
A methodology  for  performance-tuning  a  virtual  storage  system 
is  discussed.  This  methodology  encompasses  Performance  mea- 
surement,  workload  characterization,  performance  evaluation, 
and  planned  experimentation.  Use  of  the  methodology  is  illus- 
trated  by  describing  results  of  a  case  study  involving  the IBM 
Research  Division’s T S S l 3 6 0  system. 

Tuning  a  virtual  storage  system 
by H. A. Anderson, Jr., M. Reiser,  and G. L. Galati 

The performance  objectives of different computer  installations 
are diverse.  Therefore  an  operating  system should provide  a 
flexible and easily modifiable mechanism for implementing sys- 
tem resource management poli~ies.l,~J Specifying a policy for  a 
particular  computer installation is an  iterative  process, in which 
there  are five logically distinct  steps: 

Understanding  the  resource management components of the 

Recording workload and  system  activity 
Characterizing  the workload and identifying the  system vari- 

Experimenting with various  resource management policies 
Determing  the policy that  best satisfies the installation’s per- 

system 

ables  that  most significantly affect performance 

formance  objectives. 

The intent of this paper is to illustrate these  steps by means of a 
case  study of a virtual storage  system,  the T S S D ~ O  (Time Shar- 
ing System/360) installation at IBM’S T. J. Watson  Research 
Center in Yorktown  Heights,  New  York.  Emphasis is on the 
methodology of the five steps  rather  than on the TSS installation 
itself. We also  stress  our  use of data  analysis  techniques to eval- 
uate  the effects of system  changes on performance. A benefit of 
our methodology, with regard to modeling system  performance, 
is a simplification of the  system  description. Our objective is to 
improve  system  responsiveness to a typical user  transaction, 
which we define later in this  paper. 

246 ANDERSON, REISER, AND GALATI IBM SYST J 



consists of three  basic  operations: rlo load balancing, the 
scheduling and  dispatching of tasks,  and  the  allocation of page 
frames in main storage  and page slots in external disk storage. 
Typically,  system  resource management algorithms derive 
some of their  control information from parameters  contained in 
system  control blocks which are specified at system  generation 
time. These system  parameters aid  in implementing a  resource 
allocation policy that  is  appropriate  for  a  particular  computer 
installation. In our installation, the scheduling, dispatching,  and 
storage management mechanisms provided effective  controls  for 
adjusting system  responsiveness. (I/O load balancing presented 
no  problem.) An understanding of these  controls is the first 
step  toward  interpreting  the  results of system  measurements. 

In ~sS/360,  as in TSO, a  conversational  task is created when a scheduling 
user logs on and is deleted when he  logs off.  Task scheduling and 
and dispatching are controlled by a table-driven scheduler" dispatching 
which provides  for  detailed specification of scheduling and dis- 
patching policies. The scheduler is driven by a  system  control 
block called the scheduling table, which is initialized at system 
generation time. It consists of a  set of scheduling table  entries 
(STES), each having 25 parameters. We can classify the  param- 
eters  as follows: 

Scheduling  parameters assign a priority to an eligible task 
(i.e.,  an  active  task awaiting allocation of main storage)  and 
set a deadline for  the  next time slice dispatched to that  task. 
Dispatching  (or  time  slice)  control  parameters limit the sys- 
tem resources  that  can be allocated to a  dispatchable  task 
(i.e., an active  task  that is being multiprogrammed).  Examples 
of such  parameters are  the length of a time slice and the max- 
imum number of page frames allowed to be allocated. 
Time-slice-end  exit  parameters specify the  set of possible 
STE assignments  that  control  a  task's  next time slice. 

Scheduling and  dispatching  algorithms are defined by specifying 
the STEs, a function  that is similar to specifying the Installation 
Performance Specifications of the  System  Resources  Manager 
in O S I V S ~ . ~  A task is always assigned to  an STE and  undergoes 
an STE transition  at  the end of a time slice, when it is  being re- 
scheduled.  Most  queue-driven  operating  systems are built around 
three  queues: an inactive  queue of tasks  not  ready  for  service 
(e.g.,  tasks waiting for terminal response  or  the mounting of tapes 
or disk packs), an eligible  queue of tasks  that are ready for  ser- 
vice but  have not been allocated main storage,  and a dispatch- 
able  queue of tasks  that  have been allocated main storage  and 
share  the  processor. 
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The scheduling table  contains  parameters used by the algorithm 
that  controls  the flow of tasks from the eligible queue  to  the dis- 
patchable  queue. When an  inactive  task  becomes  active it  is 
enqueued in the eligible queue, and a  deadline is computed  for 
its next time slice by using the scheduling control  parameters 
assigned to the  task. Eligible tasks are ordered by their  respec- 
tive priorities (which are also  determined by the scheduling 
table), and they are ordered within their priorities by their time 
slice deadlines. Thus the eligible queue is a set of priority 
queues. 

The scheduler  searches  the eligible queue  to find the highest- 
priority,  farthest-behind-schedule  task  that satisfies the main 
storage  entrance  criterion,  then  enqueues  that  task in the  dis- 
patchable  queue. The main storage  entrance  criterion  controls 
the level of multiprogramming. In ~ S S / 3 6 0  the  criterion is 

P m a x  < P e a v  

in which Pea,, a  system  variable, is an  estimate of the  number of 
available page frames,  and P,,, is the STE dispatching control 
parameter  that limits the  number of page frames  that  can  be allo- 
cated  to  the  task when it  is in the  dispatchable  queue. A similar 
entrance  criterion  exists in other virtual storage  systems. 

The scheduler  tracks  the size of a  task's working set by assign- 
ing an STE transition  at  the end of a time slice. This transition 
may increase or  decrease PmaX, depending on the  task's page 
frame  allocation at time slice end. Pea, is updated when a  task is 
enqueued in the  dispatchable  queue  according to the formula 

P e a v   P e w -   P m a x  

and again when the  task is dequeued from the  dispatchable 
queue: 

P e a ,   P e a v  + P m a x  

Pea" accounts  for  the page frames  allocated to the  supervisor  and 
the pages of the  dispatchable  tasks. A task  remains  dispatchable 
until the end of its current time slice (which is subdivided into 
quanta). If the task is still active at time slice end, it is enqueued 
in the eligible queue. If it is  not  active, it is enqueued in the in- 
active  queue (see Figure 1 ). 

The TSS/360 scheduler distinguishes among conversational  tasks, 
nonconversational  tasks,  and  system  tasks. The primary objec- 
tive of our  study was the scheduling of conversational  tasks to 
improve  responsiveness. 

memory There  are two  types of pages,  sharable  and  private.  Examples of 
management programs residing in sharable pages are the command analyzer 

and  the  access  methods. User coded  programs generally reside 
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Figure 1 Task queuing in  TSS/360 
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in private pages. Each page type is managed differently. The 
page frames allocated to  a  dispatchable  task  contain  the private 
pages referenced by the  task during its present time slice. At  the 
end of a time slice, a task’s page frames are released and made 
available. A task’s STE also  indicates  whether a page stealing 
(replacement) algorithm is in effect for it or not.4 The page 
frames  that  contain  sharable pages (sharable page frames)  are 
not allocated  to  tasks. 

Usually, when a page fault  occurs,  service of the faulting task is 
halted and the  task  incurs a page wait while the faulted page is 
loaded into  a newly allocated page frame.  Sometimes  there is 
still a  copy of the faulted page in an available page frame, in 
which case  that page frame is reclaimed without making the  task 
wait for an unnecessary page transfer. 

The storage manager attempts to maintain an inventory of avail- 
able page frames. When a page fault occurs  and  the  inventory is 
below an upper  threshold,  the  reference bits of the  sharable page 
frames are  reset. If the  inventory is below a  lower  threshold,  the 
sharable page frame  reference bits are  scanned to find a  pre- 
established  number of unreferenced  sharable pages to  replace 
from main storage. If sharable page replacement  does  not in- 
crease  the number of available page frames  to a quantity  above 
the  upper  threshold,  the  storage manager requests  the  dispatcher 
to  reduce the level of multiprogramming by selecting a  dispatch- 
able  task  to be swapped  out of  main storage. A task  swap-out 
request is the way the  scheduler is informed of excessive  conten- 
tion for  storage. 

In  an  interactive virtual storage  system,  the management of 
sharable pages and user pages in auxiliary storage  directly affects 



tion of sharable  and  private  pages.  Copies of the  most  frequently 
referenced pages are maintained on the paging drums,  the  less 
frequently used pages being deferred  to paging disks.  The main 
objectives of these  algorthms are to equitably  share  the paging 
drum among the  active  users  and  to  prevent  the  fast paging de- 
vices from becoming cluttered with sharable pages. 

Instrumentation 

The evaluation of interactive  system  performance  requires basi- 
cally two kinds of data: ( l )  a record,  or log, of user  transactions 
(i.e.,  the  interactive  workload), and (2) multivariate measure- 
ments of system  activity.  A  user  transaction is a  sequence of 
user-system  interactions,  starting with the user’s initial request 
for  service  and ending when the  system  prompts him for more 
work.  A  user  transaction log, consisting of timing measurements 
and  records  of computing resource  demand, can be produced by 
an  event tracing m ~ n i t o r . ~   T o  characterize  the TSS/%O workload, 
we used an  event tracing monitor  that  measured  the following 
variables  for  each  task: 

Processing  time  spent in virtual storage  (problem state) 
Data base  reads  and  writes 
Page reads  and  writes 
Average  number of page frames  allocated during a  time slice 
Lines of terminal output 
Number and types of commands. 

system To record  system  activity  measurements, we used a sampling 
activity monitor  that sampled the  contents of event  counters  and  event 

timers at a specified rate, forming a  multivariate time series. The 
quantities  measured can be classified as follows: 

Paging demands 
Traffic between main storage  and  external  storage (data  set 
activity  measurements) 
Processor utilization 
Causes of time slice ends 
Computing  resources  allocated to tasks 
Scheduling and dispatching activity. 

Our sampling monitor sampled system  activity once a minute. In 
a virtual  storage  system,  some  variables  representing  internal 
congestion  and  storage usage can  fluctuate  considerably  over a 
minute,  and it is desirable  to  have  the  system maintain smoothed 
(or filtered)  values of these  variables. In  our situation,  however, 
filtered values were  not maintained by the  system itself. There- 
fore, with the  event tracing monitor, we sampled selected vari- 
ables many times per minute and time-averaged them off-line. 
These filtered values were  then merged with the  measurements 
of the sampling monitor. 
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* N ,  average number of tasks 
" N ,  average number of eligible tasks 
" Nd average  number of dispatchable  tasks 

P V  processor utilization due  to executing in virtual storage (problem 

PO processor utilization due  to executing of the resident supervisor 

*pa average number of available  page  frames 
* P ,  average  number of sharable page frames 

ra sharable page reclaim rate  (pages per second) 
rl, private page reclaim rate  (pages  per  second) 
rnr system page fault rate  (pages  per  second) 

state) 

*PC,, average number of available page frames as estimated by the  sched- 
uler 

TSE,,, time-slice-end rate  due  to a task's exceeding its P,,, (TSEs per 
second) 

TSE,, ,  time-slice-end rate  due  to a  task's  exceeding  its virtual storage  pro- 
cessing limit (TSEs per second) 

TSE,,, time-slice-end rate  due  to forced swap-outs-i.e.,  the forcing of tasks 
off the M P  queue  to  free up page frames (TSEs per  second) 

I "system variables  for which time  averaging  was  required I 

The  data we analyzed consisted of a minute- 
of the  activity  represented by over 70 system  variables and the 
averaged values of response times for  the typical transaction 
(Table 1) .  A similar approach  was used by Anderson  and  Sar- 
gent to  produce  the  performance  data analyzed in evaluating the 
performance of an A P L D ~ O  system.' 

The formulating of system  resource management policies re- 
quires  a classification of the workload based either on the  type 
of service  requested or on resource  demands. The quality of 
service received by transactions in a given workload class  de- 
pends on  the  response time or throughput  criteria established for 
that  class,  the statistical properties of the  computing  resource 
demands,  and  system congestion at the time of service. We clas- 
sified the IBM Research T S S / ~ ~ O  interactive workload according 
to  the  statistical  properties of the computing resource  demand^.^ 
As a  result of this classification we identified a  certain  class of 
transactions, which we term typical  transactions, that  require 
less than 0.2 second of virtual storage  (problem state) process- 
ing time and make no more than ten read/write  accesses  to  a 
data  set. We found 70 percent of  all transactions  to be typical. 
Our  objective  for  performance  improvement  was  to  decrease  the 
average  response time of the typical transaction. 





I Figure 2 Paging rote (S )  for TSS/360 transactions os a function of virtual  storage 
processing time (C)  
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I tion. This is the highest coefficient of correlation  between  the 
response time and any workload variable. This high correlation 
shows  the significant effect that  the page replacement algorithm 
has on response time. 

The paging demand had other  interesting  characteristics. When 
there  was  an  increase in the virtual storage processing time, C, 
demanded by a  transaction, we observed  two  relationships:  the 
average  number of allocated page frames  increased  (Table 4), 
and  the paging rate, S, decreased rapidly (Figure 2) .  The plot of 
log S vs. log C in Figure 2 shows  a  linear  relationship.  Transac- 
tions requiring 0.002 second of virtual storage processing may 
require  that 20 pages be referenced,  and  thereby  have S = 
10,000 page reads  per  second.  Processing  those  transactions is 
costly in terms of paging overhead. On the  other hand, transac- 
tions requiring extensive virtual storage processing time, such as 
compilations, tend to  have low  paging rates, of the  order of 
S < 100 page reads  per  second. Tasks activated by such  trans- 
actions typically use their whole time slice each time they are 
dispatched.  After  a brief initial transient  phase, consisting of 
loading their working set, they settle  down  and relatively seldom 
give rise  to page faults. 

The system paging activity is quite  sensitive  to  the mix  of tasks, 
as shown by the  great  disparity in the paging rate, S. Multipro- 



Table 4 Relative  frequency of average  page  frame allocations vs. virtual  storage 
processing times 

0 to 0.01 0.00 1 0.1 1 0.00s 0 
0.01 to 0.1 0.02 0.58 0.07 1 0.002 
0.1 to 1 0.00 1 0.059 0. 107 0.009 
1 to 10 0 0.003 0.014 0.007 

gramming explains some of the variability of S for  a given value 
of C .  High levels of multiprogramming cause S to  increase  for  a 
transaction  because the effect of the page replacement algorithm 
becomes significant. System modifications designed to improve 
performance,  such  as repackaging frequently  referenced  pro- 
grams, can be evaluated in terms of the  changes they cause in 
the relationship between S and C .  

Performance  evaluation 

To understand  the  performance of a  computer  system,  one  has 
to  translate a logical description of the  system  into  a behavioral 
one.  An  understanding of system  behavior is obtained by identi- 
fying the  system variables that  have  the  most significant effect 
on performance. These variables, called performance  factors, 
can be identified through statistical data  analysis  techniques 
such as  scatter  plots,  correlation  analysis,  and  stepwise  regres- 
sion analysis. The goal is to identify the relationships among the 
numerous  system variables and  between  the  system variables 
and different measurements of system  responsiveness.  Identify- 
ing the  performance  factors  also helps in defining the  appro- 
priate level of detail in the  system  description (the system 
model). 

Data analysis of the kind indicated above led us to  conclude  that 
system  performance  has  to be analyzed in terms of the  system 
variables maintained by the  scheduler,  dispatcher, and storage 
manager. The scheduler  and  dispatcher are concerned with con- 
trolling the  three  queues of Figure 1. The scheduler maintains its 
own estimate of available page frames. The  dispatcher se- 
quences  the servicing of the  dispatchable  tasks  and limits the 
computer  resources  allocated  to them during their time slices. 
The storage manager maintains an  inventory of available page 
frames. Its main task is to  allocate  and  deallocate page frames. 
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Figure  Average numbers of where Ri is the response time of the ith typical transaction of the 
and eligible tasks ( N : )  N typical transactions  that  were  completed during the sample 
as functions of the interval, which in our  case  was  one minute. Some of the perfor- 
average number of mance  factors  were identified when we developed  a  statistical 

model for  the logarithm of the  response time, R*,  using stepwise 
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Figure 5 Scheduler's estimate of 
available  page frames 
(Pea") as a  function of 
dispatchabletasks (N,) 
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The logarithmic transformation was used to  account  for  the ap- 
parent nonlinear relation of R to  numerous  system variables and 
also  because of the higher correlation of R* with other  system 
variables  (Table 5 ) .  For example,  the  performance  factors Pea, 
and P,  (number of sharable page frames), had the highest cor- 
relation with R*.  Other  performance  factors  were identified by 
analyzing changes in system  behavior  that resulted from experi- 
menting with different scheduling algorithms. The objective was 
to bring the  system  into new operating regions, such as higher 
levels of multiprogramming. 

The performance  factors are correlated as indicated by the  cor- 
relation coefficients in Table 5 .  The correlations  result from the 
interdependence among scheduler,  dispatcher,  and  storage man- 
ager. 

The behavior of a virtual storage  system is often  considered 
complex because of the high number of possible interactions 
among the system's components.  However, if the  performance 
of such  a  system is observed  for  a few days with an uncontrolled 
workload,  patterns of behavior  become  apparent  even though 
there is wide variation in the  system's  behavior. These behavior 
patterns  can be explained by determining which factors of the 
system  resource management policy have  a  dominant effect on 
performance. When this is done,  a relatively simple description 
of system  behavior is possible. The following description of the 
behavior of our  system  serves  to  illustrate  this  point.  (When  our 
measurements  were  made,  the IBM Research TSS/360 computer 
configuration consisted of a  System/360 Model 67 with one 
megabyte of main storage,  two paging drums, and three paging 
disks.) 

The capacity of  main storage,  and  the  storage  demand imposed 
by the  workload,  determine  the  average  number of dispatchable 
tasks, N d .  When the  average  number of logged-on tasks, or 
users, Nt ,  exceeds 30, Nd approaches  four  tasks  (Figure 3 ) .  Ini- 
tially, the  average  number of eligible tasks, Ne,  increases slowly 
with increasing N t ,  then  increases rapidly as the  system be- 
comes  saturated. A similar form of performance  degradation, 
but in terms of average  response  time,  was  observed  for CTSS 
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(the Compatible  Time Sharing System) by Scherr' and explained 
with a simple queuing model by Kleinrock." For our  system, 
however,  a plot of the  average  response time of a typical trans- 
action  vs. N t  (Figure 4)  does  not  reveal  the  onset of system  sat- 
uration as clearly as  the plot of N e  vs. N t  (Figure 3 ). 

System  saturation  results from the combined page frame  de- 
mand of the  dispatchable  tasks. When the  average  number of 
dispatchable  tasks, N d ,  approaches five, the  scheduler's  estimate 
of the  average  number of available page frames, Pea,, is less  than 
24 (Figure 5 ) .  Therefore, eligible tasks  often fail the  entrance 
criterion.  Even  tasks  activated by typical transactions are ad- 
versely affected, since  their  storage  management  parameter, 
P,,,, was  set  to 24 page frames. 

The threshold effect of the  entrance  criterion is illustrated in 
Figures  6  and 7. There is a sizable increase in the  number of eli- 
gible tasks, Ne,  when P e a ,  falls below 24 page frames  for  a  pro- 
tracted  period, causing a  corresponding  increase in the  average 
response time, R. The degradation in system  responsiveness 
caused by the  entrance  criterion is dramatized in Figure 8 by the 
substantial change in the  shape of the  response time histogram 
that  accompanies  an  increase in R.  A similar degradation in re- 
sponse  time was predicted by a  central  server queuing model of 
the MULTICS system  developed by Sekino." 

As the  number of dispatchable  tasks, N d ,  becomes  greater,  there 
is a  decrease in the  average  number of available page frames, P,, 
and  sharable page frames, P,, as shown in Figure 9, because pri- 
vate page frame allocation increases. In order  to  increase Pa, 
tasks are forced off the  dispatchable queue-that is, swapped 
out of main storage. In our system  the  rate of swapping was low, 
since Pa rarely averaged below the  inventory threshold of ten 
page frames. The system was able  to maintain an  inventory of 
available page frames. The number of sharable page frames 
needed to support more than four  dispatchable  tasks, N d ,  was 
approximately  64  (i.e., P, = 64 page frames).  The  decrease in P,  
with increasing Nd is accompanied by an  increase in the  shara- 
ble page reclaim rate, Y,, as  sharable page thrashing begins (Fig- 
ure 10). 

In  Figure 11,  the plot of the reclaim rate of private pages, Y,,, vs. 
Nd provides another graphic demonstration of  how system  per- 
formance  degrades with increasing congestion. When N d  in- 
creases beyond three  tasks, Y~, approaches  zero. In other  words, 
it becomes increasingly unlikely that  any of the private pages 
referenced by an eligible task in its previous time slice will  still 
be in main storage when the task meets  the  entrance  criterion 
and  becomes  dispatchable.  Therefore during congested  periods, 
tasks  that require more than one time slice will often be delayed 
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Figure 9 Available  page frames 
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page frames (P,) as 
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transactions. In other  words, typical transactions  are  the  only 
ones allowing  a  level of multiprogramming of 4 or  even  more 
than 4. There is no  increase in p ,  in the  range N d  3 4 because 
there is little overlap of  computing  with  paging. On  the  other 
hand,  when N d  < 4, p I  can  become  quite  large  because it is pos- 
sible  for  compute-bound  tasks in the  dispatchable  queue  to  be 
serviced  frequently,  thereby efficiently overlapping paging with 
computing. 

A bottleneck  develops in main storage  when N,, 2 4. It is re- 
flected in the plot of overhead, po,  vs. N d  (Figure 12 ) ,  which 
levels off around 60 percent, indicating that  the  processor 
spends  most of its  time managing storage.  The linear  relation- 
ship  between p u  and  the page  fault  rate  (Figure 1 3 )  illustrates 
that p o  is accounted  for by paging activity. 

Improving system  performance 

Having  gained  insight  into  the  factors  affecting  performance, we 
evaluated  system  changes  expected  to  improve  performance  and 
concluded  that  system  responsiveness  probably could be im- 
proved by modifying the  scheduling  algorithm. In  addition,  we 
were  interested in determining  whether  we  could  reduce P,,  the 
average  number of page  frames  allocated  to  sharable  pages. The 
existing  scheduling  algorithm  essentially  divided  eligible  conver- 
sational  tasks  into  two  major  classes:  newly  activated  tasks 
awaiting  their first  time  slice, and  tasks  whose  activation re- 
quired  more  than  one  time  slice.  The  former  class had  priority 
over  the  latter,  leading  to a  form  of  foreground-background 
scheduling. Tasks in the  latter  class  were  subdivided  according 
to  their  page  frame  allocation in their  most  recent  time slice.' 

Our  change in the  scheduler  was  aimed  at  overcoming a system 
deficiency  requiring that a  typical  transaction  be  dispatched as 
many as three  times.  We  hoped  to  improve  system  responsive- 
ness by  changing  the  scheduler  to  distinguish  between eligible 
conversational  tasks  that had  received  less  than  four  time  slices 
and  those  that had received  more.  That is, a task would circulate 
up  to  three  times  through  the high priority  foreground  queue 
before  being  enqueued in the  appropriate  background  queue.  We 
felt  it  would  be  worth  evaluating  a  change in the  sharable  page 
replacement  algorithm so that  sharable  page  replacement would 
be  initiated  not  only  when  the  average  number of available  page 
frames, Pa, dropped below  its lower  threshold  value, but also 
when P,,,, the  number  estimated by the  scheduler,  dropped be- 
low a  similar  threshold.  Our  objective  was  to find out  whether 
more  page  frames  could  be  allocated  to  the  private  pages  owned 
by the  dispatchable  tasks by  reducing  the  average  number  of 
sharable  page  frames, P,,  during  periods of high congestion. 
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Figure 10 Sharab le   page   re -  
c laim  rate (5) as a 
function of N, 

5 0  

Nd 

Figure 1 1  Private page reclaim 
ra te  ( rJ  as a function 
of N, 

- 
1 0  2 0  3.0 4.0 5 

Nd 

Figure 12 Processor util ization 
due  to  overhead (p , )  
and  virtual  storage 
time (p,) as functions 
of N, 

Nd 
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Figure l 3  Processor utilization Evaluating these  two  system changes required  a 22 factorial de- 

page  fault  rate (rpf)  rithm (old  and  new)  and  the  sharable page purging algorithm 
(old and new). Factorial design experiments  have  been  success- 

due to overhead ( p , )  
as a function of the sign of experiments.  The  two  factors were  the scheduling algo- 

F 

5 60 evaluate  the effects of a number of variable factors on some 
Y 0 ful in quantifying complex phenomena. Typically they are used to 

a" measurable  response of a process.") 
a 

40 Our plan was to  conduct  each of the four experiments  on  three 
different days  at nine randomly selected 15-minute periods in 
the  afternoon, when the  average  number of logged-on tasks, Nt ,  

20 would exceed 26. We measured in the  afternoon  because  the 
behavior of N ,  was most stable  then. The average values of the 
performance  factors,  computed  for  each  replication, quantified 

rpf(PAGESPERSECOND) tal factors  on different aspects of system  behavior.  Table 6 pre- 
sents,  for  each  experiment,  average  values of the  response time 
and  some of the  performance  factors. 

0 the  uncontrolled workload and  the effects of the  two  experimen- 
0 20 40 

Results of the  experiments  indicate  that  the scheduling change 
reduced  the  average  response time, R,  from five to  four  seconds, 
and  that  the  change in the page purging algorithm degraded per- 
formance slightly. In fact,  the page replacement  change  reduced 
the  average  number of sharable page frames, P,,  to  the point 
where  the  sharable page reclaim rate, r,, increased significantly, 
indicating thrashing (Figure 14). Decreasing P, simply in- 
creased  the  average  number of available page frames, Pa, de- 
creasing an  already low task-swap-out  rate (TSE,,,) from 0.08 to 
0.04 tasks  per  second.  In  Table 6, the  values of the  performance 
factors  indicate  that no unexpected or unexplainable changes in 
system  behavior  or workload occurred during the  experiments. 

Although our  change in the  scheduler definitely improved the 
system's  responsiveness, we were  concerned  that this achieve- 

b u r e  l 4  Sharable page re- ment might be attributed to differences in the uncontrolled 
function of workload.  Therefore we wanted to test  the effects of the  two 

differences that  occurred  between  replications of the  experi- 

claim  rate ( r s )  as a 

page frames ( P s )  experimental  factors  after eliminating the effect of workload 

6 
14 ments.  This was accomplished by using the analysis-of-covari- 

w ance technique," which eliminates the effects of uncontrolled 

- 8  best be represented by N,,, the  average  number of dispatchable 

5 12 
v) variables  that  enter into an  experiment  and are correlated with 

z the  response  measurement. The uncontrolled workload can 

tasks, and N e ,  the  average  number of eligible tasks. Both are 
correlated positively with the  average  response  time, R .  

10 

6 

4 

2 Table 7 summarizes  the  analysis of variance  for testing the sig- 
nificance of the scheduling and page replacement  changes on R ,  

50 60 70 80 90 100 after Nd and N ,  have been eliminated. The effect of the  schedul- 
p s  ing change was found to be significant. The significance was eas- 

260 ANDERSON, REISER, AND GALATI IBM SYSTJ I 



31 

64 

19 

5.8 

1.8 

42 

0. I 

4.1 

0.18 

3.9 

0.18 

0.63 0.62 

29 29 

56 55  

26 25 

7.1 

4.4 

42 

5.7 

5.3 

47 

0.0 0.0 



I 

- 
12 14 

+x/xcx-x- 
f 

OLD  SCHEDULER 

- 
RESPONSE TIME (SECOND5 



Table 7 Analysis of variance  for the results of the 2’ factorial  design  experiments 
after the effects of N, and Ne have  been  eliminated 

Source of variation  Degrees of Sum of Mean sum F-ratio 
freedom  squares of squares 

~ _ _ _ _ _ _ _ _  ”” 
Replacement algorithm 1 1.04 1.04 1.5 
Scheduling algorithm 1 5.03 5.03 7.2* 
Interaction 1 0.68 0.68 1 .o 
Error 29 20. I 0.67 

*significant at the 5 percent significance  level 
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