Included in the user’s price-priority decision is his cost of delay.

Briefly discussed for the general case, and shown in detuil for
the two-queue case, is the principle that the total cost to users
of the computing service is minimized in a computing installation
that has a price-priority service policy.

Computing center optimization by a pricing-priority policy
by S. B. Ghanem

Computer installation management typically faces the problem
of distributing available computing resources among competing
users or projects.” Whenever the current demand for computer
service exceeds the current capacity to provide that service,
queues of unsatisfied demand form. Excessive queuing time is
costly, whether it is a social cost or the cost of idle employees.
It has been difficult to formulate optimal policies to reduce the
losses that occur in waiting lines.

This paper proposes the modeling and studying of an optimal
operating policy for a service facility that is subject to queuing.
The proposed scheme would levy admission tolls at several dif-
ferent priority classes. Higher tolls are charged for priorities
with lower average waiting time and vice versa. The reason for
suggesting a pricing system for priority allocation is that the
demand for service varies in its urgency from one user to another.
Some users experience high cost or great inconvenience if their
computing job is not done promptly. Others can wait longer at
a little cost. Users who place a high value on their time are more
likely to choose priorities that result in shorter average delay,
and they expect to pay higher tolls to join these classes. By setting
different charging rates and by providing the necessary informa-
tion, users are encouraged to weigh the relative values of services
to them before picking priorities for their jobs. Hence, the pricing
scheme is used as a control mechanism to guide users toward
the correct decisions.
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At present, user charges in some computer centers are either
heuristic or based on average-cost principles.” Average-cost
pricing means that such computing facilities yield zero profit,
but produce a misallocation of computer time® because high tolls
are charged during low-use periods, and low tolls are charged
during high-use periods. It is also a common practice to assign
priorities administratively to requests in a way that is often arbi-
trary and, thereby, ignores the effect of the priority system on
computer efficiency and other factors. The pricing schemes in
common use give the user little or no choice in the priority to
which his job is assigned. Accordingly, the user has no means
to signal urgency in having his job completed, even if he is willing
to pay for his urgency. Other computation centers have instituted
a differential pricing scheme, but their approach is heuristic. In
any case, it is common practice to assign service prices either
on average-cost principles or on administrative decisions, neither
of which includes the cost of delay.

One wonders whether an optimal pricing system that includes
the cost of delay can be used to achieve an optimal priority al-
location among competing users. Mechanisms have been pro-
posed for optimizing service facilities subject to queuing limita-
tions. Cox and Smith* and others have considered the case in
which users are divided into groups, each group having the same
cost rate. The authors minimize the total time-averaged cost
and develop the “c/t rule.” This rule indicates that if ¢, is the
cost rate for the ith unit waiting for service and ¢, is its expected
service time, then the unit with highest c,/r, should be served
next.

Although users do not intentionally degrade the service of others,
they are often accidentally inconsiderate. Hence, when using
the ¢/t rule, users are better off by overstating their cost rate.
Kleinrock® has proposed a model in which the relative position
in queue is decided according to the customer’s bribe size. Naor’
has proved that for a single queue, if the newly arriving customer
observes the queue size, then an optimal allocation of resources
cannot be achieved unless tolls are imposed. In his model, he
assigns a constant value to time for all users, which is a gross
simplification. Wirt’ has concentrated on the demand model,
which is sensitive to both price and quality of service. He uses
a simulation approach to find the optimal prices. Merchand® has
formulated a general equilibrium model that enables him to state
the first-order conditions that the price and capacity should
satisfy to be optimal. An alternative method, which is discussed
in this paper, considers the cost of delay for the optimal schedul-
ing of jobs using a pricing scheme. General principles are de-
veloped for this model with an arbitrary number of priority
queues, and the case of two priority queues is discussed in detail.

No. 3 - 1975 INSTALLATION PRICE-PRIORITY POLICY




assigning
priorities

Concepts of the general model

We begin by analyzing concepts of optimal allocation of priori-
ties through a pricing scheme. Real-time pricing systems are
ruled out in this model because of the impracticality of continually
fluctuating prices. We are concerned rather with determining the
constant price to charge over some time interval. At the end of
that interval, prices can be adjusted. In this model, the cost per
unit time delay for the group of users is a random variable ¢, with
probability density function f(c), which can vary from one in-
stallation to another according to the types of users, and the im-
portance of the service to them.

A brief discussion is given later in this paper of possible tech-
niques for estimating f{c). At this point, consider the following
problem: With a fixed number of priority classes, how should
one assign priorities to customers so as to minimize the total
expected cost of delay of all customers who use the service sys-
tem? The objectives of our model are as follows:

Develop optimal priority purchasing policies for the arriving
customers, each of whom is free to decide the priority as-
signed to his job, so as to minimize his total cost function.
That is, he compares the toll charged to join each priority
queue plus the cost of delay and selects the minimum.
Develop the optimal pricing policy for a batch computing
installation for which the installation manager tries to achieve
an overall optimality for the group of users. His objective
is to minimize the total expected cost of delay, given the ca-
pacity limitations of his installation.

Develop a pricing scheme in which self-optimization can
lead to overall optimization.

Investigate the adjustment of admission tolls during periods
with high traffic intensity (high demand periods).

In our model, the arrival process is assumed to be a homogeneous
Poisson process’ with average arrival rate . The single server

facility has an arbitrary service time distribution with mean ser-

vice time E(s) seconds. The computing system consists of m
separate queues, the ith queue (i=1, 2, -+, m) has priority over
the jth queue, if and only if i < j. We use the nonpreemptive
priority discipline developed by Cobham.'® We also assume that
the arrival time, the service time, and the cost per unit time delay
are all independent random variables for each customer, and are
independent of the values chosen for all other customers. The
higher the priority of the queue, the higher the admission toll
charged as an entrance fee for it, but the shorter the average
waiting time before accessing the server. On joining the ith queue,
a customer pays an admission toll x; monetary units, where x;
> x; if i < j. We shall deal only with unsaturated queues where
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Figure 1 Cost separation points for m priority queves
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the traffic intensity is less than one (p < 1). This is a necessary
and sufficient condition for the system to reach steady state. In
our model, the waiting cost of a request is assumed to be a linear
function of the waiting time. In Theorem 1| (in Appendix 1) we
prove that the priority given to a user’s job increases with the
increase of his cost per unit waiting time. The traffic intensity p
is the ratio of the mean service time and the mean interarrival
time.

Since priority increases with the cost of unit waiting time, for
two priority queues there exists a price per unit time delay o,
such that a pricing system should be established in a way to
guarantee that all arriving customers with ¢ = «, join queue I,
and those with ¢ < «, join queue 2, where queue | has higher
priority than queue 2.

Figure 1 illustrates these conditions in a computing installation
in which there are m priority-level queues, such that a = {¢;: a,
> a, > a, ,}, where q, is the separation point between queue
and queue (i + 1). In such an installation, the pricing system
should motivate the arriving customers with a, = ¢ < o to
join the queue with priority i, and those customers with ¢, ,
= ¢ < @, to join the queue with priority (i + 1). Notice that pri-
ority i is higher than priority (i + 1).

If we can determine the optimal values of «;, where (i=1,2,---
m — 1), then the optimal ratio of customers who should join the
different priority queues will be known. A set of admission tolls
x={x;:x, > x, >+ > x,}, where x, is the admission toll at pri-
ority / and x; > x; if and only if i <, is calculated and announced,
together with the announcement of the expected waiting time at
each priority queue. The higher the admission toll charged, the
higher the priority and the lower the expected waiting at this
priority. That is, E(W,) < E(W)) if and only if priority i is higher
than priority j, where E(W,) and E( W;) are the expected waiting
time at priority / and j respectively.
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A newly arrived customer makes an irrevocable decision as to
the queue to which he assigns his job. That decision is made so
as to minimize his total expected cost function, which is the
toll charged at a certain priority and the cost of waiting at that
priority. Thus the arriving customer bases his decision on self-
optimization. Qur pricing system has been designed so that self-
optimization leads to an overall optimization for the whole group
of users.

Appendix 2 and Figure 1 give the sum over ali priorities of the
mean waiting-time costs at each priority H. To establish an opti-
mal priority allocation, the total expected cost of delay H should
be minimized with respect to the cost separation points ¢, As a
result of the minimization process, the o, values can be obtained,
as well as the proportion of customers who should join each
priority queue and the mean waiting time at each queue. Note
that Appendix 2 does not show the method for minimizing H,
but merely shows the computation of H and asserts that its mini-
mization is the desired criterion or goal for optimal priority queue
assignment.

Assume that users assign their jobs to priority queues so as to
minimize their total cost function (i.e., tolls to join a certain pri-
ority queue plus the cost of delay at that queue). We now seek a
pricing system that motivates the users to minimize their total
mean cost of waiting. Since «; is the optimal separation point
between queue [ and queue i + 1, the optimal proportion of users
who should join the different queues is already known. To en-
courage the rational customer to behave according to this optimal
policy, each user who arrives at the facility with ¢ = o, must have
his total mean cost function for joining queue i equal to that for
joining queue i + 1. That is, he should be indifferent to the choice
between queue / and queue i + 1. Let

x; = admission toll charged at priority i

and

x;,, = admission toll charged at priority i + 1;

then

xi+toaEW) =x,, +oE(W, ) fori=1,2,--,m—1. (N

E(W;) and E(W,_,) are the expected waiting times at priorities
i and i + I, respectively. As soon as the optimal values of o for
i=1,2,--, m—1 are known E(W,) and E(W,,,) can be calcu-
lated. From Equation 1 we can write

(x,— x,) =a[E(W,) —EW)] fori=1,2,-,m—1. (2)

i+1

Equation (2) specifies the optimal set of admission tolls. Clearly,
if toll revenue is used for socially useful purposes, then the pro-
posed imposition of tolls is an optimal procedure.
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Optimal policy for a batch computing instailation with two
priority queues

We now consider the case of two priority queues in detail. (The
analysis of the m-priority queues case is discussed in Reference
11.) Given that the probability density function of the cost of
delay per unit time f(¢) is any general continuous function, and
under the general assumptions of our model, Figure 2 and Equa-
tion (6A) of Appendix 2, imply that H is total mean cost of delay
for arriving users who join the two priority queues and may be
expressed as follows:

f * f(e)de f " f(e)de

”z*’{[a(ll—pl) +(1fpl><1-p>]'

For two priority queues, the cost separation point «, is chosen
such that customers with ¢ = «, join queue 1 and customers with
¢ < a, join queue 2. The value of the cost separation point o,
that minimizes the total expected cost of delay satisfies the fol-
lowing relation:

= mean of f(c), Mean of the probability density

function of the cost of delay

ap per unit time

q, =f cf(c)de,
o

and

p,=p f ’ fle)de. Traffiic intensity of priority 1 queue
%

The cost function introduced by using two priority queues is
less than the cost function that results from using only one pri-
ority. Hence, we assume that the optimal solution is an interior
point of the feasible set. A necessary condition for «, to be an
optimal solution is that 9H/da, = 0 at the minimum point. Ac-
cordingly, Equation (3) follows.

Usually, demand for computer service is subject to periodic
changes. We propose that the demand cycle be divided into time
intervals, each of which has an average traffic intensity p. During
each time interval, constant charges are levied on arriving users.
At the end of each time interval, prices can be adjusted. In this
section, we discuss the adjustment of the optimal cost separation
point «,, with a change of traffic intensity p.
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Figure 2 Two priority queues
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Adjustment of the pricing system is discussed in the following
section.

For two priority queues, the optimal value of «, that minimizes
the total expected cost of delay is given by Equation (3). To
study the behavior of «, with the change of p, we should examine
the following function: da,/dp.

Proof is given in Reference 11 that «, is a decreasing function of
p, that is,

(4)

Equation (4) is plausible since, for high traffic intensity — high-
demand periods —more users tend to join the higher priority
queue. This is the case because the average waiting time at the
lower priority is quite high. On the other hand, as we discuss in
the next section, the pricing system should be adjusted to dis-
courage users from choosing priority 1 for jobs of lesser urgency.
Otherwise, most users would choose priority 1 and, thereby,
degrade the effect of the priority system.

For two priority queues, the optimal separation point between
priority 1 and priority 2 is given by Equation (3), and by par-
ticularizing Equation 2, the optimal admission toll for two pri-
ority queues is given by the following equation:

X, —x,= o, [E(W,) —E(W,)]. (5)

By using expressions for the mean waiting time at the first pri-
ority queue and at some kth priority queue [ Equations (4A) and
(5A).]. Equation (5) reduces to

_ ap K
(1—p)(1—p)"

To study the adjustment of the pricing system at periods of high
demand, we analyze the behavior of the difference between the
tolls charged at priority 1 and 2 queues with changing traffic in-
tensity. With reference to Equation (6), itis proved in Reference
11 that the following equation is valid:

(6)

Xy T X

d(x, — x,)
dp

= 0.

This implies that, for heavy traffic periods, the difference be-
tween the tolls charged at priority 1 and 2 queues should be in-
creased. And it agrees with the reasonable policy that at periods
with high demand, the toll charged at the higher priority should
be increased to discourage nonurgent users from joining it.
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We now use two examples to illustrate the functioning of the
model developed in this paper; i.e., when the probability density
function of the cost per unit time delay f{c), takes a uniform
distribution and when it takes an exponential distribution.

Uniform distribution. Consider the case illustrated in Figure 3
in which the cost per unit time delay for arriving population is
a random variable ¢ with a uniformly distributed probability
density function f{c). In this case, the event ¢ = « is the cost per
unit delay such that arriving users with ¢ > « join priority 1 queue
and those with ¢ < « join priority 2 queue. From Appendix 2,
the total mean cost of waiting can be written as follows:

j: cdc f cdc
(1—pl><1—p>+(1_pl)]- (7)

Substituting for p,, Equation (7) reduces to the following ex-
pression for the total mean cost of waiting for a two-priority
queuing system:

MK [ ap—azp]
11— . 8
p) l—p+ap ®

H=}\K[

But since the total mean cost of delay using one priority queue
only is H, = AK/2(1 — p), then using two priority queues is the
better solution.

This conclusion is true if the gain achieved by introducing the
second priority is less than the overhead cost of introducing it.
The fractional saving G, obtained by using two priority queues
is given by

which may also be expressed as
_ H,—H,

< H

1

To get the optimal value of cost separation point «, which sep-
arates priority 1 queue and priority 2 queue, we should maximize
G. This implies that the optimal value of « is

a:(l;P) [\/]ITP_I]' o

Also, Equation (6) implies that the optimal difference of admis-
sion toll for two priority queues is

_K(=Vi=p

'xl—x2_ l_p

. (10)
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Figure 3 Uniform distribution
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Figure 5 Ratios of queve traffic
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Notice that p, and p, can be written in the following form:

pp=1=—VI1I—p;

p=[VT=p—(1-n] (12)

Equations (8) — (12) together with Table 1 describe the relations
among the model parameters G, o, (x, — X,)» py» Py and the total
traffic intensity p.

(11)

Some results are summarized in Figure 4. Figure 4A shows that,
as the traffic intensity increases, the cost separation point de-
creases until the higher priority queue is saturated and there is
no cost separation. Figure 4B indicates that traffic intensity p,
of the higher cost queue is an increasing function of that total
traffic intensity p. Figure 4C shows that the traffic intensity p,
of the lower cost queue increases until it reaches its maximum
value at p = % then it decreases. Figure 5 describes the behavior
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Table 1 Model parameters as a function of traffic intensity for the uniform distribution
case

Py Ps PP p/p (5, —x)/K G

0.05 0.5 0.5 0.0570
0.0944  0.528 0.472 0.13197
0.1367  0.544 0.456 0.2333
0.1746  0.5635  0.4365 0.3757
0.2072  0.5856 0.4144 0.5858
0.232 0.6133  0.3867 0.9189
0.248 0.6457  0.3543 1.5076
0.25

0.2473  0.691 0.309 2.7639
0.217 0.758%  0.2411 6.8377
0.174 0.817 0.183

Table 2 Effect of changing the mean of f(c) on the model parameters

Mean
Parameter

of the traffic intensity ratios p,/p and p,/p with the change of
total traffic intensity p. The relative proportion of users who join
priority 1 queue increases with increasing p. These results are
reasonable because during periods of high traffic intensity the
expected waiting time at priority 2 queue is quite high. Figure 6
indicates that the fractional saving that results from using two
priority queues is an increasing function of the traffic intensity p.
(In Figure 6, the distribution is uniform and the mean M is {.)
Accordingly, using two priority classes is a better solution than
using one as long as the fractional saving is higher than the over-
head cost that results from introducing the second priority.
Figure 7 shows that for this example, where the mean of prob-
ability density function of the cost of delay per unit time f(c)
is 3, the cost differential constant (x, — x,)/K is an increasing
function of p. K is a constant given by Equation (5A) that reflects
the characteristics of the stream of jobs. This means that during
periods of high traffic intensity p, the toll charged at priority
1 queue should increase to discourage nonurgent users from
joining priority 1 queue. It is interesting to study the changes in
the model parameters if f(c) is still uniformly distributed, but the
mean M takes different values. The results obtained can be sum-
marized in Table 2,
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Figure 8 Exponential  distribu-
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where

]

and
_2K(0—V1—p)
(1—p) )

We notice that the cost differential constant (x, —x,)/K is directly
proportional to the mean of the probability density function of
the cost of unit delay f(c). Figure 7 shows that (x, — x,)/K in-
creases as M increases, which is plausibly based on the expecta-
tion that, with f(¢) more widely distributed, more users will have
higher urgency. Hence, the cost differential (x, — x,) should be
increased but the traffic intensity ratios p,/p and p,/p are constant
and independent of the mean M. The solid curve of Figure 5 is
valid for any uniformly distributed f(c).

Exponential distribution. When the probability density function
for the cost per unit time delay for arriving users is exponen-
tially distributed, as is illustrated in Figure 8, the total mean cost
of delay, H, is given by

f cAe *de f cAe *de

0 a

H=\K + ,
(1—=p)(1—p) (1—=p)

which reduces to
AK A B
H=—"R [1 _ L]
A(1 —p) (1—p)e
Since, however, the mean cost of delay using only one priority
queue is AK/A4(1 — p), then the fractional saving G that results

from using two priority queues as compared with using only one
queue is

Aa

pAae™

G = Aa - (13)

1 —pe”
Again, we can conclude that using two priority queues is better
than using only one queue, if the cost of introducing the second
queue is less than the gain. The optimal value of the cost separa-
tion point « that maximizes G for the exponential case is given by

P i Optimal cost
3¢ separation points

for the exponential
case (14)

ot =

1
y

The traffic intensities for the two queues p, and p, can be writ-
ten as
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Table 5 Model parameters as a function of traffic intensity for the exponential
distribution case

Py Py pl/p PZ/P (xl - Xz)/K

0.0383 0.0617 0.383 0.617 0.05546
0.0797 0.1203 0.3985 0.6015 0.125
0.1251 0.1749 0.417 0.583 0.2143
0.1753 0.2247 0.438 0.562 0.3331
0.2315 0.2685 0.463 0.537 0.501
0.2974 0.3026 0.496 0.504 0.7504
0.3739 0.3261 0.534 0.466 1.1683
0.4718 0.3282 0.590 0.410 1.199
0.6057 0.2943 0.673 0.327 4.519

Aa

p,=pe (15)
p, = p(1 — ). (16)
From Equation (6), the difference between the admission toll
at priority 1 queue and priority 2 queue is the following:
ap K
X, =X, = i . (17)
(1 —pe ™) (1 —p)
From Equations (13) and (14),
G =pe ' =1—a*4A. (18)

In Equation (18}, the fractional saving G does not depend on 4
because a*A is uniquely determined for each p, and, since G is
equal to (1 — a*A4), it is also uniquely determined for each p.
The solution of Equation (14) can be obtained from the follow-
ing relation:

o*A=1—pe
Cost separation constants a«*A4 are given in Table 3, for p having
values from 0.1 to 0.9. The fractional saving G that is achieved
by using two priority queues beyond that achieved when using
one queue only as a function of traffic intensity p is summarized
in Table 4. From Table 4 and Figure 9, we can conclude that
with an increase of the traffic intensity the fractional saving G
increases. This indicates that the benefit of the two-priority solu-
tion is greater at periods of high traffic intensity than the one-
priority solution.

The behavior of a*, p,, p,, and (x, — x,) with the change of p in
Equations (14) - (18) is given in Table 5 for 4 = 2. Figures 10
and 11 show that the cost separation point « is decreasing with
increasing traffic intensity p, and the cost differential constant
(x, — x,)/K increases with p. Also the traffic intensity p, at the
higher priority queue is increasing with the increase of p, and the
intensity p, at the lower priority queue increases until a certain
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Table 3

Cost separation con-
stants for o series of
traffic intensities in the
exponential case

a*A

Fractional saving
achieved by introducing
a second priority queue
in the exponential case
of a function of traffic
intensity

G=1—a*A

0.040
0.08

0.125
0.175
0.23

0.298
0.373
0.472
0.604




Figure 10 Model parameters as a function of traffic intensity for the exponential case
with o mean of % (A) Cost separation point (B) Traffic intensity of the higher
priority queue {C) Traffic intensity of the lower priority queue
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level is achieved, then it decreases. In Figure 5, for the ex-
ponential distribution case, the dotted curve indicates that p,/p
is an increasing function of p, and p,/p is a decreasing function
of p. The reason for this behavior is the same as that for the uni-
form distribution case. As in the uniform case, it is also true for
exponential distributions that key parameters vary with f(¢)
having different means, as is shown in Table 6,

where

W=1-—pe

Ao

GHANEM IBM SYST J




Table 6 Effect of changing the mean of f(c) on the model parameters

Mean
Parameter M=%A=2 M=1,4=1

w

—Aa

pe
8

and Figure 11
2apK
(1—pe™™)(1—p)

B:::

Cost differential con-
stant and traffic in-
tensity for three values
of the mean of f(c)

-
IS

—x,V/K

Figure 11 shows that the cost differential constant (x, — x,)/K
is higher for exponential distributions with higher values of M.
Another interesting observation is the relative insensitivity of the
optimal pricing policy to different distributions of f(c¢) with the
same mean, especially when p = 0.75.

—
N

—
(<)

®

In Figures 12A - 12C the cost differential constant (x, — x,)/K
is plotted against traffic intensity p for both the uniform and the
exponential distributions with the same mean, where M takes
the values 4, 1, and $. The two curves tend to be close to each
other as long as p = 0.75. Hence, if we can redistribute the de-
mand to achieve this level of p, then it is enough to know an
estimate for the mean of f(¢). An approximate distribution for
f(c) with the estimated average can lead to a near-optimal pric-
ing scheme. An estimate of f(¢) can be obtained by observing
the behavior of the users. We can start with any arbitrary value

COST DIFFERENTIAL CONSTANT, (x,

of (x, — x,) and [E(W,), E(W,)], where x, > x, and E(W,)
< E(W,). By observing the behavior of the users who join the
different priority queues, an estimate of f (¢) can be obtained. For
a more detailed discussion of methods at estimating f(c), see
Reference 12.

Conclusions and extensions

In this paper, a general model for the optimal allocation of
priorities through pricing is considered. The case of two priority
queues is discussed in detail. (For the m-priority queue analysis,
the reader may refer to Reference 11.) In both cases, it is shown
that a set of admission tolls can be established at the different
priority queues. These tolls are based on user urgency, the job
arrival rate, the expected service time, and the number of pri-
ority classes. By setting a different admission toll at each priority
queue and by providing the user with information and motivation,
he is encouraged to weigh the relative values of the services
before picking the priority for his job. According to his urgency,

No. 3 + 1975 INSTALLATION PRICE-PRIORITY POLICY

0.2

0.4

0.6 08 1.0
TRAFFIC INTENSITY, p




Figure 12 (A) Comparison of cost differential constants for uniform and exponential
distributions with a mean of % (B) Comparison of cost differential constants
for uniform and exponential distributions with a mean of 1 (C) Comparison
of cost differential constants for uniform and exponential distributions with
o mean of 3
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the user minimizes his total average cost function (cost to join
a certain priority plus the cost of delay). Pricing is addressed to
the allocation of priorities in a computing system to minimize the
total average cost of delay of an installation’s user community.
Each user is free to decide on the priority assigned to his job,
and the optimality of the system is maintained. As a result, the
computer can process first those jobs that are urgent and then
proceed with less urgent jobs. The uncertainty of the cost per
unit time delay ¢ is considered in this model. It has been found,
for the case of two priority queues, that if you have an estimate of
the mean of the probability density function of the cost of delay
per unit time f (c), the cost differential (x, —x,) is insensitive to
the exact distribution. This result is feasible if we can redistribute
the demand such that p = 0.75. During periods with high traffic
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intensity it is shown that the admission tolls at the higher priority
queues should be increased.

The model can provide answers to important questions that
face the system designer. Introducing one more priority queue
reduces the total average cost of delay. By comparing the over-
head cost that results from introducing an additional queue with
the resulting gain, the system designer can determine the optimal
number of priorities that should be used. By similar argument,
the system designer can also decide whether he is willing to ex-
tend the capacity of his facility.

The results of this paper have opened several areas in the study
of planning and management of service facilities. Many exten-
sions can be made that are of practical as well as theoretical in-
terest. For example, it is more realistic to assume that the cost of
delay is a nonlinear function of the delay. With this assumption,
the model becomes more complicated, but it is still worthwhile to
consider this extension. Another feasible extension is to combine
the cost of delay with the job length in the optimal strategy for
priority allocation. The study of the dynamic behavior of this
model is also recommended. It is usually observed that during
the course of a day, the demand for computer service varies
significantly with time. Hence, by allowing the load to change
with time, the dynamic behavior can be studied.
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Appendix 1

Theorem 1 The priority of a given user’s job increases with the
increase of his cost per unit waiting time.

Figure 1A Relationship of pri- Let f(c) be the probability density function of the cost of delay
ority level ‘with cost  per ynit time for the arriving customers, as shown in Figure 1A.

per unit time of delay . - .
Assume that a proportion of customers of size A,, who have a
value per unit time delay of ¢ = c,, have joined queue i, and a
proportion of customers of size A,, who have ¢ = ¢, have joined
queue j. If ¢, > ¢, then queue j should have higher or at least

’ equal priority relativ ue i f imali i eui

Vs > AI\ s;/lsti rr;:rlorlty ative to queue i for the optimality of this queuing

— -—

FUNCTION OF THE COST OF
DELAY PER UNIT TIME, f(c)

PROBABILITY DENSITY

c c

“costrerunTTvecey.c  Proof. Assume the opposite, i.e., queue i has higher priority than
queue j. Let

r,, = a group of customers whose cost per unit delay is ¢ and who
join queue k

and
E(W,) = mean waiting time for customers who join queue k

Then for m priority levels, the total expected cost of delay E(c,)
is given as follows:

E(c,) = [Af cf(c)dc]E(Wl) + [Af cf(c)dc]E(Wz) .

+ [)\J;._(’ ) cf (¢)dc + CzAz]E(Wi) +--

+ [}\frj_“l) cf(c)de + L‘IAI}E(W]-) +--

+ [)\f cf (¢) dc]E(Wm), (1A)
where "

{"1} = proportion of customers of size A, and with ¢ = ¢, who
join queue j

and

{c,} = proportion of customers of size A, and with ¢ = ¢, who
join queue i.
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Let
=A+e;
A,=A+te,
where
€, = proportion of customers with ¢ = ¢, and
€, = proportion of customers with ¢ = c,.
Now, after switching a proportion A who have a value of unit
time ¢ = ¢, from queue j to queue i, and switching a proportion A

with ¢ = ¢, from queue i to queue j, the new total expected cost of
delay E(c,) is given as follows:

E(c,) = [AL cf((,-)dc]E(Wl) " [Af cf(c-)dc~]E(W2) Y.

2

+ I:)\f cf (c)de + cye, + ('IA]E(Wi) +ee
ri—{esl )

+[)\f cf(c)de+ cie, + czA]E(Wj) +--
rj—{cl)

+ [xf cf(c)dc]E(Wm). (2A)

Notice that by this switching procedure W,, W,,---, W, are not
affected.

Comparing Equations (1A) and (2A), we can write
E(c,) = E(c) + (¢, — e )[E(W) — E(W) ]A.

But since

¢, >c,and E(W)) < E(Wj)

by assumption, then

E(c,) < E(c),

which contradicts the optimality of the system. Thus, queue §
should have a lower priority than queue j for the optimality of the
system. Notice also that if queue / is at the same level as queue j
then E(W ) = E( Wj), and from Equation (3A), we notice that, in
this case, E(c,) = E(c,). We conclude, therefore, that queue j
should have higher or at least equal priority relative to queue i.

Appendix 2

In the nonpreemptive priority discipline, when a service for a
customer starts, it proceeds without interruption until it has been
completed. The next customer to be serviced is the one with the
highest priority present in the system. Within each class, a FIFO
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discipline is observed. The mean (expected or average) waiting
time is given by the following equations:

_K
(1—p)

= mean Waiting time at the first priority queue;

E(W,) =

E(W,) = k=2, m (4A)

= mean waiting time for the customers who join the kth
priority queue,

where
K=\E(SY /2,

p; = Traffic intensity at priority queue i

—p f " fterde,

and

31

flc)de is the probability that o, < ¢ < «,_,.
b}
Under the assumption that the waiting costs of a request are a
linear function of the waiting time, total mean cost of delay H

can be written as follows:

H = the sum over all priority queues of the mean waiting costs

at each priority queue (6A)

b

f‘o ¢f (¢)dc fal cf (¢)dc
=K { -

+ 2 +
(I—=p,)  (I=p)(1=p —p,)
fi_l cf (¢)dc
+ e e
(I=p,=pyp) (I =p,—p, " p,_,)

f:m_l ¢f (¢)de

m

T —p)(I=p,=pypy )
where p=p, + p, +---+ p, is the total traffic intensity
and
f(c) = Probability density function of the cost of delay per unit

time

The o, where i=1,2,- - -, m— 1, are the separation points between
the priority queues. Our goal is to minimize A with respect to
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«, As a result of the minimization process, the values of «; can
be obtained. Accordingly, the proportion of customers who
should join the different priority queues, and the mean waiting
time at each queue are known.
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