When a change to a computer system is evaluated under work-
load conditions that are not controlled, it is necessary to estimate
to what extent system performance has been affected by the
change and to what extent by variations in the workload. This
paper describes a regression-analysis method by which such an
estimate was made for a particular computer system.

Evaluating system changes under uncontrolled workloads:
a case study

by H. P. Friedman and G. Waldbaum

A mumber of approaches have been used in evaluating how
computer system changes affect performance. In one approach,
in which the workload is said to be controlled, a set of bench-
marks, representing a range of typical workloads, is run with and
without the system change. Although the evaluation is straight-
forward in that differences in performance simply are reported
for each benchmark, the success of this approach depends on
how well the benchmarks represent real workloads. When there
is significant variability in the workload, one can not help but be
skeptical of “typical” workloads.

Another approach is to perform the evaluation using data on the
performance of the real system under a real workload. The sys-
tem is run with and without the change under a workload that is
said to be uncontrolled, although the experiment frequently is
designed to minimize the effect of workload variations.

It was this approach that was used in evaluating a change in the
APL' system at IBM’s Thomas J. Watson Research Center. The
change was intended to provide APL users with larger storage
areas—but it was expected to produce some degradation in re-
sponse times as well. We wanted to quantitatively evaluate the
effect of the change to ensure that the amount of degradation
would be acceptable.
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Bard® has described how the effect of the variation in the work-
load can be overcome by continual on-line switching among dif-
ferent hardware / software versions of the system. This approach
was not possible in our situation, however, since the system de-
sign required that a swapping area on disk be preformatted for
the maximum storage area. Nor was randomization feasible,
since it was not possible to switch back and forth frequently,
even off-line.

Thus it became necessary to evaluate the change by trying it on
the real system, where a number of factors that affect perform-
ance were not controlled. Those factors include the APL work-
load, the reliability of the system, and the batch workload.
Moreover, any performance degradation had to be estimated
within a few days so that the system could be restored to its pre-
experimental version without too much difficulty if the degrada-
tion was too great.

Evaluation of a system change under an uncontrolled workload
is complicated by the fact that any change in system response
may be caused by a workload variation as well as by the change
in the system. Furthermore, there may be feedback effects in
that the user’s behavior may be influenced by the system’s re-
sponse as well as by their knowledge of the system change.

One technique for evaluating such a change is to use regression
models (i.e., equations) that relate variables describing the sys-
tem’s performance to variables describing the uncontrolled
workload and the system modifications. In this approach, the

dynamics of the feedback are modeled not directly, but indirect-
ly through the workload variables. This technique, used pre-

3,4,5,6

viously, is explored further in this paper.

System changes

In the APL time sharing system, which is run at the Research
Center on a System/360 Model 91 under OS/MVT, users’ pro-
grams and data occupy blocks of storage called workspaces.
Workspaces that are not being used are stored in libraries on
disk. Workspaces that are being used are swapped between
main storage and disk according to the terminal activity of their
users as well as the terminal activity of other users on the sys-
tem.

The modifications to the Research Center’s system involved two
system parameters. One parameter, WSSIZE, specifies the maxi-
mum size of each workspace in the system. Main storage and
the area on disk used for swapping are formatted into fixed-size
areas that are large enough to store the maximum-size work-
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spaces. The other parameter, INCORE, specifies the number of
workspaces that can be in main storage simultaneously. Thus
the value of this parameter is the highest level of multiprogram-
ming possible in the APL system. Both wSSIZE and INCORE have
values that can be either defaulted (WSSIZE = 36,000 bytes,
INCORE = 3) or specified within certain limits,' by the installa-
tion.

In 1971, a number of APL users at the Research Center request-
ed larger workspaces. They felt that the 36,000-byte WSSIZE
then currently in use was inadequate for their work. 0s batch
users objected, however, because a straightforward enlarging of
APL workspaces would reduce the amount of main storage avail-
able for batch jobs.

To respect the wishes of both batch and time sharing users, it
was decided to reduce the number of ApPL workspaces in main
storage from three to two, but to enlarge the workspaces from
36,000 bytes to 48K (K = 1024), provided that the expected
degradation in APL performance would be acceptable. Since two
48K-byte workspaces require less main storage than three
36,000-byte workspaces, batch storage would be increased by
9,696 bytes—that is, (3 X 36,000) — (2 X 49,152) —thereby
providing a benefit for batch users. Performance with two 48K-
byte workspaces was expected to be poorer than with three
36,000-byte workspaces for three reasons:

* Reducing the number of workspaces in main storage would
reduce the average level of multiprogramming, thereby in-

creasing the amount of swapping.

More time would be required for reading and writing the
larger workspaces.

Increasing the maximum size of the workspaces would
spread them out on disk and increase the time required for
seeking. They would become spread out mostly because the
IBM 2314 cylinder used for swapping can store only two
48K-byte workspaces, compared with four 36,000-byte
workspaces,’ and also because the average number of tracks
used for storing libraries increases as more users take advan-
tage of the larger workspaces.

Data collection

These system changes were evaluated using workload and per-
formance data that are gathered continually by the APL system.’
No system changes had to be made to collect the data, which
user programs can access via special APL functions. Data were
collected at approximately the same time (4:00 p.m.) each day.
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To reduce any performance variation attributable to system reli-
ability, data were not used for any day when the system was not
up for at least five hours between 8:30 a.m. and 4:00 p.m.

The data used in the regression model were collected on 35 days
during the latter part of 1971, On the first 18 days we used the
pre-experimental system configuration—that is, the workspace
size was 36,000 bytes and there were three workspaces in main
storage. Then we converted to two 36,000-byte workspaces to
find out whether performance would remain satisfactory. If not,
there would be no point in converting to 48K-byte workspaces,
and it would be easier to reconvert to the three-36,000-byte sys-
tem. After running the two-36,000-byte configuration for nine
days, we determined that the degradation in performance was
small enough to warrant experimenting with a workspace size of
48K and two workspaces in main storage. This configuration
was run during the last eight days of the data collection period.

In a previous analysis of these data,” one additional day was in-
cluded. That day is not included in this analysis, because we
discovered that the data for that day excluded the CPU time (es-
timated at more than an hour) that was consumed by a program
that never finished running. This time was excluded because
APL updates the CPU’s record of CpU time only when it has fin-
ished servicing a conversational input.

The model variables

Each of the performance and workload variables in a regression
equation can be specified at a micro or macro level. In a time
sharing system like APL, a variable is said to be specified at the
micro level if it is associated with a single conversational input,
and it is specified at the macro level if it is associated with an
aggregation of conversational inputs. For example, if a model
predicts the average response time of all conversational inputs,
it specifies the performance variable at the macro level. And if a
model predicts the response time of each conversational input, it
specifies the performance variable at the micro level. Since the
data collection mechanism used in this study made it impossible
to know the workload corresponding to each conversational
input, model variables that characterize performance and work-
load are specified at the macro level.

The performance variable that is modeled is system reaction
time, the time from detection of a user’s carriage return until his
workspace is dispatched (i.e., receives its first time slice). In
this paper, regression equations are built for three points on the
CDF {(cumulative distribution function) of the system reaction
time:
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Y,, the 50th percentile for the system reaction time; i.e., the
system reaction time (in seconds) achieved or bettered by
50 percent of the inputs

Y,, the 90th percentile for the system reaction time (in seconds)

Y,, the 95th percentile for the system reaction time (in seconds)

System reaction time measures the effectiveness of the schedul-
er in dispatching service to an input, and therefore it is a good
measure for evaluating changes to the WSSIZE and INCORE pa-
rameters. For most of the conversational inputs in the Research
Center’s APL system the system reaction time is approximately
equal to the system response time (i.e., the time from the
depressing of the carriage return key until the system finishes
servicing the input), Response time is a more commonly used
performance measure, but it is not measured by APL. Since 85
percent of the inputs require less than 1/60th second of CcPU
time on the Research Center’s Model 91, and this CPU time is
rarely interrupted for more than a few milliseconds, the differ-
ence between system reaction time and system response time is
negligible for most inputs.

The initial selection of workload variables was limited to those
that are measured routinely by the APL system and that there-
fore reflect the knowledge of the system’s designers as to the
variables that might influence performance. The following work-
load variables, all specified at the macro level, were selected for
possible inclusion in the regression models of the system reac-
tion time:

X,, the number of conversational inputs per hour

X,, the percentage of CPU time consumed by all small CPU re-
quests (i.e., requests using two or less seconds of CPU time)

X, the percentage of CPU time consumed by all large CPU re-
quests (i.e., requests using more than two seconds of CPU
time)

X, the number of large CPU requests per hour

X,, the number of commands per hour requiring two workspaces
in main storage simultaneously

X, the number of logons per hour

Note that these variables can be considered daily averages,
since the data were collected only once each day.

In this experiment, the values of the system parameter INCORE
were 2 and 3, and the values of the parameter WSSIZE (in terms
of tracks on a 2314 cylinder) were 5 and 7. Although the num-
ber of possible system configurations with these values is four,
the 3-7 configuration (three workspaces in main storage,
seven-track workspace) was not considered, since it would have
made less main storage available to OS users. The three remain-
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Table 1 Data used in building the model
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ing system conditions are described by encoding two dummy
system-condition variables, X, and X,, as follows:

INCORE WSSIZE X, X,
2 5 0 0
2 7 0 1
3 5 1 0
This code has the advantage, as shown in the following section,
of making it easy to test the significance of any difference be-
tween the 2-7 and 2-5 conditions, as well as any difference
between the 3 -5 and 2 -5 conditions.

Tabie | depicts the values of the system-condition, workload,
and performance variables for each of the 35 days.

NO. 4 - 1975 EVALUATING SYSTEM CHANGES




analysis
ignoring
workload

a least squares
fitted model
ignoring
workload

The evaluation

First, we determine, without regard to the workload, whether
there are any differences in performance among the three system
conditions. For each condition, Figure 1 depicts the sample
CDF of the system reaction time by averaging the data over all
days when the system was operated under that condition. The
averages of system reaction time (in seconds) for the 50th,
90th, and 95th percentiles are:

Condition 50th 90th 95th
2-5 0.28 0.69 1.17
2-7 0.36 099 1.61
3-5 027 0.72 1.17

Clearly, the system reaction time is longer on days when the 2 -
7 condition is run than when the 2-5 or 3 -5 conditions are run,
and there is little difference in reaction time between days when
the 2 -5 condition is run and when the 3 -5 condition is run. In
the following sections, these conclusions are substantiated sta-
tistically and then reexamined to determine whether the differ-
ence in performance between the days when the 2-7 condition
is run and the other days is due to the 2 -7 condition itself or to
a heavier workload under that condition.

To the 35 days of data in Table 1, we fit, by least squares, the
following regression equation for the system reaction time, con-
taining only the dummy system-condition variables:

YF=bX,+ bX,+ bX,

In this equation, X is 1, X, is 1 for condition 3-5 and 0 other-
wise, X, is 1 for condition 2-7 and O otherwise, and YF is the
fitted value of Y, which isa 35 X 1 column vector of the observed
system reaction times for the 35 days.

The least-squares estimates of b, b,, and b,, the unknown con-
stants in the regression equations, are found by solving the nor-
mal equations, which are written below as a single matrix equa-
tion;

X'XB=X'Y
where

b

0

B = b ’

1
\*
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X is a 35 X 3 matrix whose columns are X, X,, and X, respec-
tively, and X’ is the transpose of X. For the data in Table 1, the
matrix equation above then becomes:

Thus we see that b, + b, is the average of the Ys for condition
3-5, and b, + b, is the average of the Ys for condition 2-7.
And a little algebra shows that b is the average of the Ys for
condition 2-5. Hence b, is an estimate of the difference be-
tween the 2-5 and 3 -5 conditions, and b, is an estimate of the
difference between the 2 -5 and 2 -7 conditions. The difference
between the 3-5 and 2-7 conditions is b, — b,.

To test the statistical significance of the observed differences,
we have to make further assumptions about the unexplained
variations. In particular, we have to assume that the unexplained
variations are distributed normally, with zero mean and variance
equal to a constant that can be estimated from the residuals (i.e.,
observed value minus fitted value). Under these assumptions,
we can estimate the standard error of a coefficient and compute
a t-statistic that is equal to the ratio of the coefficient to its stan-
dard error.

Ignoring workload, the t-statistics corresponding to the coeffi-
cient b, for the 50th, 90th, and 95th percentiles of reaction time
are 4.20, 3.00, and 2.50. Large values of | (>2 in this case)
indicate that the coefficient is significant. Therefore there is
strong evidence that there was a real difference between the
reaction times of the 2—-7 and 2-5 system conditions, thereby
substantiating the conclusion drawn in the previous section.
Likewise, the conclusion that there was no statistical difference
between the 2-7 and 3 -5 conditions is substantiated since the
corresponding ¢-statistics for b, are —0.62, 0.35, and 0.004.

Although we have shown that the system reaction time corre-
sponding to the 2-7 data is slower than that corresponding to
the 2—5 and 3 -5 data, the system conditions do not account for
all of the difference. Therefore we must expand the analysis to
find out whether the effects we observed can be accounted for
by the workload. Further, we would like to see whether the vari-
ations in reaction time are explained fully by the workload vari-
ables together with the system parameters.
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Figure 1
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The regression approach to evaluating a change in a computer
system requires that an equation be found that adequately re-
lates workload and system conditions to performance. If, for the
different system conditions described by such an equation, the
response surfaces are parallel to one another, then the effect of
the system conditions is independent of the workload. In that
case it will be possible to make performance statements that are
independent of the workload. However, if the response surfaces
are not parallel, the effect of the system conditions is not inde-
pendent of the workload, and it will be necessary to make the
performance statements contingent upon some statement about
the workload. Thus, it is desirable to explore the parallel regres-
sion model first.

We assume that the response surfaces for the different system
conditions are parallel. In other words, we assume that the dif-
ference in performance under any two system conditions and
any workload is independent of the workload (i.e., the difference
is a constant). Although it would not be expected that such a
parallel regression model would be valid for a computer system,
it is worth exploring because of its advantages over a nonparallel
regression model (i.e., performance statements independent of
workload, fewer constants to be determined). Even if the model
is not entirely correct, we might still be able to draw some useful
conclusions from it.

For each response measure, then, we fit a simple model'>"! of
the following form:

YF=b,+ bX,+ bX, + b,X, +*+ + b.X,

Because of the way the system conditions are encoded, this
model is equivalent to the following set of equations:

For the 2-5data: YF = b + b, X, + -+ b X,

For the 3-5 data: YF =b,+ b, + b, X, + -+ b X,
For the 2-7 data: YF = b,+ b, + b, X, +- -+ b X,

Thus, b, again is an estimate of the effect of the 2 -5 condition,
b, is an estimate of the difference between the 2-5 and 3-5
conditions, and b, is an estimate of the difference between the
2-5 and 2-7 conditions. (The difference between the 3-5 and
2-7 conditions is estimated by b, — b,.) Note that the other
coefficients correspond exclusively to workload variables and
that they are the same for the different conditions. (This is the
parallel regression assumption.) Thus, this model enables us to
separate the variation in performance due to workload from the
variation due to system conditions. That is, it enables us to
make performance statements independently of the workload.
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If this model is correct, it is possible, for example, to determine
whether the 2-7 condition differs statistically from the 2-35
condition by examining the ¢-statistic associated with the coeffi-
cient b,. Note that this procedure takes into account the effect of
the workload variables in the equation, and if the variation can
be accounted for by workload alone, the t-statistic correspond-
ing to b, would be insignificant.

Table 2 depicts the results of fitting the data to this regression
model. (R?, the multiple correlation coefficient squared, de-
scribes the proportion of variation accounted for by the fitted
model, and ¢(b,) is the t-statistic for the significance of coeffi-
cient b,.) If the model is correct, there is a real difference be-
tween the 2—7 and 3 -5 conditions (estimated to be 0.086 sec-
onds for the 50th percentile, 0.4 seconds for the 90th percentile,
and 0.64 seconds for the 95th percentile) but there is no signifi-
cant difference between the 2~5 and 3 -5 conditions.

In the usual formulation of the statistical model for linear least-
squares fitting of equations to data, it is assumed that the ob-
served values Y,, Y,, -+, Y, of a dependent variable Y are
generated by an equation of the form:

Y,=by+ b Xy + -+ b X, +e

where b, b,,* - -, b, are constants to be estimated, and the ¢, are
independent outcomes from a normal distribution with mean
zero and unknown variance o°. The Xs are assumed to be mea-
sured without error. The bs are estimated by the criterion of
least squares. That is, they are chosen in order to minimize

3, (Y,— YF)" where YF,= b, + b X, + -+ b X,

The minimum value of 2?:1 (Y,—YF l.)g is called the residual sum
of squares and is denoted by RSS. If the model is correct, then
RSS/(N — (p + 1)) is an unbiased estimate of the unknown
variance o of the error term. It is clear, then, that the estimate
of error variance depends on the accuracy of the functional form
of the equation.

To check on how well the functional form fits the data, it would
be convenient to have an estimate of the error variance that
does not depend on the fitted functional form. The classical re-
quirement for this estimate—a good estimate of random error
from randomized replication —could not be met in our case be-
cause we did not control the workload variables. Instead, we
used the “near replicate” concept, which is introduced on page
123 of reference 11. That is, we looked for pairs of observations
taken far apart in time, but under “‘nearly the same” X condi-
tions. The variation in the dependent variable for these pairs of
observations was used to define another estimate of error vari-
ance. This estimate was compared with the RSS and then was
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Table 2 Results of fitting the
parallel regression model

Y Y. Y

1 2 1

0.128 0.134 0.117
—0.022 —0.030 —0.083
0.086 0.400 0.640
1.9 0.5 0.7
5.6 4.9 4.3
0.78 0.71 0.66

adequacy
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used as a basis for checking lack of fit. This procedure was im-
plemented in the computer program' that was used for perform-
ing the analysis.

Another check on the adequacy of the model is to make various
plots of the residuals (i.e., Y, — YF,) to check for indications of
outlying observations, systematic departures from randomness,
nonconstancy of variance, and nonnormality. A good exposi-
tion of the types of plots that are possible is given in Chapter 3
of reference 10 as well as in reference 11. Many of these plots
are implemented in reference 12.

With the above remarks as background, we now discuss the
adequacy of the models fitted for this problem. First, we found
that 78 percent of the variation in reaction time (R® = 0.78)
could be explained by the model in which Y is the 50th percen-
tile of reaction time. The square root of the variance estimated
from the unexplained variation was 0.027 second. This quantity
is usually called the standard error of the estimate. Various plots
of the residuals gave no cause for suspecting strong departures
from the assumptions. In addition, an estimate of error variation
from near-replicates proved consistent with the error derived
from the residual sum of squares, indicating that any attempt to
fit more complicated functional forms with the chosen variables
would only be “‘overfitting.”

The same patterns were present for the 90th and 95th percentile
equations. The standard errors of estimates were larger for these
equations, but the corresponding estimates from the near-repli-
cates were also larger. Thus, any attempt to fit more complicat-
ed forms with these data would also be overfitting.

This leaves us with a model that has a significant amount of
reaction-time variation that can be explained neither by the sys-
tem conditions nor by the measured workload variables. Surely,
part of the unexplained variation is due to the fact that the vari-
ables in the model are specified at the macro level (i.e., they are
daily averages). However, it is possible that there are other
unmeasured variables (e.g., characteristics of the batch
workload) that might account for the unexplained variation in
reaction time. '

A check on the parallel regression assumption can be made by
fitting separate equations for each system condition. This is
equivalent to fitting a more complete model that allows the coef-
ficients of the workload variables to be different for each system
condition. The completed fitted model would look like this:
YF=b X, + b X, +bX,+ bX,+ -+ bX,

+ by X\ Xyt b X, Xyt b X X+ b,y X, X,
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where, as before, X is always 1, X is 1 for condition 3-5 and is
0 otherwise, X, is 1 for condition 2-7 and is 0 otherwise, and
X,, -+ X, are the workload variables. However, this was not
done because the model contained too many parameters to esti-
mate reliably from only 35 data points.

Conclusions

The results indicate that the 2 -7 system condition gives a statis-
tically poorer system reaction time than the other system condi-
tions. However, the amount of performance degradation was not
deemed serious by management.

The results also indicate that there was no statistical difference
between the 3-5 and 2 -5 conditions.

These conclusions are somewhat limited since the variables
were specified at the macro level (i.e., averages over a day).
There may still be periods within a day when the degradation in
performance is more severe than that estimated by the model.

The conclusions are also conditional on the workloads observed.
If the workload became ‘‘heavier’” and took on values outside
the ranges observed, the system differences might become much
larger than those estimated. Conceivably, this can happen as
users accomodate to larger workspaces.
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