
The  performance of VMl370 systems is  analyzed in  relation to 
the  multiprogramming  level  and  the  user work load.  Saturation 
conditions  are  examined,  and  methods  for  locating  bottlenecks 
in the CPU,  main  storage,  paging,  and 110 subsystems  are  given. 
The  paper  also  describes  the  data  requirements,  along  with 
techniques  for  data  collection  and  reduction.  The  techniques  are 
illustrated  with  data from an actual  case  study. 

Performance  analysis of virtual  memory  time-sharing  systems 
by Y. Bard 

The technology of system  performance  measurement is suffi- 
ciently well-developed so that  one is generally able  to  gather un- 
limited quantities of data on almost  any  aspect of the system’s 
operatioq. It is not  always  clear,  however,  what should be done 
with the  data  once  they  are  gathered. What is often lacking is a 
straightforward way of answering specific questions relating to 
system  performance.  This applies especially to virtual memory 
systems, and in particular  to VM/370 (Virtual  Machine Facili- 
ty/370), which is not as well-known and  understood by as 
many people as  the  more familiar DOS or os for the  System/360 
and  System/370. 

The performance  questions  that may be raised range all the way 
from  the  most specific (How long will a 15-card assembly  take 
on Monday at 10 AM?),  to  the  most general ( I s  my system  per- 
forming adequately?).  In  this  paper,  we  present a methodology 
for answering performance  questions of the  general  type. We 
shall attempt  to  answer  questions such as: Is the  system  satur- 
ated?  Under  what  user load does it become  saturated? Which 
components form bottlenecks?  How  can  these  bottlenecks be re- 
moved? How  are average  response time and  resource utilization 
related  to  the  user  load? The paper  emphasizes practical 
methods  for summarizing and  interpreting  performance  data 
gathered on systems running in a  production  environment. 
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The methodology  presented  here  is  based  on  performance  mea- 
surement  and  analysis  techniques  described in previous  pa- 
pers.’’’ Those  papers  emphasized  the  detection of performance 
improvements  caused  by  changes in the  system. No attempt  was 
made  to  analyze  the  causes  for  improvement or lack of it,  nor  to 
relate  these  to  the  internal  structure of the  system.  What  we 
shall try  to  accomplish in the  present  paper is to relate  the 
trends in the  data  to  the  workings of the  system,  and  thus gain 
an insight  into what might cause  the  system  to  saturate  and its 
performance  to  degrade. 

The  performance of the V M / ~ ~ O  system  depends in a fundamen- 
tal way  on  the  multiprogramming level  maintained  by  the  sys- 
tem.  This  concept is defined in the first section, which  follows, 
and  its  relation  to  system  performance is explored in the  next 
section of the  paper.  The  multiprogramming  level,  however, is 
an internal  variable,  and  we  really  want  to  relate  performance to 
external  load  variables.  Therefore,  one  needs  to  determine  the 
relation  between  the load  and the  multiprogramming  level, 
which is done in the  third  section. With the  succeeding  sections, 
we start  exploring  possible  system  bottleneck  areas, including 
the CPU, main storage, paging, and r/o subsystems.  We  then 
specify  the  performance  data  required  for  the  analyses,  and  then 
describe  data  collection  and  reduction  methods.  Following  that 
is an  actual  case  study  that  illustrates  the  use of the  previously 
described  methods.  Finally,  some  problems  associated  with 
large  batch  virtual  machines  are  discussed. The conclusion  high- 

’ lights some of the  performance  questions  that  were  not  dealt 
with elsewhere in the  paper.  While  we  have  emphasized  the 

~ analysis  of V M / ~ ~ O  performance,  the  methods  described  here 
could be  adapted  easily  to  any virtual  memory  time-sharing  sys- 
tem,  such as  an os/vsz system  running primarily TSO. 

System  description 

We  describe  here  only  those  aspects of the  system  that  are rele- 
vant  to  our  performance  analysis.  More  comprehensive  descrip- 
tions  may  be  found in the  reference 

VM/370 is,  for  our  purposes, simply a virtual-memory,  time-shar- 
ing system.  Each  user of the  system may enter  tasks,  usually 
from a remote  terminal. The  system  shares  its  resources  among 
these  tasks.  The flow of user  tasks  through  the  system is depict- 
ed in Figure 1. A user is in the  “dormant”  state until he  has 
completed  the  entering of a task.  Until  proven  otherwise,  the 
task is assumed  to  be  “interactive”,  i.e.,  to  require  fast  response 
while  making  only  slight demands  on  system  resources. While 
receiving  service,  such  tasks  are said to  be in “Q 1 ,” but  before 
being admitted  to  this  state  they  are  called “Q 1 candidates.” If a 
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Figure 1 User states and  principal transitions 
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Q1 task  does  not  terminate  before  consuming a certain  amount 
of cpu time (roughly 400 milliseconds), it loses its “interactive” 
status. It now becomes  a “Q2 candidate”  and is eligible to be 
admitted  into “Q2,” which is the  set of noninteractive  tasks  cur- 
rently being serviced. There is also  a limit (about five seconds) 
on the  amount of CPU time that a task may receive during one 
stay in Q2. A  task requiring more CPU time may cycle  several 
times  between  the “Q2 candidate” and “Q2” states. 

We have  not shown all possible state  transitions,  but  the  ones 
shown suffice for  our  purposes. 

multiprogramming The only tasks  that may actually receive CPU time at  any mo- 
level ment are  those in the  Q1  and Q2  states.  These  are called “in-Q” 

tasks,  and  their  number is the multiprogramming level (MPL). 
The  Q1 and Q2 candidates are tasks  that are ready  to run but 
are not allowed to  do so at  the moment because  the  system  does 
not wish to  overcommit  its  resources. These tasks  are said to be 
eligible. Admissions from eligible to in-Q  status is in order of 
task  priority, which is based on a combination of a permanent 
directory  entry,  the time when the  user had last  received  ser- 
vice,  and optional penalties depending on the user’s previous 
resource  demands.5 

In-Q  users’ main storage  requirements are met dynamically 
through a demand paging mechanism.6 The system maintains an 
estimate of each user’s storage  requirements; this estimate is 
referred to  as  the user’s projected working set. Admission is 
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based principally on the availability of  main storage  space to 
accommodate  the user’s projected working set. Pages belonging 
to  users  not in Q are always marked available for  replacement. 

The VM/370 system  always  runs  users’ CPU instructions in the 
problem state  and  its own CPU instructions in the  supervisor 
state. The amount of time that  the CPU spends in the problem 
state  is,  therefore,  a good measure of “useful” work done,  or 
throughput  attained, by the  system.  Traditionally,  attempts  to 
make V M / ~ ~ O  and its  predecessor, CP-67, perform well have  cen- 
tered  around maximizing percent problem state time, while 
maintaining acceptable  response times for  interactive (Q 1 ) 
tasks. 

While a  task is  in Q, it requires  system  resources, e.g., main 
storage, file I/O, and paging r/o, in addition to CPU cycles. The 
rates  at which these  resources are being utilized thus  provide 
additional performance  measures, as  do  the  response times to 
tasks of various  types.  A  true  picture of system  performance  can 
be gained only if all these  factors  are  considered  simultaneously. 

Relation between MPL and  performance 

As  the MPL goes up,  the  system is increasingly able  to  overlap 
the  use of its  various  components,  consequently improving their 
utilization. Soon,  however,  one or more components  approach 
100 percent utilization, so that no further  increase is possible. 
The system is then said to be saturated. There is no benefit in 
increasing the MPL beyond the  saturation  point, which is deter- 
mined primarily by the  system configuration. Thus, a  fast CPU 
with many I/O channels  saturates  at a higher MPL than a slow 
CPU with few channels. The saturation point is also affected by 
the  nature of the work load: if the work is unevenly spread 
among the  system COmpOnentS, Saturation Will Occur SOOner Figure 2 Relationship between 

than if the load is well-balanced. throughput and multi- 

At  any  rate, if the effects of  paging are ignored, then curve A in &o 

Figure 2 shows a typical relationship between  performance (as 2 
measured by CPU utilization)  and  the MPL. Saturation is ap- Z 6 O  

proached at an MPL of six.7 This  curve might be an idealized :40 

representation of a V M / ~ ~ O  system with essentially infinite main Ez0 
storage  capacity (hence, negligible  paging activity) . w 

programming level 

0 
0 5 10 

In  a real system, main storage  capacity is finite. As the MPL in- 
creases,  the  amount of storage available to  each program de- 
creases,  hence  the paging rate  increases. This increase  becomes 
drastic when the  storage  allocated  to each program falls below 
its “working set.” Soon the paging channel  becomes  saturated, 
and  further  increases in the relative paging rate  force  down  the 
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Figure 3 Relationship  between 
running time and multi- 
programming  level 
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Figure 4 Relationship  between 
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age,  one  out of every  four  users will have  a  task pending at any 
one time. As long as  the  total  number of users  does  not  exceed 
24, there will  be no more than six tasks pending, and  these can 
usually be multiprogrammed (admitted  into Q) as soon as they 
arrive. If the  number of users  exceeds 24, more than six tasks 
will be pending, and these  must wait in the eligible set  before 
being serviced. These trends are depicted in Figure 4: up  to  the 
saturation point (24 users),  the MPL builds up,  and  the eligible 
set is almost  empty. Beyond that,  the eligible set  grows linearly, 
while the MPL stays  constant. 

The implications for  system  resource utilization are obvious. 
For each  number of active  users, we enter  Figure 4 to find the 
MPL, and  then we enter Figure 2 to find the utilization. The re- 
sult is shown in Figure 5:  utilization climbs up  to  the  saturation 
point and then levels off. In  practice, utilization actually starts  to 
decrease  somewhat beyond the  saturation  point,  due  to in- 
creased  contention  and  increased  consumption of storage  space 
by system  control blocks. 

Observe  that if the  storage  capacity was sufficient to  accommo- 
date nine tasks,  Figure 5 would remain essentially unchanged. 
In Figure 4, however,  saturation would occur  at a  user level of 
36, rather  than 24. Thus, the MPL plot by itself is not a good in- 
dicator of how many users will saturate  the  system. 

We can also  determine how task response time is affected by 
system  load.  Suppose  we  have  a specific task in mind, requiring 
one  second of CPU time to  complete. The response time is com- 
posed of the running time,  obtainable from Figure 3 ,  and  the 
waiting time in the eligible set, which is proportional to  the 
number of tasks in that  set. The proportionality  factor is easily 
determined: If the  average  task required T seconds of CPU time, 
and the MPL = n, then  a  task  leaves Q I or Q2  on the  average of 
every T / u ( n )  seconds. Hence, if there  are m eligible tasks,  the 
expected waiting time is m T / u (  n )  . Thus, Figures 3 and 4 can 
be used to  generate  Figure 6, which shows  the total response 
time. It is possible to verify that  Figure 6 would be relatively 
unaffected by increasing storage  capacity beyond the  six-user 
level. Figure 6 shows  the  essential effect of saturation on re- 
sponse time. Below the  saturation  point,  the  system  possesses 
unused resources  and is able  to  serve additional users  without 
severely impacting response time. When saturated, additional 
users  can be accommodated only at  the  cost of reduced service 
to all. 

Our analysis applies only to  a  “typical”  task, i.e., one whose 
various  resource  requirements  are roughly proportional  to  those 
of the  overall work load. Radically different types of tasks, e.g., 
compute-bound or Ilo-bound  ones, may present completely dif- 
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ferent  response profiles. A system  whose I/O channels are satu- 
rated may have enough leftover CPU power  to maintain excel- 
lent  response  to  a  compute-bound  task,  and  vice-versa. 

Bottlenecks 

Plots  such as Figures 5 and 6 can  be used to  spot  saturation 
conditions and determine  the  user load under which they  occur. 
If there is no  evidence of saturation, all is well. However, if sat- 
uration is detected, we must next  determine  the  system  compo- 
nent  that is causing the saturation. This component, which we 
shall call the bottleneck, is the  one  whose  capacity  must be in- 
creased first before  overall  system  performance  can  be im- 
proved.  Such improvement would be felt in two ways: An in- 
creased  number of users could be served  before  the  onset of 
saturation, and system  throughput at saturation would be in- 
creased. 

The main hardware  components of a V M / ~ ~ O  system are  the 
CPU, main storage,  the paging subsystem,  and  the I/O (other 
than paging) subsystem. We shall describe below how bottle- 
necks in any  one of these  components can be spotted, and what 
remedies  are available to remove  them. 

Figure 7 CPU saturated with The CPU 
paging overhead 

The CPU is saturated when its utilization approaches 100 per- 
80; cent. A truly saturated CPU can be cured only by being replaced 

with a  faster  one.  However, some further  analysis may reveal 
:: different underlying causes  for  the  saturation  and suggest cures 

2 1 5 0 ~ 6 0 ~  
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E RATE 40,: of a  less  drastic  nature. 
LL 
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"'g One  case in point occurs when the CPU becomes  saturated with 
0 
0 10 20 30 40 0 2  overhead  due  to paging. The case is shown in Figure 7: total 

ACTIVE USERS CPU utilization approaches 100 percent, problem state time de- 
clines,  and paging rate climbs as the  number of users  increases. 
Such  conditions prevail if, for some reason,  the  scheduler  con- 
sistently  underestimates working sets  and  thus maintains too 
high an MPL. Reducing the MPL will release  some of the CPU 
time spent on paging, but  whether  or not  the remaining MPL will 
be sufficiently high to maintain good throughput  depends on the 
amount of storage available (see  below). Increasing  storage 
capacity while retaining the  same MPL would also decrease  the 
paging rate  and  release  some CPU time  for  productive use. 

The presence of compute-bound jobs in the work load  can  result 
in very high CPU utilization. Some of the CPU time used by these 
tasks is really available to other  users, should they need it. Thus, 
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if response time to  the  compute-bound  tasks is not a primary 
concern, then we should not really consider  the CPU to be satu- 
rated.  Figure 8 is the profile of a  system  that is always running a 
fixed number of compute-bound jobs, while the remaining users 
are of a more “normal”  type. Profiles such as Figure 8 appear 
quite commonly if data  are plotted indiscriminately, since  the 
lower  portions of the  curve may represent  the off-shift running 
of large compute-bound  jobs. 

Main  storage 

Main storage is (or at  least  the  scheduler  thinks  that it is)  satu- 
rated when the eligible list is almost  never  empty.  Nevertheless, 
a  saturated memory is not necessarily a  performance  bottleneck. 
If  paging  is moderate  and  the CPU is fully utilized, then main 
storage  capacity is adequate and will have to be increased only 
after  a more powerful CPU is installed. If both paging and CPU 
utilization are light, then the scheduler is probably overestimat- 
ing working sets  and  consequently maintaining too low an MPL. 
If the paging rate is high, productive CPU utilization (percent 
problem state  time) is low, and the MPL is high, then the  schedu- 
ler may be at fault.  This so-called thrashing condition may be 
removed by inducing the  scheduler  to maintain a lower MPL. 
Only if the MPL is low, paging  is heavy,  and  productive CPU uti- 
lization (percent problem state  time) is low, is the  saturated 
main storage  a  true  bottleneck  and in need of expansion. 

Generally,  acceptable  performance is achieved if storage is ex- 
panded only to the point where  an  adequate MPL can be main- 
tained. However,  as illustrated later in the  case  study, additional 
performance  improvements are attainable by further  increases of 
storage  capacity  above  the  saturation  point. If excess  storage 
capacity is installed, then a  substantial  number of pages belong- 
ing to  interactive  users  can be held over from one interaction to 
the next. The total paging rate is thereby  reduced, and CPU time 
previously spent on paging overhead is freed  for  productive  use. 
Furthermore,  response time to interactive  tasks is improved. 
However, as the  number of users on the  system  increases,  the 
amount of excess  storage required to hold temporarily  inactive 
working sets  increases  proportionally. 

Paging subsystem 

The V M / ~ ~ O  system  breaks up total system wait time into  three 
components: 

1. Idle wait, when no high-speed I/O requests  are  outstanding. 
2. Page wait, when outstanding I/O requests are primarily for 

paging. 
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Figure 9 Paging-bound system 3. I/O wait, when outstanding I/O requests  are  not primarily for 
paging. !10o~---J 10LE TOTAL  WAIT users  Typically, is small. the idle-wait By the time state  saturation  predominates is reached, when the idle number wait will  of 

50 WAIT have  decreased to zero.  Absence of idle wait in itself, however, 
z 
w 
LT w WAIT is no proof of saturation: when the number of users is moderate, 
“ 0  

WAIT 

0 10 20 30 40 there may be enough work to  keep  either  the CPU or an I/O path 
ACT~VEUSERS busy at any given time,  but  not enough to  saturate either. 

If the CPU is not the bottleneck,  there will be  ‘a substantial 
amount of wait state even at  saturation.  This wait state may be 
due  to  poor overlapping of CPU and I/O activities,  caused by 
main storage being insufficient to  accommodate  an  adequate 
MPL. If this is not  the  case,  however, and if page wait accounts 
for  the major part of the residual wait time (see Figure 9) ,  then 
the paging subsystem is probably at fault. 

Page wait may  be experienced  either  because  the paging rate is 
too high or because page transit time is too long. The first condi- 

uler, has been dealt with above.  The  second condition occurs 
when either no high-speed paging devices are installed or their 

Figure 10 Paging drum overflow 

DRUM OVERFLOW 

PAGE I /O tion,  caused by working sets being underestimated by the  sched- 

DRUM 1/0 

CPU IN 
PERCENT capacity has been exceeded. The system may normally page to a 
PAGE WAIT fixed-head storage  device (“drum”) such as the IBM 2305. But 

o 10 20 30 40 when the  number of users is sufficiently large,  the  drum  over- 
flows and some paging  will be to a slower device  such as  the IBM 
3330. The point at which overflow becomes significant can be 
determined from a plot of total page I/OS and  drum I/OS versus 
number of users (Figure 10). Various  remedies,  short of install- 
ing an additional drum, may apply.  Freeing virtual pages that  are 
no longer needed;’ reduced size of virtual machines; applica- 
tions reprogrammed to use less virtual storage;  increased  use of 
shared  systems-all  these may “stretch  out”  the  drum  capacity. 
These remedies are of no use when there is no drum  to  start 
with. In that  case,  one may possibly improve  performance by 
spreading the paging areas  over more devices.  This  reduces seek 
times and  permits  better overlapping of seek  and  transmission 
times. Also,  other r/o activity (if any) should be removed from 
the paging channel. 

ACTIVE USERS 

Figure 11 I/O-bound system 
I/O subsystem 

A  bottleneck in the I/O subsystem  reveals itself in a  manner anal- 
ogous to  the paging subsystem. If there is enough main storage 
to maintain an adequate MPL, and yet a significant amount  of I/O 
wait time remains at saturation (Figure 1 1) , a deficient I/O sub- 
system is indicated. It may be simply that  the work load is of so 

ACTIVE  USERS I/o-bound a nature  that no feasible expansion of the I/O facilities 
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Table 1 .  Selected VM/370 counters 

Symbolic 
name 

DMKSYSNM 
PROBTIME 
IDLEWAIT 
PAGEWAIT 
IONTWAIT 
PGREAD 
PGWRITE 
DMKPTRSS 
DMKDSPNP 
DMKVIOCW 
DMKHVCDI 
DMKPAGPS 
RDEVIOCT 
VMUSER 
VMDSTAT 
VMQLEVEL 
VMVTIME 

VMTTIME 

VMPGREAD 
VMPGWRIT 
VMIOCNT 
VMPAGES 

VMWSPROJ 

System 
block 

"_____ 
SYSLOCS 
PSA 
PSA 
PSA 
PSA 
PSA 
PSA * 
* 
* 
* 
*, 

RDEVBLOK 
VMBLOK 
VMBLOK 
VMBLOK 
VMBLOK 

VMBLOK 

VMBLOK 
VMBLOK 
VMBLOK 
VMBLOK 

VMBLOK 

Type  ( S e e  
key  below) 

3 
2 
2 
2 
2 
1 
1 
1 
3 
1 
1 
1 

I /D 
3/u 
3/u 
3/u 
2/U 

2/u 

I tu 
1 /U 
1 /u  
3/u 

3/u 

Description 

Number of logged-on users 
CPU time in problem state 
CPU time in idle wait state 
CPU time in page  wait state 
CPU time in 110 wait state 
Page reads  into main storage 
Page writes out of main storage 
Pages  stolen from  in-Q  users 
Page frames available for paging 
CCW translations 
DlAGNOSE I/Os" 
SIOs to paging device 
SlOs to real device 
User ID 
User Q status 
User Q status  (continued) 
Virtual CPU time accounted to 
user 
Supervisor CPU time accounted 
to  user 
Pages  read by user 
Pages  written by user 
Nonspool I/Os by user 
Number of user pages residing 
in main storage 
User's estimated  working set 

*The addresses of these counters may be obtained at run  time  in  the DMK SYM load map, as described in 
the Appendix. 
Counter Types: 1 : Event counter 

2 : Time accumulator 
3 : Current status indicator 

ID : One for each real 110 devlce 
/U  : One for each logged-on user. 

will handle it. In this case,  one might conclude  that  the CPU in 
use is too  fast,  and  a  slower  one would  suffice. More typically, 
some rearrangement and/  or expansion of the rlo subsystem will 
cure  the problem. It will be necessary to measure  the utiliza- 
tions, or  at least  the I/O rates, of the individual I/O channels  and 
devices. Then, better-balanced loading can be achieved by mov- 
ing physical packs from one  channel  to  another, or by  moving as- 
signed  mini-disk areas from one pack to another, by creating 
multiple copies of heavily used shared disk areas  (e.g.,  the CMS 
system disk).  One must caution,  however,  that  the usage pat- 
terns of user mini-disk areas  are often quite volatile. These  areas 
should be moved about only if consistent  patterns are  detected. 

Under  extreme  conditions,  an rlo bottleneck may develop if the 
MPL is too high, rather  than too low. As the MPL increases, so 
does  the likelihood that several  users sharing the  same disk 
drive will  find themselves in Q together, giving rise to high arm 
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MPL and high rlo wait  time,  one should amend the scheduler so 
as to  restrict  the MPL to a  reasonable level. 

It is possible for both page and r/o wait to  account  for significant 
portions of elapsed time at saturation. In this  case,  improve- 
ments in either  subsystem will be useful, but  improvements in 
both may be required to eliminate the  bottleneck  entirely. 

Data requirements 

The foregoing analyses  require  that  performance  variables be 
measured  over  a  certain time period,  say,  one week of routine 
operation. The measurements  are made possible by a  set of 
"counters" that  are automatically maintained by  the V M / ~ ~ O  con- 
trol program. These  counters  are of three  types: 

1 .  Event  counters, incremented each time the  event  occurs 

2. Time  accumulators,  incremented  each time the  system 

3. Current  status  indicators  (e.g.,  number of logged-on users). 

(e.g.,  a page read). 

changes  state (e.g., the CPU leaves  the wait state). 

Furthermore,  there  are  separate  counters  for  overall  system 
events,  for each logged-on user,  and  for  each I/O device.  Table 1 
contains  a list of those  counters which are of most  interest  to us. 
Others  are  described in Reference 10. 

Some items of interest are  not measured directly  but can be cal- 
culated easily from measured items. For instance: 

CPU in wait state = idle + rlo + page wait 
CPU in supervisor  state = Elapsed time - problem state - wait 

state 
User-initiated I/OS = ccw translations + DIAGNOSE I/OS" 
Drum rlos = Sum of r/os over  drum  devices 
Channel n I/OS = Sum of rlos over  channel n devices 

Typically,  the  counters will  be sampled at more or less regular 
intervals (see next  section on how this might be done),  and dif- 
ferenced  to  obtain  measures of system  activity during each sam- 
pling interval. In most cases,  these differences will be divided by 
the length of the time interval between measurements  to  obtain 
event  rates or percentage utilizations. In  addition,  one will be 
able to calculate the values of several  variables  at the sampling 
instant: 

M PL = Number of in-Q  users 
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variable and difficult to  account  for.  And,  perhaps  worst of all, 
the  monitor itself becomes  part of the work load that it attempts 
to  measure. These effects may be minimized by running the 
monitor at a  frequency  commensurate with the power of the  sys- 
tem being measured.  However,  the virtual machine monitor also 
offers some advantages: it requires no changes  to  the  control 
program, it consumes  no real storage  space when not  actually 
running, it  may be written in a higher-level language, (except  for 
a simple interface routine), and  the  data it obtains  are immedi- 
ately available in a virtual machine, so that  they  can be analyzed 
to provide performance  diagnostics in real time. Furthermore, 
changes are easily implemented and  tested. 

Data reduction techniques 

We shall assume  that  counter readings have been taken  at  inter- 
vals during the  data collection period. We  shall refer  to  each 
reading as an observation and  to  the time between  successive 
readings as an observution  period. It is necessary to reduce  the 
data so that plots such as Figures 5 -  11 may be drawn.  The re- 
duction  proceeds as follows: 

1. Compute  the  number of active  users  for  each  observation 
period. 

2. Group together all the  observations  for which the  number of 
active  users is one  or  two; similarly, all observations  for 
which the number of active  users is three or four, and so on. 
Coarser groupings may be required if the total number of 
observations is small. One would like to average at  least 50 
observations  per  group. 

3. Compute  the mean and standard deviation of each perfor- 
mance variable within each group of observations. 

4. For  each performance variable of interest, plot the mean 
within each group, against the  number of active  users  for  that 
group  (use  the median value; e.g., use 1.5 for  the  group  con- 
taining observations with one  or two  active users). 

When the plots are  made,  they may immediately reveal some of 
the  trends illustrated in Figures 5 - 1 1. Sometimes,  however,  the 
trends will be masked by random fluctuations in the  data.  This is 
most likely to  occur in those  portions of the  curves  where  rela- 
tively few observations  are  available- typically in the  upper 
range of active  user  values. If random fluctuations predominate, 
it may be necessary  to aggregate the  groups  further. For in- 
stance,  instead of breaking the range up into 1 -2, 3 -4, . . . use 
1-4, 5 - 8, . . . If even this fails to  produce meaningful trends, 
more data  are  probably required. 

If no clear  trends are  apparent from the plots, it  might be worth- 
while to  determine  whether this is due to inadequate  data. For 
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Figure 12 Scatter due to insuffi- 
cient data 

ACTIVE USERS 

Figure 13 Scatter due It to inherer 
nature of data 

ACTIVE USERS 
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Table 2 Sample  data 

Active  Number of Standard  Standard 
users  observations  Mean  deviation  error 

1-2  4 50 30 15 (= 3 0 l m  
3 -4 16 45 40 10 
5 - 6  9 60 30 10 
7 - 8  4 50 40 20 

this purpose,  compute  the standard  error of each mean value 
computed in Step 3 above. The standard  error is simply the 
standard  deviation divided by the  square  root of the  number of 
observations in the  group. Then,  erect a vertical line through 
each point on the  plot,  extending from one  standard  error below 
the mean to  one  standard  error  above  the mean. Sample  data 
(rather artificially concocted)  appear in Table 2, and the  corre- 
sponding plot in Figure 12. If one looked at  the mean values 
alone,  one would think that  percent problem state time fluctuat- 
ed erratically as a function of the  number of users. The standard 
errors,  however,  show  that  the fluctuations are probably insig- 
nificant, and  that more data  are  required.  Suppose,  however, 
that  one  hundred  times as many obervations  were  taken,  without 
changing the  means and standard  deviations  recorded in Table 
2. The vertical lines would be reduced  to  one  tenth  their height 
(Figure 13).  In this  case,  the fluctuations would appear  to  be sig- 
nificant, and some  attempt  to find their  cause might be made. 

For more rigorous methods of analysis, including tests of hy- 
potheses  and significance tests,  the  reader is referred to  standard 
statistical  texts. 

The values of any  performance variable within each  group of 
observations  possess  a  certain  statistical  distribution. So far, we 
have used the  estimated mean and  standard  deviation of that  dis- 
tribution.  Frequently, it  will be preferable  to deal with the  per- 
centiles of that  distribution (for example,  the 75 percentile of a 
distribution is the value below which 75 percent of the  observa- 
tions  fall).  There  are  two  cases  where  use of percentiles is 
preferable: 

1 .  If the variable in question  has  occasional abnormally large 
observed  values,  then  the mean and  standard  deviation are 
very much influenced by these  outliers. The median (50 
percentile),  the 75 percentile,  etc., are then much more  repre- 
sentative of “typical”  values.  Variables  most likely to fall in 
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this category  are  benchmark  response times. We have found Figure 14 CPU utilization (case 

the  75 percentile of benchmark  response time to be a  particu- study) 

larly informative measure of performance.  Higher  percentiles 
(e.g.,  90)  are  too sensitive to  occasional abnormally long Z 
response times, whereas  lower  percentiles  (e.g.,  the  median) ‘$ 80- 

are not sufficiently indicative of user satisfaction with the 
service  they are receiving. 

2. For installation planning purposes,  one would wish to know 
what  system  resource  capacity would be needed  to satisfy a 
certain  percentile of requests.  One might, for  instance, wish 40” 

to know how many users should be allowed on the  system at 
any time so that  the  chance of saturation is only 25 percent, CAPACITY 

or  one may wish to design storage  capacity .so as  to  accom- 
modate  an MPL of  six at least 90 percent of the time. 

- 1 MEGABYTE --- 1.5 MEGABYTES 

0 10 20 30 
ACTIVE  USERS 

Needless  to  say,  the  percentiles may  be plotted  against  number 
of active  users, producing curves similar to  the  ones  obtained by 
plotting the  averages. 

A case study 

This  case  study  deals with a V M / ~ ~ O  installation running on an 
IBM System/ 370 Model 155-11, with one  megabyte of main stor- 
age,  one  byte-multiplexer  channel,  and five block-multiplexer 
channels.  One of the  latter was dedicated  to  the primary paging 
device,  an IBM 2305-11 fixed-head storage facility (“drum”). 
The work load was generally of a time-sharing nature, with most 
virtual machines operating  under  the  Conversational  Monitor 
System (CMS) . The  data presented by the solid curves in Fig- 
ures 14- 19 were  derived from about 1000 observations  taken 
over  a week’s normal running period by means of a virtual ma- 
chine monitor. Figures  14- 16  all demonstrate  the  onset of satu- 
ration somewhat below the 20 active-user level. Figure 17 
shows  that page wait accounts  for  an increasing fraction of total 
wait state in the  saturated region, and  Figure 18 shows  the  total 
paging rate increasing rapidly, with the paging drum beginning to 
overflow at the  saturation point. Figure 19 shows  that main stor- 
age is not  saturated in the region of operation. 

The  data lead to  the following conclusions: The main bottle- 
necks are ( 1) CPU overhead  due  to paging; (2)  page wait due  to 
drum overflow. The second factor could be eliminated by the 
installation of a second  drum. The first factor,  and  the  adverse 
effects of the second factor, would be mitigated by reducing the 
paging rate.  This could be achieved by increasing main storage 
capacity  to minimize the loss of users’ pages between  stays in 
queue. The second solution was  adopted  and  the improved per- 
formance with 1.5 megabytes of main storage is indicated by the 
dashed  curves in Figures 14- 19. 

Figure 15 Average response time 
far interactive tasks 
(case study) 

z STORAGE CAPACITY - 1 MEGABYTE 
“_ 1 5 MEGABYTES 
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Figure 16 Average response time 
for noninteractive 
tasks (case st dy) A 
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I Figure 17 Analysis of CPu wait Nongranular Systems 
state (case  study) 

It  has  been  assumed  heretofore  that  the  work load presented  to 
STORAGE CAPACITY the  system  possessed a certain  amount of  granularity. The  “ac- 
1 MEGABYTE tive  user”  was  used  as  the  unit of the  granularity,  and it was 

expected  that  the  work  demanded  from  the  system  increased 
monotonically, if not  proportionally,  with  the  number  of  users. 
This  property  was  important  because it  permitted us  to  spot  sat- 
uration  conditions: if throughput  does  not  increase in the  face of 
increasing  demand,  then  the  system  must  be  saturated.  Once 
saturation  has  been  established, identification of the  bottleneck 
is  no  longer  heavily  dependent on the  granularity of the  work 
load. 

0 10 t 20 
ACT,VE USERS The  work load in some  installations is nongranular in type.  Spe- 

cifically, we  are  referring  to  systems  where  the  work  load is 
composed  primarily of one  (or a few)  batch  virtual  machine.  In 
this  case,  performance of the V M / ~ ~ O  system  depends so strongly 
on  that of the  batch  system,  that  not  much  can  be said  of the 
former  without  knowing  something of the  latter.  For  instance, if 
the  batch  virtual  machine is itself  running  a  multiprogrammed 
operating  system,  then  the  true  multiprogramming  level  cannot 
be  determined  from  the VM/UO counters  alone.  For  this  reason, 
it is difficult to  devise a systematic  approach,  and  we shall have 
to  content  ourselves  with a few  random  remarks. 

30 

Figure 18 Paging activity (case If main storage  capacity  is sufficient, throughput  may well in- 
study) crease if the  batch  job  stream is broken  up  into  multiple  streams 

9 60 
0 !p STORAGE 1 CAPACITY  MEGABYTE that  the  operating  are  fed  to  system. multiple Once virtual  this  machines, is done,  the  each  work  running  load a attains  copy of a 

9 40 

0 

degree of  granularity  that  may  permit  performing  the  previously 
P described  analyses. 
t PAGE 
Y / 1/03 

20 ,kO I /OS 
/ 0 DRUM If the  system is believed to  be  saturated,  then looking at  CPU 

utilization,  breakdown of  wait  state, paging and I/O rates,  etc., 
can  isolate  the  bottlenecks,  just as it did in the  granular  case. If 
the CPU is not  the  bottleneck,  however, it  may  be difficult to 

ACTIVEUSERS determine  whether  or  not  the  problem  arises  from having an 
inadequate MPL. Internal  measurement of the  virtual  operating 
system  may  be  required. 

- 

0 -1 
0 10 20 30 

I Conclusion 

In this  paper,  we  have  dealt  with  some  aspects of system  perfor- 
mance,  but  we  have left  many questions  unanswered.  The  analy- 
ses  we  have  described will tell us,  hopefully,  whether  the  sys- 
tem is saturated  and  which  components  are at  fault,  but  further 
analysis will be  required  to  determine  exactly  how  much  addi- 
tional capacity is needed  to  achieve a desired  performance  level. 
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Frequently,  reasonable  projections  can  be  made on the  basis of Figure 19 Average multipro- 

our  plots,  but in general,  the  evaluation of proposed configura- 
tions will require  additional  tools  such as analytic13 or simulation 

gramming  level  (case 
study) 

tire  distribution  of  requests,  and  not  merely  the  averages, in the -;v/ 1 5 MEGABYTES 1 

process of  configuring a system. 

Another  type of question  that  we  have left open  relates  to  very 
specific performance  questions.  Even  when 75 percent of all 2 

requests  receive  satisfactory  service,  some  users may be  com- 
plaining about  poor  response.  Careful  investigation  may  reveal 
that  they  are all competing  for  the  same  disk  arm,  or  their  work- ‘0 10 20 30 

ing sets  are  enormous,  or  the  operator is unresponsive  to  their 
tape  requests.  Or, by some  odd  coincidence, 10 users  may  have 
started long compute-bound  tasks  at  once.  An  event-tracing 
monitor”  is  particularly  helpful  to  reveal  the  underlying  causes, 
but  on-line  reduction  and  summarizing of data sampled  by  a  vir- 
tual  machine  monitor will often  provide  sufficient  and  timely in- 
formation  about  what is going on.  Reasonable familiarity  with 
system  internals is usually  required  for  interpreting  the  data  cor- 
rectly. 

3 

ACTIVE USERS 
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Appendix: Accessing VM/370 counters from a virtual 
machine 

Suppose  the  contents of V M / ~ ~ O  counters which are known to 
have  real  addresses A 1, A 2 ,  . . ., A N  are  to be stored in N con- 
secutive  words,  starting at virtual address L. The following pro- 
cedure would be  used: 

1 .  Store  the  addresses A 1 ,  A 2 , .  . . , A N  in N consecutive  words 

2. Load  the  address M into  some general purpose  register,  say 

3.  Load  the  number N into some other  general  purpose  register, 

4. Load  the  address L into general purpose register R2 + 1. 
5 .  Issue  the diagnose instructionX’83’, R1, R2,Xr0004‘. 

starting,  say, in virtual location M .  

R1. 

say R2.  

Note:  This diagnose instruction may be executed only by 
virtual machines having privilege class E. The diagnose in- 
struction,  the  locations L through L + 4 X N - 1, and  the lo- 
cations M through M + 4 X N - 1 must all be in the  same vir- 
tual page, i.e., their  virtual  addresses may differ only in the 
three  low-order hexadecimal digits. It is permissible to  have 
the  data  overwrite  the  addresses,  i.e.,  to  have L = M .  Since 
the diagnose instruction  and  a  branch  instruction following it 
would take  up  two  words,  the  total  number of data  words 
obtainable with one  diagnose is 1022. 

The addresses of most  counters  can  be found in the  system mac- 
roinstructions indicated in Table 1. The remainder may be 
found at run time in the DMKSYM load map, which may be read 
into  the virtual machine’s address  space by issuing the  diagnose 
instruction x’83’, R I ,  ’ X ’ O O O ~ ~ ’ ,  where  register R1 contains  the 
address of a page-aligned, 4096-byte buffer into which the load 
map is to be read.  Each  entry in the load map consists of 12 
bytes:  the symbolic name in EBCDIC (eight bytes), followed by 
the real address  (four  bytes). 
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