
The performance of VMl370 systems is analyzed in relation to
the multiprogramming level and the user work load. Saturation
conditions are examined, and methods for locating bottlenecks
in the CPU, main storage, paging, and 110 subsystems are given.
The paper also describes the data requirements, along with
techniques for data collection and reduction. The techniques are
illustrated with data from an actual case study.

Performance analysis of virtual memory time-sharing systems
by Y. Bard

The technology of system performance measurement is suffi-
ciently well-developed so that one is generally able to gather un-
limited quantities of data on almost any aspect of the system’s
operatioq. It is not always clear, however, what should be done
with the data once they are gathered. What is often lacking is a
straightforward way of answering specific questions relating to
system performance. This applies especially to virtual memory
systems, and in particular to VM/370 (Virtual Machine Facili-
ty/370), which is not as well-known and understood by as
many people as the more familiar DOS or os for the System/360
and System/370.

The performance questions that may be raised range all the way
from the most specific (How long will a 15-card assembly take
on Monday at 10 AM?), to the most general (I s my system per-
forming adequately?). In this paper, we present a methodology
for answering performance questions of the general type. We
shall attempt to answer questions such as: Is the system satur-
ated? Under what user load does it become saturated? Which
components form bottlenecks? How can these bottlenecks be re-
moved? How are average response time and resource utilization
related to the user load? The paper emphasizes practical
methods for summarizing and interpreting performance data
gathered on systems running in a production environment.

366 BARD IBM SYST J

The methodology presented here is based on performance mea-
surement and analysis techniques described in previous pa-
pers.’’’ Those papers emphasized the detection of performance
improvements caused by changes in the system. No attempt was
made to analyze the causes for improvement or lack of it, nor to
relate these to the internal structure of the system. What we
shall try to accomplish in the present paper is to relate the
trends in the data to the workings of the system, and thus gain
an insight into what might cause the system to saturate and its
performance to degrade.

The performance of the V M / ~ ~ O system depends in a fundamen-
tal way on the multiprogramming level maintained by the sys-
tem. This concept is defined in the first section, which follows,
and its relation to system performance is explored in the next
section of the paper. The multiprogramming level, however, is
an internal variable, and we really want to relate performance to
external load variables. Therefore, one needs to determine the
relation between the load and the multiprogramming level,
which is done in the third section. With the succeeding sections,
we start exploring possible system bottleneck areas, including
the CPU, main storage, paging, and r/o subsystems. We then
specify the performance data required for the analyses, and then
describe data collection and reduction methods. Following that
is an actual case study that illustrates the use of the previously
described methods. Finally, some problems associated with
large batch virtual machines are discussed. The conclusion high-

’ lights some of the performance questions that were not dealt
with elsewhere in the paper. While we have emphasized the

~ analysis of V M / ~ ~ O performance, the methods described here
could be adapted easily to any virtual memory time-sharing sys-
tem, such as an os/vsz system running primarily TSO.

System description

We describe here only those aspects of the system that are rele-
vant to our performance analysis. More comprehensive descrip-
tions may be found in the reference

VM/370 is, for our purposes, simply a virtual-memory, time-shar-
ing system. Each user of the system may enter tasks, usually
from a remote terminal. The system shares its resources among
these tasks. The flow of user tasks through the system is depict-
ed in Figure 1. A user is in the “dormant” state until he has
completed the entering of a task. Until proven otherwise, the
task is assumed to be “interactive”, i.e., to require fast response
while making only slight demands on system resources. While
receiving service, such tasks are said to be in “Q 1 ,” but before
being admitted to this state they are called “Q 1 candidates.” If a

I NO. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS 367

Figure 1 User states and principal transitions

TASK ENTERED

L O2
.I END OF TASK

1

l+”4 Q1 I END OF TASK

END OF Q2 TIME-SLICE

CANDIDATE

Q1 task does not terminate before consuming a certain amount
of cpu time (roughly 400 milliseconds), it loses its “interactive”
status. It now becomes a “Q2 candidate” and is eligible to be
admitted into “Q2,” which is the set of noninteractive tasks cur-
rently being serviced. There is also a limit (about five seconds)
on the amount of CPU time that a task may receive during one
stay in Q2. A task requiring more CPU time may cycle several
times between the “Q2 candidate” and “Q2” states.

We have not shown all possible state transitions, but the ones
shown suffice for our purposes.

multiprogramming The only tasks that may actually receive CPU time at any mo-
level ment are those in the Q1 and Q2 states. These are called “in-Q”

tasks, and their number is the multiprogramming level (MPL).
The Q1 and Q2 candidates are tasks that are ready to run but
are not allowed to do so at the moment because the system does
not wish to overcommit its resources. These tasks are said to be
eligible. Admissions from eligible to in-Q status is in order of
task priority, which is based on a combination of a permanent
directory entry, the time when the user had last received ser-
vice, and optional penalties depending on the user’s previous
resource demands.5

In-Q users’ main storage requirements are met dynamically
through a demand paging mechanism.6 The system maintains an
estimate of each user’s storage requirements; this estimate is
referred to as the user’s projected working set. Admission is

368 BARD IBM SYST 1

based principally on the availability of main storage space to
accommodate the user’s projected working set. Pages belonging
to users not in Q are always marked available for replacement.

The VM/370 system always runs users’ CPU instructions in the
problem state and its own CPU instructions in the supervisor
state. The amount of time that the CPU spends in the problem
state is, therefore, a good measure of “useful” work done, or
throughput attained, by the system. Traditionally, attempts to
make V M / ~ ~ O and its predecessor, CP-67, perform well have cen-
tered around maximizing percent problem state time, while
maintaining acceptable response times for interactive (Q 1)
tasks.

While a task is in Q, it requires system resources, e.g., main
storage, file I/O, and paging r/o, in addition to CPU cycles. The
rates at which these resources are being utilized thus provide
additional performance measures, as do the response times to
tasks of various types. A true picture of system performance can
be gained only if all these factors are considered simultaneously.

Relation between MPL and performance

As the MPL goes up, the system is increasingly able to overlap
the use of its various components, consequently improving their
utilization. Soon, however, one or more components approach
100 percent utilization, so that no further increase is possible.
The system is then said to be saturated. There is no benefit in
increasing the MPL beyond the saturation point, which is deter-
mined primarily by the system configuration. Thus, a fast CPU
with many I/O channels saturates at a higher MPL than a slow
CPU with few channels. The saturation point is also affected by
the nature of the work load: if the work is unevenly spread
among the system COmpOnentS, Saturation Will Occur SOOner Figure 2 Relationship between

than if the load is well-balanced. throughput and multi-

At any rate, if the effects of paging are ignored, then curve A in &o

Figure 2 shows a typical relationship between performance (as 2
measured by CPU utilization) and the MPL. Saturation is ap- Z 6 O

proached at an MPL of six.7 This curve might be an idealized :40

representation of a V M / ~ ~ O system with essentially infinite main Ez0
storage capacity (hence, negligible paging activity) . w

programming level

0
0 5 10

In a real system, main storage capacity is finite. As the MPL in-
creases, the amount of storage available to each program de-
creases, hence the paging rate increases. This increase becomes
drastic when the storage allocated to each program falls below
its “working set.” Soon the paging channel becomes saturated,
and further increases in the relative paging rate force down the

NO. 4 . 1975 TIME-SHARING PERFORMANCE ANALYSIS 369

MPL

Figure 3 Relationship between
running time and multi-
programming level

10
MPL

Figure 4 Relationship between
user load an multi-
programming level

ACTIVE USERS

370

age, one out of every four users will have a task pending at any
one time. As long as the total number of users does not exceed
24, there will be no more than six tasks pending, and these can
usually be multiprogrammed (admitted into Q) as soon as they
arrive. If the number of users exceeds 24, more than six tasks
will be pending, and these must wait in the eligible set before
being serviced. These trends are depicted in Figure 4: up to the
saturation point (24 users), the MPL builds up, and the eligible
set is almost empty. Beyond that, the eligible set grows linearly,
while the MPL stays constant.

The implications for system resource utilization are obvious.
For each number of active users, we enter Figure 4 to find the
MPL, and then we enter Figure 2 to find the utilization. The re-
sult is shown in Figure 5: utilization climbs up to the saturation
point and then levels off. In practice, utilization actually starts to
decrease somewhat beyond the saturation point, due to in-
creased contention and increased consumption of storage space
by system control blocks.

Observe that if the storage capacity was sufficient to accommo-
date nine tasks, Figure 5 would remain essentially unchanged.
In Figure 4, however, saturation would occur at a user level of
36, rather than 24. Thus, the MPL plot by itself is not a good in-
dicator of how many users will saturate the system.

We can also determine how task response time is affected by
system load. Suppose we have a specific task in mind, requiring
one second of CPU time to complete. The response time is com-
posed of the running time, obtainable from Figure 3 , and the
waiting time in the eligible set, which is proportional to the
number of tasks in that set. The proportionality factor is easily
determined: If the average task required T seconds of CPU time,
and the MPL = n, then a task leaves Q I or Q2 on the average of
every T / u (n) seconds. Hence, if there are m eligible tasks, the
expected waiting time is m T / u (n) . Thus, Figures 3 and 4 can
be used to generate Figure 6, which shows the total response
time. It is possible to verify that Figure 6 would be relatively
unaffected by increasing storage capacity beyond the six-user
level. Figure 6 shows the essential effect of saturation on re-
sponse time. Below the saturation point, the system possesses
unused resources and is able to serve additional users without
severely impacting response time. When saturated, additional
users can be accommodated only at the cost of reduced service
to all.

Our analysis applies only to a “typical” task, i.e., one whose
various resource requirements are roughly proportional to those
of the overall work load. Radically different types of tasks, e.g.,
compute-bound or Ilo-bound ones, may present completely dif-

NO. 4 . 197.5 TIME-SHARING PERFORMANCE ANALYSIS

ferent response profiles. A system whose I/O channels are satu-
rated may have enough leftover CPU power to maintain excel-
lent response to a compute-bound task, and vice-versa.

Bottlenecks

Plots such as Figures 5 and 6 can be used to spot saturation
conditions and determine the user load under which they occur.
If there is no evidence of saturation, all is well. However, if sat-
uration is detected, we must next determine the system compo-
nent that is causing the saturation. This component, which we
shall call the bottleneck, is the one whose capacity must be in-
creased first before overall system performance can be im-
proved. Such improvement would be felt in two ways: An in-
creased number of users could be served before the onset of
saturation, and system throughput at saturation would be in-
creased.

The main hardware components of a V M / ~ ~ O system are the
CPU, main storage, the paging subsystem, and the I/O (other
than paging) subsystem. We shall describe below how bottle-
necks in any one of these components can be spotted, and what
remedies are available to remove them.

Figure 7 CPU saturated with The CPU
paging overhead

The CPU is saturated when its utilization approaches 100 per-
80; cent. A truly saturated CPU can be cured only by being replaced

with a faster one. However, some further analysis may reveal
:: different underlying causes for the saturation and suggest cures

2 1 5 0 ~ 6 0 ~

!loo TOTAL CPU

E RATE 40,: of a less drastic nature.
LL
f 50

"'g One case in point occurs when the CPU becomes saturated with
0
0 10 20 30 40 0 2 overhead due to paging. The case is shown in Figure 7: total

ACTIVE USERS CPU utilization approaches 100 percent, problem state time de-
clines, and paging rate climbs as the number of users increases.
Such conditions prevail if, for some reason, the scheduler con-
sistently underestimates working sets and thus maintains too
high an MPL. Reducing the MPL will release some of the CPU
time spent on paging, but whether or not the remaining MPL will
be sufficiently high to maintain good throughput depends on the
amount of storage available (see below). Increasing storage
capacity while retaining the same MPL would also decrease the
paging rate and release some CPU time for productive use.

The presence of compute-bound jobs in the work load can result
in very high CPU utilization. Some of the CPU time used by these
tasks is really available to other users, should they need it. Thus,

372 BARD IBM SYST J

if response time to the compute-bound tasks is not a primary
concern, then we should not really consider the CPU to be satu-
rated. Figure 8 is the profile of a system that is always running a
fixed number of compute-bound jobs, while the remaining users
are of a more “normal” type. Profiles such as Figure 8 appear
quite commonly if data are plotted indiscriminately, since the
lower portions of the curve may represent the off-shift running
of large compute-bound jobs.

Main storage

Main storage is (or at least the scheduler thinks that it is) satu-
rated when the eligible list is almost never empty. Nevertheless,
a saturated memory is not necessarily a performance bottleneck.
If paging is moderate and the CPU is fully utilized, then main
storage capacity is adequate and will have to be increased only
after a more powerful CPU is installed. If both paging and CPU
utilization are light, then the scheduler is probably overestimat-
ing working sets and consequently maintaining too low an MPL.
If the paging rate is high, productive CPU utilization (percent
problem state time) is low, and the MPL is high, then the schedu-
ler may be at fault. This so-called thrashing condition may be
removed by inducing the scheduler to maintain a lower MPL.
Only if the MPL is low, paging is heavy, and productive CPU uti-
lization (percent problem state time) is low, is the saturated
main storage a true bottleneck and in need of expansion.

Generally, acceptable performance is achieved if storage is ex-
panded only to the point where an adequate MPL can be main-
tained. However, as illustrated later in the case study, additional
performance improvements are attainable by further increases of
storage capacity above the saturation point. If excess storage
capacity is installed, then a substantial number of pages belong-
ing to interactive users can be held over from one interaction to
the next. The total paging rate is thereby reduced, and CPU time
previously spent on paging overhead is freed for productive use.
Furthermore, response time to interactive tasks is improved.
However, as the number of users on the system increases, the
amount of excess storage required to hold temporarily inactive
working sets increases proportionally.

Paging subsystem

The V M / ~ ~ O system breaks up total system wait time into three
components:

1. Idle wait, when no high-speed I/O requests are outstanding.
2. Page wait, when outstanding I/O requests are primarily for

paging.

NO. 4 . 1975 TIME-SHARING PERFORMANCE ANALYSIS

Figure 9 Paging-bound system 3. I/O wait, when outstanding I/O requests are not primarily for
paging. !10o~---J 10LE TOTAL WAIT users Typically, is small. the idle-wait By the time state saturation predominates is reached, when the idle number wait will of

50 WAIT have decreased to zero. Absence of idle wait in itself, however,
z
w
LT w WAIT is no proof of saturation: when the number of users is moderate,
“ 0

WAIT

0 10 20 30 40 there may be enough work to keep either the CPU or an I/O path
ACT~VEUSERS busy at any given time, but not enough to saturate either.

If the CPU is not the bottleneck, there will be ‘a substantial
amount of wait state even at saturation. This wait state may be
due to poor overlapping of CPU and I/O activities, caused by
main storage being insufficient to accommodate an adequate
MPL. If this is not the case, however, and if page wait accounts
for the major part of the residual wait time (see Figure 9) , then
the paging subsystem is probably at fault.

Page wait may be experienced either because the paging rate is
too high or because page transit time is too long. The first condi-

uler, has been dealt with above. The second condition occurs
when either no high-speed paging devices are installed or their

Figure 10 Paging drum overflow

DRUM OVERFLOW

PAGE I /O tion, caused by working sets being underestimated by the sched-

DRUM 1/0

CPU IN
PERCENT capacity has been exceeded. The system may normally page to a
PAGE WAIT fixed-head storage device (“drum”) such as the IBM 2305. But

o 10 20 30 40 when the number of users is sufficiently large, the drum over-
flows and some paging will be to a slower device such as the IBM
3330. The point at which overflow becomes significant can be
determined from a plot of total page I/OS and drum I/OS versus
number of users (Figure 10). Various remedies, short of install-
ing an additional drum, may apply. Freeing virtual pages that are
no longer needed;’ reduced size of virtual machines; applica-
tions reprogrammed to use less virtual storage; increased use of
shared systems-all these may “stretch out” the drum capacity.
These remedies are of no use when there is no drum to start
with. In that case, one may possibly improve performance by
spreading the paging areas over more devices. This reduces seek
times and permits better overlapping of seek and transmission
times. Also, other r/o activity (if any) should be removed from
the paging channel.

ACTIVE USERS

Figure 11 I/O-bound system
I/O subsystem

A bottleneck in the I/O subsystem reveals itself in a manner anal-
ogous to the paging subsystem. If there is enough main storage
to maintain an adequate MPL, and yet a significant amount of I/O
wait time remains at saturation (Figure 1 1) , a deficient I/O sub-
system is indicated. It may be simply that the work load is of so

ACTIVE USERS I/o-bound a nature that no feasible expansion of the I/O facilities

I 374 BARD IBM SYST J

Table 1 . Selected VM/370 counters

Symbolic
name

DMKSYSNM
PROBTIME
IDLEWAIT
PAGEWAIT
IONTWAIT
PGREAD
PGWRITE
DMKPTRSS
DMKDSPNP
DMKVIOCW
DMKHVCDI
DMKPAGPS
RDEVIOCT
VMUSER
VMDSTAT
VMQLEVEL
VMVTIME

VMTTIME

VMPGREAD
VMPGWRIT
VMIOCNT
VMPAGES

VMWSPROJ

System
block

"_____
SYSLOCS
PSA
PSA
PSA
PSA
PSA
PSA *
*
*
*
*,

RDEVBLOK
VMBLOK
VMBLOK
VMBLOK
VMBLOK

VMBLOK

VMBLOK
VMBLOK
VMBLOK
VMBLOK

VMBLOK

Type (S e e
key below)

3
2
2
2
2
1
1
1
3
1
1
1

I /D
3/u
3/u
3/u
2/U

2/u

I tu
1 /U
1 /u
3/u

3/u

Description

Number of logged-on users
CPU time in problem state
CPU time in idle wait state
CPU time in page wait state
CPU time in 110 wait state
Page reads into main storage
Page writes out of main storage
Pages stolen from in-Q users
Page frames available for paging
CCW translations
DlAGNOSE I/Os"
SIOs to paging device
SlOs to real device
User ID
User Q status
User Q status (continued)
Virtual CPU time accounted to
user
Supervisor CPU time accounted
to user
Pages read by user
Pages written by user
Nonspool I/Os by user
Number of user pages residing
in main storage
User's estimated working set

*The addresses of these counters may be obtained at run time in the DMK SYM load map, as described in
the Appendix.
Counter Types: 1 : Event counter

2 : Time accumulator
3 : Current status indicator

ID : One for each real 110 devlce
/U : One for each logged-on user.

will handle it. In this case, one might conclude that the CPU in
use is too fast, and a slower one would suffice. More typically,
some rearrangement and/ or expansion of the rlo subsystem will
cure the problem. It will be necessary to measure the utiliza-
tions, or at least the I/O rates, of the individual I/O channels and
devices. Then, better-balanced loading can be achieved by mov-
ing physical packs from one channel to another, or by moving as-
signed mini-disk areas from one pack to another, by creating
multiple copies of heavily used shared disk areas (e.g., the CMS
system disk). One must caution, however, that the usage pat-
terns of user mini-disk areas are often quite volatile. These areas
should be moved about only if consistent patterns are detected.

Under extreme conditions, an rlo bottleneck may develop if the
MPL is too high, rather than too low. As the MPL increases, so
does the likelihood that several users sharing the same disk
drive will find themselves in Q together, giving rise to high arm

NO. 4 . 1915 TIME-SHARING PERFORMANCE ANALYSIS 375

MPL and high rlo wait time, one should amend the scheduler so
as to restrict the MPL to a reasonable level.

It is possible for both page and r/o wait to account for significant
portions of elapsed time at saturation. In this case, improve-
ments in either subsystem will be useful, but improvements in
both may be required to eliminate the bottleneck entirely.

Data requirements

The foregoing analyses require that performance variables be
measured over a certain time period, say, one week of routine
operation. The measurements are made possible by a set of
"counters" that are automatically maintained by the V M / ~ ~ O con-
trol program. These counters are of three types:

1 . Event counters, incremented each time the event occurs

2. Time accumulators, incremented each time the system

3. Current status indicators (e.g., number of logged-on users).

(e.g., a page read).

changes state (e.g., the CPU leaves the wait state).

Furthermore, there are separate counters for overall system
events, for each logged-on user, and for each I/O device. Table 1
contains a list of those counters which are of most interest to us.
Others are described in Reference 10.

Some items of interest are not measured directly but can be cal-
culated easily from measured items. For instance:

CPU in wait state = idle + rlo + page wait
CPU in supervisor state = Elapsed time - problem state - wait

state
User-initiated I/OS = ccw translations + DIAGNOSE I/OS"
Drum rlos = Sum of r/os over drum devices
Channel n I/OS = Sum of rlos over channel n devices

Typically, the counters will be sampled at more or less regular
intervals (see next section on how this might be done), and dif-
ferenced to obtain measures of system activity during each sam-
pling interval. In most cases, these differences will be divided by
the length of the time interval between measurements to obtain
event rates or percentage utilizations. In addition, one will be
able to calculate the values of several variables at the sampling
instant:

M PL = Number of in-Q users

376 BARD IBM SYST J

variable and difficult to account for. And, perhaps worst of all,
the monitor itself becomes part of the work load that it attempts
to measure. These effects may be minimized by running the
monitor at a frequency commensurate with the power of the sys-
tem being measured. However, the virtual machine monitor also
offers some advantages: it requires no changes to the control
program, it consumes no real storage space when not actually
running, it may be written in a higher-level language, (except for
a simple interface routine), and the data it obtains are immedi-
ately available in a virtual machine, so that they can be analyzed
to provide performance diagnostics in real time. Furthermore,
changes are easily implemented and tested.

Data reduction techniques

We shall assume that counter readings have been taken at inter-
vals during the data collection period. We shall refer to each
reading as an observation and to the time between successive
readings as an observution period. It is necessary to reduce the
data so that plots such as Figures 5 - 11 may be drawn. The re-
duction proceeds as follows:

1. Compute the number of active users for each observation
period.

2. Group together all the observations for which the number of
active users is one or two; similarly, all observations for
which the number of active users is three or four, and so on.
Coarser groupings may be required if the total number of
observations is small. One would like to average at least 50
observations per group.

3. Compute the mean and standard deviation of each perfor-
mance variable within each group of observations.

4. For each performance variable of interest, plot the mean
within each group, against the number of active users for that
group (use the median value; e.g., use 1.5 for the group con-
taining observations with one or two active users).

When the plots are made, they may immediately reveal some of
the trends illustrated in Figures 5 - 1 1. Sometimes, however, the
trends will be masked by random fluctuations in the data. This is
most likely to occur in those portions of the curves where rela-
tively few observations are available- typically in the upper
range of active user values. If random fluctuations predominate,
it may be necessary to aggregate the groups further. For in-
stance, instead of breaking the range up into 1 -2, 3 -4, . . . use
1-4, 5 - 8, . . . If even this fails to produce meaningful trends,
more data are probably required.

If no clear trends are apparent from the plots, it might be worth-
while to determine whether this is due to inadequate data. For

NO. 4 1975 TIME-SHARING PERFORMANCE ANALYSIS 379

Figure 12 Scatter due to insuffi-
cient data

ACTIVE USERS

Figure 13 Scatter due It to inherer
nature of data

ACTIVE USERS

380

Table 2 Sample data

Active Number of Standard Standard
users observations Mean deviation error

1-2 4 50 30 15 (= 3 0 l m
3 -4 16 45 40 10
5 - 6 9 60 30 10
7 - 8 4 50 40 20

this purpose, compute the standard error of each mean value
computed in Step 3 above. The standard error is simply the
standard deviation divided by the square root of the number of
observations in the group. Then, erect a vertical line through
each point on the plot, extending from one standard error below
the mean to one standard error above the mean. Sample data
(rather artificially concocted) appear in Table 2, and the corre-
sponding plot in Figure 12. If one looked at the mean values
alone, one would think that percent problem state time fluctuat-
ed erratically as a function of the number of users. The standard
errors, however, show that the fluctuations are probably insig-
nificant, and that more data are required. Suppose, however,
that one hundred times as many obervations were taken, without
changing the means and standard deviations recorded in Table
2. The vertical lines would be reduced to one tenth their height
(Figure 13). In this case, the fluctuations would appear to be sig-
nificant, and some attempt to find their cause might be made.

For more rigorous methods of analysis, including tests of hy-
potheses and significance tests, the reader is referred to standard
statistical texts.

The values of any performance variable within each group of
observations possess a certain statistical distribution. So far, we
have used the estimated mean and standard deviation of that dis-
tribution. Frequently, it will be preferable to deal with the per-
centiles of that distribution (for example, the 75 percentile of a
distribution is the value below which 75 percent of the observa-
tions fall). There are two cases where use of percentiles is
preferable:

1 . If the variable in question has occasional abnormally large
observed values, then the mean and standard deviation are
very much influenced by these outliers. The median (50
percentile), the 75 percentile, etc., are then much more repre-
sentative of “typical” values. Variables most likely to fall in

BARD IBM SYST J

this category are benchmark response times. We have found Figure 14 CPU utilization (case

the 75 percentile of benchmark response time to be a particu- study)

larly informative measure of performance. Higher percentiles
(e.g., 90) are too sensitive to occasional abnormally long Z
response times, whereas lower percentiles (e.g., the median) ‘$ 80-

are not sufficiently indicative of user satisfaction with the
service they are receiving.

2. For installation planning purposes, one would wish to know
what system resource capacity would be needed to satisfy a
certain percentile of requests. One might, for instance, wish 40”

to know how many users should be allowed on the system at
any time so that the chance of saturation is only 25 percent, CAPACITY

or one may wish to design storage capacity .so as to accom-
modate an MPL of six at least 90 percent of the time.

- 1 MEGABYTE --- 1.5 MEGABYTES

0 10 20 30
ACTIVE USERS

Needless to say, the percentiles may be plotted against number
of active users, producing curves similar to the ones obtained by
plotting the averages.

A case study

This case study deals with a V M / ~ ~ O installation running on an
IBM System/ 370 Model 155-11, with one megabyte of main stor-
age, one byte-multiplexer channel, and five block-multiplexer
channels. One of the latter was dedicated to the primary paging
device, an IBM 2305-11 fixed-head storage facility (“drum”).
The work load was generally of a time-sharing nature, with most
virtual machines operating under the Conversational Monitor
System (CMS) . The data presented by the solid curves in Fig-
ures 14- 19 were derived from about 1000 observations taken
over a week’s normal running period by means of a virtual ma-
chine monitor. Figures 14- 16 all demonstrate the onset of satu-
ration somewhat below the 20 active-user level. Figure 17
shows that page wait accounts for an increasing fraction of total
wait state in the saturated region, and Figure 18 shows the total
paging rate increasing rapidly, with the paging drum beginning to
overflow at the saturation point. Figure 19 shows that main stor-
age is not saturated in the region of operation.

The data lead to the following conclusions: The main bottle-
necks are (1) CPU overhead due to paging; (2) page wait due to
drum overflow. The second factor could be eliminated by the
installation of a second drum. The first factor, and the adverse
effects of the second factor, would be mitigated by reducing the
paging rate. This could be achieved by increasing main storage
capacity to minimize the loss of users’ pages between stays in
queue. The second solution was adopted and the improved per-
formance with 1.5 megabytes of main storage is indicated by the
dashed curves in Figures 14- 19.

Figure 15 Average response time
far interactive tasks
(case study)

z STORAGE CAPACITY - 1 MEGABYTE
“_ 1 5 MEGABYTES

0.5-

0 4-

03-

0.2-

0 10 20
ACTIVE USERS

30

Figure 16 Average response time
for noninteractive
tasks (case st dy) A

0 10 20
ACTIVE USERS

30

I Figure 17 Analysis of CPu wait Nongranular Systems
state (case study)

It has been assumed heretofore that the work load presented to
STORAGE CAPACITY the system possessed a certain amount of granularity. The “ac-
1 MEGABYTE tive user” was used as the unit of the granularity, and it was

expected that the work demanded from the system increased
monotonically, if not proportionally, with the number of users.
This property was important because it permitted us to spot sat-
uration conditions: if throughput does not increase in the face of
increasing demand, then the system must be saturated. Once
saturation has been established, identification of the bottleneck
is no longer heavily dependent on the granularity of the work
load.

0 10 t 20
ACT,VE USERS The work load in some installations is nongranular in type. Spe-

cifically, we are referring to systems where the work load is
composed primarily of one (or a few) batch virtual machine. In
this case, performance of the V M / ~ ~ O system depends so strongly
on that of the batch system, that not much can be said of the
former without knowing something of the latter. For instance, if
the batch virtual machine is itself running a multiprogrammed
operating system, then the true multiprogramming level cannot
be determined from the VM/UO counters alone. For this reason,
it is difficult to devise a systematic approach, and we shall have
to content ourselves with a few random remarks.

30

Figure 18 Paging activity (case If main storage capacity is sufficient, throughput may well in-
study) crease if the batch job stream is broken up into multiple streams

9 60
0 !p STORAGE 1 CAPACITY MEGABYTE that the operating are fed to system. multiple Once virtual this machines, is done, the each work running load a attains copy of a

9 40

0

degree of granularity that may permit performing the previously
P described analyses.
t PAGE
Y / 1/03

20 ,kO I /OS
/ 0 DRUM If the system is believed to be saturated, then looking at CPU

utilization, breakdown of wait state, paging and I/O rates, etc.,
can isolate the bottlenecks, just as it did in the granular case. If
the CPU is not the bottleneck, however, it may be difficult to

ACTIVEUSERS determine whether or not the problem arises from having an
inadequate MPL. Internal measurement of the virtual operating
system may be required.

-

0 -1
0 10 20 30

I Conclusion

In this paper, we have dealt with some aspects of system perfor-
mance, but we have left many questions unanswered. The analy-
ses we have described will tell us, hopefully, whether the sys-
tem is saturated and which components are at fault, but further
analysis will be required to determine exactly how much addi-
tional capacity is needed to achieve a desired performance level.

I 382 BARD IBM SYST J

Frequently, reasonable projections can be made on the basis of Figure 19 Average multipro-

our plots, but in general, the evaluation of proposed configura-
tions will require additional tools such as analytic13 or simulation

gramming level (case
study)

tire distribution of requests, and not merely the averages, in the -;v/ 1 5 MEGABYTES 1

process of configuring a system.

Another type of question that we have left open relates to very
specific performance questions. Even when 75 percent of all 2

requests receive satisfactory service, some users may be com-
plaining about poor response. Careful investigation may reveal
that they are all competing for the same disk arm, or their work- ‘0 10 20 30

ing sets are enormous, or the operator is unresponsive to their
tape requests. Or, by some odd coincidence, 10 users may have
started long compute-bound tasks at once. An event-tracing
monitor” is particularly helpful to reveal the underlying causes,
but on-line reduction and summarizing of data sampled by a vir-
tual machine monitor will often provide sufficient and timely in-
formation about what is going on. Reasonable familiarity with
system internals is usually required for interpreting the data cor-
rectly.

3

ACTIVE USERS

CITED REFERENCES AND FOOTNOTES
1. Y. Bard, “Performance criteria and measurement for a time-sharing system,”

IBM Systems Journal 10, No. 3, 193-216 (1971).
2. Y. Bard, “Experimental evaluation of system performance,” IBM Systems

Journal 12, No. 3, 302-314 (1973).
3. IBM Virtual Machine Facility/370, Introduction, Form No. GC20-1800,

IBM Corporation, Data Processing Division, White Plains, New York (1972).
4. IBM Virtual Machine Facility/370, Control Program (CP) Program Logic,

Form No. SY20-0880, IBM Corporation. Data Processing Division, White
Plains, New York (1972).

5 . C. J. Young, VM/370 Biused Scheduler, IBM New England Programming
Center Technical Report TR 75.0001, Burlington, Massachusetts (1973).

6. R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J . Hatfield. “Virtual
storage and virtual machine concepts,” IBM Systems Journal 11, No. 2,

7. All specific numbers (except in the case study) appearing in this paper are
for illustration only. They do not pertain to any specific VM/370 installation,
nor are they claimed to be typical.

99- 130 (1972).

8. Overhead due to paging may actually increase total CPU utilization.
9. In VM/370 this may be done by using a DlAGNOSE instruction in the vir-

10. C. W. Endee and R. L. Goodman. VM/370 CP Counters, IBM New England
Programming Center Technical Report T R 75.0004, Burlington, Mas-

tual m a ~ h i n e . ~

11. A special type of low-overhead 1/0 operation permitted by VM/370.‘
12. P. H. Callaway, “Performance measurement tools for VM/370,” IBM Sys-

tems Journal 14, No. 2, 134- 160 (1975).
13. Y. Bard, “An Analytic Model of CP-67 and VM/370,” International Work-

shop on Modelling and Evaluation qf Computer Architectures trnd Net-
wwrks, IRIA, Rocquencourt, France (1974). Also available as IBM Cam-
bridge Scientific Center Technical Report No. (3320-2 101, Cambridge, Mas-
sachusetts (1974).

NO. 4 * 1975 TIME-SHARING PERFORMANCE ANALYSIS 383

Appendix: Accessing VM/370 counters from a virtual
machine

Suppose the contents of V M / ~ ~ O counters which are known to
have real addresses A 1, A 2 , . . ., A N are to be stored in N con-
secutive words, starting at virtual address L. The following pro-
cedure would be used:

1 . Store the addresses A 1 , A 2 , . . . , A N in N consecutive words

2. Load the address M into some general purpose register, say

3. Load the number N into some other general purpose register,

4. Load the address L into general purpose register R2 + 1.
5 . Issue the diagnose instructionX’83’, R1, R2,Xr0004‘.

starting, say, in virtual location M .

R1.

say R2.

Note: This diagnose instruction may be executed only by
virtual machines having privilege class E. The diagnose in-
struction, the locations L through L + 4 X N - 1, and the lo-
cations M through M + 4 X N - 1 must all be in the same vir-
tual page, i.e., their virtual addresses may differ only in the
three low-order hexadecimal digits. It is permissible to have
the data overwrite the addresses, i.e., to have L = M . Since
the diagnose instruction and a branch instruction following it
would take up two words, the total number of data words
obtainable with one diagnose is 1022.

The addresses of most counters can be found in the system mac-
roinstructions indicated in Table 1. The remainder may be
found at run time in the DMKSYM load map, which may be read
into the virtual machine’s address space by issuing the diagnose
instruction x’83’, R I , ’ X ’ O O O ~ ~ ’ , where register R1 contains the
address of a page-aligned, 4096-byte buffer into which the load
map is to be read. Each entry in the load map consists of 12
bytes: the symbolic name in EBCDIC (eight bytes), followed by
the real address (four bytes).

Reprint Order No. G321-5022

384 BARD

