
The disciplines of structured programming and programming
f o r virtual storage are examined to shou, how they afect each
other.

Considerations and techniques are proposed that, when applied
during the process of structured design and coding, produce
programs that place fewer demands on the computer storage
resources.

The techniques are illustrated by example programs.

The design and coding of computer programs have been affected
in recent years by two widely differing events. The introduction
of virtual storage operating systems has reshaped our thinking
about storage size and occupancy. At the same time, the disci-
pline generally known as structured programming has caused
great change in the process of design and coding. A body of lit-
erature has grown in both these areas, but little has been written
that relates the two. This paper compares virtual storage sys-
tems and structured programming, and shows the constraints
that each places on the other.

The concepts involved in structured programming began emerg-
ing in the late 1960s, when it became apparent that the complex-

~ ity of very large programs was causing increasing problems in
i programming and maintenance. Structured programming has
~ been very successful in reducing that complexity. Structured
~ programming, however, has developed largely without regard to

virtual storage. This has been primarily because virtual storage
operating systems were not in general use during much of the
development of the structured programming concept and be-
cause the concepts of structured programming transcend partic-
ular operating systems.

STRUCTURED PROGRAMMING FOR vs SYSTEMS 385

Implementations of virtual storage have proved not to be trans-
parent to programs running in such systems. Because of this,
techniques have evolved for coping with this lack of transparen-
cy. These techniques have developed without regard to struc-
tured programming and some suggestions that are quite alien to
good structured programming practices have been made.

The orientation of this paper is toward preserving the concepts
of structured programming. The paper also shows that, in most
cases, the concepts of structured programming are quite suitable
to the virtual storage environment. Presented first are brief de-
scriptions of structured programming and virtual storage con-
cepts, which are followed by a discussion of ways in which each
affects the other.

Structured programming

The discipline of structured programming has evolved as a
means of increasing program reliability and reducing program-
ming and maintenance costs by making programs much less
complex and thus more understandable. Some of the work in
this field has been concerned primarily with program design,’”
whereas other work is more

structured The primary goal in the design of structured programs is to pro-
program duce modular program structure through successive functional

design decompositions. An example of this might be for a compiler to
create a top-level module whose function is to compile the pro-
gram, as shown in Figure 1. The first level of decomposition
might result in the following three modules: GET INTERNAL
TEXT, CONVERT SOURCE TO OBJECT, and WRITE OBJECT PRO-
GRAM. The top-level module, COMPILE PROGRAM, calls the
other three modules. A further decomposition of the GET INTER-
NAL TEXT module might result in the following modules: GET
PROGRAM STATEMENT, ANALYZE STATEMENT, and BUILD IN-
TERNAL TEXT.

A module in the context of Figure 1 is a compilable unit of
source code (e.g., a PLlI external procedure or a FORTRAN
subprogram). Modules created in this manner should be made
highly independent of each other, which can be done by mini-
mizing the relationships among modules (called module coup-
ling), and by maximizing the relationships among parts of each
module (called module strength) .4

The measure of the relationships among the parts of a module is
module strength. Module strength is maximized if the parts of
the module join forces to perform a single specific well-defined
f ~ n c t i o n . ~ In this context, if a module calls another module, the

386 ROGERS IBM SYST J

module that contains the decision step.4 Very small modules
tend to create excessive overhead, whereas very large modules
may be difficult to understand. Experience indicates that modules
of between ten and one hundred statements are the optimum
size.3 A module is said to be predictable if, for each time it is
called with the same input, it produces the same output. In other
words, the module does not “remember” what it has previously
done and thus perform a slightly different function on subse-
quent calls. Such a module is independent of its environment,
and is more likely to be usable in several contexts.

structured The programming phase of structured programming is con-
program cerned with reducing proposed modules to source language

writing statements. The primary concept involved in structured pro-
gramming is the use of structures such as DO-WHILE and IF-
THEN-ELSE to control a program’s flow rather than using GOTO
statements. Another concept is the possible decomposition of
modules into segments.”

The process of segmentation is similar in many ways to the de-
composition of a program into modules, each of which performs
a single function. A module is segmented by decomposing its
function into more rudimentary subfunctions, each of which
becomes a segment. Each segment is a separate entity which
exists in external storage and is included in the module in a pre-
processor phase of the compiler. Just as there arermany levels of
modules, each of which calls others at deeper levels, there are
typically many levels of segments, each of which contains IN-
CLUDE statements for other segments.

Each segment created consists of source language statements
and perhaps INCLUDE statements for other segments. The
source language statements in a segment define the control
structure of the segment and perform part of the segment’s func-
tion. Each INCLUDE statement for a segment represents some
distinct function whose source statements are to be included later.

The concept of segmentation may be seen in Example 1 , a PL/I
program fragment:

Example 1

DO;
IF COMMAND = ‘START’ THEN

%INCLUDE STOPCMND:
END;

IF COMMAND = ‘STOP’ THEN
ELSE

DO;
%INCLUDE STRTCMND;

END;

388 ROGERS IBM SYST J I

In Example 1, the programmer has written the control structure
in the current segment. Because the intervening processing code
has been left to other segments, the control structure is easily
visible and understandable. The segments STRTCMND and
STOPCMND are to be coded later. These segments are expected
to be more easily understood because they are small indepen-
dent pieces of code, each of which performs a single function.

Mills’ describes the programming process as follows:

“. . . one can write the first segment which serves as a skeleton
for the whole program, using segment names, where appropriate,
to refer to code that will be written later. In fact, by simply tak-
ing the precaution of inserting dummy members into a library
with those segment names, one can compile or assemble, and
even possibly execute this skeleton program while the remaining
coding is continued.

“Now the segments at the next level can be written in the same
way, referring, as appropriate, to segments to be later writ-
ten. . . . As each dummy segment becomes filled in with its code
in the library, the recompilation of the segment that includes it
will automatically produce new updated expanded versions of
the developing program.”ll

There are several characteristics that segments should have in a
structured program. The segment should be small enough to be
listed on a single page, i.e., have no more than fifty statements.
Each segment should represent a single function, it should be
entered only at the first statement of the segment, and it should
exit only at the last statement.

The control logic contains no GOTO statements. In PL/I, the
branching control can be defined entirely in terms of DO loops,
IF-THEN-ELSE, and ON statements. The resulting code can be
read strictly from top to bottom, with greater understanding than
would otherwise be possible.’

Programming for virtual storage systems

Some programs tend to cause excessive paging when run in vir-
tual storage systems. As these programs have been observed
and the causes of paging analyzed, a set of techniques has
evolved. In contrast to the concepts of structured programming,
which are applied systematically during the process of program
design and coding, the concepts of programming for virtual
 tora age^^"^ are a loose body of individual techniques that may be
applied during the design and coding phases of a project. These
techniques are generally presented as “things to keep in mind”

NO. 4 * 1915 STRUCTURED PROGRAMMING FOR VS SYSTEMS 389

because the present state of programming for virtual storage sys-
tems is much more of an art than a science.

virtual The virtual storage systems refered to in this paper are those
storage implemented in the IBM System/370 series of computers. In

these systems, virtual address space is divided into fixed-length
pages that map into page-size units in the computer’s real stor-
age, which is generally smaller than its virtual storage. These
page-size units are called page frames. When a program refers
to an address in virtual storage that is not currently in real stor-
age, that occurrence is called a page fault. The operating system
is designed to bring the referenced page into real storage through
an action called paging.

Each program that runs on a virtual storage system has, at any
particular instant, a working set of pages that belong to it. The
working set is simply the pages in real storage that the program
is predicted to use in order to run for a given interval of time
without incurring a page fault. The actual working set typically
changes with the time intervals of the program’s execution. If
the set of programs that is contending for real storage space has
cumulative working sets larger than the real storage available,
then paging also occurs for that reason. If the rate of paging
becomes so high that the system resources are used as much or
more for paging than for productive work, a condition called
thrashing is said to prevail.

When considering means for correcting an existing program that
appears to be causing thrashing, one may hastily conclude that
such a program may be incurring too frequent page faults. This,
however, may not be the correct deduction from the facts. In the
first place, not all page faults are incurred by a given program;
other programs are incurring page faults as well. Further, if the
given program were to run alone, it would probably not incur
page faults. Thus a more useful deduction may be that the given
program requires too much real storage to run in the prevailing
multiprogramming environment. Rather than seeking ways of
reducing page faults, it may be preferable to reduce the real stor-
age necessary for the program by reducing the working-set size
during periods in which the working set size may be a problem.

To determine the measures necessary to reduce a program’s
working set size, a useful approach is to begin with the working
set and proceed backward into the program. This procedure has
the desirable characteristic of beginning with large elements and
considering successively smaller elements with each step. In
taking this approach, one assumes that the working set size is
too large, and at each step he looks at what can be done to re-
duce the working set size.

390 ROGERS IBM SYST J

If a program's working set consists of too many pages, one's
first action is to analyze the contents of the pages. Next in the
programming hierarchy below the working set is the control sec-
tion, which is the smallest element of a program that is identifi-
able by the linkage editor. Rearrangement of the most frequently
referenced control sections may be possible so as to occupy
fewer pages, as shown in Figure 2. Here the heavy black lines
represent page boundaries, and the shaded portions represent
control sections currently being referenced. Figure 2A shows
that control sections A, C, E, H, and K are all that are currently
needed in the working set. Because of the way in which the pro-
gram is packaged, however, the working set consists of five
pages. Figure 2B shows the control sections after rearrangement
so that the current working set requires only three pages. Since
the working set varies from time to time, the overall objective is
to optimize the total execution of the program. Myers3 gives a
good description of the process of reordering control sections.

With the ability to reorder control sections, another considera-
tion is to create control sections that lend themselves better to
reordering. The easiest way to do this is to generate small con-
trol sections that have desirable characteristics. Such small con-
trol sections lend themselves to external arrangement to build
pages that have desirable characteristics. The ease with which
this can be done varies considerably among the different lan-
guages in use today.14

At this point, the paradigm program has been decomposed into
modules. The program is thus at the terminal point of virtual
storage design: a collection of proposed modules ready to be
coded.

It should be kept in mind during the design of program modules
that are to be executed together with other program modules in
a virtual storage environment that we are concerned with con-
serving and making the most efficient use of real storage. We
need not be concerned about virtual storage by itself. Thus,
those parts of programs that are executed only rarely need not
be of ~ 0 n c e r n . l ~ This indicates that for any program there is a
set of modules -perhaps entire branches of trees -for which
storage is of no concern either during the design process or dur-
ing the coding of the modules.

The modules must contain code, all of which is needed at the
same time. Further, the larger a module that is written, the
greater the distance the data needed by a particular instruction
may be from the instruction itself, a condition that might well
increase the working set size and possibly cause page faults. In
essence, modularity should be by proximity of usage rather than
by similarity of f~nc t i0n . l~

NO. 4 . 1975 STRUCTURED PROGRAMMING FOR VS SYSTEMS

Figure 2 The recording of
control sections, (A)
Given working set,
(B) Reduced working
set

designing
for
virtual
storage

391

All code (if more than just a few bytes long) that is designed to
handle exceptional conditions such as error recovery, permanent
diagnostic capability, etc., should be apart from mainline code,
preferably in separate control sections (CSECTS).15 This gives
the programmer the ability to remove such code from the pro-
gram’s working set, which thus becomes ~ma11er.l~

At this time, it is necessary to consider data that are referenced
by more than one module. In other words, algorithms internal to
some modules must be taken into account. As an example, sup-
pose a module must build two 64 by 64 double-precision ma-
trices. Each of these matrices requires 32K bytes or eight pages
if the page size is 4K bytes. The algorithmic decision to be made
at this time is whether these matrices are suitable for sparse
matrix techniques. If they are, it is possible that a great savings
in real storage can be accomplished. If they are not, then some
decisions must be made. If another module must multiply these
two matrices a decision must be made at this level as to whether
one of them should be stored as its transpose.16 The coding of
multiplication does not require more complexity by one method
than by another. There may be, however, a tremendous differ-
ence in the storage reference patterns. Figure 3A shows the cor-
responding elements to be multiplied for two such matrices, A
and B, and Figure 3B shows the corresponding elements for A
and the transpose of B (written Bt).

Similar cases may exist whenever two modules must pass large
masses of data between them. It is impossible to list all such
possibilities. However, if one understands the principles well
enough, then he will be aware of such occasions.

writing Whereas design for virtual storage is considered here in terms of
programs general principles, writing programs for virtual storage involves

for a somewhat more solid technique. There is still, however, an
virtual aura of art about such programming, and it is difficult to state

storage general principles that are always valid and can be applied in
“cook-book’’ fashion. Many of the techniques also depend on a
specific language or a specific compiler implementation.

Some further rules that are generally applicable to programming
for virtual storage systems are the following:

Reference the data in the order in which they are stored,
and/or store the data in the order in which they are refer-
enced.13 This is not always possible, of course, and the order
in which an array is referenced is of no consequence if the
array fits into a single page.14
If possible, separate read-only data from areas that are to be
changed.14 This is of lesser importance than good locality of
reference.

392 ROGERS IBM SYST J

I Finure 3 Module design for matrix multiplication, (A) Multiplication AB, (B) Multipli-

cation AB'

0

0

0

1 PAGE

A

} 1 PAGE

Bt

i rn lPAGE

Avoid the use of elaborate search strategies for large data
areas, and avoid the use of large linked lists if these tech-
niques cause a wide range of addresses to be referenced.13
Virtual storage coding techniques vary by language and par-
ticular language implementation.
In PL/I, the AREA variable is of particular interest. Based
storage can be allocated inside an AREA variable. Thus,
based variables that are to be used together can be local-
ized.14 The code fragment in Example 2 shows that based
variables ALPHA and BETA can be made close together.

ALLOCATE ALPHA IN (GAMMA);
. . .
ALLOCATE BETA IN (GAMMA);

PL/I allows considerable flexibility in declaring data aggre-
gates. Also in PL/I, arrays of structures and structures of ar-

STRUCTURED PROGRAMMING FOR VS SYSTEMS 393

Figure 4 Example FORTRAN storage areas

CONTROL SECTIONS CONTENTS

MAIN

XYZ

ENTRY POINT, BRANCHTOEXECUTABLECOOE

STORAGE FOR FORMAT STATEMENT

STORAGE FOR LOCAL VARIABLES I, J, ETC.

"""

"""

"""

STORAGE FOR LOCAL ARRAYS G, H, ETC.
"""

EXECUTABLECOOE

SIMILAR TO MAIN PROGRAM

$ELANKCOM STORAGE FOR VARIABLES AND ARRAYS IN BLANK COMMON

STORAGE FOR VARIABLES AND ARRAYS IN NAMED COMMON AREA N

IBCOM I/O, INITIALIZATION, AND ERROR HANDLING MODULE,

FlOCS I/O MODULE CALLED FROM IBCOM

rays should be declared in the order in which they are to be
referenced most frequently. Multiply dimensioned arrays in
PL/I are stored rowwi~e. '~
FORTRAN stores arrays by c01urnn.'~
Avoid implied FORTRAN DO loops in IlO statements because
they cause repeated return to the calling program.14
In COBOL, data within the working storage section are allo-
cated in the order in which they are declared. Therefore, de-
clare data that are to be used together in consecutive state-
m e n t ~ . ~ *
Also in COBOL, files that are used together should be opened
in the same statement. This causes their buffers to be close
together and improves the locality of references as buffers
are proce~sed.'~

Source language and compiler implementations

During the virtual storage program designing and coding pro-
cesses, a choice of source language must be made. It is possible
that a single language may be used throughout the program, but
a mixture of languages may also be used. In any case, the char-
acteristics of the language and the implementation must be un-
derstood if the program is to make efficient use of virtual stor-

STRUCTURED PROGRAMMING FOR VS SYSTEMS 395

Figure 5 Example PL/ l storage areas

CONTROL SECTIONS CONTENTS

IL""" A CONSTANTS, CONTROL INFORMATION FOR ABC

* * A B C 2 1 1" 1 STORAGEFORE

CONTROL INFORMATION
SUBROUTINE CALL PARAMETER LISTS, OTHER

. * * X SIMILARTOPROCEDUREAEC

' * " X Y Z l E X E C U T A B L E C O D E F O R X Y Z

!a STORAGE FOR VARIABLES, A, B , C

STORAGE FOR ARRAY 0

LIBRARY SUBROUTINES t
T N A M I C STORAGE
FIXED STORAGE

SAVE AREA, ERROR ANDSTORAGE CONTROL INFORMATION FOR AEC
"""

STORAGE FOR F, P, I , J A N D TEMPORARY WORK AREAS FOR ABC

ALLOCATED ONLY
WHEN XYZ IS
EXECUTING STORAGE FOR VARIABLES AND TEMPORARY WORK AREAS FOR XYZ I t"""i SAVE AREA, ERROR AND STORAGE CONTROL INFORMATION FOR XYZ

H STORAGE FOR G

f 3 DYNAMICALLY LOADED LIBRARY SUBROUTINES WHEN NEEDED

The most notable characteristic of the module structure is that
local variables and arrays are in the same control sections as
executable code, and thus they are not separable at linkage edit-
ing time. The IBCOM module, which is fairly large, is used during
execution only for I/O statements and PAUSE and STOP state-
ments. FIOCS is used for all I/O statements.

PL/I The PL/I optimizing compiler produces two or more control sec-
optimizing tions for each external procedure. One control section is created

compiler that contains only executable code, and another contains control
information, constants, and internal variables. Other control sec-
tions are included as closed subroutines for actions such as char-
acter string assignments. Each variable, array, or structure de-
clared as STATIC EXTERNAL is a separate control section. PL/I
also uses dynamically acquired storage. Space for such pro-
cedures as register save areas, error handling information, AU-
TOMATIC variables, and work areas are in a dynamically ac-
quired section of storage. These sections are obtained and freed
dynamically when a procedure is entered. If procedure A calls

396 ROGERS 1BM SYST J

c procedure B, then the dynamic storage area for procedure B is

generally (and can be made to be) appended to the end of the
dynamic storage area for procedure A. Variables that are allo-
cated dynamically by the user with ALLOCATE statements are in , a different dynamically acquired section of storage. Figure 5
shows the storage structure for the PL/I program in Example 4.

Example 4

I

ABC: PROCEDURE OPTIONS(MA1N);
DECLARE

1 S STATIC EXTERNAL,
2 (A,B,C) FIXED BINARY(l5);

DECLARE D(10) FLOAT DECIMAL(16) STATIC
EXTERNAL;

DECLARE E(20) FLOAT DECIMAL(16) STATIC
INTERNAL;

DECLARE F(10) FIXED DECIMAL(4,2);
DECLARE G(5) FIXED BINARY(31) BASED(P);
DECLARE P POINTER;

. . .
J = 1 ;
DO I = 1 TO 100;
. . .
END;
ALLOCATE G ;
CALL XYZ(J);

END;
XYZ:PROCEDURE(K);

. . .
END;

Virtual storage constraints on structured programming

The disciplines involved in structured programming offer, as was
noted earlier, specific techniques that-when applied in a !ys-
tematic manner-produce programs that are more easily under-
stood than would otherwise be the case. The techniques in-
volved in these disciplines take no notice of the virtual storage
environment. In this section, the process of structured program-
ming is analyzed and the principles of programming for virtual
storage are applied against it. Thus a picture should emerge that
shows the proper way to think about virtual storage during the
structured programming process.

The first and one of the most important of all considerations is
that of whether real storage constraints are important. Many
programs have very little impact on the user’s system. The con-
cern becomes considerably less for large storage configurations
and considerably greater for the smaller systems. Small pro-
grams, short-running programs, and one-time programs are not

NO. 4 * 1975 STRUCTURED PROGRAMMING FOR VS SYSTEMS 397

typical subjects for programming for virtual storage. Large, long-
running, and frequently-run programs benefit most from virtual
storage programming techniques. Of course, a program that is
large and long-running on a System/370 Model 145 with 5 12K
bytes of real storage may be a small, short-running program on a
System/ 370 Model 168 with 4096K bytes of real storage. This is
one of the factors to be ~0nsidered.l~ It cannot be emphasized
too strongly that the designer must determine his degree of con-
cern for real storage as early as possible in the design phase.

Just as there are entire classes of programs that are insensitive
to virtual storage (when measured by system throughput) there
are also parts of many programs that are similarly insensitive. A
flurry of paging that occurs once every few minutes is of little
concern. Thus there are things such as human interaction, error
correction, and so forth that may be designed and coded as
completely and elaborately as is convenient, simply because
they occur infrequently.

design The process of structured programming begins in the design
constraints phase. The culmination of the design phase is a set of proposed

modules that exhibit certain desirable characteristics. Among
these are high module strength, low module coupling, predict-
ability, size, and decision structure.

Some of these characteristics are quite easily dealt with. Predict-
ability and decision structure are usually insensitive to virtual
storage. Module strength tends to be generally compatible with
virtual storage programming principles because it tends to local-
ize code that is used at the same time.

Informational strength modules (modules that perform more
than one function with an entry point for each function) may be
sensitive to virtual storage. If not all of the included functions
are needed at the same points in the program, then code may be
dragged into the working set at times when it will not be used.

large Module size is a somewhat more complicated factor. Size, in
data this context, refers to number of source language statements. If

aggregates this number is kept small, then the amount of executable code
generated is also small. On the other hand, the addition of a
statement such as

DECLARE X (1800) FLOAT DECIMAL (16) ;

increases the object module size by 8000 bytes, while adding
only one source statement to the module. Although the module
size-in terms of source statements-is small, the generated
object module (which depends on the language implementation)

398 ROGERS IBM SYST 1

Figure 6 large aggregate storage problem illustrated by matrix multiplication

2 ALPHA, BETA

C

becomes very large. Further, in high-level language implementa-
tions, there tends to be a separation of data from the code that
references it.

The preceding problem of large data aggregates is merely one
manifestation of an even greater problem of large data aggre-
gates. The suggestion usually given is to make large data aggre-
gates into independent modules (STATIC EXTERNAL in PL/I or
COMMON in FORTRAN) . This procedure, however, in the struc-
tured designer’s view, causes a potential COMMON coupling that
is undesirable. The purpose of making these data aggregates
externally known is so that their location can be chosen at link-
age editing time, and the user can arrange the aggregates so that
real storage is conserved.

In the case of COBOL, all data must be internal. FORTRAN offers
COMMON, which creates an undesirable COMMON coupling con-
dition. PL/I offers STATIC EXTERNAL, which also creates COM-
MON coupling, but also offers the AREA variable. The AREA vari-
able reserves a section of storage, either statically or dynamically
acquired. BASED variables may then be allocated to space within
the AREA. Under some circumstances, this mechanism can be
used to preserve locality of reference.

An example of this problem is illustrated by Figure 6. Module A
contains the storage for and creates matrix ALPHA. Module A
calls Module B, and passes ALPHA as a parameter. Module B

NO. 4 * 1975 STRUCTURED PROGRAMMING FOR VS SYSTEMS

contains the storage for and creates matrix BETA. Module B
calls module C, and passes ALPHA and BETA as parameters.
Module C multiplies ALPHA and BETA, and stores the result in

turns. The FORTRAN program fragment in Example 5 accom-
plishes these operations.

GAMMA. Module c then sets ALPHA equal to GAMMA and re-

Example 5
SUBROUTINE A
DIMENSION ALPHA(16,16)

CALL B(ALPHA)
. . .
S T 0 P
END
SUBROUTINE B (ALPHA)
DIMENSION ALPHA(16,16), BETA(16,16)
. . .
CALL C(ALPHA,BETA)
. . .
RETURN
END
SUBROUTINE C(ALPHA,BETA)
DIMENSION ALPHA(16,16), BETA (16,161, GAMMA(16,16)

DO 10 I = 1,16
DO 10 J = 1,16
GAMMA(1,J) = 0.0
DO 10 K = 1,16

10 GAMMA (1 , ~) = GAMMA(I,J) + ALPHA(I,K)*BETA(K,J)
. . .
DO 20 I = 1,16
DO 20 J = 1,16

20 ALPHA(I,J) = GAMMA(1,J)
. . .
RETURN
END

In this example, the user has little control over the areas that
ALPHA, BETA, and GAMMA occupy in storage. Packageability of
A, B, and C are hampered by the 1024 byte arrays inside each
module. It is easily possible that the three modules can re-
quire three pages of real storage to execute, and it is possible
that they may require six pages of real storage. If these arrays
were put in COMMON -the only alternative in FORTRAN -they
could all be put into one page, which would be present only
when the arrays are being used. What appears to be desirable in
this case in designing for virtual storage is clearly undesirable in
structured design.

Data aggregates are not easy to cope with. On the one hand,
making arrays internal is not a good practice for virtual storage.
On the other hand, making the arrays COMMON opens them up
for use by entirely different parts of the program, thereby creat-
ing a potential reliability problem. A closer look at the design
process may help in finding a solution to the problem.

In some mathematical applications, the designer may be aware
of alternative algorithms before the design process begins, or
may at least become aware of them at some point during the de-
sign phase. There are, for example, at least two ways of calculat-
ing eigenvectors, one of which is highly inefficient in virtual stor-
age and the other quite efficient. The designer should maintain
an awareness of cases where large tables of data items are likely
to be needed. Instead of filling a large table sequentially with
values and then sequentially using the values one by one, it
might be better to use each value as it is generated, and thus
avoid the use of a table entirely. A large, sparsely used table thyt
occupies several pages might be better utilized by storing table
entries in sequential locations and keeping an index to the table
rather than storing entries in locations of the table that corre-
spond to item numbers.

Choice of implementation language may also be affected by
some of the above design considerations. PL/I offers a better so-
lution to the problem illustrated by FORTRAN in Example 5 . The
PL/I solution, which is shown later in Example 6, allows the ma-
trices to be kept together and separate from the code, while it
preserves DATA coupling between the modules.

All the items discussed here thus far have been directed toward
the design of structured programs. These principles also apply to
coding within a module. If the designer realizes that a particular
technique may be applicable within a module, he should point
that fact out to the programmer, who may not be aware of it.
Many techniques of programming for virtual storage are also
available to the practitioner of structured programming.

Some general considerations in programming for virtual storage
that also apply to structured programming are the following:

Exceptional-condition code should be in a separate module
that is called from the module in which the condition (say an
error) occurs.
Data should be referenced in the order in which they are
stored, if possible, especially for large data aggregates that
occupy several pages.
Store data as closely as possible to other data that are to be
used at the same time.

NO. 4 1975 STRUCTURED PROGRAMMING FOR VS SYSTEMS

Avoid the use of elaborate search strategies for large data
areas.13

Many virtual storage programming techniques are valid for par- I

ticular languages and compiler implementations only. Some vir-
tual storage programming techniques that are usable with struc-
tured programming are now discussed.

ANS COBOL Data within the working storage section are allocated in the or-
compiler der in which they are declared. Therefore, declare data that are
version 4 to be used together in consecutive ~tatements. '~ Declare files

that are to be used together in consecutive de~1arations.l~ Files
that are used together should be opened in the same statement.
This causes their buffers to be closer together and improves the
locality of reference as buffers are proces~ed. '~ Do not use alter-
nate areas unless they are needed for a special reason. The net
effect of alternate buffers is to separate data areas.13

PLA The AREA variable is of particular interest because based stor-
optimizing age can be allocated within an AREA variable. In this way, based

compiler variables that are to be used together can be 10calized.'~ The
localization of based variables is illustrated in Example 6, which
accomplishes the same function as FORTRAN, as illustrated in
Example 5 .

Example 6
A: PROCEDURE;

DECLARE OMEGA AREA(4000);
DECLARE ALPHA(16,16) BASED(APTR1; . . .

ALLOCATE ALPHA IN(0MEGA); . . .
CALL B(OMEGA,ALPHA);
. . .

END A;

B: PROCEDURE(OMEGA,ALPHA);
DECLARE OMEGA AREA(*);
DECLARE ALPHA(16,16);
DECLARE BETA(16,16) BASED(BPTR);

. . .
ALLOCATE BETA IN(0MEGA);
. . .
CALL C(OMEGA,ALPHA,BETA);
. . .

END B;

402 ROGERS IBM SYST J

C: PROCEDURE(OMEGA,ALPHA,BETA);
DECLARE OMEGA AREA(*):
DECLARE (ALPHA,BETA)(16,16);
DECLARE GAMMA(16,16) BASED(GF'TR);

. . .
ALLOCATE GAMMA IN(0MEGA);
. . .
DO I = 1 TO 16;

DO J = 1 TO 16;
GAMMA(1,J) = 0.0;
DO K = 1 TO 16;

GAMMA(1,J) = GAMMA(1,J) -t ALPHA(I,K)*BETA(K,J);
END;

END;
END;
ALPHA = GAMMA:
. . .

END C;

In Example 6, the AREA, OMEGA, has been made large enough

cated to the area, ALPHA, BETA, and GAMMA are together in
storage and create a better locality of reference.

to hold ALPHA, BETA, and GAMMA, SO that, when they are allo-

Avoid, if possible, putting variables with the initial attribute in
automatic ~t0rage.l~

Be especially careful of arrays of structures and structures of
arrays. Be sure to declare them in the order in which they are
expected to be referenced most frequently.

PL/I passes all arguments in CALL statements by location rather
than by value. Consider the program fragment in Example 7.

Example 7
X PROCEDURE OPTIONS(MA1N);

DECLARE I STATIC INTERNAL;
. . .
CALL Y(1);
. . .

END X;
Y : PROCEDURE(1);

DECLARE J STATIC INTERNAL;
. . .
CALL Z(I,J);
. . .

END Y;

NO. 4 1975 STRUCTURED PROGRAMMING FOR vs SYSTEMS 403

Z: PROCEDURE(1,J);
. . .
K = I + J ;

END Z ;

general Whenever modules Y or Z use the variable I, they reference the
guidelines STATIC INTERNAL control section of X. Further, whenever

Z references J, it references the STATIC INTERNAL control sec-
tion of Y . Thus the working set, when Z is executing, may be
larger than need be. To reduce the working set, assign the para-
meters to internal variables and then use those variables.

The purpose of special programming for virtual storage is to
reduce a program's real storage requirement, an objective to-
ward which the following guides may prove to be helpful:

Separate unused code and data space from code that is fre-

Seek algorithms or techniques that use small data areas.
Remember that the modules created during the design and
coding phases can be reordered during linkage editing to cre-
ate better reference patterns.

quently used.

Structured programming constraints on programming for
virtual storage

Because the available literature on programming for virtual stor-
age consists mainly of isolated techniques, this section attempts
to bring together such practices and point out ways in which
they do not fit within the constraints of structured programming.
These practices may be well worth avoiding when they conflict
with structured programming for virtual storage systems.

Grouping high-use buffers and data areas together in com-
mon storageI3 causes a potential COMMON coupling and fur-
ther forces an artificial structure on data.
Making common data areas more productive by using the
same area for different data in different phases of the
program13 creates even more severe COMMON coupling than
grouping high-use buffers, because program changes in one
area may cause errors in unrelated areas.
Setting up initial conditions at the beginning of the program14
causes poor module strength and makes later modification
more difficult.
Declaring structures and aggregates m E R N A L 1 4 also causes
COMMON coupling.
Defining every variable as STATIC, particularly for arrays
and data s t r u c t u r e ~ , ~ ~ is not always good practice, as Exam-
ple 7 shows.

404 ROGERS IBM SYST J

The following are general guidelines that should be observed
when writing structured programs for virtual storage systems:

Do not create code that is impossible to comprehend, just to
save real storage. In many cases, there is a simple way to ac-
complish the same thing.
Do not create modules that have poor coupling or strength,
to save real storage. Look for another way to do it. If it is im-
possible, perhaps another language is better suited to the
application.
If it is necessary to make modifications to achieve further
savings in real storage, those modifications may be made
more easily if structured programming techniques are used.

Concluding remarks

The concepts and techniques of virtual storage programming
and those of structured programming have grown along diverse

j paths. Virtual storage programming has evolved largely by look-
i ing retrospectively at programs designed and coded by means

niques that are not applicable to structured programming. Struc-
tured programming has evolved with little regard to virtual

i storage, and thus includes techniques alien to virtual storage
systems.

~ other than structured programming, and thus has included tech-

I

I
The two disciplines are not, however, at odds with each other.
Very few of the concepts involved in structured programming
cause problems in virtual storage. The few that do cause trouble

alternate methods may be found that more easily accommodate
virtual storage. The few techniques of virtual storage program-
ming that do not fit well within structured programming are usu-
ally recognizable by those who are engaged in structured pro-
gramming.

I

1 can usually be avoided during the design and coding phases, and

The combination of these two disciplines requires more effort on
the part of the designer and the programmer than either one
does alone, but together they produce programs that are more
easily understood and maintained, and put less strain on com-
puter storage resources.

CITED REFERENCES AND FOOTNOTES
1. “Structured design” is also referred to as “composite design” and “func-

2. G. J. Myers, Reliable Software Through Composite Design, Mason and
tional design.”

Charter, Publishers, Inc., New York, New York (1975).

NO. 4 * 1975 STRUCTURED PROGRAMMING FOR VS SYSTEMS 4 105

3. G. J. Myers, Composite Design: The Design of Modular Programs, Techni-
cal Report TR00.2406, IBM Corporation, Poughkeepsie New York 12602
(January 29, 1973).

4. G. J. Myers, “Characteristics of composite design,” Datamation 19, No. 9,
100- 102 (September 1973).

5 . W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal 13, No. 2, 115- 139 (1974).

6. E. W. Dijkstra, Notes on Structured Programming, T. H. Report WSK-03,
Second Edition, Technical University Eindhoven, The Netherlands (April
1970).

7. E. W. Dijkstra, “GOT0 statement considered harmful,” Communications
o f the ACM 11, No. 3, 147- 148 (March 1968).

8. H. D. Mills, Mathematical Foundations for Structured Programming, FSC
72-6012, IBM Corporation, Gaithersburg, Maryland 20760 (February
1972).

9. H. D. Mills, Structured Progrumming, FSC 70-1070, IBM Corporation,
Gaithersburg, Maryland 20760 (October 1970).

10. Meyers’ limits on module size in Reference 2 largely preclude segmenta-
tion.

1 1. In this passage, Mills uses the word “program” synonymously with the word
“module,” as used in the present paper.

12. D . J. Hatfield and J. Gerald, “Program restructuring for virtual memory,”
IBMSystemsJournallO,No.3, 168-192(1971).

13. J. E. Morrison, “User program performance in virtual storage systems,”
IBMSys tems Journal 12, No. 3, 216-237 (1973).

14. J. G. Rogers, “OS/VS programming considerations,” IBM Installation
Newsletter, Issue No. 73-01, 2G-1 lG, IBM Corporation, Data Processing
Division, White Plains, New York 10604 (January 26, 1973).

15. CSECT is an acronym for control section.
16. If the value in the ith row andjth column of a matrix A is written as A (i , j) ,

theh for its transpose A‘, A * (j , i) = A (i , . j) . In other words, the matrix is
flipped across its diagonal.

17. A. A. Dubrulle, “Solution of the complete symmetric eigenproblem in a vir-
tual memory environment,” IBM Journal of Research and Development 16,
No. 6,612-616 (November 1972).

Reprint Order No. G321-5023

406 ROGERS

