
A hierarchical distributed real-time computing system, LABSI7,
provides facilities for attaching multiple I B M System/7s to a
host System1360 or System/370. LABS17 consists of a multi-
programming and multitasking supervisor for the Systeml7, a
host communication facility that supports multiple satellite
System/7s, and a high-level real-time language for user applica-
tion development.

LABS17 is operational in a variety of environments, including
research, development, manufacturing, and clinical. The func-
tional characteristics of the system are reviewed, performance is
stated for well-defined situations, and experience with the sys-
tem is reviewed with reference to some typical applications.

LABS/7 - a distributed real-time operating system
by D. L. Raimondi, H. M. Gladney, G. Hochweller,

R. W. Martin, and L. L. Spencer

Many systems designed to meet the requirements of real-time
event-driven applications have been described.’ However, none
of the systems of which the present authors are aware has dem-
onstrated utility in a broad range of environments. For example,
many process control systems cannot be used for laboratory
automation, and vice versa. In this paper we describe the Lab-
oratory Applications Based System, or LABSI7, ’ ’ ’‘ a system
that supports a wide variety of applications in research labora-
tories, development and test laboratories, and manufacturing
and production environments.

In our experience, except for the most trivial applications, a
computer hierarchy is the most economical means of collecting
and processing The rapid trends toward data collection
at the original source and toward interactive computing favor
distribution of function among several processors coupled to-
gether. Real-time event-driven (sensor-based) computing is
special in this respect only because the nature of the source data
may impose special timing requirements, or because a very large
number of asynchronous events may have to be processed within
predefined intervals.

It is not at all obvious, in a computer hierarchy intended for a
wide variety of applications, how best to distribute function
among the available computing elements, or how to design fu-
ture systems to minimize overall cost. Generally, large central
installations tend to have more effective facilities for program
preparation, data reduction, and long term data storage than
small computers assigned to a limited set of applications. On the

NO. 1 1976 LABS / 7

2 3 4 5

plication should be designed, including the most cost-effective
balance of function between host and satellite.

If we assume that overall costs can be reduced by having several
applications share each local computer, then multiple indepen-
dent processes must be supported concurrently in such a man-
ner that each application can be designed, programmed, and
tested with minimal reference to other applications or to the
specific set of hardware on which the application will be executed.
And if application development costs are to be minimized,
each user must be able to write his own application programs,
with minimal consultation with support programmers, in a lan-
guage that provides detailed control of system resources and
that is easy to learn.

The specific objectives of LABS/7 are to achieve these broad
goals with a sensor-based system in which each of several satel-
lites provides event-driven support for several independent
applications, and in which a central host system provides for
program preparation and large-scale data reduction and storage.
It is helpful to consider three categories of requirements: those as-
sociated with real-time control and data acquisition; those
associated with data reduction, storage, and reporting; and
those associated with program preparation and testing. Each of
these categories is discussed below.

Real-time control and data acquisition in LABS/7 are supported
by a control program that manages the resources of the satellite
computer and by application programs that are executed on the
satellite. The support provided by LABS/7 includes:

A command language for real-time application programs;

The ability to initiate any application program from a termi-
nal or another application program, and to pass parameters
to the new program;

Multitasking in each application program, with preemptive
task switching;

Interval timing, with timing precision tolerances that can be
deduced from the system specification for each mix of appli-
cations;

Multiple terminal support, so that a terminal can be assigned
to every application that requires one;

A relocating loader, so that an application program can use
any area of main storage that is available at the time of invo-
cation;

NO. 1 1976 LABS / 7

The ability to operate independently of the host computer,
except when an application program explicitly invokes inter-
processor communication.

Data reduction, storage, and reporting functions in L A B S / ~ are
supported on both host and satellite. They are made convenient
and flexible by:

The ability to transmit data to and from the host, to initiate
program execution at the host from the satellite, and to syn-
chronize program events on the host and satellite;

FORTRAN support on the satellite as well as the host;

Support for several satellite computers on a single host;

A range of communications options, so that the cost of the
network, and its speed and type, can be tailored to the user’s
needs.

To give the user as much flexibility and simplicity as possible in
preparing application programs, the system includes:

Symbolic addresses in application source code, including the
addresses of hardware devices and data files:

Procedures that minimize what the programmer needs to
know about the host environment;

Source code editing on either host or satellite.

System overview

LABS/7 is based on an architecture for a hierarchical, distributed,
real-time computing system which could be implemented on
any central computer and any process control computer. Our
implementation, on System/360 and Systeml7, is an evolving
set of software and hardware components which address the
general requirements described above. Several variations of
LABS/7 have been used in laboratories and plants both inside
and outside of IBM. Each of these systems has had slightly dif-
ferent characteristics of appearance, performance, and function.
The most obvious differences have occurred because each in-
stallation has had different requirements for interprocessor
communications. In the discussion below, when it is necessary
to be specific about some variable detail, we will refer to the
version in operation at the IBM San Jose Research Laboratory.

84 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

~ ~ ~ ~~

The hardware for LABS/7 consists of

A host computer (System/360 or System/370) ;

One or more event-driven satellite computers (System/7) ;

Communications lines (telephone or coaxial cables and ap-
propriate interface hardware).

The software consists of

Os/360 or vs/370 on the host computer;

The LABS/7 supervisor on the System/7;

LABS/7 communications facilities on the host and satellite.

The new operating system, LABS/7, consists of the aggregate of

A multiprogramming, multitasking supervisor for System/7;

A high-level, real-time language for application development;

An operating environment that includes communications fa-
cilities between host and controller, program preparation fa-
cilities, interactive procedure aids for application develop-
ment, and a set of Systeml7 utility programs.

In the following sections we describe the functional characteris-
tics of each of these items. Performance data are given for well
defined situations, and experience is reviewed with reference to
a few typical applications. Discussion of host (System/360 or
System/370) and satellite (System/7) hardware, and of host
software (os, vs) is limited to references or specific perfor-
mance characteristics that relate to the real-time distributed
functions of the system.

Figure 1 illustrates schematically the hardware configuration in
our laboratory. A System/360 is used for program preparation
and large-scale data analysis, and several System/7s are used
for real-time data acquisition and control. Each System/7 has
three to ten attached applications.

Implementation of a new application begins with program prepa-
ration, either on the System/7 or on the host. The user writes
the instructions that define the sequence of functions to be per-
formed on the Systeml7 to read his data and control his ap-
paratus. His source code is then assembled on the host into a
machine language load module, which is sent to the appropriate
System/7 and stored in a direct access program library.

NO. 1 * 1976 LABS / 7

ity which, in a straightforward and responsive manner, provides
for bidirectional data transfer and batch job submission. Bidirec-
tional data transfer enables a satellite application program to
transmit data to the host computer and retrieve data from the
host; and through batch job submission, a satellite application
program can cause another program to be executed on the host.

A key requirement of the communication facility is that it have a
high degree of availability. Ideally, it would be available always.
It must also be responsive in terms of human reaction time and
convenience (but not necessarily in real time-after all, if the
host computer had a real-time capability, there might be no need
for the satellites and the distributed system). Therefore it is
necessary to focus on providing function and capability in a fa-
cility whose resource requirements are small, so that it can be
available for long periods.

Such a facility, called the Host Communication Facility (HCF), Host

has been developed for the LABS/7 environment. HCF is com- Communication
posed of two blocks of code: a program that executes as a sys- Facility
tern task on the host computer, and matching functional modules
in the LABS/7 supervisor. The interface between these two
blocks of code is a well defined set of software protocols that are
not dependent on particular satellite hardware, such as the vari-
ous interfaces available for System/7. In the following discus-
sion, the term HCF refers to the functions and characteristics of
the host portion of the program.

For an application program running on a System/7, HCF provides
access to the host data base, including sequential read or write
access to any on-line, cataloged, direct access data set. The data
set can be either sequential or a member of a partitioned data
set, and it can have blocked or unblocked records with fixed or
variable lengths. The only record size restriction is the amount
of main storage an installation is willing to allocate to HCF for
buffer areas. The user can create and delete data sets at will
without affecting the running HCF program, since data sets are
located through the catalog facility and then only when refer-
enced by the user. The main storage requirements are minimal
because each satellite system uses only one set of control
blocks, and those are reused with each data set reference.

As currently constituted, this program requires approximately
34K bytes of storage for all executable instructions, including
device rlo and data management routines. Approximately 1.5K
bytes are required for each attached System/7. The remaining
required storage is used as I/O buffer space and can be adjusted
to suit installation requirements. At our installation, 82K bytes
provide service for 11 System/7s, with 32K bytes devoted to
I/O buffers.

NO. 1 1976 LABS/7 87

tus of a job that has been submitted. Although the user could
handle these functions himself, using bidirectional data transfer
and batch job submission, they are included in HCF to increase
the convenience and responsiveness of the system.

For readers who are unfamiliar with the functional characteris-
tics of System/7, the following summary is provided:

Systeml7 is an event-driven computer with 2K to 64K words of
storage (1 word = 16 bits) and a 400-nanosecond cycle time.
Interfaces provide analog and digital rlo and priority interrupt
signals. There are four hardware priority levels. The system
switches from one level to the next (requiring two cycles)
whenever a priority interrupt occurs at a level higher than the
one on which the processor is currently executing. For each
priority level there are seven index registers, an instruction ad-
dress register, and an accumulator. An operator station provides
for keyboard entry, printed output, and paper tape input and
output. The processor has two interval timers-separately con-
trolled binary counters which are decremented every 50 micro-
seconds.

System/7 can be coupled to another computer in any of four
ways: via start/stop telecommunication facilities at speeds rang-
ing up to 50,000 baud, via coaxial cable attached to a Sensor
Based Control Unit on a System/370 at speeds of up to 277,000
bytes per via binary synchronous telecommuni-
cation facilities, or via a data channel. Direct access storage is
provided by one to 16 disks, each with a capacity of 1,228,000
words. For further details, see the System Summauy."

System17 software

Support software has been developed for System/7 to meet the
requirements reviewed above. The LABS/7 supervisor is de-
signed to provide multiprogramming, the main objective being to
support multiple, independent, time-dependent processes with
minimal interaction in such a manner that each application can
be designed and programmed without reference to other applica-
tion programs. The LABS/7 supervisor contains a multitasking
supervisor, an interpreter, direct access support, communication
support, and multiple console support. These components are
the heart of the system, and many additional facilities have been
developed from them. The most important are source program
preparation, program debugging, system error recovery, FOR-
TRAN support, and system activity measurement.

Figure 2 provides an overview of the system, including two user
programs. The supervisor includes interrupt handling routines,

NO. I . 1976 LABS/ 7

face. The supervisor dispatcher allocates the CPU to the highest-
priority ready task- the left-hand task in the figure. The in-
terpreter links the user instruction to the appropriate system
routine. Each task is in one of three states: executing, ready, or
waiting. The state of the task depends on its priority and the
occurrence of external events such as process interrupts, timer
completions, and I/O completions.

The supervisor manages resources such as CPU time, storage,
I/O devices, timers, and process interrupts. The elementary units
of work for the supervisor are instructions, which are combined
to form larger units of work called tasks. Each task is assigned a
priority, which is a measure of the relative criticality (usually
time dependence) of its function. Priorities are used by the su-
pervisor to allocate execution time. The number of tasks is limited
only by storage requirements. An application program consists
of one or more tasks related by shared variables. The System/7
hardware interrupt levels can be used also for determining
priorities. The convention in our installation is that all time-
critical tasks are assigned to the second lowest interrupt level,
and that noncritical tasks are assigned to the lowest level, with
the dispatcher exercising control within each level. The two
highest interrupt levels are used for hardware device and timer
control.

The supervisor manages storage in the System/7 dynamically.
The resident supervisor code, or nucleus, occupies 3000 to 6000
words of storage, depending on the optional modules included
and on the size of the sensor I/O interface. The remaining stor-
age is allocated to application programs in contiguous blocks
when the programs are loaded. When the programs terminate,
the storage again becomes available. An application program
can be assigned to any available storage.

LABS/7 can control multiple processes concurrently. The num-
ber of processes or applications that can run concurrently is a
function of the availability of and aggregate requirements for
CPU storage, sensor I/O points, and CPU time. It takes about 30
microseconds for the supervisor to switch control from one user
task to another with a higher priority. In special applications
requiring very high data rates, however, normal supervisor rou-
tines can be bypassed easily, so that response time is limited
only by the Systeml7 hardware. The maximum data rate that
one can expect to sustain with LABS/7 in a time-shared environ-
ment is 50,000 I/O operations a second.

The supervisor also provides routines that support all sensor I/O
devices as well as interval timing, process interrupt functions,
and many commonly used arithmetic and logical functions.

90 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER I B M SYST J

- Table 1 Examoles of real-time commands

i Cutegory

~ System configuration

Task control

Program flow

Timing control

Data definition

Data manipulation

Teleprocessing

Console support

Command
name

Function

SYSTEM7 Defines the size and I/O configuration

IODEF
of the System/7 hardware

Relates a symbolic sensor 1 / 0
address to System/7 hardware
addresses

ATTACH Defines and starts a new task within
a program

WAIT Waits for completion of a named

QUEUE
event

Enqueues on a named (serially
reusable) resource, such as the
printer

CALLFORT Calls a FORTRAN subroutine and

GOT0 Unconditional or calculated branch
passes parameters

INTIME

WTIMER

BUFFER

A D D

CONVERT

ADDINDEX

TP OPENOUT

TP SUBMIT

Y ESNO

WRITE

Returns the time elapsed, to one
millisecond, since the last execution
of INTIME

interval expires
Waits until a previously set time

Defines a buffer and a pointer, which
is automatically indexed when
certain 1/0 commands are
transmitted to or from the buffer

Adds a single-precision constant or
vector to a single- or double-
precision constant or vector

Translates ASCII to EBCDIC
characters or vice versa

Increments the contents of an index

Initializes communication with a host

Submits a job to the host processor
processor data set

job stream

Transmits a query to a console, and
branches if the answer is not yes

Enqueues for service a table of
console output commands (when
the console is free)

The command language for application program development is LABS17
intended to be sophisticated enough to make the writing of appli- language
cation programs relatively easy, yet elemental enough so the interpreter
application programmer will have as much flexibility and control
of machine resources as possible. The command language pro-
vides considerable freedom in application design, and it allows for
variation in operation sequences, simple real-time calculations,
real-time decision making, and calls to subroutines. It is recog-
nized that all Dossible user reauirements will not be covered by

the currently available LABS/7 instructions, so users can follow
certain conventions to code, in assembler language, their own
operations as “user exit routines.”

There are 70 instructions in the present implementation. Some
examples are shown in Table 1, with brief explanations.

Source programs are written using the LABS/7 instruction set
and are assembled on the host computer. The resulting load
module is a table in which each source instruction, with its oper-
ands, is represented by a few machine words. The supervisor
contains an interpreter which analyzes each instruction and
provides linkage to the system subroutine required to execute
the function called for, and provides the mechanism for stepping
through each program instruction. Since each instruction con-
tains only a reference to the required system subroutine, user
programs remain small. The overhead for interpretation of each
LABS/7 instruction is 10 to 15 microseconds.

Following the execution or interpretation of each LABS/7 in-
struction, the supervisor examines the queue of ready tasks. If a
higher priority task has become ready, it will be given control of
the C P U . An application program can have more than one asso-
ciated task. These tasks run independently, although they can
communicate with each other via common storage locations or
event control blocks.

LABS/7 instructions are designed to be similar in appearance to
FORTRAN wherever possible while maintaining the flexibility
inherent in assembler language. Many instructions have vector
operands with automatic indexing. For example, one may add,
subtract, multiply, or divide two vectors with a single instruc-
tion. In event-driven I/O instructions and in disk I/O, the user
refers to the specific hardware address by symbolic name. This
feature makes application programs somewhat hardware inde-
pendent and considerably easier to code. Timing instructions are
provided where repetitive and reproducible timing sequences are
required. The minimum and maximum time intervals that can be
requested are one millisecond and 60,000 milliseconds (one
minute). Application programs are stored in 128-word records,
referred to as pages. Data acquisition programs are typically five
to ten pages in length, including data storage areas.

direct Direct access support is included for programs and data. Pro-
access grams are stored in a library from which they can be loaded by
support means of a command from a console or loaded and started from

another program by means of a LABS/7 instruction.

Data are stored in 128-word records in direct access data sets,
which are referenced by symbolic name. Up to nine data sets

92 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

can be defined for each application program. Utility programs
are provided for both user and system housekeeping functions.
These functions include defining new or deleting old data sets,
initializing and compressing the program and data libraries, and
transmitting programs and data between host and satellite.
L A B S / ~ provides instructions for reading and writing data in a
sequential manner or randomly by relative record number, and
these modes can be intermixed.

For communication with the host computer, LABS/7 has facilities
for bidirectional transmission of data using start/stop or high-
speed communication hardware (the Sensor Based Control
Adapter and Sensor Based Control Unit) . l" ' l l

LABS/7 instructions for bidirectional host communication are
provided for input or output at the record or buffer level. Utility
programs are provided for transfer of data sets to and from the
host. The user need not be concerned with the line protocol re-
quired. Data transfer rates depend on several factors; rates in
excess of 100,000 (16-bit) words per second are attainable. Pro-
grams generally are transferred in considerably less than a sec-
ond, and even large data sets take only a few seconds.

Primarily, programs are transferredfr-om the host, and data sets
to the host. But data can also be transferred from the host, and
jobs can be submitted for execution in the host. Also, small
amounts of data can be transferred directly between programs
that are active on both machines simultaneously. This facility, in
conjunction with the interactive terminal support on the host
(TSO and APL), has been used to explore new techniques for
computer aided scientific work.

Several LABS/7 instructions are used for communication be-
tween the experimentalist and his application program or the
system itself. The standard System/7 configuration includes a
teletypewriter operator station. LABS/7 provides for additional
alphanumeric I/O devices, however, because when several ex-
periments share the same processor and are remote from it, it is
desirable that each have its own terminal. The terminal to be
used by a program is assigned dynamically by the system. The
assigned terminal is the one used initially to invoke the program,
and it can be changed from one invocation to the next without
program change.

Various kinds of terminals have been used with LABS/7. Most
desirable are display terminals, which are connected to the digi-
tal rlo interface of the Systeml7. As many as eight can share
one DI~DO pair. The L A B S / ~ console support enables any device
with an alphanumeric keyboard and display to be substituted
with a modification only to the basic device level 1l0 code.

NO. I . 1976 LABS / 7

host
communications
support

multiple
console
support

93

program cludes an interactive text editing facility which allows the user
preparation to develop application source code from a terminal. This facility

support is patterned after, and provides a subset of, the facilities of TSO,
the interactive terminal support on the host.13 Commands are
provided for transferring source program modules to and from
the host, job submission to the host, and job status inquiry. A
full set of text editing subcommands permits interactive program
preparation, giving the user an alternative to a terminal system
on the host.

program LABS/7 has extensive program debugging facilities. During pro-
debugging gram assembly all commands are checked extensively for syn-

facilities tax, accuracy, and consistency of use. For example, one user is
prevented from accidentally referencing another user's sensor
r/o addresses, and all references to rlo are checked against the
explicit system configuration. Once the user's program is appar-
ently error free, it is formatted for transfer to the System/7.
This step provides further program validation, insuring that
proper procedures and conventions have been followed.

These debugging facilities, which are interactive, provide a large
measure of protection and isolation for production applications
when new applications are being developed. Once a program
has been stored in the System/7 program library, the LABS/7
execution debugging facilities are available to the user. Program
flow can be traced, data areas dumped, programs suspended,
interrupts simulated, and data and program statements changed,
all while productive applications continue to run.

error There are error recovery procedures for all system rlo services.
recovery In the event of a nonrecoverable error, a message is printed at

procedures the central operator station to aid in explicit problem determina-
tion. When a user's program terminates abnormally, a system
message notes the key items in the user's program. Programs
can be cancelled at any time from any operating console at-
tached to the system.

FORTRAN One or more FORTRAN programs or subroutines can be included
support in a LABS/7 application program, and FORTRAN programs can

call LABS/7 subroutines-for example to invoke sensor r/o
commands. All features of the IBM System/7 FORTRAN Iv Ian-
guage are available, with a few minor exceptions (e.g., PAUSE,
REWIND), including formatted and unformatted input to or out-
put from direct access files or any operator con~ole. '~

system An optional System Activity Measurement Facility is available
activity with LABS/7 to aid in measuring the use of the Systeml7. This

measurement feature logs the daily usage of the CPU, storage, host communi-
cation facility, and sensor based hardware, and it provides reli-

I 94 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

ability data as well. A utility program prints either summary or
detailed daily reports on the collected system data, which can be
used to aid in understanding the operating characteristics of a
machine or to compare the usage of two or more machines. This
kind of information can be helpful in making decisions on new
hardware requirements or selecting a machine on which to in-
stall a new application.

Timing and responsiveness

In the discussion above, we have attempted to describe the ma-
jor functional features of L A B S / ~ . Many details of the system
have been omitted. For example, we have minimized reference
to timing because the precise operating characteristics of the
system are dependent on many variables. Optimal responsive-
ness and reliability are the primary goals in the design and pro-
gramming of the system. It must be recognized, however, that if
precise, unbending limits are placed on the parameters of a real-
time system, the generality of the system will be restricted. A
guaranteed response time to an external interrupt can be pro-
vided only by defining the exact characteristics of all processes
operating on the system.

In LABS/7 the generality of the system is limited only by the
hardware, and system services are performed in the most effi-
cient manner consistent with the stated goals. An installation
can tailor a set of applications so that timing requirements will
be met when predetermined constraints are met. Where precise
requirements exist, an installation can impose restrictions upon
its users, but the restrictions are not built into the system.

The execution time for a single non-Ilo LABS/7 instruction, in- software
cluding interpretation, ranges from 13 to 150 microseconds: the limits
median is 25 microseconds. Assuming that all tasks are in a wait
state, a task can be made ready (posted) in 30 to 40 microsec-
onds after the receipt of an external interrupt. A task can be
put into the wait state in approximately 30 microseconds. Simi-
larly, a ready task can be activated (put into execution) in 30
microseconds. Thus, using the LABS/7 instruction WAIT, about
100 microseconds are required to execute the instruction, ser-
vice the interrupt, post the task, and dispatch the task.

If a task is executing and an external interrupt occurs which
makes ready a task of higher priority on the same hardware inter-
rupt level, the maximum time required to activate the higher
priority task after the interrupt is approximately 200 microsec-
onds. The average time should be much less, with a minimum
of 60 microseconds.

NO. 1 1976 LABS/? 95

On ease of use

interactive The LABS/7 system attempts to separate system functions from
orientation application functions, allowing users to readily learn the pro-

cedures required to develop an application, concentrating solely
on the application. Because the LABS/7 supervisor and utility
programs are designed for interactive use, only three steps are
required for most users to initiate service at the application
level:

The terminal’s attention or request key is depressed to get
the system’s attention.

When the system responds by printing the character “>”,
the characters “$L” are entered to indicate that the user is
ready to load a program.

When the system responds with a prompting message (“PGM
NAME = ”), the user enters the name of the program he
wishes to load.

The several utility programs are designed to assist the user inter-
actively in defining the work to be done, so that he does not
have to enter a complicated string of commands. For example,
assume that a user has loaded the utility program $ D I S K U T ~ by
following the procedure outlined above, and he wishes to allo-
cate 100 sectors of direct access storage for a data set to be
called MYDATA. Once loaded, the program would prompt him
with a “COMMAND (??):” message. The user would respond with
the command “AL” to request allocation of a new data set. The
ensuing terminal sequence would be as follows, with prompting
messages in lightface type for purposes of this example, and the
user’s responses in boldface:

COMMAND (?‘?): AL
DS NAME = MYDATA
NO. SECTORS = loo
MYDATA CREATED

The terminal would then request the next command by repeating
the “COMMAND (??I:” prompting message. The “??” in the mes-
sage is to remind the user that if he forgets the code for a com-
mand, he can enter “??” to request a display of the defined func-
tions and their command codes.

symbolic Because symbolic r/o references are incorporated in LABS/7,
110 the application programmer does not have to think in hardware

references terms when referencing event-driven I/O functions. Assuming
that r/o points had been assigned, wires connected, and the as-
signments stored in a data set, the application programmer
would simply refer to, say, the first Digital Output (~ 0 1) , or the

96 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

~ third Analog Input (AI3) , or the second Process Interrupt signal
 PI^), and the assembler would automatically bind the refer-
ences to physical addresses. This facility not only makes rlo
specification simple, it makes application programs easily trans-
ferable from one system to another without requiring source
statement modifications.

Data sets are also referred to symbolically (as D S I , DS2, etc.)
within application program source statements. They can be
named fully in the header of the program, or the naming can be
deferred until the program is loaded. This feature makes pro-
grams more flexible and more easily transferable from one sys-
tem to another.

The simplicity of the LABS/7 command language is illustrated a simple
here by means of a brief example. Assume that upon receipt of a powerful
start signal, 100 digital readings are taken from a scanning de- command
vice. Each reading must be preceded by the setting of a digital language
latch to initiate a digital readout. Because a single reading is sub-
ject to noise, it is necessary to repeat the scan of 100 readings
50 times and average the results. The following LABS/7 state-
ments illustrate how these steps can be accomplished:

WAIT PI 1 WAIT FOR START SIGNAL
DO AVGLOOP. 50 BEGIN AVERAGING LOOP
DO SCANLOOP. 100 BEGIN DIGITAL SCAN LOOP
SBIO DO I SET DIGITAL LATCH
SBIO DII. BUFR, INDEX

SCANLOOP CONTINUE END OF SCANNING LOOP
*
* A D D 100 READINGS FROM I SCAN INTO AVERAGING BUFFER

ADD AVGBUFR. BUFR, 100. PREC = D
MOVE I , 0 REST BUFFER INDEX

AVGLOOP CONTINUE END OF AVERAGING LOOP *
* DIVIDE DATA FROM 50 SCANS TO GET AVERAGE

DlVI DE AVGBUFR. 5 0 . 100, BUFR. PREC = D

BUFR BUFFER 100, INDEX = I
AVGBUFR BUFFER 200

The start signal is associated with the process interrupt P I J .
When the interrupt occurs, the program starts the data collection
process. An outside loop (AVGLOOP) of length 50 is required to
scan the digital data 50 times. An inside loop (SCANLOOP) of
length 100 is used to read each digital input point. The read
latch is set with an SBIO (sensor based input/output) digital
output (D O I) command, and the data are read with an SBIO digi-

NO. 1 * 1976 LABS/? 97

tal input (D I ~) command. The data are read into the buffer
(BUFR) using the automatic indexing feature, which puts each
successive reading into the next available position of the buffer.
After 100 readings, the data are added into a double-precision
averaging buffer. One ADD statement adds all 100 single-pre-
cision values in BUFR to the 100 double-precision values in
AVGBUFR. The program then proceeds to scan the data again,
continuing this process until SO scans are complete. The ac-
cumulated data are then averaged by dividing each double-
precision total by 50. The DIVIDE statement divides the entire
double-precision vector AVGBUFR by SO and stores the results
back in the data collection buffer, BUFR.

This sequence, of course, represents only part of a total applica-
tion. The data collected can be processed on the System/7 to
produce a report, or can be sent to a host computer. To send
the data to a host, only the following additional steps are re-
quired:

TP OPENOUT, DSNAME OPEN HOST DATA SET
TP WRITE, BUFR WRITE DATA TO HOST

TP CLOSE CLOSE HOST DATA SET

DSNAME TEXT ‘SYS7. TESTDATA’ NAME OF HOST DATA SET

The data set named SYS~.TESTDATA is opened for output, the
data stored in BuFR are written to the host, and the data set is
closed.

simplified Because the use of a host computer, and therefore JCL, is both
host necessary and desirable in the L A B S / ~ environment, several

programming procedures have been established to make the process easier for
the user. The most frequently used host function is program
preparation, including the assembling and compilation of program
source statements, possibly linkage editing of object modules,
and final formatting to produce a load module ready for transfer
to a System/7. The simplest program preparation phase is the
assemble/format process, which ordinarily would require at
least 20 JCL statements. But through an os Cataloged Procedure
in LABS/7, this process has been reduced, from the user stand-
point, to two JCL statements and four symbolic parameters. The
TSO terminal facility is available at our installation, and we
have taken advantage of it to give the user an interactive facility
for JCL development.

An example of a JCL development procedure is given below.
The user has created a program in source form and desires to
inject it into the os/360 batch job stream for the program prepa-
ration phase. System queries and responses are shown in upper
case, and user responses in lower case.

98 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

labs7
ENTER ‘SY S71 D’
k02
ENTER PROGRAM NAME

my Prog
ASSEMBLE RWM4968.MYPROG.ASM? (CR = ‘YES’ Or ‘NEWNAME’)

I O D E F = MYPROG? (CR = ‘YES’, OR ‘NONE’, OR ‘NEWNAME’)
none
E N T E R N A M E F O R O U T P U T P R O G R A M IF DIFFERENT FROM ‘MYPROG’ OR CR

T H E D E F A U L T J O B C L A S S IS ‘0’. ENTER NEW CLASS LETTER OR CR

DO YOU WISH TO S U B M I T T H I S JOB NOW? (CR = ‘YES’ Or ‘NO’)

Yes

ASSEMBLE(RWM4968.MYPROG.ASM) SYS71D(K02) IODEF(N0NE) FORMAT(MYPROG1
JOBCLASS(0) SUBMIT(YES1 KEEPJCL(YES)

ARE ALL PARAMETERS CORRECT’? (CR = ‘YES’ O R ‘NO’)

MYPROG.CNTL
SAVED
JOB MYPROG SUBMITTED
AT 14.53.40 ON 75.094
T H E J C L W A S K E P T
READY

Experience

Although LABS/7 originally was intended for laboratory auto-
mation support, it has proved effective in many environments.
Eight IBM plants currently are using L A B S / ~ for a variety of ap-
plications, including research, manufacturing assembly test, en-
gineering development, quality control, and process control.
Approximately 40 System/7s at these installations are attached
to host systems ranging from a System/370 Model 145 to a Sys-
tem/360 Model 195. Some of the applications are discussed
below as an indication of what can be achieved.

In an analytical chemistry laboratory, one Systeml7 supports
four gel-permeation chromatographs, a vapor-phase chromato-
graph, two differential scanning calorimeters, a nuclear magnetic
resonance spectrometer, and a polymer light scattering experi-
ment. The Systeml7 is used primarily for data acquisition and
instrument control because previously prepared data reduction
programs were most easily converted to run on the host com-
puter. Therefore the computational load on this particular Sys-
tem/7 is light, so a relatively large number of instruments can
be supported.

NO. 1 . 1976 LABS17 99

In contrast is an application in which photoconductive proper-
ties of various materials are being evaluated for office copying
machines. This application has been described p rev io~s ly .~~ Up
to 15 samples are measured simultaneously in a one- or two-
minute performance test. Voltages on four independent elec-
trometers are measured at rates of up to 100 points per second
each, and each measure is performed by a separate LABS/7 task.
Programs for graphic output, for reduction of voltage measure-
ments to photosensitivity curves, and for comparison of different
samples have been segmented to run with 3K bytes of storage
on the Systeml7. The data can be reduced, displayed, and ma-
nipulated rapidly, regardless of the availability of the host.

Another application concerns two phases of the production of
masks for the photolithography of integrated circuits. A program
on the host computer first converts an encoded description of a
mask into a two-dimensional map described by over I O 5 num-
bers, then the map pattern is transmitted to a System/7. There
it is displayed on a storage oscilloscope and inspected. After the
mask pattern is verified, it is retransmitted from the host to the
Systeml7 in the form of commands to drive a programmed light
table, which reproduces the pattern by moving a photographic
plate under a point light source and exposing each selected re-
gion through one of a set of apertures. Since the exposure pro-
cess has no critical timing constraints, it is run at low priority so
the System/7 can be shared with a crystal grower and an elec-
tron spectroscopy instrument for chemical analysis. Since a dis-
ruption in any of these applications would be a serious incon-
venience, none of them requires communication with the host
while executing.

Conclusions

This paper describes a system that demonstrates the feasibility
and practicality of a hierarchical set of computers for real-time
event-driven applications. The system currently is operational in
a wide variety of environments and has been generally well re-
ceived. When new functions are required, they have proved easy
to include.

L A B S / ~ demonstrates an effective distribution of function between
a large central host facility, which is able to provide a range of
function and power not economically available in a small com-
puter, and a local satellite, which is able to provide a degree of
responsiveness and stability that is difficult to achieve in a cen-
tral installation. The communications link between the host and
the satellite can be said to be loosely coupled in that each system
is relatively insensitive to unavailability of the other. In L A B S / ~ ,
the satellite generally acts as master relative to the host.

100 RAIMONDI, GLADNEY, HOCHWELLER, MARTIN AND SPENCER IBM SYST J

