The testing problems in a complex systems environment are
described with categorization by purpose of the tests and objec-
tives to be achieved. The approach to testing and the methodol-
ogy required to adequately test in the various testing categories
are presented.

The methodology described, together with appropriate testing
tools, can aid users in the migration to new operating systems
and new versions of subsystems, as well as to accelerate their
own application development.

Testing in a complex systems environment
by M. O. Duke

Testing in a complex systems environment includes, but is not
limited to, the planning, preparation, control, execution, analy-
sis, reporting, and correction of tests and procedures. As far as
practical, the testing is accomplished through the use of auto-
mated test tools, including a test driver.

A complex systems environment as discussed herein is one in
which a telecommunications network is attached to a computing
complex. The computing complex is under control of an operat-
ing system and has one or more subsystems, such as IMS/VS
(Information Management System/Virtual Storage), executing
and communicating with remote terminals via the telecommuni-
cations network. User-written application programs, under con-
trol of the subsystem, execute upon demand from the remote
terminals. Batch processing may also be performed concurrently.
For testing, this environment is replicated in a laboratory envi-
ronment, so that all physical portions of the environment need
not be present.

Testing in this complex systems environment requires both a
definition of the purpose of the testing and a knowledge of the
methodology which can be used to accomplish the purpose that
has been defined.

The purpose of testing is really two-fold. Testing is conducted to
verify that programs accurately perform the functions they are
intended to perform. Testing is also conducted to determine the

NO. 4 - 1975 COMPLEX SYSTEMS TESTING




functional
testing

performance characteristics of the programs. The result of ap-
propriate testing is the assurance that the programs will execute
both correctly and speedily. This determination in a test envi-
ronment prevents the chaotic situation of having programs fail in
a production environment where errors can be catastrophic.

Testing in a complex systems environment consists of creating
specific collections of tests that are stored on direct-access stor-
age devices and accessed by a test driver. These tests duplicate
the actions of humans at remote terminal hardware to exercise
the programs under test. Information is obtained for analysis to
ensure that the programs have performed correctly and well.

Because different approaches to testing are required, depending

upon the purpose of the test, an understanding of the varieties
of tests is necessary.

Test categories

Two major categories of testing exist, together with subcatego-
ries that more precisely define the testing. The two major cate-
gories are: (1) functional testing and (2) performance testing.

One major distinction between the two types of testing is that
functional testing depends upon an exhaustive one-for-one test
of each cause that can produce an effect or a test for each and
every condition that can occur. Performance testing, however,
depends upon the repetitious use of specific tests in an attempt
to recreate or to simulate a specific production environment.
The specific tests are derived from a “user profile” which must
be obtained if meaningful tests are to be conducted. This “‘user
profile” is discussed later.

Functional testing can be divided into the following subcatego-
ries: new function testing, functional regression testing, and
functional stress testing.

New function testing refers to the testing that must be done to a
new program or to a new function that has been added to an ex-
isting program. For each new function added, a test case, or se-
ries of test cases, must be prepared to exercise that new function
and ensure that it operates correctly. In addition, all of the pos-
sible error conditions that could occur should be tested to en-
sure that the error conditions give the appropriate error mes-
sages and that those messages correspond with the documenta-
tion associated with the program.

Functional regression testing is a term that applies to testing
programs, when a part of the total environment has been modi-

DUKE IBM SYST J




fied, to see that the functions provided by the programs remain
intact and that there has been no change in the functions that
had previously been available. In this context, programs can be
thought of as being small application programs, major applica-
tion systems, a subsystem such as IMS/VS, or the Operating Sys-
tem itself.

In order to accomplish complete functional regression testing,
all of the test cases that were run against the programs in the pre-
vious environment must be rerun against the programs in the
new environment. Each test case must produce exactly the same
results as before, except for known compatibility and timing
dependencies (e.g., time, date).

If a program is a very large one, with a great deal of function,
then the number of test cases will likewise be large. There may
be several hundred test cases, each of which executes some
function provided by the program or some error condition that is
being tested, to ensure that errors are located and corrected in a
test environment and not when the program is run in a produc-
tion environment. The collection of test cases is commonly
stored in a test library.

The fundamental concept of regression testing is that each and
every test case that was run successfully against the unmodified
code must produce identical results when run against the new
code, except for the differences noted. Obviously, if the library
of test cases is very large, the process must be automated, since
the resources required to permit each test case to be run man-
ually is very great. Unless all of the results compare precisely
(except as noted ), then regression has occurred in the code, and
the new code must be corrected to restore the function that was
available prior to the modification.

Functional stress testing is the term that applies during func-
tional testing when quantities of tests are executed concurrently
to ensure that the required function operates properly even
when the programs are heavily loaded. Often programs will exe-
cute properly under minimal loading but will fail under heavy
loading due to such things as timing or resource conflicts. Func-
tional stress testing is used to locate these failures.

Performance testing, by its very nature, depends upon a “‘user
profile” that depicts not only the types of messages that are to
be transmitted but the frequencies with which specific message
types are transmitted. The “‘user profile” also includes message
content, transmission speed, and intermessage delay or “‘think-
time”’.

COMPLEX SYSTEMS TESTING

performance
testing




The user profile can be obtained from analysis of a production
environment through the use of a log such as the IMS/VS log.
Information from this log can be extracted to provide a test
stream that can be used for performance testing.

Performance testing can be divided into the following subcatego-
ries: performance load testing, regression performance testing,
expanded network or projected environment simulation, and
performance measurement testing for tuning purposes.

The objective of performance load testing is to determine
whether or not the programs can indeed handle the planned load
with an adequate throughput and acceptable response. Bottle-
necks and queuing problems can be located in this testing envi-
ronment, rather than in a production environment. An appro-
priate user profile is essential to this testing. Otherwise, the pro-
grams may appear to execute adequately but actually fail to per-
form in the production environment.

Regression performance testing is conducted when there is
some change in the environment, either through the addition of
new programs, modification of existing programs, or the installa-
tion of new hardware, operating systems, or subsystems. This
testing is conducted to determine the extent of change to
throughput and response when the environment is modified. If
the throughput and/or response is no longer acceptable, other
changes are mandated.

Expanded network or projected environment simulation is test-
ing that is done in order to place a projected larger load on the
programs to ensure that the appropriate number of terminals can
be supported and that the quantity of transactions anticipated
can be handled. In order to accomplish this testing, it is neces-
sary that the anticipated number of terminals and transaction
loads be applied over a sufficiently long period of time so that
stabilization can occur, measurements can be made, and conclu-
sions can be drawn. It is practically impossible to accomplish
this manually.

The expanded network or projected environment simulation
ensures that the planned load can be handled. It also shows
areas where bottlenecks may occur. This knowledge then adds
to the predictability of the effect of change.

Performance measurement testing is done to locate critical bot-
tlenecks in the system and to assist in tuning. The environment
is contrived, in that certain parameters are being pushed to their
limits, to locate elbows in curves, which are associated with crit-
ical variations in parameters.

DUKE IBM SYST J




It is possible to examine the effect on response and throughput
when a parameter is varied (e.g., CPU loading). In this case, a
contrived environment is produced that will cause CPU loading
to occur, and measurements can be made that show the effect on
response and throughput.

This contrived environmert is in no way representative of any
production environment and should not be considered as such.
It is an experimental environment where causes and effects are
being studied to obtain additional knowledge of the total envi-
ronment so that modifications can be made to the environment,
permitting the system to operate more desirably.

Test methodology

The methodology to test in these several environments consists
of planning the testing, test preparation, control of testing, test
execution, post-test analysis, and corrections.

A thoughtfully developed and well-documented test plan is es-
sential to successful program installation and maintenance. It is
also essential to the goals of the test, and should minimize the
expenditure of resources. This plan should take into account all
aspects of the testing and should include:

Testing systems.

Test tools.

Test scripts.

Data bases.

Expected results.
Schedules.

Checkpoints.
Resources.
Dependencies.
Expected problem areas.

Comprehensive testing involves great quantities of data in the
form of data bases, test cases, scripts, expected results, and sta-
tistical information. To create all of the data, to execute the test
cases, and to analyze the results, requires a major expenditure of
human effort and machine resources. The use of these resources
must be carefully planned.

The test planning must begin very early in the development
cycle for two major reasons. First, there are the design con-
siderations of the program to be written. Testers look at the
specifications from an entirely different point of view than do the
developers. As such, they can frequently spot flaws in the logic of
the design or incompleteness in the specification. In doing this,
they help the developers to produce a superior product.

No. 4 - 1975 COMPLEX SYSTEMS TESTING

planning
the testing




test
preparation

The second major reason is the scope of the effort required in
the actual testing itself. A large number of test cases will have to
be prepared. Data bases will have to be built. Expected results
will have to be generated. The test cases will have to be consoli-
dated into scripts. Even the planning is quite time-consuming.
Without an early beginning, there is often a crash effort to con-
clude by a scheduled date, with quantities of overtime and the
expenditure of large quantities of machine time to attempt to
meet schedules.

The plan should be in sufficient detail that other persons, such as
other testers, managers, and developers, will be able to deter-
mine the purpose of each portion of the testing, the magnitude of
the testing, the results that are expected, and how the effective-
ness of the test will be determined. Even with automated pro-
cedures and tools available every step of the way, it is still possi-
ble (probable) that a large expenditure of both human and ma-
chine resources will be required to adequately test a program or
a subsystem.

Since it is usually not possible to run all varieties of tests during
the same machine run, a careful selection must be made, and
test runs must be performed in an intelligent manner. Good test-
ing depends upon a careful and thoughtful selection of the tests
to be run and the environment associated with running the tests.
Any available automated tools should be used to accelerate test-
ing, reduce errors, and minimize costs.

Before any testing can occur, many pieces must be in place. The
operating system must be decided upon and generated for the
system. Any subsystem that is associated with the test must be
generated and incorporated within the system under test. Appli-
cation programs that will be used must be available. Data bases
must have been created or must be available from some source.

It is highly likely that a version of an operating system will al-
ready be available. A copy of this operating system can be ob-
tained as a starting point for use by test personnel.

It is also likely that the operating system will have to be modi-
fied in some way, or a new system generation performed to cre-
ate the right environment for testing. For example, the current
operating system may be generated for a certain number of ter-
minals and specific subsystems that are required in a production
environment. If a new subsystem is to be added, modifications
to the system generation environment may be required for the
test. It is also possible that a new operating system is about to
be installed and that it must be generated and tested, along with
all of the subsystems and programs that existed on the previous

DUKE IBM SYSTJ




operating system. The same is true for Network Control Pro-
gram generation when needed for a communications controller.

If a new subsystem is to be installed, it must first of all be gener-
ated and added to the current operating system or to a new
operating system. This generation process must take into con-
sideration all of the requirements of the subsystem, such as
space requirements in main storage and on disk and the number
of terminals that the subsystem is expected to support.

For projected environment or expanded network simulation, it is
likely that larger versions of the subsystems will have to be gen-
erated to support the planned additional terminals and lines.

Preparation for functional testing depends to a large measure on
an explicit methodology that includes:

Identification of test conditions.
Test case development.

Script preparation.

Data base preparation.

Driver run preparation.

Preparation for performance testing substitutes tests that are
based upon the user profile for test condition identification and
test case development. Intelligent testing depends, to a large
extent, upon the understanding of the use of this methodology.

Using a test program’s functional specifications as a base, every
unique zest condition is identified wherein some specific cause
results in a known effect. For example, one specific condition
results in a given error message. Each parameter or variable has
one or more correct values and one or more incorrect values.
Each value is a unique condition and can result in correct execu-
tion or in an error condition. Each test condition must be identi-
fied and documented together with the expected result that
should occur when the condition is encountered.

In its purest form, one test case represents the test of a single
test condition. In practice, however, a test case is developed to
test one or more test conditions. The important concept here is
that each test condition has one or more test cases that cause
that condition to occur.

A test case, by itself, may not be executable in an automated
testing environment. It becomes executable when it is consoli-

dated into a script.

A script is a collection of one or more test cases, together with
sufficient identification and control information to permit that

NO. 4 - 1975 COMPLEX SYSTEMS TESTING

preparation
components




Figure 1 Test environment

ON-LINE

DEVELOPMENT

MAINTENANCE

LIBRARIES
SCRIPTS
UTILITIES

ON-LINE

INTERACTIVE
TEST CONTROL

EDITING
FACILITIES

DRIVER
SYSTEM

TEST CASE
EXECUTION

DRIVER
GENERATION

EXPECTED
RESULTS

TEST RESULTS

TEST RESULTS
ANALYSES
COMPARISONS

}

—»l DRIVER LOG

SYSTEM
GENERATION
SUBSYSTEM

GENERATION
PROGRAM

LOADING

OPERATING
SYSTEM

SUBSYSTEMS

APPLICATION
PROGRAMS

HARDWARE
MONITOR

SUBSYSTEM
LOGS

SOFTWARE
TEST TOOLS

SYSTEM LOGS

COMPARISONS

ANALYSES

MEASUREMENT
REPORTS

EXTRACTIONS
TRANSACTIONS
RESULTS

FREQUENCY
DISTRIBUTIONS

|

DATA BASE
GENERATION

EXTRACTION

DATA BASES

DATA BASE

CHANGE
ANALYSES

script to be executed from a test driver. The script may contain
unique tests for use in functional testing (and possibly perfor-
mance testing) or it may contain repetitive tests for use in per-
formance testing. A script is typically stored in a test library and
is accessed during the execution of the test driver.

Data base preparation is necessary whether one is testing a new
processing program, a new subsystem, or new features in a sub-
system such as IMS/vS. A data base needs to be created prior to
running any test scripts. That data base needs to be of sufficient
size, content, and complexity so that the functions that the pro-
grams are attempting to perform and the test scripts that are
exercising the programs can indeed perform the required func-
tion. The content of the data base needs to be known so that
processing against the data base that causes changes to that data
base can be identified, and those portions of the data base that
are changed by the testing can be identified.

The data base can be generated manually, it can be a copy of an
existing data base, or it can be generated automatically with
some existing tool. In any case, the content and structure of the
data base must be known.

Preparing for execution of the test driver (driver run
preparation) consists of the identification of network compo-

nents, such as terminals, clusters, and lines, of the test scripts

DUKE IBM SYST J




that will be executed, and of other resources that will be used,
such as the name of a logging data set. This preparatory informa-
tion may be divided so that some of it exists within the test li-
braries and some is entered when the test driver begins execu-
tion. Typically, the test scripts are associated with system
resources and may be used once for functional testing or repeti-
tively for performance testing.

Figure 1 depicts the test environment. Many components are
illustrated that are data base-oriented. Many are program-orien-
ted. Each component must be identified and controlled in order to
minimize testing costs and to ensure that test schedules are met.

Test execution

Test execution using a test driver, or ““driving’” as the term is
commonly used, is the process whereby a test driver program
executes in one region of a computer, simulating the action of
terminals and communication hardware and causing another
program or subsystem to react to the simulated terminal input.
The other program or subsystem is being “driven” in that all
input/output is identical to that which would occur if persons at
terminals were causing transmission to occur, rather than a pro-
gram causing the transmission.

If the “driven” program or subsystem resides in the same com-
puter as the test driver, then simplex driving is occurring. If,
however, the ‘‘driven” program resides in another computer,
then duplex driving is occurring. In both cases, the “driver” and
the “driven” program are interconnected through a telecommuni-
cations network.

Simplex driving is the term attributable to the environment
where both the driver and that which is being driven reside in
the same computer. The driver resides in one region and the
program or subsystem being tested resides in one or more other
regions in the same computer (Figure 2).

Simplex driving is desirable for functional testing since another
computer is not required, therefore reducing costs. It is less de-
sirable for performance testing since the effects of the driver
must be adjusted for in the analysis of the performance data
acquired.

Duplex driving is the term attributable to the condition where
the driver resides in one machine and that which is being driven
resides in another machine. This is the situation that usually ex-
ists when performance tests are to be made and accuracy i$ nec-
essary (Figure 3).

No. 4 + 1975 COMPLEX SYSTEMS TESTING

test
control

simplex
driving

duplex
driving




dynamic
modification

logging

Figure 2 Simplex driving

TEST
LIBRARIES TEST
DRIVER

DRIVER
LOG

cPU2

PROGRAMS
UNDER
TEST

When drivers are used to do functional testing, the test cases are
accessed serially. During normal testing, it is often true that cer-
tain test cases will fail and may bring the test to a halt unless
they are corrected or bypassed.

One of the useful features of a driver is the ability to permit the
tester to modify both test cases and scripts in order to correct or
bypass certain test cases without completely aborting the driver
run. Otherwise, each test case failure causes the driver run to
cease. The test would have to be corrected off-line and run at a
later time. The ability to modify both test cases and scripts dy-
namically can therefore save precious days or weeks of testing
when functional testing is being performed.

The test driver log records and time stamps all messages sent
from the driver to the “driven” programs and likewise records
and time stamps all messages received in reply. In addition, it
records the test environment and other indicative information.

The driver log permits post-test analysis for both functional and
performance tests to provide verification of functional correct-
ness, and to provide performance information as well.

Post-test analysis

Post-processing is the term applied to the analysis of test runs.
This analysis can be in the form of comparisons between ex-
pected results and actual results, of comparisons of data bases as
they exist with what was expected, of resource usage, of fre-
quency distributions, or of any other processing that verifies that
the test ran correctly or that verifies the performance of the pro-
gram and /or subsystem under test. ‘

DUKE IBM SYSTJ




Figure 3 Duplex driving

i

TEST
LIBRARIES TEST
DRIVER

DRIVER
LOG

N~

S

PROGRAMS
UNDER
TEST

At the completion of any functional test driver run, it is impera-
tive that the results actually obtained be compared with the re-
sults that were expected from the run. The results of each and
every test case must be verified to ensure that the code executed
properly. If any discrepancies are noted, they must be resolved.

The most difficult part of the comparison process is ensuring
that each and every test case output was identical to what was
expected. If this is a manual procedure, involving hundreds or
even thousands of test cases, then it is a laborious undertaking
and requires many hours of human examination to ensure accu-
racy. If, however, it is an automated process, then comparisons
can be done quickly, and discrepancies can be noted in the form
of exception reports, showing what was expected, what was ac-
tually received, and how the two differ.

When a test is run, both the output and the data base changes
must be analyzed to determine the validity of the test. Just as
the expected results must be compared with the results actually
obtained, when data bases are involved it is imperative that the
data base changes that occurred during the testing be compared
with the changes to the data base that were expected. It is im-
portant to know that the data base was changed in the exact
manner expected and that no other changes were made.

The data base change comparison can be done manually in a
very time-consuming manner, or it can be automated to the
point that the comparisons are done with computer programs.
With an automated comparison, every discrepancy is noted, and
any problems can then be pursued to determine the cause of the
discrepancy.

No. 4 - 1975 COMPLEX SYSTEMS TESTING

actual
versus
expected
resuits

data base
changes
versus
expected
changes



corrections

When performance test runs are made, data are available from
many sources. System data is available. An IMS/VS log tape is
available if IMS/vS was one of the subsystems under test. Hard-
ware monitors may have been attached, and if so, data from these
monitors are available.

All of the data received from the many sources can be analyzed.
The time that each event occurred must be determinable and
preferably time-stamped on the recording as it is made. All of
the information can be sorted into time sequences prior to exam-
ining the information. Adjustments must be made for any dis-
crepancies in clock recordings.

Statistical information gathered during performance runs must
be available upon completion of those runs to show the usage of
individual resources within the computer complex. Much of this
information can be available by processing subsystem log tapes,
system logs, and hardware monitor information. It is normally
displayed in a series of reports in order to present it in a mean-
ingful fashion.

Part of the post-analysis procedure associated with performance
testing is an analysis of the loading of the system at periodic in-
tervals. The system may have been lightly loaded at certain
times and heavily loaded at other times. It is nearly meaningless
to know what the average loading was. The peak loading may or
may not be of value since this peak may have been an instanta-
neous peak, which was accidental and therefore would not repre-
sent the normal peaking.

It is much more meaningful to be able to distribute the factors
over time to show the periods of time when the system was
loaded and the percentages of time that specific resources were
in use. This frequency distribution, then, has the effect of per-
mitting one to examine a complex system over a prolonged peri-
od of time.

As a result of the post-test analysis, it will be seen that some
errors occurred because of deficiencies in the programs being
tested. Others will have resulted from incorrect test cases or
incorrect expected results. Where the error is with the test prep-
aration, corrections must be made there. When the error is in the
programs under test, those errors must be communicated to the
developers so that the programs can be corrected. Adequate
control dictates that procedures be in place for follow-up to en-
sure that the programs have been corrected and have been re-
tested without regression.

DUKE IBM SYST J




Summary

With a thorough understanding of the various types of testing, of
the objectives or purposes of specific tests, and of the test tools
and test methodology, it is feasible to conduct meaningful tests
in a complex systems environment. The major test tools are the
test driver itself, the test libraries, the ability to edit or modify
tests, and the post-test analysis programs.

By utilizing these test tools and the methodology shown, both
functional and performance tests can be conducted. The combi-
nation of tools and methods can accelerate program develop-
ment, aid migration, ensure that accuracy and performance goals
are met, and reduce costs by the replacement of manual
methods with the automated testing techniques described.

ACKNOWLEDGMENT

The author gratefully acknowledges the many creative sug-
gestions and support contributed by D. M. Langston and
S. Togasaki.

GENERAL REFERENCE

Information Management System Virtual Storage (IMS|VS) General Informa-
tion Manual, Form No. GH20-1260, 1BM Corporation, Data Processing Divi-
sion, White Plains, New York.

Reprint Order No. G321-5021

COMPLEX SYSTEMS TESTING

365




