
The  disciplines  of  structured  programming  and  programming 
f o r  virtual  storage  are  examined  to shou, how  they  afect  each 
other. 

Considerations  and  techniques  are  proposed  that,  when  applied 
during  the  process of structured  design  and  coding,  produce 
programs  that  place  fewer  demands  on  the  computer  storage 
resources. 

The  techniques  are  illustrated by  example  programs. 

The design  and  coding of computer  programs  have  been affected 
in recent  years by two widely  differing events.  The introduction 
of virtual  storage  operating  systems  has  reshaped our thinking 
about  storage  size  and  occupancy.  At  the  same  time,  the disci- 
pline  generally  known as structured  programming has  caused 
great  change in the  process of design  and  coding.  A  body of lit- 
erature  has  grown in both  these  areas,  but  little  has  been  written 
that  relates  the  two.  This  paper  compares virtual storage sys- 
tems  and  structured  programming,  and  shows  the  constraints 
that  each  places  on  the  other. 

The  concepts involved in structured programming  began  emerg- 
ing in the  late 1960s, when it became  apparent  that  the  complex- 

~ ity of very large  programs  was  causing  increasing  problems in 
i programming  and  maintenance.  Structured  programming  has 
~ been  very  successful in reducing  that  complexity.  Structured 
~ programming,  however,  has  developed largely  without  regard to 

virtual storage.  This  has  been primarily because  virtual  storage 
operating  systems  were  not in general  use  during  much of the 
development of the  structured programming concept  and be- 
cause  the  concepts of structured  programming  transcend  partic- 
ular  operating  systems. 
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Implementations of virtual storage  have  proved  not  to be trans- 
parent  to programs running in such  systems.  Because of this, 
techniques  have evolved for coping with this lack of transparen- 
cy.  These techniques  have  developed  without regard to  struc- 
tured programming and  some suggestions that  are  quite alien to 
good structured programming practices  have been made. 

The orientation of this paper is toward preserving the  concepts 
of structured programming. The paper  also  shows  that, in most 
cases,  the  concepts of structured programming are  quite  suitable 
to  the virtual storage  environment.  Presented first are brief de- 
scriptions of structured programming and virtual storage  con- 
cepts, which are followed by a  discussion of ways in which each 
affects the  other. 

Structured programming 

The discipline of structured programming has evolved as a 
means of increasing program reliability and reducing program- 
ming and  maintenance  costs by  making programs much less 
complex and thus more understandable.  Some of the work in 
this field has been concerned primarily with program design,’” 
whereas  other  work is more 

structured The primary goal in the design of structured programs is to pro- 
program duce modular program structure through successive functional 

design decompositions. An example of this might be for a  compiler  to 
create  a top-level module whose function is to compile the pro- 
gram, as shown in Figure 1. The first level of decomposition 
might result in the following three  modules: GET INTERNAL 
TEXT, CONVERT SOURCE TO OBJECT, and WRITE OBJECT PRO- 
GRAM. The top-level module, COMPILE PROGRAM, calls the 
other  three  modules.  A  further decomposition of the GET INTER- 
NAL TEXT module might result in the following modules: GET 
PROGRAM STATEMENT, ANALYZE STATEMENT, and BUILD IN- 
TERNAL TEXT. 

A module in the  context of Figure 1 is a compilable unit of 
source  code  (e.g., a PLlI external  procedure  or  a FORTRAN 
subprogram).  Modules  created in this manner should be made 
highly independent of each  other, which can be done by  mini- 
mizing the relationships among modules (called module coup- 
ling), and by maximizing the  relationships among parts of each 
module (called module  strength) .4 

The measure of the relationships among the  parts of a module is 
module strength.  Module  strength is maximized if the  parts of 
the module join forces to perform a single specific well-defined 
f ~ n c t i o n . ~  In this  context, if a module calls another module, the 
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module that  contains  the decision step.4  Very small modules 
tend to  create excessive  overhead,  whereas  very large modules 
may be difficult to understand.  Experience indicates that modules 
of between ten and one  hundred  statements are  the optimum 
size.3 A module is said to be predictable if, for  each time it is 
called with the same  input, it produces the same  output. In  other 
words,  the module does  not  “remember”  what it has previously 
done  and  thus perform a slightly different function on  subse- 
quent calls. Such  a module is independent of its environment, 
and is more likely to be usable in several  contexts. 

structured The programming phase  of  structured programming is con- 
program cerned with reducing proposed modules to  source language 

writing statements. The primary concept involved in structured pro- 
gramming is the  use of structures  such  as DO-WHILE and IF- 
THEN-ELSE to control  a program’s flow rather  than using GOTO 
statements.  Another  concept is the possible  decomposition of 
modules into segments.” 

The process of segmentation is similar in many ways  to  the de- 
composition of a program into modules, each of which performs 
a single function. A module is segmented by decomposing its 
function  into  more  rudimentary  subfunctions,  each of which 
becomes  a  segment.  Each segment is a  separate  entity which 
exists in external  storage  and is included in the module in a  pre- 
processor  phase of the compiler. Just  as  there arermany levels of 
modules, each of which calls others  at  deeper levels, there  are 
typically many levels of segments,  each of which contains IN- 
CLUDE statements  for  other  segments. 

Each segment created  consists of source language statements 
and  perhaps INCLUDE statements  for  other  segments. The 
source language statements in a segment define the  control 
structure of the segment and perform part of the segment’s func- 
tion.  Each INCLUDE statement  for  a segment represents some 
distinct  function  whose  source  statements  are  to be included later. 

The concept of segmentation may  be seen in Example 1 ,  a PL/I 
program fragment: 

Example 1 

DO; 
IF COMMAND = ‘START’ THEN 

%INCLUDE STOPCMND: 
END; 

IF COMMAND = ‘STOP’ THEN 
ELSE 

DO; 
%INCLUDE STRTCMND; 

END; 
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In Example 1, the  programmer  has written the  control  structure 
in the  current  segment. Because the intervening processing code 
has been left to  other  segments,  the  control  structure is easily 
visible and  understandable. The segments STRTCMND and 
STOPCMND are  to be coded  later.  These  segments  are  expected 
to be more easily understood  because  they are small indepen- 
dent  pieces of code,  each of which performs  a single function. 

Mills’ describes the programming process as follows: 

“. . . one can  write  the first segment which serves  as  a  skeleton 
for the whole program, using segment names,  where  appropriate, 
to  refer to  code  that will be written  later.  In  fact, by simply tak- 
ing the precaution of inserting dummy members  into  a library 
with those segment names, one can compile or assemble,  and 
even possibly execute this skeleton program while the remaining 
coding is continued. 

“Now the segments at the  next level can be written in the same 
way, referring, as  appropriate, to segments to be later writ- 
ten. . . . As each dummy segment becomes filled  in with its code 
in the  library,  the recompilation of the  segment  that includes it 
will automatically produce  new  updated  expanded  versions of 
the developing program.”ll 

There  are several  characteristics  that  segments should have in a 
structured program. The segment should be small enough to be 
listed on  a single page, i.e., have no more than fifty statements. 
Each segment should represent  a single function, it should be 
entered  only  at  the first statement of the  segment,  and it should 
exit only at the  last  statement. 

The control logic contains  no GOTO statements. In  PL/I,  the 
branching control  can  be defined entirely in terms of DO loops, 
IF-THEN-ELSE, and ON statements.  The resulting code  can be 
read strictly from top  to  bottom, with greater understanding than 
would otherwise  be possible.’ 

Programming for virtual  storage  systems 

Some programs tend  to  cause  excessive paging when run in vir- 
tual storage  systems. As these  programs  have been observed 
and the  causes of paging analyzed,  a  set of techniques  has 
evolved. In  contrast  to  the  concepts of structured programming, 
which are applied systematically during the  process of program 
design and coding, the  concepts of programming for virtual 
 tora age^^"^ are  a  loose body of individual techniques  that may be 
applied during the design and coding phases of a  project. These 
techniques  are generally presented as “things  to keep in mind” 
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because  the  present  state of programming for virtual storage sys- 
tems is much more of an art than  a  science. 

virtual The virtual storage  systems refered to in this paper are those 
storage implemented in the IBM System/370 series of computers.  In 

these  systems, virtual address  space is divided into fixed-length 
pages that map into page-size units in the computer’s real stor- 
age, which is generally smaller than its virtual storage. These 
page-size units are called page  frames. When a program refers 
to an address in virtual storage  that is not  currently in real stor- 
age, that  occurrence is called a page  fault. The operating system 
is designed to bring the referenced page into real storage through 
an  action called paging. 

Each program that  runs on a virtual storage  system  has, at any 
particular  instant,  a working  set of pages that belong to  it. The 
working set is simply the pages in real storage  that  the program 
is predicted  to use in order  to  run  for  a given interval of time 
without incurring a page fault. The actual working set typically 
changes with the time intervals of the program’s execution. If 
the  set of programs  that is contending  for real storage  space  has 
cumulative working sets  larger than the real storage available, 
then paging also  occurs  for  that  reason. If the  rate of  paging 
becomes so high that  the  system  resources are used as much or 
more  for paging than for productive  work,  a condition called 
thrashing is said to prevail. 

When considering means for  correcting  an existing program that 
appears to be causing thrashing,  one may hastily conclude  that 
such  a program may be incurring too  frequent page faults.  This, 
however, may not be the  correct  deduction from the  facts.  In  the 
first place, not all page faults are incurred by a given program; 
other  programs are incurring page faults as well. Further, if the 
given program were  to  run  alone, it would probably not incur 
page faults. Thus a more useful deduction may be that  the given 
program requires  too much  real storage  to  run in the prevailing 
multiprogramming environment.  Rather  than seeking ways of 
reducing page faults, it  may be preferable to  reduce  the real stor- 
age  necessary  for  the program by reducing the working-set size 
during periods in which the working set size may  be a problem. 

To determine  the  measures  necessary  to  reduce  a program’s 
working set  size,  a useful approach is to begin with the working 
set  and proceed backward  into  the  program. This  procedure  has 
the  desirable  characteristic of beginning with large elements and 
considering successively smaller elements with each  step. In 
taking this approach,  one  assumes  that  the working set size is 
too large, and  at each step he looks at what  can be done to re- 
duce the working set  size. 
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If a program's working set  consists of too many pages, one's 
first action is to  analyze  the  contents of the  pages. Next in the 
programming hierarchy below the working set is the control sec- 
tion, which is the  smallest element of a program that is identifi- 
able by the linkage editor.  Rearrangement of the most frequently 
referenced  control  sections may be possible so as to occupy 
fewer  pages,  as  shown in Figure 2. Here  the heavy black lines 
represent page boundaries,  and  the shaded portions  represent 
control  sections  currently being referenced.  Figure 2A shows 
that  control  sections A, C, E, H, and K are all that  are  currently 
needed in the working set. Because of the way in which the  pro- 
gram is packaged,  however,  the working set  consists of  five 
pages. Figure 2B shows  the  control  sections  after  rearrangement 
so that  the  current working set  requires only three  pages.  Since 
the working set  varies from time to time, the overall objective is 
to optimize the  total  execution of the program. Myers3 gives a 
good description of the  process of reordering control  sections. 

With the ability to reorder  control  sections,  another  considera- 
tion is to  create  control  sections  that lend themselves  better  to 
reordering. The easiest way to do  this is to  generate small con- 
trol sections  that  have  desirable  characteristics.  Such small con- 
trol sections lend themselves  to  external  arrangement  to build 
pages that  have  desirable  characteristics. The  ease with which 
this can  be  done  varies  considerably among the different lan- 
guages in use today.14 

At this point,  the paradigm program has been decomposed  into 
modules. The program is thus at  the terminal point of virtual 
storage design: a collection of proposed modules ready  to be 
coded. 

It should be kept in  mind during the design of program modules 
that  are  to be executed  together with other program modules in 
a virtual storage  environment  that we are  concerned with con- 
serving and making the  most efficient use of real storage. We 
need not be concerned  about virtual storage by itself. Thus, 
those  parts of programs that  are executed only rarely need not 
be of ~ 0 n c e r n . l ~  This indicates that  for  any program there is a 
set of modules -perhaps  entire  branches of trees  -for which 
storage is of no concern  either during the design process or dur- 
ing the coding of the modules. 

The modules must  contain  code, all of which is needed at the 
same  time.  Further,  the larger a module that is written,  the 
greater  the  distance  the  data needed by a particular  instruction 
may  be from the  instruction itself, a condition  that might well 
increase the working set size and possibly cause page faults. In 
essence, modularity should be by proximity of usage rather  than 
by similarity of f~nc t i0n . l~  
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All code (if more  than just a few bytes  long)  that is designed to 
handle  exceptional  conditions  such as  error recovery,  permanent 
diagnostic capability, etc., should be apart from mainline code, 
preferably in separate  control  sections (CSECTS).15 This gives 
the programmer  the ability to  remove  such  code from the  pro- 
gram’s working set, which thus becomes ~ma11er.l~ 

At this  time, it is necessary to consider  data  that are referenced 
by more  than  one module. In  other  words, algorithms internal to 
some modules must be taken  into  account. As an example,  sup- 
pose  a module must build two 64 by 64 double-precision ma- 
trices.  Each of these  matrices  requires 32K bytes  or eight pages 
if the page size is 4K  bytes. The algorithmic decision  to  be  made 
at this time is whether  these matrices are suitable  for  sparse 
matrix  techniques. If they  are, it is possible that  a  great savings 
in real storage  can be accomplished. If they are not,  then  some 
decisions must be made. If another module must multiply these 
two  matrices a decision must be made  at this level as  to  whether 
one of them should be stored  as its transpose.16 The coding of 
multiplication does  not require  more complexity by one method 
than by another.  There may be,  however,  a  tremendous differ- 
ence in the  storage  reference  patterns.  Figure  3A  shows  the  cor- 
responding elements to  be multiplied for two  such  matrices, A 
and B, and  Figure 3B shows  the  corresponding  elements  for A 
and  the  transpose of B (written Bt). 

Similar cases may exist  whenever  two modules must  pass large 
masses of data between them. It is impossible to list all such 
possibilities. However, if one understands the principles well 
enough, then he will  be aware of such occasions. 

writing Whereas design for virtual storage is considered  here in terms of 
programs general principles, writing programs  for virtual storage involves 

for a somewhat  more solid technique. There is still, however,  an 
virtual aura of art  about  such programming, and it  is  difficult to  state 

storage general principles that  are  always valid and  can  be applied in 
“cook-book’’ fashion.  Many of the  techniques  also  depend on a 
specific language or a specific compiler implementation. 

Some  further  rules  that  are generally applicable to programming 
for virtual storage  systems are  the following: 

Reference the  data in the  order in which they are  stored, 
and/or store  the  data in the  order in which they are refer- 
enced.13 This is not  always  possible, of course,  and  the  order 
in which an  array is referenced is  of no  consequence if the 
array fits into  a single page.14 
If possible,  separate read-only data  from  areas  that are  to be 
changed.14 This is of lesser  importance than good locality of 
reference. 
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I Finure 3 Module design for matrix multiplication, (A) Multiplication AB,  (B) Multipli- 

cation AB' 
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Avoid the use of elaborate  search strategies for large data 
areas, and avoid the use of large linked lists if these  tech- 
niques cause  a wide range of addresses  to  be referenced.13 
Virtual storage coding techniques vary by language and par- 
ticular language implementation. 
In PL/I, the AREA variable is of particular interest. Based 
storage can be allocated inside an AREA variable. Thus, 
based variables that  are to be used together  can  be local- 
ized.14 The code fragment in Example 2 shows  that based 
variables ALPHA and BETA can be made close together. 

ALLOCATE ALPHA IN (GAMMA); 
. . .  
ALLOCATE BETA IN (GAMMA); 

PL/I allows considerable flexibility  in declaring data aggre- 
gates. Also in PL/I, arrays of structures and structures of ar- 
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Figure 4 Example FORTRAN storage areas 

CONTROL SECTIONS CONTENTS 

MAIN 

XYZ 

ENTRY POINT,  BRANCHTOEXECUTABLECOOE 

STORAGE FOR FORMAT STATEMENT 

STORAGE FOR LOCAL VARIABLES I, J, ETC. 

""" 

""" 

""" 

STORAGE FOR LOCAL ARRAYS G, H, ETC. 
""" 

EXECUTABLECOOE 

SIMILAR TO MAIN PROGRAM 

$ELANKCOM STORAGE FOR VARIABLES  AND ARRAYS IN  BLANK  COMMON 

STORAGE FOR VARIABLES  AND ARRAYS IN  NAMED  COMMON AREA N 

IBCOM I/O, INITIALIZATION,  AND ERROR HANDLING  MODULE, 

FlOCS I/O MODULE  CALLED  FROM  IBCOM 

rays should be declared in the  order in which they are  to be 
referenced  most  frequently. Multiply dimensioned arrays in 
PL/I are stored rowwi~e. '~ 
FORTRAN stores  arrays by c01urnn.'~ 
Avoid implied FORTRAN DO loops in IlO statements  because 
they  cause  repeated  return  to  the calling program.14 
In COBOL, data within the working storage  section are allo- 
cated in the  order in which they are declared.  Therefore,  de- 
clare  data  that are  to  be used together in consecutive  state- 
m e n t ~ . ~ *  
Also in COBOL, files that are used together should be  opened 
in the same  statement. This  causes  their buffers to  be close 
together  and improves the locality of references  as buffers 
are  proce~sed.'~ 

Source  language  and compiler implementations 

During the virtual storage program designing and coding pro- 
cesses,  a  choice of source language must be made. It is possible 
that a single language may be used throughout  the  program,  but 
a mixture of languages may also be used.  In  any  case,  the  char- 
acteristics of the language and  the implementation must  be un- 
derstood if the program is to make efficient use of virtual stor- 
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Figure 5 Example PL/ l  storage areas 

CONTROL  SECTIONS  CONTENTS 

IL""" A CONSTANTS,  CONTROL  INFORMATION FOR ABC 

* * A B C 2  1 1" 1 STORAGEFORE 

CONTROL  INFORMATION 
SUBROUTINE  CALL  PARAMETER  LISTS,  OTHER 

. * * X  SIMILARTOPROCEDUREAEC 

' * " X Y Z l   E X E C U T A B L E C O D E F O R X Y Z  

!a STORAGE FOR VARIABLES, A, B ,  C 

STORAGE FOR ARRAY 0 

LIBRARY  SUBROUTINES t 
T N A M I C  STORAGE 
FIXED STORAGE 

SAVE AREA, ERROR  ANDSTORAGE  CONTROL  INFORMATION FOR AEC 
""" 

STORAGE FOR F, P, I ,  J A N D  TEMPORARY  WORK  AREAS FOR ABC 

ALLOCATED  ONLY 
WHEN  XYZ IS 
EXECUTING STORAGE FOR VARIABLES AND TEMPORARY  WORK AREAS FOR XYZ I t"""i SAVE  AREA, ERROR AND STORAGE CONTROL  INFORMATION FOR XYZ 

H STORAGE FOR G 

f 3  DYNAMICALLY  LOADED  LIBRARY  SUBROUTINES  WHEN  NEEDED 

The most  notable  characteristic of the module structure is that 
local variables  and  arrays are in the  same  control  sections  as 
executable  code, and thus they are not separable  at linkage edit- 
ing time. The IBCOM module, which is fairly large, is used during 
execution only for I/O statements and PAUSE and STOP state- 
ments. FIOCS is used for all I/O statements. 

PL/I The PL/I optimizing compiler produces  two  or more control sec- 
optimizing tions  for  each  external  procedure. One control section is created 

compiler that  contains only executable  code, and another  contains control 
information, constants, and internal variables. Other  control  sec- 
tions are included as closed subroutines  for actions such as char- 
acter string assignments. Each variable, array,  or  structure de- 
clared as STATIC EXTERNAL is a  separate  control  section. PL/I 
also  uses dynamically acquired storage.  Space  for  such pro- 
cedures  as register save  areas,  error handling information, AU- 
TOMATIC variables,  and  work  areas are in a dynamically ac- 
quired section of storage. These sections are obtained and freed 
dynamically when a  procedure is entered. If procedure A calls 
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c procedure B, then the  dynamic  storage  area for procedure B is 

generally (and  can be made to  be) appended to  the end of the 
dynamic storage  area  for  procedure A. Variables  that are allo- 
cated dynamically by the user with ALLOCATE statements are in , a different dynamically acquired  section of storage.  Figure 5 
shows the storage  structure  for  the PL/I program in Example 4. 

Example 4 

I 

ABC: PROCEDURE  OPTIONS(MA1N); 
DECLARE 

1 S STATIC EXTERNAL, 
2 (A,B,C)  FIXED  BINARY(l5); 

DECLARE  D(10)  FLOAT DECIMAL(16)  STATIC 
EXTERNAL; 

DECLARE E(20) FLOAT  DECIMAL(16) STATIC 
INTERNAL; 

DECLARE F(10) FIXED  DECIMAL(4,2); 
DECLARE G(5) FIXED  BINARY(31)  BASED(P); 
DECLARE P POINTER; 

. . .  
J =  1 ;  
DO I = 1 TO 100; 
. . .  
END; 
ALLOCATE G ;  
CALL XYZ(J); 

END; 
XYZ:PROCEDURE(K); 

. . .  
END; 

Virtual storage constraints on structured programming 

The disciplines involved in structured programming offer, as was 
noted earlier, specific techniques  that-when applied in a !ys- 
tematic  manner-produce  programs  that  are  more easily under- 
stood than would otherwise  be  the  case. The techniques in- 
volved in these disciplines take  no notice of the virtual storage 
environment. In this section,  the  process of structured program- 
ming  is analyzed and the principles of programming for virtual 
storage are applied against it. Thus a  picture should emerge  that 
shows  the  proper way to think about virtual storage during the 
structured programming process. 

The first and  one of the most  important of all considerations is 
that of whether real storage  constraints are important.  Many 
programs have very little impact on the user’s system. The con- 
cern becomes considerably less for large storage configurations 
and considerably  greater  for  the smaller systems. Small pro- 
grams,  short-running  programs,  and  one-time programs are not 
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typical subjects  for programming for virtual storage.  Large, long- 
running, and frequently-run programs benefit most from virtual 
storage programming techniques. Of course, a program that is 
large and long-running on a System/370 Model 145 with 5 12K 
bytes of real storage may be a small, short-running program on a 
System/ 370 Model 168 with 4096K  bytes of real  storage.  This is 
one of the  factors  to be ~0nsidered.l~  It cannot  be  emphasized 
too strongly that  the  designer  must  determine his degree of con- 
cern  for real storage as early as possible in the design phase. 

Just  as  there  are  entire classes of programs  that are insensitive 
to virtual storage  (when  measured by system  throughput)  there 
are also  parts of many programs  that are similarly insensitive. A 
flurry of paging that  occurs  once  every  few minutes is of little 
concern.  Thus  there  are things such as human interaction,  error 
correction,  and so forth  that may be designed and coded  as 
completely and  elaborately as is convenient, simply because 
they  occur  infrequently. 

design The  process of structured programming begins in the design 
constraints phase. The culmination of the design phase is a  set of proposed 

modules that exhibit certain  desirable  characteristics. Among 
these  are high module strength, low module coupling, predict- 
ability, size,  and  decision  structure. 

Some of these  characteristics are quite easily dealt with. Predict- 
ability and decision  structure  are usually insensitive to virtual 
storage.  Module  strength  tends  to be generally compatible with 
virtual storage programming principles because it tends  to local- 
ize  code  that is used at  the same time. 

Informational strength modules (modules  that perform more 
than  one function with an  entry point for each function) may be 
sensitive to virtual storage. If not all  of the included functions 
are needed at  the  same points in the program, then  code may be 
dragged into  the working set  at times when it  will not be used. 

large Module size is a  somewhat  more  complicated  factor.  Size, in 
data this context,  refers  to  number of source language statements. If 

aggregates this number is kept small, then  the  amount of executable code 
generated is also small. On the  other  hand,  the addition of a 
statement  such as 

DECLARE X ( 1800) FLOAT DECIMAL ( 16) ; 

increases  the  object module size by 8000  bytes, while adding 
only one  source  statement  to  the module. Although the module 
size-in  terms of source  statements-is  small,  the  generated 
object module (which  depends on the language implementation) 
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Figure 6 large  aggregate storage  problem  illustrated  by  matrix  multiplication 

2 ALPHA, BETA 

C 

becomes very large. Further, in high-level language implementa- 
tions,  there  tends  to be a  separation of data from the  code  that 
references it. 

The preceding problem of large data aggregates is merely one 
manifestation of an  even  greater problem of large data aggre- 
gates. The suggestion usually given is to make large data aggre- 
gates  into  independent modules (STATIC  EXTERNAL in PL/I or 
COMMON in FORTRAN ) . This  procedure,  however, in the  struc- 
tured designer’s view, causes  a potential COMMON coupling that 
is undesirable. The purpose of making these  data aggregates 
externally known is so that  their location can be chosen at link- 
age editing time, and the  user  can  arrange  the aggregates so that 
real storage is conserved. 

In the  case of COBOL, all data  must be internal. FORTRAN offers 
COMMON, which creates  an  undesirable COMMON coupling con- 
dition. PL/I offers STATIC EXTERNAL, which also  creates COM- 
MON coupling, but  also offers the AREA variable. The AREA vari- 
able reserves  a  section of storage,  either statically or dynamically 
acquired. BASED variables may then be allocated  to  space within 
the AREA. Under  some  circumstances, this mechanism can be 
used to preserve locality of reference. 

An example of this problem is illustrated by Figure 6. Module  A 
contains  the  storage  for  and  creates matrix ALPHA. Module  A 
calls Module B, and passes ALPHA as  a  parameter.  Module B 
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contains  the  storage for and  creates matrix BETA. Module B 
calls module C, and  passes ALPHA and BETA as  parameters. 
Module C multiplies ALPHA and BETA, and stores  the  result in 

turns. The FORTRAN program fragment in Example 5 accom- 
plishes these  operations. 

GAMMA. Module c then  sets ALPHA equal to GAMMA and re- 

Example 5 
SUBROUTINE  A 
DIMENSION  ALPHA(16,16) 

CALL  B(ALPHA) 
. . .  
S T 0  P 
END 
SUBROUTINE  B  (ALPHA) 
DIMENSION  ALPHA(16,16), BETA(16,16) 
. . .  
CALL  C(ALPHA,BETA) 
. . .  
RETURN 
END 
SUBROUTINE  C(ALPHA,BETA) 
DIMENSION  ALPHA(16,16), BETA (16,161, GAMMA(16,16) 

DO 10 I = 1,16 
DO 10 J = 1,16 
GAMMA(1,J) = 0.0 
DO 10 K =  1,16 

10 GAMMA ( 1 , ~ )  = GAMMA(I,J) + ALPHA(I,K)*BETA(K,J) 
. . .  
DO 20 I = 1,16 
DO 20 J = 1,16 

20 ALPHA(I,J) = GAMMA(1,J) 
. . .  
RETURN 
END 

In this  example,  the  user has little control  over  the  areas  that 
ALPHA, BETA, and GAMMA occupy in storage. Packageability of 
A, B, and C are hampered by the 1024 byte  arrays inside each 
module. It is easily possible  that the  three modules can  re- 
quire  three pages of real  storage to execute,  and it is possible 
that they may require six pages of real storage. If these  arrays 
were  put in COMMON -the only alternative in FORTRAN -they 
could all be put  into  one  page, which would be present only 
when the  arrays  are being used.  What  appears to be desirable in 
this case in designing for virtual storage is clearly undesirable in 
structured design. 



Data aggregates are not  easy  to  cope with. On  the  one  hand, 
making arrays internal is not a good practice  for virtual storage. 
On the  other  hand, making the  arrays COMMON opens them up 
for use by entirely different parts of the  program,  thereby  creat- 
ing a potential reliability problem. A closer look at  the design 
process may help in finding a solution to  the problem. 

In  some mathematical applications,  the  designer may be aware 
of alternative algorithms before the design process begins, or 
may at least become aware of them at  some point during the  de- 
sign phase. There  are, for  example,  at  least  two ways of calculat- 
ing eigenvectors,  one of  which  is  highly  inefficient in virtual stor- 
age and  the  other  quite efficient. The designer should maintain 
an  awareness of cases  where large tables of data items are likely 
to  be  needed.  Instead of  filling a large table sequentially with 
values and then sequentially using the  values one by one, it 
might  be better to use  each value as it is generated, and thus 
avoid the  use of a  table  entirely. A large, sparsely used table thyt 
occupies  several pages might  be better utilized by storing table 
entries in sequential locations  and keeping an index to  the table 
rather  than storing entries in locations of the  table  that  corre- 
spond to item numbers. 

Choice of implementation language may also  be affected by 
some of the  above design considerations. PL/I offers a  better so- 
lution to the problem illustrated by FORTRAN in Example 5 .  The 
PL/I solution, which  is shown  later in Example 6, allows the ma- 
trices to be kept  together  and  separate from the  code, while it 
preserves DATA coupling between the modules. 

All the items discussed  here  thus  far  have been directed  toward 
the design of structured  programs. These principles also apply to 
coding within a module. If the  designer realizes that  a  particular 
technique may be applicable within a module, he should point 
that  fact  out to the  programmer,  who may not  be  aware of it. 
Many techniques of programming for virtual storage are also 
available to the  practitioner of structured programming. 

Some general considerations in programming for virtual storage 
that also apply to  structured programming are  the following: 

Exceptional-condition code should be  in a  separate module 
that is called from the module in which the condition (say  an 
error) occurs. 
Data should be referenced in the order in which they are 
stored, if possible, especially for large data aggregates that 
occupy  several pages. 
Store  data  as closely as possible to  other  data that  are  to be 
used at  the same time. 
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Avoid the  use of elaborate  search  strategies  for large data 
areas.13 

Many virtual storage programming techniques  are valid for  par- I 

ticular languages and compiler implementations only. Some vir- 
tual  storage programming techniques  that are usable with struc- 
tured programming are now discussed. 

ANS COBOL Data within the working storage  section  are  allocated in the or- 
compiler der in which they are declared.  Therefore,  declare  data  that  are 
version 4 to be used together in consecutive ~tatements. '~ Declare files 

that  are  to be used together in consecutive de~1arations.l~ Files 
that  are used together should be opened in the  same  statement. 
This  causes  their buffers to  be closer  together  and  improves the 
locality of reference as buffers are proces~ed. '~ Do not  use  alter- 
nate  areas unless they are needed  for  a special reason. The net 
effect of alternate buffers is to  separate  data areas.13 

PLA The AREA variable is of particular  interest  because based stor- 
optimizing age  can be allocated within an AREA variable. In this way, based 

compiler variables  that are  to be used together  can be 10calized.'~ The 
localization of based variables is illustrated in Example 6, which 
accomplishes the same  function as FORTRAN, as illustrated in 
Example 5 .  

Example 6 
A: PROCEDURE; 

DECLARE  OMEGA AREA(4000); 
DECLARE ALPHA(16,16) BASED(APTR1; . . .  

ALLOCATE ALPHA  IN(0MEGA); . . .  
CALL B(OMEGA,ALPHA); 
. . .  

END  A; 

B: PROCEDURE(OMEGA,ALPHA); 
DECLARE  OMEGA AREA(*); 
DECLARE ALPHA(16,16); 
DECLARE  BETA(16,16) BASED(BPTR); 

. . .  
ALLOCATE BETA IN(0MEGA); 
. . .  
CALL C(OMEGA,ALPHA,BETA); 
. . .  

END B; 
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C: PROCEDURE(OMEGA,ALPHA,BETA); 
DECLARE OMEGA AREA(*): 
DECLARE (ALPHA,BETA)(16,16); 
DECLARE GAMMA(16,16) BASED(GF'TR); 

. . .  
ALLOCATE  GAMMA IN(0MEGA); 
. . .  
DO I = 1 TO 16; 

DO J =  1 TO 16; 
GAMMA(1,J) = 0.0; 
DO K =  1 TO 16; 

GAMMA(1,J) = GAMMA(1,J) -t ALPHA(I,K)*BETA(K,J); 
END; 

END; 
END; 
ALPHA = GAMMA: 
. . .  

END  C; 

In  Example 6, the AREA, OMEGA, has been made large enough 

cated to  the  area, ALPHA, BETA, and GAMMA are  together in 
storage  and  create  a  better locality of reference. 

to hold ALPHA, BETA, and GAMMA, SO that, when they are allo- 

Avoid, if possible, putting variables with the initial attribute in 
automatic ~t0rage.l~ 

Be especially careful of arrays of structures  and  structures of 
arrays. Be sure  to  declare  them in the  order in which they  are 
expected to be referenced  most  frequently. 

PL/I passes all arguments in CALL statements by location rather 
than by value. Consider the program fragment in Example 7. 

Example 7 
X PROCEDURE OPTIONS(MA1N); 

DECLARE I STATIC INTERNAL; 
. . .  
CALL Y(1); 
. . .  

END X; 
Y :  PROCEDURE(1); 

DECLARE  J  STATIC INTERNAL; 
. . .  
CALL  Z(I,J); 
. . .  

END Y; 
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Z: PROCEDURE(1,J); 
. . .  
K = I + J ;  

END Z ;  

general Whenever modules Y or Z use  the variable I, they reference  the 
guidelines STATIC INTERNAL control  section of X. Further,  whenever 

Z references J, it references  the STATIC INTERNAL control  sec- 
tion of Y .  Thus  the working set, when Z is executing, may be 
larger than need be. To reduce  the working set, assign the  para- 
meters  to internal variables and  then  use  those  variables. 

The purpose of special programming for virtual storage is to 
reduce  a program's real storage  requirement,  an  objective  to- 
ward which the following guides may prove  to be helpful: 

Separate  unused  code  and  data  space from code  that is fre- 

Seek algorithms or  techniques  that use small data  areas. 
Remember  that  the modules created during the design and 
coding phases  can be reordered during linkage editing to cre- 
ate  better  reference  patterns. 

quently  used. 

Structured programming constraints on programming for 
virtual storage 

Because  the available literature on programming for virtual stor- 
age  consists mainly of isolated techniques, this section  attempts 
to bring together  such  practices and point  out ways in which 
they do not fit within the  constraints of structured programming. 
These practices may be well worth avoiding when they conflict 
with structured programming for virtual storage  systems. 

Grouping high-use buffers and data  areas  together in com- 
mon storageI3 causes a potential COMMON coupling and fur- 
ther  forces  an artificial structure on data. 
Making common data  areas more productive by using the 
same  area  for different data in different phases of the 
program13 creates  even more severe COMMON coupling than 
grouping high-use buffers, because program changes in one 
area may cause  errors in unrelated  areas. 
Setting up initial conditions  at the beginning of the program14 
causes  poor module strength and makes  later modification 
more difficult. 
Declaring  structures  and aggregates m E R N A L 1 4  also  causes 
COMMON coupling. 
Defining every variable as STATIC, particularly for  arrays 
and data s t r u c t u r e ~ , ~ ~  is not always good practice, as Exam- 
ple 7 shows. 

404 ROGERS IBM SYST J 



The following are general guidelines that should be observed 
when writing structured  programs  for  virtual  storage  systems: 

Do not  create  code  that is impossible to  comprehend, just  to 
save  real storage. In many cases,  there is a simple way to ac- 
complish the  same thing. 
Do not  create  modules  that  have  poor coupling or strength, 
to  save real storage. Look for  another way to  do it. If it is im- 
possible,  perhaps  another language is better suited to  the 
application. 
If it is necessary  to make modifications to  achieve  further 
savings in real  storage,  those modifications may be made 
more easily if structured programming techniques are used. 

Concluding remarks 

The concepts  and  techniques of virtual storage programming 
and those of structured programming have grown along diverse 

j paths.  Virtual  storage programming has evolved largely by look- 
i ing retrospectively  at  programs designed and coded by means 

niques that  are  not applicable to  structured programming. Struc- 
tured programming has evolved with little regard to virtual 

i storage,  and  thus includes techniques alien to virtual storage 
systems. 

~ other  than  structured programming, and thus has included tech- 

I 

I 
The two disciplines are  not,  however,  at  odds with each  other. 
Very few of the concepts involved in structured programming 
cause problems in virtual storage. The few that do  cause trouble 

alternate  methods may be found that more easily accommodate 
virtual storage. The few  techniques of virtual storage program- 
ming that do not fit  well within structured programming are usu- 
ally recognizable by those  who  are engaged in structured pro- 
gramming. 

I 

1 can usually be avoided during the design and coding phases, and 

The combination of these  two disciplines requires more effort on 
the  part of the  designer and the programmer than  either one 
does  alone,  but  together  they  produce programs that are more 
easily understood  and maintained, and  put less strain on com- 
puter  storage  resources. 
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