
Included  in  the user’s price-priority  decision  is  his  cost of delay. 

Briefly  discussed for  the  general  case,  and  sholl’n  in  detrriljbr 
the  two-queue  case,  is  the  principle  that  the  total  cost  to  users 
of the  computing  service  is  minimized  in  a  computing  installation 
that  has  a  price-priority  service  policy. 

Computing center optimization by a pricing-priority  policy 
by S. B. Ghanem 

Computer installation management typically faces  the problem 
of distributing available computing resources among competing 
users  or projects.’  Whenever the  current demand for  computer 
service  exceeds the  current  capacity  to  provide  that  service, 
queues of unsatisfied demand form.  Excessive queuing time is 
costly,  whether it  is a social cost  or  the  cost of idle employees. 
It has been difficult to  formulate optimal policies to  reduce  the 
losses  that  occur in waiting lines. 

This  paper  proposes  the modeling and studying of an optimal 
operating policy for  a  service facility that is subject  to queuing. 
The proposed  scheme would levy admission tolls at  several dif- 
ferent priority classes.  Higher tolls are charged for priorities 
with lower average waiting time and  vice  versa. The reason  for 
suggesting a pricing system  for priority allocation is that  the 
demand  for  service varies in its urgency from one  user to  another. 
Some  users  experience high cost  or  great  inconvenience if their 
computing job is not done  promptly.  Others can wait longer at 
a little cost.  Users  who  place a high value on their  time are more 
likely to  choose priorities that  result in shorter  average  delay, 
and  they  expect  to pay higher tolls to  join  these classes. By setting 
different charging rates  and by providing the  necessary informa- 
tion,  users  are  encouraged  to weigh the relative values of services 
to them before picking priorities for theirjobs.  Hence,  the pricing 
scheme is used as a  control mechanism to guide users  toward 
the  correct decisions. 
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Concepts of the  general model 

We begin by analyzing concepts of optimal allocation of priori- 
ties through a pricing scheme. Real-time pricing systems are 
ruled out in this model because of the impracticality of continually 
fluctuating prices. We are concerned  rather with determining  the 
constant price to charge  over some time interval. At the end of 
that  interval, prices can be adjusted.  In this model, the  cost per 
unit time delay for  the  group of users is a random variable c, with 
probability density function f ( c )  , which can vary from one in- 
stallation to  another  according  to  the  types of users,  and  the im- 
portance of the  service  to  them. 

I assigning A brief discussion is given later in this  paper of possible  tech- 
priorities niques  for estimating f ( c )  . At this point,  consider  the following 

problem: With a fixed number of priority classes, how should 
one assign priorities to  customers so as to minimize the  total 
expected  cost of delay of all customers  who  use  the  service  sys- 
tem? The objectives of our model are  as follows: 

Develop optimal priority purchasing policies for  the arriving 
customers,  each of whom is free  to  decide  the priority as- 
signed to his job, so as to minimize his total cost  function. 
That is, he compares  the toll charged to  join  each priority 
queue plus the  cost of delay and  selects  the minimum. 
Develop  the optimal pricing policy for a batch computing 
installation for which the installation manager tries  to  achieve 
an overall optimality for  the group of users.  His  objective 
is to minimize the total expected  cost of delay, given the  ca- 
pacity limitations of his installation. 
Develop a pricing scheme in which self-optimization can 
lead to  overall optimization. 
Investigate  the  adjustment of admission tolls during periods 
with high  traffic intensity  (high  demand periods). 

In our model, the arrival process is assumed  to be a homogeneous 
Poisson process9 with average arrival rate A. The single server 
facility has an  arbitrary  service time distribution with mean ser- 
vice time E ( s )  seconds. The computing system  consists of m 
separate  queues,  the ith queue ( i  = I ,  2 ;  . ., rn) has priority over 
the j t h  queue, if and only if i < j .  We use the  nonpreemptive 
priority discipline developed by Cobham." We also assume  that 
the arrival time, the  service time, and  the  cost per unit time delay 
are all independent random variables for  each  customer, and are 
independent of the values chosen  for all other  customers. The 
higher the priority of the  queue,  the higher the admission toll 
charged as  an  entrance  fee  for it, but  the  shorter  the  average 
waiting time before  accessing  the  server.  On joining the ith queue, 
a customer pays an admission toll xi monetary  units, where xi 
> xj if i < j .  We shall deal only with unsaturated  queues  where 

274 GHANEM IBM SYST J I 



I Figure 1 Cost separation points for m priority  queues 
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I the traffic intensity is less  than  one ( p  < 1 ) .  This is a  necessary 
and sufficient  condition for  the  system  to  reach  steady  state.  In 
our model,  the waiting cost of a  request is assumed  to  be  a  linear 
function of the waiting  time. In  Theorem 1 (in  Appendix 1 )  we 
prove  that  the  priority given to a  user's  job  increases with the 
increase of  his cost  per unit  waiting  time. The tuafic inrensity p 
is  the  ratio of the  mean  service  time  and  the  mean  interarrival 
time. 

Since  priority  increases  with  the  cost of unit  waiting  time, for price  per 
two  priority  queues  there  exists  a  price  per  unit  time  delay a1 unit delay 
such  that  a pricing system  should  be  established in a  way to boundaries 
guarantee  that all arriving  customers with c 1 a1 join  queue I ,  
and  those with c < al join  queue 2 ,  where  queue 1 has  higher 
priority  than  queue 2. 

Figure 1 illustrates  these  conditions in a  computing  installation 
in which there  are m priority-level queues,  such  that a = {a i :  a1 
> a p .  . . > a,,-l}, where ai is the  separation point between  queue i 
and  queue ( i  + 1) .  In  such  an  installation,  the pricing system 
should  motivate  the  arriving  customers  with ai 5 c < ai-l to 
join  the  queue with  priority i, and  those  customers with ai+, 
5 c < ai to  join  the  queue with  priority ( i  + I ) . Notice  that pri- 
ority i is higher  than  priority ( i  + 1 ) . 

If we can  determine  the  optimal  values of ai, where ( i  = 1, 2, .  . . 
m - 1)  , then  the  optimal  ratio of customers  who  should  join  the 
different  priority queues will be  known.  A  set of admission  tolls 
x = { x i : x l  > x2 > . . . > xm}, where xi is the  admission toll at pri- 
ority i and xi > xj if and  only if i < j ,  is  calculated  and  announced, 
together with the  announcement of the  expected waiting  time at 
each  priority  queue. The higher the  admission toll charged,  the 
higher  the  priority  and  the  lower  the  expected waiting at  this 
priority. That is, E (  Wi) < E (  Wj) if and  only if priority i is higher 
than priority;, where E (  Wi) and E (  W j )  are  the  expected waiting 
time at priority i and j respectively. 
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A newly arrived  customer  makes an irrevocable  decision as  to 
the  queue  to which he assigns his job.  That decision is made so 
as  to minimize his total  expected  cost  function, which is the 
toll charged at  a  certain priority and  the  cost of waiting at  that 
priority. Thus the arriving customer  bases his decision  on self- 
optimization. Our pricing system  has  been designed so that self- 
optimization leads to an  overall optimization for  the whole group 
of users. 

Appendix 2 and  Figure 1 give the  sum  over all priorities of the 
mean waiting-time costs  at  each priority H. To establish  an opti- 
mal priority allocation,  the  total  expected  cost of delay H should 
be minimized with respect to  the cost  separation  points ai. As  a 
result of the minimization process,  the ai values can be obtained, 
as well as  the  proportion of customers  who should join  each 
priority queue and the mean waiting time at each  queue. Note 
that  Appendix 2 does  not  show  the  method  for minimizing H, 
but merely shows  the  computation of H and  asserts  that its mini- 
mization is the  desired  criterion  or goal for optimal priority  queue 
assignment. 

Assume  that  users assign their jobs to priority queues so as  to 
minimize their  total  cost  function  (i.e., tolls to join a certain pri- 
ority queue plus the  cost of delay at  that  queue). We now seek a 
pricing system  that  motivates  the  users  to minimize their  total 
mean cost of waiting. Since ai is the optimal separation point 
between  queue i and  queue i + 1, the optimal proportion of users 
who should join  the different queues is already known. To en- 
courage  the rational customer  to  behave  according  to  this optimal 
policy, each  user  who  arrives  at  the facility with c = ai must  have 
his total mean cost  function  for joining queue i equal to that for 
joining queue i + 1. That is, he should be indifferent to  the  choice 
between queue i and queue i + 1 .  Let 

xi = admission toll charged at priority i 

and 

x i + ]  = admission toll charged at priority i + 1 ;  

then 

xi + aiE( Wi) = .xiil + aiE( Witl) for i = 1, 2 ; .  ., rn - 1. ( 1 )  

E (  Wi) and E (  Witl) are  the  expected waiting times at priorities 
i and i + 1, respectively. As soon as  the optimal values of ai for 
i = 1 ,  2 , .  * ., m - 1 are known E (  W i )  and E (  Witl) can  be calcu- 
lated.  From  Equation 1 we can write 

( ~ ~ - x ~ + ~ ) = ~ ~ ~ [ E ( W ~ + ~ ) - E ( W ~ ) ] f o r i = 1 , 2 ; . . , r n - l .  ( 2 )  

Equation (2) specifies the optimal set of admission tolls. Clearly, 
if toll revenue is used for socially useful purposes,  then  the  pro- 
posed imposition of tolls is an optimal procedure. 

i 
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Optimal policy for a  batch computing installation with two 
priority queues 

We now consider  the  case of two priority queues in detail. (The 
analysis of the rn-priority queues  case is discussed in Reference 
1 I .) Given that  the probability density  function of the  cost of 
delay per unit time f (  e)  is any  general  continuous  function,  and 
under  the general assumptions of our model, Figure 2 and  Equa- 
tion (6A) of Appendix 2, imply that H is total mean cost of delay 
for arriving users  who  join  the  two priority queues  and may be 
expressed  as follows: 

cf( c )  de ["' cf( e)  dc 

For two priority queues,  the  cost  separation point a1 is chosen 
such  that  customers with c 1 a, join  queue 1 and customers with 
c < a1 join  queue 2. The value of the  cost  separation point al 
that minimizes the  total  expected  cost of delay satisfies the fol- 
lowing relation: 

where 

M = mean of f (  c)  , Mean of the probability density 
function of the  cost of delay 
per unit time 

4,  = I"' cf( e)  de, 

and 

P, = f ( c )  dc. Traffiic intensity of priority 1 queue 

The cost  function  introduced by using two priority queues is 
less than  the  cost function that results from using only one pri- 
ority. Hence, we assume  that  the optimal solution is an  interior 
point of the feasible set.  A  necessary condition for a1 to be an 
optimal solution is that dHlda, = 0 at  the minimum point. Ac- 
cordingly, Equation (3)  follows. 

a1 

a1 

Usually, demand for  computer  service is subject to periodic 
changes. We propose  that the demand cycle be divided into time 
intervals,  each of which has an  average traffic intensity p.  During 
each time interval,  constant  charges  are levied on arriving users. 
At the  end of each time interval, prices can be adjusted. In  this 
section, we discuss  the  adjustment of the optimal cost  separation 
point a,,  with a  change of traffic intensity p.  

Figure 2 Two priority  queues 
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Adjustment of the pricing system is discussed in the following 
section. 

For  two priority  queues,  the  optimal  value of a1 that  minimizes 
the  total  expected  cost of delay is given  by  Equation ( 3 ) .  T o  
study  the  behavior of a, with the  change of p, we  should  examine 
the following  function: dcu,/dp. 

*I_. 0. 
dP 

Equation  (4) is plausible  since,  for high traffic intensity- high- 
demand  periods-more  users  tend  to  join  the  higher priority 
queue.  This is the  case  because  the  average waiting  time at  the 
lower  priority  is  quite high. On  the  other  hand,  as  we  discuss in 
the  next  section,  the pricing system  should  be  adjusted  to dis- 
courage  users  from  choosing  priority I for  jobs of lesser  urgency. 
Otherwise,  most  users would choose  priority 1 and,  thereby, 
degrade  the effect of the  priority  system. 

effect of For  two priority  queues,  the  optimal  separation  point  between 
traffic priority 1 and  priority 2 is  given  by  Equation (3) ,  and by  par- 

intensity ticularizing  Equation 2, the  optimal  admission toll for  two pri- 
on  the ority  queues is given  by the following equation: 
pricing 
system x,-x,=a,[E(W,)"E(W,)l 

By using expressions  for  the  mean waiting  time at  the first pri- 
ority  queue  and  at  some kth priority  queue  [Equations  (4A)  and 
(5A) ,] , Equation (5) reduces  to 

Proof is given in Reference 1 1 that a, is  a  decreasing  function of 
p, that  is, 

T o  study  the  adjustment of the pricing system  at  periods of high 
demand, we analyze  the  behavior of the  difference  between  the 
tolls  charged at  priority 1 and 2 queues with  changing  traffic in- 
tensity. With reference  to  Equation (6)  , it  is  proved in Reference 
I I that  the following equation  is valid: 

This implies that,  for  heavy traffic periods,  the  difference  be- 
tween  the tolls  charged at  priority l and 2 queues  should  be in- 
creased.  And it agrees with the  reasonable policy that  at  periods 
with high demand,  the toll charged at  the higher  priority  should 
be  increased  to  discourage  nonurgent  users  from  joining it. 
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Figure 5 Ratios of queue traffic 
intensities to the  total 
traffic intensity 
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Table 6 Effect of changing the mean of f ( c )  on the model parameters 

Mean 
Parameter M = & , A = 2   M =   l , A =  1 M = 3  A = 2  2 7  3 
. .~ . "~ ~ ~~~ ~~ ~~~~~~~~ 

-a 'ZW W I W  
P I  pe? pe-AU 
x ,  - x p  f P  P %3 

and 

P =  
2 a p  K 

(1  - pe - P) 
-Am 

Figure 11 shows  that  the  cost differential constant (x1 - x,) / K  
is higher for  exponential  distributions with higher values of M .  
Another interesting observation is the relative insensitivity of the 
optimal pricing policy to different distributions of f ( c )  with the 
same  mean, especially when p 4 0.75. 

In Figures 12A- 1 2 C  the  cost differential constant (x, - x , ) / K  
is plotted against traffic intensity p for both the uniform and the 
exponential  distributions with the  same  mean, where M takes 
the values B, 1, and $. The two curves tend to be close to each 
other as long as p 5 0.75. Hence, if we  can  redistribute  the  de- 
mand to achieve  this level of p, then it is enough to know an 
estimate  for  the mean of f (c) ,  An approximate  distribution  for 
f(c) with the  estimated  average  can lead to  a near-optimal pric- 
ing scheme. An estimate off(  c.)  can be obtained by observing 
the  behavior of the  users. We can  start with any  arbitrary value 
of (x1 - x2) and [ E (  W , ) ,  E (  W , ) ] ,  where x, > x, and E (  W, )  
< E (  W,) .  By observing the  behavior of the  users who join  the 
different priority queues,  an  estimate off(c) can be obtained. For 
a more detailed discussion of methods at estimating f(c) , see 
Reference 12. 

Conclusions and extensions 

In  this  paper,  a general model for  the optimal allocation of 
priorities through pricing is considered. The  case of two priority 
queues is discussed in detail. (For the rn-priority queue  analysis, 
the  reader may refer  to  Reference I 1.) In both cases, it is shown 
that  a  set of admission tolls can be established at the different 
priority queues. These tolls are based on user  urgency,  the job 
arrival rate,  the  expected  service  time,  and  the  number of pri- 
ority classes. By setting a different admission toll at each priority 
queue  and by providing the  user with information and motivation, 
he is encouraged to weigh the relative values of the  services 
before picking the priority for his job. According to his urgency, 
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1 Let 
A, = A + E , ;  

A, = A + E , ,  

where 

= proportion of customers with c = c ,  and 

i E ,  = proportion of customers with c = c2. 

' Now,  after switching a  proportion A who have  a value of unit 
~ time c = c ,  from queuej to queue i, and switching a  proportion A 

with c = c, from queue i to queuej,  the new total expected  cost of 
delay E(c,) is given as follows: i 

Notice  that by this switching procedure W,, W,, . . ., W ,  are  not 
affected. 

Comparing  Equations ( 1 A) and (2A),  we can  write 

E(  e,) = E (  e,)  + ( C ,  - c,) [ E (  Wi) - E(  Wj)] A. (3A) 

But since 

e, > c2 and E (  Wi) < E (  W j )  

by assumption,  then 

E(cJ  < E k , L  
which contradicts  the optimality of the  system. Thus,  queue i 
should have a lower priority than queue j for  the optimality of the 
system.  Notice  also  that if queue i is at the  same level as  queuej 
then E (  W J  = E (  W j )  , and from Equation (3A),  we notice  that, in 
this  case, E(  e,) = E(cl) . We conclude,  therefore,  that  queue j 
should have higher or  at least equal priority relative to queue i. 

Appendix 2 
In the nonpreemptive priority discipline, when a service  for  a 
customer  starts, it proceeds without interruption until it has been 
completed. The next  customer to be serviced is the  one with the 
highest priority present in the  system. Within each  class,  a FIFO 
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discipline is observed.  The  mean  (expected  or  average) waiting 
time is given  by  the following equations: 

= mean  waiting  time at  the first nrinritv nueue; 

= mean  waiting  time for  the  customers  who  join  the kth 
priority  queue, 

where 

K = AE(S2)  1 2 ,  (5A) 
pi = Traffic  intensity at priority  queue i 

Ia;->(c)dc is the  probability  that ai 5 c < ai-l. 

Under  the  assumption  that  the waiting costs of  a request  are  a 
linear  function  of  the  waiting  time,  total  mean  cost of delay H 
can  be  written as follows: 

I 

H = the  sum  over all priority  queues of the  mean waiting costs 

at  each priority  queue (6A) 

r cf ( c ) d c  p1 cf ( c )dc  

where p = p1 + pz f .  . . + p, is  the total traffic intensity 

and 

f ( c )  = Probability  density  function of the  cost of delay  per  unit 
time 

The ai where i= I ,  2; . ., m - 1, are  the  separation  points  between 
the  priority  queues.  Our goal  is to minimize H with  respect  to 
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ai. As  a result of the minimization process,  the values of ai can 
be obtained.  Accordingly,  the  proportion of customers who 
should join  the different priority queues, and the mean waiting 
time at each  queue are known. - Reprint Form No.  G321-5015 
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