The performance of VM/370 systems is analyzed in relation to
the multiprogramming level and the user work load. Saturation
conditions are examined, and methods for locating bottlenecks
in the CPU, main storage, paging, and 110 subsystems are given.
The paper also describes the data requirements, along with
techniques for data collection and reduction. The techniques are
illustrated with data from an actual case study.

Performance analysis of virtual memory time-sharing systems
by Y. Bard

The technology of system performance measurement is suffi-
ciently well-developed so that one is generally able to gather un-
limited quantities of data on almost any aspect of the system’s
operation. It is not always clear, however, what should be done

with the data once they are gathered. What is often lacking is a
straightforward way of answering specific questions relating to
system performance. This applies especially to virtual memory
systems, and in particular to vM/370 (Virtual Machine Facili-
ty/370), which is not as well-known and understood by as
many people as the more familiar DOS or 0s for the System/360
and System/370.

The performance questions that may be raised range all the way
from the most specific (How long will a 15-card assembly take
on Monday at 10 AM?), to the most general (Is my system per-
forming adequately?). In this paper, we present a methodology
for answering performance questions of the general type. We
shall attempt to answer questions such as: Is the system satur-
ated? Under what user load does it become saturated? Which
components form bottlenecks? How can these bottlenecks be re-
moved? How are average response time and resource utilization
related to the user load? The paper emphasizes practical
methods for summarizing and interpreting performance data
gathered on systems running in a production environment.

BARD IBM SYST J

The methodology presented here is based on performance mea-
surement and analysis techniques described in previous pa-
pers.'” Those papers emphasized the detection of performance
improvements caused by changes in the system. No attempt was
made to analyze the causes for improvement or lack of it, nor to
relate these to the internal structure of the system. What we
shall try to accomplish in the present paper is to relate the
trends in the data to the workings of the system, and thus gain
an insight into what might cause the system to saturate and its
performance to degrade.

The performance of the vM/370 system depends in a fundamen-
tal way on the multiprogramming level maintained by the sys-
tem. This concept is defined in the first section, which follows,
and its relation to system performance is explored in the next
section of the paper. The multiprogramming level, however, is
an internal variable, and we really want to relate performance to
external load variables. Therefore, one needs to determine the
relation between the load and the multiprogramming level,
which is done in the third section. With the succeeding sections,
we start exploring possible system bottieneck areas, including
the CPU, main storage, paging, and 1/0 subsystems. We then
specify the performance data required for the analyses, and then
describe data collection and reduction methods. Following that
is an actual case study that illustrates the use of the previously
described methods. Finally, some problems associated with
large batch virtual machines are discussed. The conclusion high-
lights some of the performance questions that were not dealt
with elsewhere in the paper. While we have emphasized the
analysis of VM/370 performance, the methods described here
could be adapted easily to any virtual memory time-sharing sys-
tem, such as an 0S/vVS2 system running primarily TSO.

System description

We describe here only those aspects of the system that are rele-
vant to our performance analysis. More comprehensive descrip-
tions may be found in the reference manuals.>*

VM/370 is, for our purposes, simply a virtual-memory, time-shar-
ing system. Each user of the system may enter tasks, usually
from a remote terminal. The system shares its resources among
these tasks. The flow of user tasks through the system is depict-
ed in Figure 1. A user is in the ““dormant” state until he has
completed the entering of a task. Until proven otherwise, the
task is assumed to be “‘interactive”, i.e., to require fast response
while making only slight demands on system resources. While
receiving service, such tasks are said to be in “Q1,” but before
being admitted to this state they are called Q1 candidates.” If a

NO. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

multiprogramming
level

Figure 1 User states and principal transitions

Q1 ROOM AVAILABLE IN MAIN STORAGE
CANDIDATE

ENTERED

END OF TASK DORMANT END OF TASK

END OF Q2 TIME-SLICE

Q2 END OF Q1 TIME-SLICE
CANDIDATE

ROOM AVAILABLE IN MAIN STORAGE

Q1 task does not terminate before consuming a certain amount
of cpU time (roughly 400 milliseconds), it loses its ““interactive’
status. It now becomes a “Q2 candidate” and is eligible to be
admitted into “Q2,” which is the set of noninteractive tasks cur-
rently being serviced. There is also a limit (about five seconds)
on the amount of CPU time that a task may receive during one
stay in Q2. A task requiring more CPU time may cycle several

times between the “Q2 candidate’ and “Q2” states.

We have not shown all possible state transitions, but the ones
shown suffice for our purposes.

The only tasks that may actually receive CPU time at any mo-
ment are those in the Q1 and Q2 states. These are called “in-Q”
tasks, and their number is the multiprogramming level (MPL).
The Q1 and Q2 candidates are tasks that are ready to run but
are not allowed to do so at the moment because the system does
not wish to overcommit its resources. These tasks are said to be
eligible. Admissions from eligible to in-Q status is in order of
task priority, which is based on a combination of a permanent
directory entry, the time when the user had last received ser-
vice, and optional penalties depending on the user’s previous
resource demands.’

In-Q users’ main storage requirements are met dynamically
through a demand paging mechanism.® The system maintains an
estimate of each user’s storage requirements; this estimate is
referred to as the user’s projected working set. Admission is

IBM SYST J

based principally on the availability of main storage space to
accommodate the user’s projected working set. Pages belonging
to users not in QQ are always marked available for replacement.

The vM/370 system always runs users’ CPU instructions in the
problem state and its own CPU instructions in the supervisor
state. The amount of time that the CPU spends in the problem
state is, therefore, a good measure of “useful” work done, or
throughput attained, by the system. Traditionally, attempts to
make VM/370 and its predecessor, CP-67, perform well have cen-
tered around maximizing percent problem state time, while
maintaining acceptable response times for interactive (Q1)
tasks.

While a task is in Q, it requires system resources, e.g., main
storage, file 1/0, and paging 1/0, in addition to CPU cycles. The
rates at which these resources are being utilized thus provide
additional performance measures, as do the response times to
tasks of various types. A true picture of system performance can
be gained only if all these factors are considered simultaneously.

Relation between MPL and performance

As the MPL goes up, the system is increasingly able to overlap
the use of its various components, consequently improving their
utilization. Soon, however, one or more components approach
100 percent utilization, so that no further increase is possible.
The system is then said to be saturated. There is no benefit in
increasing the MPL beyond the saturation point, which is deter-
mined primarily by the system configuration. Thus, a fast CPU
with many 1/0 channels saturates at a higher MPL than a slow
cpruU with few channels. The saturation point is also affected by
the nature of the work load: if the work is unevenly spread
among the system components, saturation will occur sooner
than if the load is well-balanced.

At any rate, if the effects of paging are ignored, then curve A in
Figure 2 shows a typical relationship between performance (as
measured by CPU utilization) and the MPL. Saturation is ap-
proached at an MPL of six.” This curve might be an idealized
representation of a VM/370 system with essentially infinite main
storage capacity (hence, negligible paging activity).

In a real system, main storage capacity is finite. As the MPL in-
creases, the amount of storage available to each program de-
creases, hence the paging rate increases. This increase becomes
drastic when the storage allocated to each program falls below
its “working set.” Soon the paging channel becomes saturated,
and further increases in the relative paging rate force down the

NO. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

Figure 2 Relationship between

PERCENT CPU UTILIZATION
[» -3 0
S o o S

=

throughput and multi-
programming level

A (INFINITE STORAGE)
(9 USERS)
D

c
6 USERS)
B (STORAGE
CAPACITY =
3 USERS)

N

o

5 10

Figure 3 Relationship between

s
[}

w
S

-
o

TASK RUNNING TIME (SEC)
N
=]

o

running time and multi-
programming level

Figure 4 Relationship between

o
13

—
o

)

[4]
z
o
4
o
o
]
X
1]
<
=
e
=
=
)
&
ui
@
=1

f=]

user load an multi-
programming level

ELIGIBLE
1 l

o

30 40
ACTIVE USERS

productive utilization of other components, such as the cpu.?
The results for various storage capacities are also shown in Fig-
ure 2. In curve B, storage capacity can accommodate the work-
ing sets of three programs. Hence, utilization peaks at an MPL of
three. Similarly, curves C and D depict storage capacities of six
and nine programs, respectively. Observe that the maximum uti-
lization in curve B is considerably below the infinite-storage sat-
uration level, but is very close to it in curves C and D. It ap-
pears that only a limited gain in performance is attainable by
increasing storage capacity much beyond accommodating six
programs, which is the infinite-storage saturation point. (See the
section on main storage for further discussion).

The main function of the system scheduler is to maintain the
optimal MpPL for the given system configuration and user work
load. The scheduler performs its task by estimating each user’s
working set, and by admitting into Q only as many users whose
working sets can be accommodated in main storage.

We are also interested in determining how the running time of a
given task is affected by the MPL. Suppose a task requires one
second of CPU time. Let u(n) be the CPU utilization at MPL = n.
If system resources are shared fairly among users, the task re-
ceives, on the average, u(n) /n seconds of CpU time per second
of elapsed time, and hence its running time may be estimated as
n/u(n) seconds. The running time is plotted versus MPL in Fig-
ure 3 for the various configurations shown in Figure 2.

Relation between load and performance

Although it is important to understand the relation between MPL
and performance, what one is really interested in is the relation
between performance and the load placed on the system. We
shall take the number of active users (i.e., those logged-on users
who are not taking a coffee break) as the primary measure of
system load. The measure is open to much valid criticism—no
two users are alike; how can you compare a user who is editing
a file under cMs to one who is using the initial-program-loading
procedure for a large OS/vS2 virtual machine; etc. Yet measure-
ments taken at many installations have shown that performance
variables averaged over reasonable periods of time (one week,
say) present very consistent patterns when plotted against num-
ber of active users. These plots will be our primary performance
evaluation tools.

Suppose the system storage capacity suffices to accommodate
an MPL of six. Suppose, further, that the typical user spends nine
seconds to enter a task which, under moderate load conditions,
takes three seconds of real time to complete. Thus, on the aver-

BARD IBM SYST J

age, one out of every four users will have a task pending at any
one time. As long as the total number of users does not exceed
24, there will be no more than six tasks pending, and these can
usually be muitiprogrammed (admitted into Q) as soon as they
arrive. If the number of users exceeds 24, more than six tasks
will be pending, and these must wait in the eligible set before
being serviced. These trends are depicted in Figure 4: up to the
saturation point (24 users), the MPL builds up, and the eligible
set is almost empty. Beyond that, the eligible set grows linearly,
while the MPL stays constant.

The implications for system resource utilization are obvious.
For each number of active users, we enter Figure 4 to find the
MPL, and then we enter Figure 2 to find the utilization. The re-
sult is shown in Figure 5: utilization climbs up to the saturation
point and then levels off. In practice, utilization actually starts to
decrease somewhat beyond the saturation point, due to in-
creased contention and increased consumption of storage space
by system control blocks.

Observe that if the storage capacity was sufficient to accommo-
date nine tasks, Figure 5 would remain essentially unchanged.
In Figure 4, however, saturation would occur at a user level of
36, rather than 24. Thus, the MPL plot by itself is not a good in-
dicator of how many users will saturate the system.

We can also determine how task response time is affected by
system load. Suppose we have a specific task in mind, requiring
one second of CPU time to complete. The response time is com-
posed of the running time, obtainable from Figure 3, and the
waiting time in the eligible set, which is proportional to the
number of tasks in that set. The proportionality factor is easily
determined: If the average task required 7 seconds of CPU time,
and the MPL = n, then a task leaves Q1 or Q2 on the average of
every T/u(n) seconds. Hence, if there are m eligible tasks, the
expected waiting time is m7T/u{n). Thus, Figures 3 and 4 can
be used to generate Figure 6, which shows the total response
time. It is possible to verify that Figure 6 would be relatively
unaffected by increasing storage capacity beyond the six-user
level. Figure 6 shows the essential effect of saturation on re-
sponse time. Below the saturation point, the system possesses
unused resources and is able to serve additional users without
severely impacting response time. When saturated, additional
users can be accommodated only at the cost of reduced service
to all.

Our analysis applies only to a ‘“‘typical” task, i.e., one whose
various resource requirements are roughly proportional to those
of the overall work load. Radically different types of tasks, e.g.,
compute-bound or 1/0-bound ones, may present completely dif-

No. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

Figure 5 Relationship between

PERCENT CPU UTHLIZATION
n B o
=] =3 =1

o

throughput and user
load

L

30 40
ACTIVE USERS

Figure 6 Relationship between

30

N
=

—
o

5
v
<@
w
=
=
w
2l
z
S
I
[
It
&©

o

response time and user
load

S

30 40
ACTIVE USERS

ferent response profiles. A system whose 1/0 channels are satu-
rated may have enough leftover CPU power to maintain excel-
lent response to a compute-bound task, and vice-versa.

Bottlenecks

Plots such as Figures 5 and 6 can be used to spot saturation
conditions and determine the user load under which they occur.
If there is no evidence of saturation, all is well. However, if sat-
uration is detected, we must next determine the system compo-
nent that is causing the saturation. This component, which we
shall call the bottleneck, is the one whose capacity must be in-
creased first before overall system performance can be im-
proved. Such improvement would be felt in two ways: An in-
creased number of users could be served before the onset of
saturation, and system throughput at saturation would be in-
creased.

The main hardware components of a vM/370 system are the
CPU, main storage, the paging subsystem, and the 1/0 (other
than paging) subsystem. We shall describe below how bottle-
necks in any one of these components can be spotted, and what
remedies are available to remove them.

7 CPU saturated with The CPU
poging overhead

The CPU is saturated when its utilization approaches 100 per-
cent. A truly saturated CPU can be cured only by being replaced
with a faster one. However, some further analysis may reveal
different underlying causes for the saturation and suggest cures
of a less drastic nature.

ot

173

=}
[
s

@
S

100

TOTAL CPU
PAGING RATE_1

=
<}

z
<]
=
<
o
=
=
=
pe)
T
[}
=
z
i
Q
&
W
[

o
f=}

™
o S
PAGING RATE (READS PER SECOND)

PROBLEM STATE

One case in point occurs when the CPU becomes saturated with
— overhead due to paging. The case is shown in Figure 7: total
ACTIVE USERS cPU utilization approaches 100 percent, problem state time de-
clines, and paging rate climbs as the number of users increases.
Such conditions prevail if, for some reason, the scheduler con-
sistently underestimates working sets and thus maintains too
high an MPL. Reducing the MPL will release some of the CPU
time spent on paging, but whether or not the remaining MPL will
be sufficiently high to maintain good throughput depends on the
amount of storage available (see below). Increasing storage
capacity while retaining the same MPL would also decrease the
paging rate and release some CPU time for productive use.

[=3

The presence of compute-bound jobs in the work load can result
in very high cpu utilization. Some of the CPU time used by these
tasks is really available to other users, should they need it. Thus,

BARD IBM SYST J

if response time to the compute-bound tasks is not a primary
concern, then we should not really consider the CPU to be satu-
rated. Figure 8 is the profile of a system that is always running a
fixed number of compute-bound jobs, while the remaining users
are of a more “normal” type. Profiles such as Figure 8 appear
quite commonly if data are plotted indiscriminately, since the
lower portions of the curve may represent the off-shift running
of large compute-bound jobs.

Main storage

Main storage is (or at least the scheduler thinks that it is) satu-
rated when the eligible list is almost never empty. Nevertheless,
a saturated memory is not necessarily a performance bottleneck.
If paging is moderate and the cpu is fully utilized, then main
storage capacity is adequate and will have to be increased only
after a more powerful cpuU is installed. If both paging and cru
utilization are light, then the scheduler is probably overestimat-
ing working sets and consequently maintaining too low an MPL.
If the paging rate is high, productive CPU utilization (percent
problem state time) is low, and the MPL is high, then the schedu-
ler may be at fault. This so-called thrashing condition may be
removed by inducing the scheduler to maintain a lower MPL.
Only if the MPL is low, paging is heavy, and productive CPU uti-
lization (percent problem state time) is low, is the saturated
main storage a true bottleneck and in need of expansion.

Generally, acceptable performance is achieved if storage is ex-
panded only to the point where an adequate MPL can be main-
tained. However, as illustrated later in the case study, additional
performance improvements are attainable by further increases of
storage capacity above the saturation point. If excess storage
capacity is installed, then a substantial number of pages belong-
ing to interactive users can be held over from one interaction to
the next. The total paging rate is thereby reduced, and CpPU time
previously spent on paging overhead is freed for productive use.
Furthermore, response time to interactive tasks is improved.
However, as the number of users on the system increases, the
amount of excess storage required to hold temporarily inactive
working sets increases proportionally.

Paging subsystem

The vM/370 system breaks up total system wait time into three
components:

1. Idle wait, when no high-speed 1/0 requests are outstanding.
2. Page wait, when outstanding 1/0 requests are primarily for

paging.

No. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

z
Q
=
<
N
=
=
=)
>
o
s}
=
z
pon}
8]
&
i
o

100

o
S

o

Some users compute-
bound

TOTAL CPU

PROBLEM STATE CPU

o

30 40
ACTIVE USERS

Figure 9 Paging-bound system

PERCENT CPU IN WAIT STATE

-
o
<3

@
=}

=3

TOTAL WAIT

IDLE
WAIT
)

/0 PAGE
WAIT

| | WAIT

=3

10 30 40
ACTIVE USERS

Figure 10 Paging drum overflow

Figure 11

PERCENT CPU IN WAIT STATE

DRUM OVERFLOW
-

PAGE 1/0

RATE
DRUM 1/0
RATE

PERCENT
CPU IN
PAGE WAIT

1

30 40
ACTIVE USERS

1/O-bound system

1DLENJOTAL WAIT

[~ WAIT

PAGE
WAIT

1/0
WAIT
X

|
10 30 f40
ACTIVE USERS

374

3. /O wait, when outstanding 1/O requests are not primarily for
paging.

Typically, the idle-wait state predominates when the number of
users is small. By the time saturation is reached, idle wait will
have decreased to zero. Absence of idle wait in itself, however,
is no proof of saturation: when the number of users is moderate,
there may be enough work to keep either the CPU or an 1/O path
busy at any given time, but not enough to saturate either.

If the CPU is not the bottleneck, there will be a substantial
amount of wait state even at saturation. This wait state may be
due to poor overlapping of cPU and 1/0 activities, caused by
main storage being insufficient to accommodate an adequate
MpL. If this is not the case, however, and if page wait accounts
for the major part of the residual wait time (see Figure 9), then
the paging subsystem is probably at fault.

Page wait may be experienced either because the paging rate is
too high or because page transit time is too long. The first condi-
tion, caused by working sets being underestimated by the sched-
uler, has been dealt with above. The second condition occurs
when either no high-speed paging devices are installed or their
capacity has been exceeded. The system may normally page to a
fixed-head storage device (““drum”) such as the 1BM 2305. But
when the number of users is sufficiently large, the drum over-
flows and some paging will be to a slower device such as the IBM
3330. The point at which overflow becomes significant can be
determined from a plot of total page 1/0s and drum I/Os versus
number of users (Figure 10). Various remedies, short of install-
ing an additional drum, may apply. Freeing virtual pages that are
no longer needed;’ reduced size of virtual machines; applica-
tions reprogrammed to use less virtual storage; increased use of
shared systems —all these may “‘stretch out” the drum capacity.
These remedies are of no use when there is no drum to start
with. In that case, one may possibly improve performance by
spreading the paging areas over more devices. This reduces seek
times and permits better overlapping of seek and transmission
times. Also, other 1/0 activity (if any) should be removed from
the paging channel.

1/0 subsystem

A bottleneck in the 1/0 subsystem reveals itself in a manner anal-
ogous to the paging subsystem. If there is enough main storage
to maintain an adequate MPL, and yet a significant amount of 1/0
wait time remains at saturation (Figure 11), a deficient 1/0 sub-
system is indicated. It may be simply that the work load is of so
1/0-bound a nature that no feasible expansion of the 1/0 facilities

BARD IBM SYST J

Table 1. Selected VM/370 counters

Symbolic System Type (See
name block key below) Description

DMKSYSNM SYSLOCS
PROBTIME PSA

3 Number of logged-on users
2 ‘CPU time in problem state

IDLEWAIT PSA 2 CPU time in idle wait state
PAGEWAIT PSA 2 CPU time in page wait state
IONTWAIT PSA 2 CPU time in 1/O wait state
PGREAD PSA 1 Page reads into main storage
PGWRITE 1 Page writes out of main storage
DMKPTRSS 1 Pages stolen from in-Q users
DMKDSPNP * 3 Page frames available for paging
DMKVIOCW * 1 CCW translations
DMKHVCD1 * 1 DIAGNOSE 1/0s"!
DMKPAGPS % 1 SIOs to paging device
RDEVIOCT RDEVBLOK 1/D S10s to real device
VMUSER VMBLOK 3/u User ID
VMDSTAT VMBLOK 3/U User Q status
VMQLEVEL VMBLOK 3/U User Q status (continued)
VMVTIME YMBLOK 2/U Virtual CPU time accounted to

user
VMTTIME VMBLOK 2/U Supervisor CPU time accounted

to user
VMPGREAD VMBLOK 1/u Pages read by user
VMPGWRIT VMBLOK 1/U Pages written by user
VMIOCNT VYMBLOK 1/U Nonspool 1/Os by user
VMPAGES VMBLOK 3/U Number of user pages residing

in main storage
VMWSPROIJ VMBLOK 3/U User’s estimated working set

*The addresses of these counters may be obtained at run time in the DMK SYM load map, as described in
the Appendix.

Counter Types: : Event counter

1
2 : Time accumulator

3 : Current status indicator

D : One for each real 1/O device
U : One for each logged-on user.

will handle it. In this case, one might conclude that the CPU in
use is too fast, and a slower one would suffice. More typically,
some rearrangement and/or expansion of the 1/0 subsystem will
cure the problem. It will be necessary to measure the utiliza-
tions, or at least the 1/0 rates, of the individual 1/0 channels and
devices. Then, better-balanced loading can be achieved by mov-
ing physical packs from one channel to another, or by moving as-
signed mini-disk areas from one pack to another, by creating
multiple copies of heavily used shared disk areas (e.g., the CMS
system disk). One must caution, however, that the usage pat-
terns of user mini-disk areas are often quite volatile. These areas
should be moved about only if consistent patterns are detected.

Under extreme conditions, an 1/0 bottleneck may develop if the
MPL is too high, rather than too low. As the MPL increases, so
does the likelihood that several users sharing the same disk
drive will find themselves in Q together, giving rise to high arm

No. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

contention. If one observes a coincidence between very high
MPL and high 1/0 wait time, one should amend the scheduler so
as to restrict the MPL to a reasonable level.

It is possible for both page and 1/0 wait to account for significant
portions of elapsed time at saturation. In this case, improve-
ments in either subsystem will be useful, but improvements in
both may be required to eliminate the bottleneck entirely.

Data requirements

The foregoing analyses require that performance variables be
measured over a certain time period, say, one week of routine
operation. The measurements are made possible by a set of
“counters’’ that are automatically maintained by the vMm/370 con-
trol program. These counters are of three types:

1. Event counters, incremented each time the event occurs
(e.g., a page read).
2. Time accumulators, incremented each time the system
changes state (e.g., the CPU leaves the wait state).
. Current status indicators (e.g., number of logged-on users).

Furthermore, there are separate counters for overall system
events, for each logged-on user, and for each 1/0 device. Table 1
contains a list of those counters which are of most interest to us.
Others are described in Reference 10.

Some items of interest are not measured directly but can be cal-
culated easily from measured items. For instance:

CPU in wait state = idle + 1/0 + page wait

CPU in supervisor state = Elapsed time —problem state —wait
state

User-initiated 1/0s = ccw translations + DIAGNOSE 1/0s"'

Drum 1/0s = Sum of 1/0s over drum devices

Channel » 1/0s = Sum of 1/0s over channel n devices

Typically, the counters will be sampled at more or less regular
intervals (see next section on how this might be done), and dif-
ferenced to obtain measures of system activity during each sam-
pling interval. In most cases, these differences will be divided by
the length of the time interval between measurements to obtain
event rates or percentage utilizations. In addition, one will be
able to calculate the values of several variables at the sampling
mstant:

MPL = Number of in-Q users

IBM SYSTJ

Q Candidates = Number of eligible users (runnable but
not in Q)

Storage Used = Sum of pages belonging to in-Q users

Storage Demanded = Sum of working sets of eligible and in-Q
users

One can also compute:

Active Users = Number of users who have used CPU
time during sampling interval

While sampling procedures give good estimates of cumulative
system activity, this may not be the case with instantaneous val-
ues such as the MPL, which can fluctuate rapidly. This problem
may be solved in two ways:

. Event-Driven Monitoring—1If a time-stamped record is
made of each user state transition, it is possible to compute,
say, the MPL at each instant. From that, the average MPL
over any sampling period may be computed exactly.

. Integrating Counters— Additional counters may be imple-
mented in the control program. At each change in a variable
of interest, its counter is incremented by the previous value
of the variable multiplied by the time elapsed since the pre-
vious change. The counter is sampled periodically, and its
increment divided by elapsed time gives the average value of
the variable. This method requires less overhead than the
preceding one.

We also need measurements of response time. If we wish to
compute the average response times to, say, all Q1 and Q2
tasks, we again have the same two alternatives:

1. Event-Driven Monitoring —The time-stamped records of user
state transitions can also be used to compute the time it takes
for each round trip through the eligible list and Q1 or Q2.
This is essentially the response time to a task requiring one
trip through Q.

. Integrating Counters—Here we need two counters for each
user state. One counter accumulates the number of entries
into that state, the other accumulates the lengths of the stays
in that state. The ratio of the second to first counter gives the
average stay.

A completely different method for measuring response time is to
devise one or more benchmark programs and to run these at
regular intervals throughout the data-gathering period.” These
benchmarks are run in a separate virtual machine, while the sys-
tem is also servicing its normal work load. They may be regard-
ed as “thermometers” which are inserted into the system to

NO. 4 + 1975 TIME-SHARING PERFORMANCE ANALYSIS

measure its “temperature’” —in this case, its responsiveness to
the types of requests characterized by these benchmarks, which
may include trivial interactive, 1/0-bound, compute-bound, or
mixed tasks. Most conveniently, the benchmarks may be “syn-
thethic” in nature, consisting of one subroutine that may be
called with parameters specifying how much CpU time should be
used, how much file and terminal 1/0 activity should be per-
formed, and how many pages should be referenced. The subrou-
tine contains CPU, 1/0, and memory usage loops, and the number
of executions of each loop is determined by the values of the
calling parameters.

Measurement techniques

In this section, we describe two techniques that may be used to
extract the information from the counters maintained by the sys-
tem.

The data-gathering monitor may be implemented as part of the
control program. The monitor is entered upon the occurrence of
a timer interruption that is set for the required sampling period.
The required data are moved to a buffer area, whence they are
written onto tape or disk. Event-driven monitoring may be ac-
complished by inserting MONITOR CALL instructions in the
appropriate places in the control program. By using different
codes for different types of events one can establish flexible con-
trols over the types of data to be gathered in any monitoring
session.'”” Such a monitor is included in the vM/370 system start-
ing with the Release 2 PLC 13 version.

A second type of monitor is one that runs in a virtual machine.
The vM/370 system permits a privileged virtual machine to read
the contents of specified locations in the control program’s ad-
dress space (see Appendix for details). A virtual machine may
also “put itself to sleep” pending the arrival of a timer interrup-
tion. By using these facilities, the virtual machine may sample
the system counters at specified intervals. Each time it wakes
up, it may also run the synthetic benchmarks described in the
preceding section, and record their running times along with the
sampled values of the counters. This type of monitor cannot
obtain event-driven records and, therefore, is restricted in the
amount of detail it can provide. Its sampling period can be regu-
lated only approximately.

The observations taken by this method will be biased by the fact
that the measuring virtual machine must be in Q and running at
the time the observations are taken. The variables most severely
affected are the MPL and the storage used. Furthermore, the
overhead imposed on the system by this type of monitor is quite

BARD IBM SYST J

variable and difficult to account for. And, perhaps worst of all,
the monitor itself becomes part of the work load that it attempts
to measure. These effects may be minimized by running the
monitor at a frequency commensurate with the power of the sys-
tem being measured. However, the virtual machine monitor also
offers some advantages: it requires no changes to the control
program, it consumes no real storage space when not actually
running, it may be written in a higher-level language, (except for
a simple interface routine), and the data it obtains are immedi-
ately available in a virtual machine, so that they can be analyzed
to provide performance diagnostics in real time. Furthermore,
changes are easily implemented and tested.

Data reduction techniques

We shall assume that counter readings have been taken at inter-
vals during the data collection period. We shall refer to each
reading as an observation and to the time between successive
readings as an observation period. It is necessary to reduce the
data so that plots such as Figures S~ 11 may be drawn. The re-
duction proceeds as follows:

1. Compute the number of active users for each observation
period.

2. Group together all the observations for which the number of
active users is one or two; similarly, all observations for
which the number of active users is three or four, and so on.
Coarser groupings may be required if the total number of
observations is small. One would like to average at least 50
observations per group.

. Compute the mean and standard deviation of each perfor-
mance variable within each group of observations.

. For each performance variable of interest, plot the mean
within each group, against the number of active users for that
group (use the median value; e.g., use 1.5 for the group con-
taining observations with one or two active users).

When the plots are made, they may immediately reveal some of
the trends illustrated in Figures 5—11. Sometimes, however, the
trends will be masked by random fluctuations in the data. This is
most likely to occur in those portions of the curves where rela-
tively few observations are available —typically in the upper
range of active user values. If random fluctuations predominate,
it may be necessary to aggregate the groups further. For in-
stance, instead of breaking the range up into 1-2,3-4,. . . use
1-4, 5-8, . . . If even this fails to produce meaningful trends,
more data are probably required.

If no clear trends are apparent from the plots, it might be worth-
while to determine whether this is due to inadequate data. For

NO. 4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

Scatter due to insuffi-

cient data

6

8

ACTIVE USERS

Figure 13 Scatter due to inherent

nature of data

!

[

8

ACTIVE USERS

380

Table 2 Sample data

Active Number of Standard Standard
users observations deviation error

15 (=30/V4)
10

this purpose, compute the standard error of each mean value
computed in Step 3 above. The standard error is simply the
standard deviation divided by the square root of the number of
observations in the group. Then, erect a vertical line through
each point on the plot, extending from one standard error below
the mean to one standard error above the mean. Sample data
(rather artificially concocted) appear in Table 2, and the corre-
sponding plot in Figure 12. If one looked at the mean values
alone, one would think that percent problem state time fluctuat-
ed erratically as a function of the number of users. The standard
errors, however, show that the fluctuations are probably insig-
nificant, and that more data are required. Suppose, however,
that one hundred times as many obervations were taken, without
changing the means and standard deviations recorded in Table
2. The vertical lines would be reduced to one tenth their height
(Figure 13). In this case, the fluctuations would appear to be sig-
nificant, and some attempt to find their cause might be made.

For more rigorous methods of analysis, including tests of hy-
potheses and significance tests, the reader is referred to standard
statistical texts.

The values of any performance variable within each group of
observations possess a certain statistical distribution. So far, we
have used the estimated mean and standard deviation of that dis-
tribution. Frequently, it will be preferable to deal with the per-
centiles of that distribution (for example, the 75 percentile of a
distribution is the value below which 75 percent of the observa-
tions fall). There are two cases where use of percentiles is
preferable:

. If the variable in question has occasional abnormally large
observed values, then the mean and standard deviation are
very much influenced by these outliers. The median (50
percentile), the 75 percentile, etc., are then much more repre-
sentative of “‘typical” values. Variables most likely to fall in

BARD IBM SYST J

this category are benchmark response times. We have found
the 75 percentile of benchmark response time to be a particu-
larly informative measure of performance. Higher percentiles
(e.g., 90) are too sensitive to occasional abnormally long
response times, whereas lower percentiles (e.g., the median)
are not sufficiently indicative of user satisfaction with the
service they are receiving.

. For installation planning purposes, one would wish to know
what system resource capacity would be needed to satisfy a
certain percentile of requests. One might, for instance, wish
to know how many users should be allowed on the system at
any time so that the chance of saturation is only 25 percent,
or one may wish to design storage capacity .so as to accom-
modate an MPL of six at least 90 percent of the time.

Needless to say, the percentiles may be plotted against number
of active users, producing curves similar to the ones obtained by
plotting the averages.

A case study

This case study deals with a vM/370 installation running on an
IBM System/370 Model 155-11, with one megabyte of main stor-
age, one byte-multiplexer channel, and five block-multiplexer
channels. One of the latter was dedicated to the primary paging
device, an IBM 2305-11 fixed-head storage facility (“drum’).
The work load was generally of a time-sharing nature, with most
virtual machines operating under the Conversational Monitor
System (cMs). The data presented by the solid curves in Fig-
ures 14-19 were derived from about 1000 observations taken
over a week’s normal running period by means of a virtual ma-
chine monitor. Figures 14— 16 all demonstrate the onset of satu-
ration somewhat below the 20 active-user level. Figure 17
shows that page wait accounts for an increasing fraction of total
wait state in the saturated region, and Figure 18 shows the total
paging rate increasing rapidly, with the paging drum beginning to
overflow at the saturation point. Figure 19 shows that main stor-
age is not saturated in the region of operation.

The data lead to the following conclusions: The main bottle-
necks are (1) cPU overhead due to paging; (2) page wait due to
drum overflow. The second factor could be eliminated by the
installation of a second drum. The first factor, and the adverse
effects of the second factor, would be mitigated by reducing the
paging rate. This could be achieved by increasing main storage
capacity to minimize the loss of users’ pages between stays in
queue. The second solution was adopted and the improved per-
formance with 1.5 megabytes of main storage is indicated by the
dashed curves in Figures 14—19.

1975

NO. 4 TIME-SHARING PERFORMANCE ANALYSIS

Figure 14 CPU utilization (case

—
o
=}

©
o

PERCENT OF ELAPSED TIME
o
S

study)

PROBLEM
STATE
CPU

STORAGE

CAPACITY

1 MEGABYTE
= === 1.5 MEGABYTES

20 30
ACTIVE USERS

Figure 15 Average response time

for interactive tasks
(case study)

e
J

SECONDS
=
o

o
o

STORAGE CAPACITY
1 MEGABYTE
— —— 1.5 MEGABYTES

ACTIVE USERS

16 Average response time
for noninteractive
tasks (case stud

(T y)

SECONDS

STORAGE CAPACITY

1 MEGABYTE
—~—=— 1.5 MEGABYTES

20 30
ACTIVE USERS

Figure 17 Analysis of CPU wait

PERCENT OF ELAPSED TIME
o
S

stat

e (case study)

IDLE WAIT

1/0WAIT

STORAGE CAPACITY
1 MEGABYTE

| PAGE WAIT |
10 f 20

30
ACTIVE USERS

Figure 18 Paging activity (case
study)

60

kN
r=3

n
o

o
z
Q
o
e
v
@
i
a
»
z
Qo
=
<
o
ui
a
s}
o
>

STORAGE CAPACITY

1 MEGABYTE
. ——— 1.5 MEGABYTES

ACTIVE USERS

Nongranular systems

It has been assumed heretofore that the work load presented to
the system possessed a certain amount of granularity. The “‘ac-
tive user” was used as the unit of the granularity, and it was
expected that the work demanded from the system increased
monotonically, if not proportionally, with the number of users.
This property was important because it permitted us to spot sat-
uration conditions: if throughput does not increase in the face of
increasing demand, then the system must be saturated. Once
saturation has been established, identification of the bottleneck
is no longer heavily dependent on the granularity of the work
load.

The work load in some installations is nongranular in type. Spe-
cifically, we are referring to systems where the work load is
composed primarily of one (or a few) batch virtual machine. In
this case, performance of the vMm/370 system depends so strongly
on that of the batch system, that not much can be said of the
former without knowing something of the latter. For instance, if
the batch virtual machine is itself running a multiprogrammed
operating system, then the true multiprogramming level cannot
be determined from the vM/370 counters alone. For this reason,
it is difficult to devise a systematic approach, and we shall have
to content ourselves with a few random remarks.

If main storage capacity is sufficient, throughput may well in-
crease if the batch job stream is broken up into multiple streams
that are fed to multiple virtual machines, each running a copy of
the operating system. Once this is done, the work load attains a
degree of granularity that may permit performing the previously
described analyses.

If the system is believed to be saturated, then looking at CPU
utilization, breakdown of wait state, paging and 1/0 rates, etc.,
can isolate the bottlenecks, just as it did in the granular case. If
the CPU is not the bottleneck, however, it may be difficult to
determine whether or not the problem arises from having an
inadequate MPL. Internal measurement of the virtual operating
system may be required.

Conclusion

In this paper, we have dealt with some aspects of system perfor-
mance, but we have left many questions unanswered. The analy-
ses we have described will tell us, hopefuily, whether the sys-
tem is saturated and which components are at fault, but further
analysis will be required to determine exactly how much addi-
tional capacity is needed to achieve a desired performance level.

IBM SYST J

Frequently, reasonable projections can be made on the basis of
our plots, but in general, the evaluation of proposed configura-
tions will require additional tools such as analytic'® or simulation
models. We have already alluded to the need to consider the en-
tire distribution of requests, and not merely the averages, in the
process of configuring a system.

Another type of question that we have left open relates to very
specific performance questions. Even when 75 percent of all
requests receive satisfactory service, some users may be com-
plaining about poor response. Careful investigation may reveal
that they are all competing for the same disk arm, or their work-
ing sets are enormous, or the operator is unresponsive to their
tape requests. Or, by some odd coincidence, 10 users may have
started long compute-bound tasks at once. An event-tracing
monitor'” is particularly helpful to reveal the underlying causes,
but on-line reduction and summarizing of data sampled by a vir-
tual machine monitor will often provide sufficient and timely in-
formation about what is going on. Reasonable familiarity with
system internals is usually required for interpreting the data cor-
rectly.

CITED REFERENCES AND FOOTNOTES

1. Y. Bard, “Performance criteria and measurement for a time-sharing system,”
IBM Systems Journal 10, No. 3, 193-216 (1971).

. Y. Bard, “Experimental evaluation of system performance,” IBM Systems
Journal 12, No. 3, 302-314 (1973).

. IBM Virtual Machine Facility/370, Introduction, Form No. GC20- 1800,
IBM Corporation, Data Processing Division, White Plains, New York (1972).

. IBM Virtual Machine Facility/370, Control Program (CP) Program Logic,
Form No. SY20-0880, IBM Corporation. Data Processing Division, White
Plains, New York (1972).

. C. J. Young, VM/[370 Biased Scheduler, IBM New England Programming
Center Technical Report TR 75.0001, Burlington, Massachusetts (1973).

. R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J. Hatfield, ““Virtual
storage and virtual machine concepts,” IBM Systems Journal 11, No. 2,
99130 (1972).

. All specific numbers (except in the case study) appearing in this paper are
for illustration only. They do not pertain to any specific VM/370 installation,
nor are they claimed to be typical.

. Overhead due to paging may actually increase total CPU utilization.

9. In VM/370 this may be done by using a DIAGNOSE instruction in the vir-
tual machine.*

. C. W. Endee and R. L. Goodman. VM/370 CP Counters, IBM New England
Programming Center Technical Report TR 75.0004, Burlington, Mas-
sachusetts (1974).

. A special type of low-overhead 1/O operation permitted by VM/370.*

. P. H. Callaway, “Performance measurement tools for VM/370,” IBM Sys-
tems Journal 14, No. 2, 134-160 (1975).

. Y. Bard, “An Analytic Model of CP-67 and VM/370,” International Work-
shop on Modelling and Evaluation of Computer Architectures and Net-
works, IRIA, Rocquencourt, France (1974). Also available as IBM Cam-
bridge Scientific Center Technical Report No. G320-2101, Cambridge, Mas-
sachusetts (1974).

.4 - 1975 TIME-SHARING PERFORMANCE ANALYSIS

Figure 19 Average

multipro-

gramming level (case

study)

STORAGE CAPACITY
1 MEGABYTE
— =—==— 1.5 MEGABYTES //

4

20 30
ACTIVE USERS

Appendix: Accessing VM/370 counters from a virtual
machine

Suppose the contents of vM/370 counters which are known to
have real addresses A1, A2, . . ., AN are to be stored in N con-
secutive words, starting at virtual address L. The following pro-
cedure would be used:

. Store the addresses A1, 42, . . ., AN in N consecutive words
starting, say, in virtual location M.

. Load the address M into some general purpose register, say
R1.

. Load the number N into some other general purpose register,
say R2.

. Load the address L into general purpose register R2 + 1.

. Issue the diagnose instruction X’'83’, R1, R2, X'0004’.
Note: This diagnose instruction may be executed only by
virtual machines having privilege class E. The diagnose in-
struction, the locations L through L + 4 X N — 1, and the lo-
cations M through M + 4 X N — 1 must all be in the same vir-
tual page, i.e., their virtual addresses may differ only in the
three low-order hexadecimal digits. It is permissible to have
the data overwrite the addresses, i.e., to have L = M. Since
the diagnose instruction and a branch instruction following it
would take up two words, the total number of data words
obtainable with one diagnose is 1022.

The addresses of most counters can be found in the system mac-
roinstructions indicated in Table 1. The remainder may be
found at run time in the DMKSYM load map, which may be read

into the virtual machine’s address space by issuing the diagnose
instruction X’83’, R1, 'X’00038’, where register R1 contains the
address of a page-aligned, 4096-byte buffer into which the load
map is to be read. Each entry in the load map consists of 12
bytes: the symbolic name in EBCDIC (eight bytes), followed by
the real address (four bytes).

Reprint Order No. G321-5022

IBM SYST J

