objec-
tives of users of the documents. The system level must be stated
in terms that are relevant to user management. The module level
is organized in such a way as to allow the programmer to write

NO. 2 * 1976 HIPO AND INTEGRATED PROGRAM DESIGN

Figure 6 Module level of the accounts payable application

COMPUTE
PAYABLE
AMOUNT

5.2.1

COMPUTE
VALIDATE COMPUTE SUM GROSS DISCOUNTED
RECE(PT ITEM EXTENDED PAYABLE PAYABLE
ITEMS PRICE AMOUNT AMOUNT
521.1 52.1.2 52.13 521.4

]

COMPARE
DISPLAY ACCEPT GUANTITY

PURCHASE QUANTITY TO ORD
ORDER TEMS FROM TERMINAL Pviva

5.2.1.1.1 5.2.1.1.2 521.1.3

code. The program level provides the vehicle of communication
between the system level and the module level by giving detail
to the user and a higher-level view to the programmer.

Hierarchical functional design in a virtual system

The discussion thus far has considered the structure of an appli-
cation as an aid in the design of an intelligible, maintainable
system. A current major concern in system design is that of
providing efficient performance of interactive applications in a
virtual system environment. Performance tuning in a virtual sys-
tem is a complex science that involves relationships among
hardware, system software, and application design.” " Optimizing
the performance of the application programs alone does not re-
sult in an efficient system. A conscious effort of tuning all the
components that affect performance is required because pro-
grammers, for example, often attempt to write efficient—some-
times complex —code without regard for the way in which the
modules may ultimately affect performance.

When viewing the structured design of an application, one can
see readily that functional decomposition does not reflect the
performance requirements of a transaction-driven application.
Hunter,” for example, makes clear the issue of the compounded
effect of excessive paging. He defines the working set as the
twenty percent of the code that does eighty percent of the work,
and advises that the “working set should become the focus of
application tuning.” The design process, if correctly executed,
can produce modules each of which requires less than a single
4K byte page of storage. On that basis, the task of application
tuning becomes an effort of identifying the most active modules,
rewriting those modules for efficiency (if necessary), combining
modules into logically related pages, and fixing active pages in
main storage.

IBM SYST J

Performance tuning may, in extreme circumstances, require the
radical modification of a few critical modules. Such modifica-
tions may include changing a cALL (transfer of control) to a
CcOPY (compile-time inclusion) or even the integration and re-
structuring of modules. It must be clearly understood that only a
very few modules ever seriously affect the performance of most
systems. Thus, if an application is structured, the necessary tun-
ing can be done consciously with proper control. With this
perspective, even extreme coding techniques may be justified for
those few modules that must be efficient to avoid performance
degradation.

Concluding remarks

The improvement of the system development process requires
innovation in two areas: the development of a discipline that
involves a set of structured techniques, and an understanding of
the theories on which that discipline is based.

Significant progress has been made in developing a discipline
that, in time, should make program design and implementation
an engineering skill. Structured programming provides basic
building blocks for code development, much as electronic circuit
development can be based on a set of predesigned, basic elec-
tronic components. HIPO and structured design are first steps in
bringing that type of discipline to the design stage of application
development.

It has been the intention of this article to address the following
mental processes:

Identification of function.
Functional decomposition.
Iterative design.

Module relationship.

Delayed performance optimization.

By applying the concepts of hierarchical functional design to the
disciplines of HIPO and structured design throughout the analy-
sis and design process, several of the following possible benefits
are typically realized:

User understanding and agreement on functional content are
made easier.

Missing or inconsistent information is identified early.
Functions are discrete and are therefore more easily docu-
mented and, if necessary, modified.

Documentation is accomplished with a single effort rather
than multiple efforts at different stages of development.

No. 2 - 1976 HIPO AND INTEGRATED PROGRAM DESIGN

Module interfaces are simple and therefore reduce the proba-
bility of logic errors.

The resultant design supports structured, top-down coding.
Maintenance and enhancement are more transferable be-
cause the system can be easily understood at all levels.

Since these processes are ways of thinking about the design ac-
tivity, it is often difficult to measure objectively the effect of us-
ing this knowledge. By applying these principles to a develop-
ment project, however, one becomes aware of their value.

CITED REFERENCES

I. H. D. Mills and F. T. Baker, “Chief programmer teams,” Daramation 19,
No. 12 (December 1973).

. P. Moody and R. Perry, “Application development cycle problems.,” Pro-
ceedings of Guide 40, Miami Beach, May 18-23 (1975).

. W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal 13, No. 2, 115-139 (1974).

. G. J. Myers, Reliuble Software Through Composite Design, Mason/Charter
Publishers, New York, New York (1975).

. John J. Hunter, “Rethinking application programs, key to VS success,”
Computerworld, March 25, 1975.

. J. G. Rogers, “Structured programming for virtual storage systems,” /BM
Systems Journal 14, No. 4, 385-406 (1975).

. H. A. Anderson, Jr., M. Reiser, and G. L. Galati, ““Tuning a virtual storage
system,” IBM Systems Journal 14, No. 3, 246-263 (1975).

GENERAL REFERENCES

I. HIPO—A Design Aid and Documentation Technique. Order No. GC20-
1851, 1BM Corporation, Data Processing Division, White Plains, New York
10504.

2. Structured Programming Independent Study Program, Order No. SR20-
7149, IBM Corporation, Data Processing Division, White Plains, New York
10504.

3. J. D. Aron, The Program Development Process, Part 1, The Individual Pro-
grammer, Addison-Wesley Publishing Company, Reading, Massachusetts,
31-36 (1974).

Reprint Order No. G321-5031.

IBM SYST §

