A methodology for performance-tuning a virtual storage system
is discussed. This methodology encompasses performance mea-
surement, workload characterization, performance evaluation,
and planned experimentation. Use of the methodology is illus-
trated by describing results of a case study involving the 1BM
Research Division’s TSS/360 system.

Tuning a virtual storage system
by H. A. Anderson, Jr., M. Reiser, and G. L. Galati

The performance objectives of different computer installations
are diverse. Therefore an operating system should provide a
flexible and easily modifiable mechanism for implementing sys-
tem resource management policies.»»?3 Specifying a policy for a
particular computer installation is an iterative process, in which
there are five logically distinct steps:

Understanding the resource management components of the
system

Recording workload and system activity

Characterizing the workload and identifying the system vari-
ables that most significantly affect performance
Experimenting with various resource management policies
Determing the policy that best satisfies the installation’s per-
formance objectives.

The intent of this paper is to illustrate these steps by means of a
case study of a virtual storage system, the TSs/360 (Time Shar-
ing System/360) installation at 1BM'S T. J. Watson Research
Center in Yorktown Heights, New York. Emphasis is on the
methodology of the five steps rather than on the TSS installation
itself. We also stress our use of data analysis techniques to eval-
uate the effects of system changes on performance. A benefit of
our methodology, with regard to modeling system performance,
is a simplification of the system description. Our objective is to
improve system responsiveness to a typical user transaction,
which we define later in this paper.

ANDERSON, REISER, AND GALATI IBM SYST J

System resource management

In a virtual storage computer system, resource management
consists of three basic operations: 1/0 load balancing, the
scheduling and dispatching of tasks, and the allocation of page
frames in main storage and page slots in external disk storage.
Typically, system resource management algorithms derive
some of their control information from parameters contained in
system control blocks which are specified at system generation
time. These system parameters aid in implementing a resource
allocation policy that is appropriate for a particular computer
installation. In our installation, the scheduling, dispatching, and
storage management mechanisms provided effective controls for
adjusting system responsiveness. (1/0 load balancing presented
no problem.) An understanding of these controls is the first
step toward interpreting the results of system measurements.

In TSS/360, as in TSO, a conversational task is created when a
user logs on and is deleted when he logs off. Task scheduling
and dispatching are controlied by a table-driven scheduler!
which provides for detailed specification of scheduling and dis-
patching policies. The scheduler is driven by a system control
block called the scheduling table, which is initialized at system
generation time. It consists of a set of scheduling table entries
(STEs), each having 25 parameters. We can classify the param-
eters as follows:

Scheduling parameters assign a priority to an eligible task
(i.e., an active task awaiting allocation of main storage) and
set a deadline for the next time slice dispatched to that task.
Dispatching (or time slice) control parameters limit the sys-
tem resources that can be allocated to a dispatchable task
(i.e., an active task that is being multiprogrammed). Examples
of such parameters are the length of a time slice and the max-
imum number of page frames allowed to be allocated.
Time-slice-end exit parameters specify the set of possible
STE assignments that control a task’s next time slice.

Scheduling and dispatching algorithms are defined by specifying
the STEs, a function that is similar to specifying the Installation
Performance Specifications of the System Resources Manager
in 0s/vs2.? A task is always assigned to an STE and undergoes
an STE transition at the end of a time slice, when it is being re-
scheduled. Most queue-driven operating systems are built around
three queues: an inactive queue of tasks not ready for service
(e.g., tasks waiting for terminal response or the mounting of tapes
or disk packs), an eligible queue of tasks that are ready for ser-
vice but have not been allocated main storage, and a dispatch-
able queue of tasks that have been allocated main storage and
share the processor.

No. 3 - 1975 TUNING A VS SYSTEM

scheduling
and
dispatching

memory
management

The scheduling table contains parameters used by the algorithm
that controls the flow of tasks from the eligible queue to the dis-
patchable queue. When an inactive task becomes active it is
enqueued in the eligible queue, and a deadline is computed for
its next time slice by using the scheduling control parameters
assigned to the task. Eligible tasks are ordered by their respec-
tive priorities (which are also determined by the scheduling
table), and they are ordered within their priorities by their time
slice deadlines. Thus the eligible queue is a set of priority
queues.

The scheduler searches the eligible queue to find the highest-
priority, farthest-behind-schedule task that satisfies the main
storage entrance criterion, then enqueues that task in the dis-
patchable queue. The main storage entrance criterion controls
the level of multiprogramming. In TSS/360 the criterion is

Pma

in which P, _, a system variable, is an estimate of the number of
available page frames, and P, is the STE dispatching control
parameter that limits the number of page frames that can be allo-
cated to the task when it is in the dispatchable queue. A similar
entrance criterion exists in other virtual storage systems.

X < Peav

The scheduler tracks the size of a task’s working set by assign-
ing an STE transition at the end of a time slice. This transition
may increase or decrease P, , depending on the task’s page
frame allocation at time slice end. P, is updated when a task is

eav

enqueued in the dispatchable queue according to the formula

«— —
Peav Peav Pmax

and again when the task is dequeued from the dispatchable
queue:

Peav « Peav + Pmax

P, accounts for the page frames allocated to the supervisor and
the pages of the dispatchable tasks. A task remains dispatchable
until the end of its current time slice (which is subdivided into
quanta). If the task is still active at time slice end, it is enqueued
in the eligible queue. If it is not active, it is enqueued in the in-

active queue (see Figure 1).

The TSS/360 scheduler distinguishes among conversational tasks,
nonconversational tasks, and system tasks. The primary objec-
tive of our study was the scheduling of conversational tasks to
improve responsiveness.

There are two types of pages, sharable and private. Examples of
programs residing in sharable pages are the command analyzer

and the access methods. User coded programs generally reside

ANDERSON, REISER, AND GALATI IBM SYST J

Figure 1 Task queuing in TSS/360

SCHEDULER/DISPATCHER STORAGE MANAGER

—CONTROLS FLOW OF TASKS —CONTROLS PAGING PARAMETERS
THROUGH QUEUES —ALLOCATES IN VARIOUS

—DISTRIBUTES RESOURCES STORAGE SYSTEM CONTROL
AMONG TASKS BLOCKS

T

SCHEDULING TABLE :
CONTAINS PARAMETERS |
FOR THE SCHEDULER :

_J SECONDARY
lf TIME STORAGE
|
|
{

SLICE END
PROCESSING, DISPATCHING,

PROCESSOR] ERIMARY

TASK
RN ACTIVATION L NN

INACTIVE ELIGIBLE DISPATCHABLE
QUEUE QUEUE QUEUE

PRIORITY SCHEDULING
AND STORAGE ENTRANCE
CRITERION

in private pages. Each page type is managed differently. The
page frames allocated to a dispatchable task contain the private
pages referenced by the task during its present time slice. At the
end of a time slice, a task’s page frames are released and made
available. A task’s STE also indicates whether a page stealing
(replacement) algorithm is in effect for it or not.* The page
frames that contain sharable pages (sharable page frames) are
not allocated to tasks.

Usually, when a page fault occurs, service of the faulting task is
halted and the task incurs a page wait while the faulted page is
loaded into a newly allocated page frame. Sometimes there is
still a copy of the faulted page in an available page frame, in
which case that page frame is reclaimed without making the task
wait for an unnecessary page transfer.

The storage manager attempts to maintain an inventory of avail-
able page frames. When a page fault occurs and the inventory is
below an upper threshold, the reference bits of the sharable page
frames are reset. If the inventory is below a lower threshold, the
sharable page frame reference bits are scanned to find a pre-
established number of unreferenced sharable pages to replace
from main storage. If sharable page replacement does not in-
crease the number of available page frames to a quantity above
the upper threshold, the storage manager requests the dispatcher
to reduce the level of multiprogramming by selecting a dispatch-
able task to be swapped out of main storage. A task swap-out
request is the way the scheduler is informed of excessive conten-
tion for storage.

In an interactive virtual storage system, the management of
sharable pages and user pages in auxiliary storage directly affects

performance. The TSS/360 storage manager controls the migra-

NO. 3 + 1975 TUNING A VS SYSTEM

system
activity

tion of sharable and private pages. Copies of the most frequently
referenced pages are maintained on the paging drums, the less
frequently used pages being deferred to paging disks. The main
objectives of these algorthms are to equitably share the paging
drum among the active users and to prevent the fast paging de-
vices from becoming cluttered with sharable pages.

Instrumentation

The evaluation of interactive system performance requires basi-
cally two kinds of data: (1) a record, or log, of user transactions
(i.e., the interactive workload), and (2) multivariate measure-
ments of system activity. A user transaction is a sequence of
user-system interactions, starting with the user’s initial request
for service and ending when the system prompts him for more
work. A user transaction log, consisting of timing measurements
and records of computing resource demand, can be produced by
an event tracing monitor.’ To characterize the TSS/360 workioad,
we used an event tracing monitor that measured the following
variables for each task:

Processing time spent in virtual storage (problem state)
Data base reads and writes

Page reads and writes

Average number of page frames allocated during a time slice
Lines of terminal output

Number and types of commands.

To record system activity measurements, we used a sampling
monitor that sampled the contents of event counters and event
timers at a specified rate, forming a multivariate time series. The
quantities measured can be classified as follows:

¢ Paging demands

e Traffic between main storage and external storage (data set
activity measurements)

e Processor utilization

¢ Causes of time slice ends

e Computing resources allocated to tasks

e Scheduling and dispatching activity.

Our sampling monitor sampled system activity once a minute. In
a virtual storage system, some variables representing internal
congestion and storage usage can fluctuate considerably over a
minute, and it is desirable to have the system maintain smoothed
(or filtered) values of these variables. In our situation, however,
filtered values were not maintained by the system itself. There-
fore, with the event tracing monitor, we sampled selected vari-
ables many times per minute and time-averaged them off-line.
These filtered values were then merged with the measurements
of the sampling monitor.

ANDERSON, REISER, AND GALATI IBM SYST J

Table 1 Selected system variables that significantly affected the responsiveness of the
IBM Research Division’s TSS/360 system

average number of tasks

average number of eligible tasks

average number of dispatchable tasks

processor utilization due to executing in virtual storage (problem
state)

processor utilization due to executing of the resident supervisor
average number of available page frames as estimated by the sched-
uler

average number of available page frames

average number of sharable page frames

sharable page reclaim rate (pages per second)

private page reclaim rate (pages per second)

system page fault rate (pages per second)

time-slice-end rate due to a task’s exceeding its P., (TSEs per
second)

time-slice-end rate due to a task’s exceeding its virtual storage pro-
cessing limit (TSEs per second)

time-slice-end rate due to forced swap-outs—i.e., the forcing of tasks
off the MP queue to free up page frames (TSEs per second)

*system variables for which time averaging was required

The data we analyzed consisted of a minute-by-minute summary
of the activity represented by over 70 system variables and the
averaged values of response times for the typical transaction
(Table 1). A similar approach was used by Anderson and Sar-
gent to produce the performance data analyzed in evaluating the
performance of an APL/360 system.”

The workload

The formulating of system resource management policies re-
quires a classification of the workload based either on the type
of service requested or on resource demands. The quality of
service received by transactions in a given workload class de-
pends on the response time or throughput criteria established for
that class, the statistical properties of the computing resource
demands, and system congestion at the time of service. We clas-
sified the IBM Research TSS/360 interactive workload according
to the statistical properties of the computing resource demands.”
As a result of this classification we identified a certain class of
transactions, which we term typical transactions, that require
less than 0.2 second of virtual storage (problem state) process-
ing time and make no more than ten read/write accesses to a
data set. We found 70 percent of all transactions to be typical.
Our objective for performance improvement was to decrease the
average response time of the typical transaction.

No. 3 - 1975 TUNING A VS SYSTEM

paging

Table 2 Examples of the positively skewed cumulative distribution functions (CDFs)
of the resource demands of transactions

Virtual storage
processing time Data set reads Data set writes

Seconds CDF Reads Writes

0.1 0.745 0
1.0 0.958 10
10.0 0.991 20
100.0 0.998 30

Avg. 0.75 s Avg. 9.65 reads Avg. 6.4 writes
Std. 12.3 s Std. 50.3 reads Std. 60.0 writes

Table 3 Relative frequency of data set reads vs. data set writes

Data set Data set writes
reads

1 to 10 11 to 20 21 to 30

0 0 0 0
1 to 10 0.010 0.001
11to 20 0.014 0.013
21 to 30 0.001 0.002

Typically, the cumulative distribution functions (CDFs) of the
computing resource demands of conversational transactions are
positively skewed (Table 2). Similar observations have been
made for other interactive systems, leading Bryan® to remark,
“We rarely see the average, we usually see the typical”. For
example, the CDF of the virtual storage processing time has a
mean of 0.75 seconds, a median of 0.05 seconds, and a coeffi-
cient of variation of 16.5. Foreground-background scheduling is
appropriate for systems with such skewed resource demand dis-
tributions.’

Interesting relationships can be observed among the workload
variables. For example, in Table 3 the relative frequency of data
set reads compared with data set writes indicates the existence of
three classes of transactions: those that require no transfer of
data from or to external devices, those that require data to be
loaded into virtual storage, and those that require data to be
loaded into and unloaded from virtual storage. This classification
is still relatively coarse. We have found finer divisions by means
of principal component analysis.”

The performance of the system depends greatly on the paging
rate. For example, the correlation coefficient is 0.82 between the
paging rate and the average response time of a typical transac-

ANDERSON, REISER, AND GALATI IBM SYST J

Figure 2 Paging rate (S) for TSS/360 transactions as a function of virtual storage
processing time (C)

1 | 1 1 1 1
~3.00 —2.50 —2.00 -150 -1.00 ~050 —0.00

tion. This is the highest coefficient of correlation between the
response time and any workload variable. This high correlation
shows the significant effect that the page replacement algorithm
has on response time.

The paging demand had other interesting characteristics. When
there was an increase in the virtual storage processing time, C,
demanded by a transaction, we observed two relationships: the
average number of allocated page frames increased (Table 4),
and the paging rate, S, decreased rapidly (Figure 2). The plot of
log S vs. log C in Figure 2 shows a linear relationship. Transac-
tions requiring 0.002 second of virtual storage processing may
require that 20 pages be referenced, and thereby have § =
10,000 page reads per second. Processing those transactions is
costly in terms of paging overhead. On the other hand, transac-
tions requiring extensive virtual storage processing time, such as
compilations, tend to have low paging rates, of the order of
S < 100 page reads per second. Tasks activated by such trans-
actions typically use their whole time slice each time they are
dispatched. After a brief initial transient phase, consisting of
loading their working set, they settle down and relatively seldom
give rise to page faults.

The system paging activity is quite sensitive to the mix of tasks,
as shown by the great disparity in the paging rate, S. Multipro-

No. 3 - 1975 TUNING A VS SYSTEM

Table 4 Relative frequency of average page frame allocations vs. virtual storage
processing times

Virtual storage Average number of page frames allocated
processing e e
time (seconds) 1tl0 11 to 20 21 to 30 31 to 40

0 to 001 0.001 0.11 0.005 0
0.01to 0.1 0.02 0.58 0.071
0.1 to 1 0.001 0.059 0.107
1 tol0 0 0.003 0.014

gramming explains some of the variability of § for a given value
of C. High levels of muitiprogramming cause S to increase for a
transaction because the effect of the page replacement algorithm
becomes significant. System modifications designed to improve
performance, such as repackaging frequently referenced pro-
grams, can be evaluated in terms of the changes they cause in
the relationship between S and C.

Performance evaluation

To understand the performance of a computer system, one has
to translate a logical description of the system into a behavioral
one. An understanding of system behavior is obtained by identi-
fying the system variables that have the most significant effect
on performance. These variables, called performance factors,
can be identified through statistical data analysis techniques
such as scatter plots, correlation analysis, and stepwise regres-
sion analysis. The goal is to identify the relationships among the
numerous system variables and between the system variables
and different measurements of system responsiveness. Identify-
ing the performance factors also helps in defining the appro-
priate level of detail in the system description (the system
model).

Data analysis of the kind indicated above led us to conclude that
system performance has to be analyzed in terms of the system
variables maintained by the scheduler, dispatcher, and storage
manager. The scheduler and dispatcher are concerned with con-
trolling the three queues of Figure 1. The scheduler maintains its
own estimate of available page frames. The dispatcher se-
quences the servicing of the dispatchable tasks and limits the
computer resources allocated to them during their time slices.
The storage manager maintains an inventory of available page
frames. Its main task is to allocate and deallocate page frames.

ANDERSON, REISER, AND GALATI IBM SYST J

Table 5 Sample correlation coefficients that exhibit intercorrelations between the
performance factors and the logarithm of the response time, R*

N Ny D, P, P R*

e eav

avg. no. of tasks . 0.2 —0.2 0.3 —0.2 0.2

avg. no. of eligible 0.5 —0.2 0.5 —0.6 0.4
tasks

avg. no. of dispatch- 0.1 0.6 —0.8 0.3
able tasks

processor use due to 0.3 . 0.0
executing in
virtual storage

processor use due to
executing the resident
supervisor

avg. no. of available
page frames as esti-
mated by scheduler

avg. no. of available
page frames

avg. no. of sharable
page frames

sharable page reclaim
rate (pages/sec.)

private page reclaim
rate (pages/sec.)

system page fault rate

time-slice-end rate due
to a task’s exceeding
its P (TSEs/sec.)

max
time-slice-end rate due
to a task’s exceeding its
virtual storage process-
ing limit (TSEs/sec.)

time-slice-end rate due
to forced swap-outs
(TSEs/sec.)

The most significant system variables, the performance factors,
are defined in Table 1. We measured performance in terms of
the average response time of the typical transaction, denoted by
R and defined by the sum

1 N
Rzﬁi;Ri

No. 3 - 1975 TUNING A VS SYSTEM

Figure 3

Average numbers of
dispatchable tasks (N,)
and eligible tasks (N_)
as functions of the
average
logged-on tasks (N,)

number of

4

. 1
18 22 26

|
30 34

Ny

Average response time
(R) as a function of
logged-on tasks (N,)

R (SECONDS)

90%
m
i

m

10%

1 1

20 25 30 35

N(

Scheduler’s estimate of
available page frames
(P,,,) as a function of
dispatchable tasks (N,)

|

where R, is the response time of the ith typical transaction of the
N typical transactions that were completed during the sample
interval, which in our case was one minute. Some of the perfor-
mance factors were identified when we developed a statistical
model for the logarithm of the response time, R*, using stepwise
regression analysis. R* is defined by

Re=1x
——NEI()gRi

i=1

The logarithmic transformation was used to account for the ap-
parent nonlinear relation of R to numerous system variables and
also because of the higher correlation of R* with other system
variables (Table 5). For example, the performance factors P,
and P, (number of sharable page frames), had the highest cor-
relation with R*. Other performance factors were identified by
analyzing changes in system behavior that resulted from experi-
menting with different scheduling algorithms. The objective was
to bring the system into new operating regions, such as higher
levels of multiprogramming.

The performance factors are correlated as indicated by the cor-
relation coefficients in Table 5. The correlations result from the
interdependence among scheduler, dispatcher, and storage man-
ager.

The behavior of a virtual storage system is often considered
complex because of the high number of possible interactions
among the system’s components. However, if the performance
of such a system is observed for a few days with an uncontrolled
workload, patterns of behavior become apparent even though
there is wide variation in the system’s behavior. These behavior
patterns can be explained by determining which factors of the
system resource management policy have a dominant effect on
performance. When this is done, a relatively simple description
of system behavior is possible. The following description of the
behavior of our system serves to illustrate this point. (When our
measurements were made, the IBM Research TSS/360 computer
configuration consisted of a System/360 Model 67 with one
megabyte of main storage, two paging drums, and three paging
disks.)

The capacity of main storage, and the storage demand imposed
by the workload, determine the average number of dispatchable
tasks, Nyg. When the average number of logged-on tasks, or
users, N, exceeds 30, N4 approaches four tasks (Figure 3). Ini-
tially, the average number of eligible tasks, N,, increases slowly
with increasing N,, then increases rapidly as the system be-
comes saturated. A similar form of performance degradation,
but in terms of average response time, was observed for CTSS

ANDERSON, REISER, AND GALATI IBM SYST J

(the Compatible Time Sharing System) by Scherr’ and explained
with a simple queuing model by Kleinrock.'” For our system,
however, a plot of the average response time of a typical trans-
action vs. N (Figure 4) does not reveal the onset of system sat-
uration as clearly as the plot of N, vs. N, (Figure 3).

System saturation results from the combined page frame de-
mand of the dispatchable tasks. When the average number of
dispatchable tasks, N,, approaches five, the scheduler’s estimate
of the average number of available page frames, P.,,, is less than
24 (Figure 5). Therefore, eligible tasks often fail the entrance
criterion. Even tasks activated by typical transactions are ad-
versely affected, since their storage management parameter,
Poax, Was set to 24 page frames.

The threshold effect of the entrance criterion is illustrated in
Figures 6 and 7. There is a sizable increase in the number of eli-
gible tasks, N, when P, falls below 24 page frames for a pro-
tracted period, causing a corresponding increase in the average
response time, R. The degradation in system responsiveness
caused by the entrance criterion is dramatized in Figure 8 by the
substantial change in the shape of the response time histogram
that accompanies an increase in R. A similar degradation in re-
sponse time was predicted by a central server queuing model of
the MULTICS system developed by Sekino.?

As the number of dispatchable tasks, N4, becomes greater, there
is a decrease in the average number of available page frames, P,,
and sharable page frames, P, as shown in Figure 9, because pri-
vate page frame allocation increases. In order to increase P,,
tasks are forced off the dispatchable queue—that is, swapped
out of main storage. In our system the rate of swapping was low,
since P, rarely averaged below the inventory threshold of ten
page frames. The system was able to maintain an inventory of
available page frames. The number of sharable page frames
needed to support more than four dispatchable tasks, Ny, was
approximately 64 (i.e., P, = 64 page frames). The decrease in P,
with increasing N, is accompanied by an increase in the shara-
ble page reclaim rate, r,, as sharable page thrashing begins (Fig-
ure 10).

In Figure 11, the plot of the reclaim rate of private pages, r,, vs.
N, provides another graphic demonstration of how system per-
formance degrades with increasing congestion. When N, in-
creases beyond three tasks, r, approaches zero. In other words,
it becomes increasingly unlikely that any of the private pages
referenced by an eligible task in its previous time slice will still
be in main storage when the task meets the entrance criterion
and becomes dispatchable. Therefore during congested periods,
tasks that require more than one time slice will often be delayed

No. 3 - 1975 TUNING A VS SYSTEM

figure 6 Number of eligible

R (SECONDS)

—
N

tasks (N,) as a function
of the scheduler’s esti-
mate of available page
frames (P__)

eav

Average response time
(R) as a function of the
scheduler’s estimate of
available page frames
(P

oav)

Figure 9 Avdilable page frames
(Pa) and sharable
page frames (P.) as
functions of dispatch-
able tasks (N,)

Degradation in system responsiveness with increasing averoge response
time (R)

RELATIVE FREQUENCY

R=217 SEC

R=4.51 SEC

R=8.10 SEC

| s i
16 18 20

RESPONSE TIME (SECONDS)

because of page waits. This mechanism explains the high cor-
relation between response time and the paging rate, as discussed
on pages 252 and 253.

Our objective, as stated earlier, is to schedule typical transac-
tions for improved responsiveness. Considerable paging over-
head is incurred in servicing typical transactions because of their
high page fault rate. During congested periods, therefore, it is
difficult to overlap computing and paging to make efficient use of
the processor and still be responsive. We investigated this prob-
lem by analyzing processor utilization, which can be divided into
three componerits.:

* p,, the percentage of time spent executing programs in vir-
tual storage (i.e., in the problem state),
Do, the percentage of time spent executing the resident super-
visor (overhead),

s 1— (p,+ p,), the percentage of time the processor is idle.

If we plot both p, and p, against the number of dispatchable
tasks, N4 (Figure 12), we observe that as Ny exceeds 2.5, p, no
longer increases, while p, continues to increase. When N, > 3,
the processor is primarily servicing tasks activated by typical

ANDERSON, REISER, AND GALATI IBM SYST J

transactions. In other words, typical transactions are the only 10 Sharable page re-
ones allowing a level of multiprogramming of 4 or even more ?ﬂ‘lﬁ’.ofﬁ ,\(l’s) as
than 4. There is no increase in p, in the range Ny = 4 because ‘

there is little overlap of computing with paging. On the other
hand, when Ny < 4, p, can become quite large because it is pos-
sible for compute-bound tasks in the dispatchable queue to be
serviced frequently, thereby efficiently overlapping paging with
computing.

—
@ o o

r_(PAGES PER SECOND)

s

IS

A bottleneck develops in main storage when N4 = 4. It is re-
flected in the plot of overhead, p,, vs. Ny (Figure 12), which
levels off around 60 percent, indicating that the processor
spends most of its time managing storage. The linear relation-
ship between p, and the page fault rate (Figure 13) illustrates
that p, is accounted for by paging activity. 11 Private page reclaim

rate (rp) as a function
of N

N

Improving system performance

N}
&

Having gained insight into the factors affecting performance, we
evaluated system changes expected to improve performance and
concluded that system responsiveness probably could be im-
proved by modifying the scheduling algorithm. In addition, we
were interested in determining whether we could reduce P, the
average number of page frames allocated to sharable pages. The
existing scheduling algorithm essentially divided eligible conver-
sational tasks into two major classes: newly activated tasks
awaiting their first time slice, and tasks whose activation re-
quired more than one time slice. The former class had priority
over the latter, leading to a form of foreground-background

r (PAGES PER SECOND)
N
=1

p
—_
5

scheduling. Tasks in the latter class were subdivided according
to their page frame allocation in their most recent time slice.!

Figure 12 Processor utilization
Our change in the scheduler was aimed at overcoming a system ::Z *°Vi‘:::;:‘e°f' (p,)
deficiency requiring that a typical transaction be dispatched as time (p,) as f:n:?ogr:
many as three times. We hoped to improve system responsive- of N,
ness by changing the scheduler to distinguish between eligible
conversational tasks that had received less than four time slices
and those that had received more. That is, a task would circulate
up to three times through the high priority foreground queue
before being enqueued in the appropriate background queue. We
felt it would be worth evaluating a change in the sharable page
replacement algorithm so that sharable page replacement would
be initiated not only when the average number of available page
frames, P,, dropped below its lower threshold value, but also
when P, the number estimated by the scheduler, dropped be-
low a similar threshold. Our objective was to find out whether
more page frames could be allocated to the private pages owned
by the dispatchable tasks by reducing the average number of
sharable page frames, P,, during periods of high congestion.

p. (PERCENT)

v

p_ (PERCENT)

(-3

NO. 3 -+ 1975 TUNING A VS SYSTEM

Figure 13 Processor utilization Evaluating these two system changes required a 2° factorial de-

due to overhead (p_) . . .
as o fonction of she Sign of experiments. The two factors were the scheduling algo-

page fault rate (r) rithm (old and new) and the sharable page purging algorithm
(old and new). Factorial design experiments have been success-
ful in quantifying complex phenomena. Typically they are used to
evaluate the effects of a number of variable factors on some
measurable response of a process.'

p,, (PERCENT)

Our plan was to conduct each of the four experiments on three
different days at nine randomly selected 15-minute periods in
the afternoon, when the average number of logged-on tasks, N,
would exceed 26. We measured in the afternoon because the
behavior of N, was most stable then. The average values of the
performance factors, computed for each replication, quantified
! ! the uncontrolled workload and the effects of the two experimen-
20 40 . .

. eaeseersicons, L8l factors on different aspects of system behavior. Table 6 pre-

" sents, for each experiment, average values of the response time
and some of the performance factors.

Results of the experiments indicate that the scheduling change
reduced the average response time, R, from five to four seconds,
and that the change in the page purging algorithm degraded per-
formance slightly. In fact, the page replacement change reduced
the average number of sharable page frames, P, to the point
where the sharable page reclaim rate, r,, increased significantly,
indicating thrashing (Figure 14). Decreasing P, simply in-
creased the average number of available page frames, P,, de-
creasing an already low task-swap-out rate (TSE,,) from 0.08 to
0.04 tasks per second. In Table 6, the values of the performance
factors indicate that no unexpected or unexplainable changes in
system behavior or workload occurred during the experiments.

Although our change in the scheduler definitely improved the

system’s responsiveness, we were concerned that this achieve-

Figure 14 Sharable page re- ment might be attributed to differences in the uncontrolled

:Li::o:lm:f (Jiln‘;su: workload. Therefore we wanted to test the effects of the two

page frames (P,) experimental factors after eliminating the effect of workload

differences that occurred between replications of the experi-

ments. This was accomplished by using the analysis-of-covari-

ance ‘[echnique,12 which eliminates the effects of uncontrolled

variables that enter into an experiment and are correlated with

the response measurement. The uncontrolled workload can

best be represented by N, the average number of dispatchable

tasks, and N,, the average number of eligible tasks. Both are
correlated positively with the average response time, R.

r_ (PAGES PER SECOND)

s

Table 7 summarizes the analysis of variance for testing the sig-
nificance of the scheduling and page replacement changes on R,
after Ny and N, have been eliminated. The effect of the schedul-
ing change was found to be significant. The significance was eas-

ANDERSON, REISER, AND GALATI IBM SYST J

Table 6 Results of the 22 factorial design experiments, showing the effects of the two
factors on system responsiveness and system activity

Old New old New
schedule schedule schedule schedule
and old and old and new and new

System replacement replacement replacement replacement
variables algorithm algorithm algorithm algorithm

R response time 5.38 4.23 5.49 4.39

avg. no. of tasks 31

avg. no. of 4.4
eligible tasks

avg. no. of dis-
patchable tasks

processor use 0.18
due to executing
in virtual storage

processor use 0.59
due to executing

the resident

Supervisor

avg. no. of
available page
frames as esti-
mated by
scheduler

avg. no. of shar- 67
able page
frames

avg. no. of
available page
frames

private page
reclaim rate
(pages/sec.)

sharable page
reclaim rate
(pages/sec.)

system page
fault rate

time-slice-end 0.1
rate due to forced
swap-outs

(TSEs/sec.)

TUNING A VS SYSTEM

Figure 15 CDFs of response time for the two sclieduling algorithms

NEW SCHEDULER

98— 0—0—0
90TH PERCENTILE Y’x,_x——x-—x’_“

OLD SCHEDULER

RELATIVE FREQUENCY

UPPER QUARTILE

I N

=

] 1 1
16 18 20

RESPONSE TIME (SECONDS)

ily appreciated when we compared the differences in the CDFs of
R for the two scheduling algorithms (Figure 15). We concluded
that our scheduling change improved system responsiveness,
and that our change in the page replacement algorithm was not
worth while.

Concluding remarks

Contemporary operating systems provide system resource man-
agement mechanisms that permit the installation manager to
define his system performance objectives. The installation man-
ager thinks of these objectives in terms of response time or
throughput, but in reality they have to be translated into system
internal terms such as time slice deadlines or service units."”
This is not an easy translation to make, since it requires experi-
mentation with different system resource management policies.
Identifying the appropriate system resource management policy
requires a methodological approach. Such a methodology con-
sists, first, of performance measurement, workload characteriza-
tion, and performance evaluation, followed by a series of per-
formance tuning experiments. We found that by using such a
methodology, we were able to characterize the workload and the
behavior of the 1BM Research Division’s TSS/360 system, then
verify that our proposed scheduling change positively improved
system responsiveness.

ANDERSON, REISER, AND GALATI IBM SYST J

Table 7 Analysis of variance for the results of the 22 factorial design experiments
after the effects of N, and N, have been eliminated

Source of variation Degrees of Sum of Mean sum F-ratio
Sfreedom squares of squares

Replacement algorithm
Scheduling algorithm
Interaction

Error

*significant at the 5 percent significance level

ACKNOWLEDGMENTS

This work received the active support and cooperation of
W. Doherty, D. Doner, and N. Pass. Our performance-tuning ef-
forts were greatly aided by the numerous discussions we had
with M. Ghanem and H. Kobayashi.

CITED REFERENCES

1. W. J. Doherty, “Scheduling TSS/360 for responsiveness,” 4AFIPS Confer-
ence Proceedings, 1970 Fall Joint Computer Conference 37,97-111 (1970).

2. H. W. Lynch and J. B. Page, ““The OS/VS2 Release 2 System Resources
Manager,” IBM Systems Journal 13, 4, 274-291 (1974).

. R. G. Munck, “A table driven scheduler for widely diverse requirements,”
Proceedings of the 1971 IEEE International Computer Society Conference,
183-184 (1971).

. H. Katzan, Operating Systems: A Pragmatic Approach, Van Nostrand
Reinhold, New York (1973).

. W.R. Deniston, “SIPE: a TSS/360 software measurement technique,” Pro-
ceedings of 24th National Conference, ACM, 229-245 (1969).

. H. A. Anderson and R. G. Sargent, “‘Investigation into scheduling for an
interactive computing system,” IBM Journal of Research and Development
18, 2, 125-137 (1974).

. H. A. Anderson, G. L. Galati, and M. Reiser, “The classification of the in-
teractive workload for a virtual memory computer system,” Proceedings of
Computer Science and Statistics: 7th Annual Symposium on the Interface,
fowa State University, Ames, 30—-40 (1973).

. G. E. Bryan, “JOSS: 20,000 hours at a console —a statistical summary,”
AFIPS Conference Proceedings, 1967 Fall Joint Computer Conference 31,
769-777 (1967).

. A. L. Scherr, An Analysis of Time Shared Computer Systems, MIT Press,
Cambridge (1967).

. L. Kleinrock, “Certain analytical resuits for the time-shared processors,”
1968 IFIP Congress Proceedings, 838—845 (1968).

. A. Sekino, Performance Evaluation of Multiprogrammed Time-shared
Computer Svstems, MAC TR-103 (Project MAC Technical Report), MIT,
Cambridge (1972).

12. B. J. Winer, Statistical Principles in Experimental Design, 2nd ed., Mc-
Graw-Hill, New York (1971).

Reprint Form No. G321-5013

TUNING A VS SYSTEM

