Security is an important factor if the programs of independent
and possibly error-prone or malicious users are to coexist on the
same computer system. In this paper, we show that a hierarchi-
cally structured operating system, such as produced by a virtual
machine system, that combines a virtual machine monitor with
several independent operating systems (VMM|OS)}, provides sub-
stantially better software security than a conventional two-level
multiprogramming operating system approach. This added pro-
tection is derived from redundant security using independent
mechanisms that are inherent in the design of most VMM/|OS sys-
tems. Such a system can be obtained by exploiting existing soft-
ware resources.

Hierarchical approach to computer system integrity
by J. J. Donovan and S. E. Madnick
Computer systems have taken on essential roles in many organi-

zations. As such, concern for system integrity has become in-
creasingly important. At the same time, economies of scale and

centralization of operation often make it desirable to merge
many separate applications onto a single computer system. In
this paper, we explore operating system software approaches to
improving system integrity in a shared facility.

Operating system integrity may be said to exist when an operat-
ing system functions correctly under all circumstances. It is
helpful to further divide the concept of integrity into two related
concepts: security and reliability. By security, we mean the ability
of the operating system to maintain control over the system
resources and thereby prevent users from accidentally or mali-
ciously modifying or accessing unauthorized information. By re-
liability we mean the ability of the operating system to continue
to supply useful service in spite of all abnormal software (and
most abnormal hardware) conditions—whether accidental or
malicious. That is, we expect the operating system to be able to
prevent “‘crashes.”

Unlike hardware, which can have manufacturing defects, physi-
cally age, wear out, and change properties over time, software is

not influenced by these phenomena. Thus, given an operating

DONOVAN AND MADNICK IBM SYST J

system with complete integrity, there is no way that security or
reliability flaws can creep in. The difficulty lies in producing
such a system. Modern operating systems may have hundreds of
thousands or even millions of instructions. The specific se-
quence of instructions being executed is influenced by numerous
parameters including the precise timing of events. Thus, a “bug”
in a program may go unnoticed for several years. In this context,
the term “wearing out” is sometimes used to describe the fact
that bugs are continually discovered. Note that the software is
not physically wearing out but rather new circumstances keep
occurring —some exposing previously unknown flaws. In addi-
tion, as a system grows older and undergoes continual modifica-
tion, its quality tends to deteriorate, and it becomes more error-
prone. Furthermore, the process of fixing old bugs provides an
opportunity to introduce new bugs, thereby guaranteeing an
unending source.

Development of software integrity

There has been considerable research and numerous attempts
to develop “perfect” software ranging from hiring clever pro-
grammers, to having every program proofread by two or three
programmers, to formal theorem proving.'” None of these ap-
proaches have been completely successful for projects as large
as a general purpose operating system. As Popek noted;’ “Un-
fortunately, there currently does not exist a major software sys-
tem that has withstood determined penetration efforts. We seem
to have no secure systems.” Although new and improved tech-
niques will be found, the methodology for the development of
perfect bug-free software is not likely to arrive for quite some
time.

Under these circumstances, there are at least two things that can
be done: (1) try to develop as much security and reliability into
the software as possible, and (2) minimize the impact of a mal-
function. In this latter connection, we would be suspicious of the
integrity of a power system that would allow a simple malfunc-
tion at a Niagara Falls transformer to propagate throughout the
entire Northeast. In a like manner, most software failures in an
operating system would have minimal impact upon overall secu-
rity and reliability if the propagation of these failures could be
limited —a similar idea is involved in the use of bulkheads on
ships.

Hierarchically structured operating systems

Numerous computer scientists have observed that it is possible
to simplify the design of an operating system and improve its

NO. 2 - 1975 VIRTUAL MACHINE INTEGRITY

Figure 1 Hierarchically structured operating system

SYSTEM
NUCLEUS

A

SYSTEM-WIDE APPLICATION—f PROGRAM
SPECIFIC SPECIFIC

integrity by a careful decomposition, separating the most critical
functions from the successively less critical functions as well as
separating system-wide functions from user-related functions.
This approach has been termed hierarchical modularity,® ex-
tended machines,” multiple-state machines,’ and levels of ab-
straction.” The broad concept of structured programming also
encompasses this approach.

Figure 1 illustrates a hierarchically structured operating system.”

User programs, P, are supported by specific application subsys-
tems, S,. A failure in the software of region A (the system
nucleus) would have wide-ranging impact upon all user pro-
grams. On the other hand, region D only impacts program P,,,
and a failure in region C only impacts application subsystem S,
(which in turn impacts P, and P ;).

It is necessary to exploit certain hardware facilities to efficiently
enforce the above hierarchical structure. 0S/vs2 Release 2™ uti-
lizes the storage key values 0-7 of the System/370 hardware to
segregate portions of the operating system, though not in a
strictly hierarchical manner. The storage key hardware is avail-

DONOVAN AND MADNICK IBM SYST J

able for this function because 0S/vs2 Release 2 uses the Dy-
namic Address Translation feature to separate user address
spaces. (0s/360 needed to use the storage key hardware for this
function.) By exploiting the storage key hardware, the most crit-
ical privileged operating system facilities operate under key 0,
less privileged system functions run under nonzero keys. In this
way, the notion of ‘“supervisor” state and ‘“user” state is ex-
tended into several levels of supervisor state. This approach
could be generalized to allow several levels of user state also."

Other examples of operating systems with hardware-enforced
hierarchical structure include: (1) the Honeywell MULTICS
system'® which employs sophisticated ring structure hardware to
provide up to four levels of user state as well as four levels of
supervisor state, (2) the Digital Equipment Corporation PDP-10
three-state machine'' which separates kernel, supervisor, and
user states, and (3) the Burroughs B6700'*"* utilizing the dis-
play- or lexical-level hardware inherent in its stack structure.

In the remainder of this paper, we will study and attempt to
quantify the security and reliability attainable by means of the
Virtual Machine Facility/370 (vM/370) operating system. This
system has a clean three-level structure which can be easily ex-
tended to more levels. It has a simple design, as well as practical
usage experience that extends back to 1966 (starting with ear-
lier versions named CP-40 and CP-67).

Review of virtual machine concepts

Because virtual machines and their applications have been de-
scribed extensively in the literature,”’*"" we will only briefly
review the key points. A virtual machine may be defined as a
replica of a real computer system simulated by a combination of
a Virtual Machine Monitor (VMM) software program and ap-
propriate hardware support. (See Goldberg'" for a more pre-
cise definition.) For example, the vM/370 system enables a single
System/370 to appear functionally as if it were multiple inde-
pendent System/370s (i.e., multiple “virtual machines’). Thus,
a VMM can make one computer system function as if it were
multiple physically isolated systems as depicted in Figure 2. A
vMM accomplishes this feat by controlling the multiplexing of
the physical hardware resources in a manner analogous to the
way that the telephone company multiplexes communications
enabling separate and, hopefully, isolated conversations over the
same physical communications link.

By restricting itself to the task of multiplexing and allocating the
physical hardware, the vMM presents an interface that appears

identical to a ‘““bare machine.” In fact, it is usually necessary to

No. 2 - 1975 VIRTUAL MACHINE INTEGRITY

Figure 2 Real and virtual information systems—(A) Real information system hard-
ware, (B) Virtual information system hardware

|— CENTRAL
PROCESSOR
d\\ WENORY |~
11

12

CENTRAL ™ "CEnTraL™ 1
d——— PROCESSOR I procESSOR |
d.___, MEMORY 1/
N

MEMORY

™ "CEnTRAL 1
PROCESSOR |

load a user-oriented operating system into each virtual machine
to provide the functions expected of modern operating systems,
such as Job Control Language, command processors, data man-
agement services, and language processors. Thus, each virtual
machine is controlled by a separate, and possibly different, oper-
ating system. The feasibility of this solution has been dem-
onstrated on the vM/370 system and the earlier CP-67 and CP-40
systems. The extra VMM software and hardware do introduce
additional overhead, but this overhead can be kept rather low
(e.g., 10 to 20 percent). It has been reported” that a measure-
ment of two DOS job streams run under control of VM/370 pro-
duced better throughput, due to increased multiprogramming,
than running the same jobs serially on the same physical hard-
ware equipment. Depending upon the precise economics and
benefits of a large-scale system, the vMM approach is often pref-
erable to the operation of the multiple physically isolated real
systems.”

In addition to vM/370 and its predecessors, several other opera-
tional virtual machine systems have been developed, such as the
DOS/VM of PRIME Computer, Inc.,” the virtual machine capabil-
ity provided under the Michigan Terminal System (MTs),** and
a virtual machine system for a modified PDP-11/45 used by UCLA
for data security studies.”

DONOVAN AND MADNICK IBM SYST J

Analysis of security and reliability in a virtual machine
environment

In this section, we will analyze security and reliability in a vir-
tual machine environment. We will show why the virtual machine
approach should result in a system that is much less susceptible
to security and reliability failures than a conventional two-level
multiprogramming operating system. Recall that a reliability
failure is any action of a user’s program that causes the sys-
tem to cease correct operation (i.e., the system “stops” or
‘“crashes”), whereas a security failure is a form of reliability fail-
ure that allows one user’s program to access or destroy the data
or programs of another isolated user or gain control of the entire
computer system. The reader may wish to refer to previous
work on virtual machine security by Madnick and Donovan®
and Attanasio” and on virtual machine reliability by Buzen,
Chen, and Goldberg.”®

Most contemporary two-level operating systems, in conjunction
with appropriate hardware support, provide mechanisms to
prevent reliability and security failures (e.g., supervisor/problem
state modes of operation). In this paper, we are only concerned
about complete isolation security (i.e., no user is allowed access
to any other user’s information).

Under ideal circumstances, most current operating systems can
provide isolation security. 0S/360, for example, uses the Sys-
tem/360’s storage key protection to insulate user programs
from each other and from the operating system. The supervi-
sor/problem state modes further prevent users from gaining
control of the system. Thus, it should be possible to isolate
users.

Figure 3A illustrates the coexistence of multiple programs on
the same information system. Such a system is susceptible to a
security violation if a single hardware or software failure were to
occur. One factor contributing to the difficulty of validating en-
tire operating systems is that user programs interface with the
operating system through hundreds of parameterized entries
(e.g., supervisor calls, program interruptions, 1/0 requests and
interruptions) ; there is no presently known way to systematical-
ly validate the correct functioning of the operating system for all
possible parameters for all entries. In fact, most systems tend to
be highly vulnerable to invalid parameters. For example, a popu-
lar form of sabotage is to issue certain data-returning supervisor
calls, for example, a “what time is it?” request, providing an
invalid address as a parameter. The operating system, running
with protection disabled and assuming that the address parame-
ter corresponds to a user’s data area, transfers the return data to
that location. If the address provided actually corresponds to lo-

NO. 2+ 1975 VIRTUAL MACHINE INTEGRITY

contemporary
operating
system
environment

Figure 3 Comparison of OS and VMM/OS approaches—(A) Conventional two-level
operating system approach, (B) Virtval machine approach

ALL CONCURRENT PROGRAMS
REQUIRED FOR ALL APPLICATIONS

COMMON OPERATING SYSTEM

PROGRAMS RUN CONCURRENTLY
FOR EACH APPLICATION
AREA SUBSYSTEM

OPERATING SYSTEM FOR EACH QPERATING OPERATING OPERATING
APPLICATION AREA SUBSYSTEM SYSTEM 1 SYSTEM 2 SYSTEM 3

VIRTUAL MACHINE MONITOR

cations within the operating system, the system can be made to
destroy or disable itself. Most “secure” systems, of course, at-
tempt to detect this kind of error, but there are many other sabo-
tage techniques and complete security is unlikely (see Popek” for
additional examples).

Referring again to Figure 3A, we can see some of the factors
contributing to the problem. In order to provide sufficient func-
tionality to be effective for a large and heterogeneous collection
of user programs and application subsystems, the operating sys-
tem must be quite comprehensive and, thus, more vulnerable to
error. In general, a single logical error in the operating system
software can invalidate the entire security mechanism. Further-
more, as depicted in Figure 3A, there is no more protection
between the programs of differing application subsystems (e.g.,
P, and P,) or the operating system than there is between the
programs of a single application subsystem (e.g., P,, and P,,).
The security of such conventional operating systems is suffi-
ciently weak that the military has strict regulations that appear

DONOVAN AND MADNICK IBM SYST J

to forbid the use of the same information system for both secret
and top secret use —even though using separate systems is more
costly. Similarly industrial competitors or different functions in
the same company (e.g., payroll and engineering) are often re-
luctant to share the same computer.

Figure 3B illustrates the virtual machine approach to a physical-
ly shared system. This arrangement has numerous security ad-
vantages. If we define P (P) to be the probability that a given
run of program P will cause a security violation to occur, Equa-
tions 1 and 2 below would be expected to hold:

P (P|os (n)) < P(P|os (m)) forn<m (1)

0s (i) refers to a conventional two-level operating system de-
signed to support i user programs. The probability of system
failure tends to increase with the load on the operating system
(i.e., the number of different requests issued, the variety of func-
tions exercised, the frequency of requests, etc.). In particular, a
monoprogramming system, Os (1), tends to be much simpler
and more reliable than a comprehensive multiprogramming sys-
tem. Furthermore, the m-degree multiprogramming system often
requires intricate alterations to support the special needs of the
m users, especially if m is large. These problems have been ex-
perienced in most large-scale multiprogramming systems. These
problems are diminished in a virtual machine environment be-
cause each virtual machine may run a separate operating sys-
tem. Each operating system may be simpler and less error-prone
than a single comprehensive all-encompassing operating system.

P,(0s| vMM (k)) < P(P|o0s (m)) for k <m (2)

vMM (i) means a virtual machine monitor, VMM, supporting /
virtual machines. The operating system, 0S, on a particular vir-
tual machine has the same relationship to the vMM (k) as a
user’s program, P, has to a conventional multiprogramming op-
erating system, 0S (m). In accordance with the same rationale
as in Equation 1 above, the smaller the degree of multiprogram-
ming (i.e., k < m), the smaller the probability of a security vio-
lation. Because virtual machine monitors tend to be shorter,
simpler, and easier to debug than conventional multiprogram-
ming operating systems, even when k& = m, the VMM is less er-
ror-prone. For example, the vM/370 resident nucleus is about
one-third the size of that required for MVT (multiprogramming
with a variable number of tasks) with TSO. When the total
privileged code of the two systems, resident and nonresident,
is considered, the ratio is even more extreme.

Since the VMM is defined by the hardware specifications of the
real machine, the field engineer’s hardware diagnostic software
can be used to check out much of the functional correctness of
the vMM.

« 1975 VIRTUAL MACHINE INTEGRITY

level of
security

If we assume that the events represented by Equations 1 and 2
are independent, we can define the probability of a program P on
one virtual machine violating the security of another concurrent
program on another virtual machine as:

PP |os (n) | vMM (k))
=P (P|os (n) X P(0s | vMM (k)) (3)

Based on the inequalities of Equations 1 and 2 above and the
multiplicative dependency in Equation 3, we arrive at the con-
clusion:

P(P|os (n) | vMM (k) << P(P|0s (m)) forn,k<m (4)

P,(P|0s (n) | vMM (k)) is the probability of the simultaneous
security failure of P’s operating system and the virtual machine
monitor. If a single operating system’s security fails, the vMM
isolates this failure from the other virtual machines. If the
VMM’s security fails, it exposes information of other virtual
machines to the operating system of one virtual machine. But, if
functioning correctly, P’s operating system will not take advan-
tage of the security breach. This assumes that the designers of
the individual operating systems are not in collusion with ma-
licious users, which seems to be a reasonable hypothesis;
otherwise, using the same collusion, P (P | 0s (m)) = 1 could be
attained by subverting the conventional operating system.

We are particularly concerned about the overall system security,
that is, the probability that a security violation occurs due to any
program in the system. This situation can be computed by:

P (P, P, P)
=P (P,) X (1 =P(P,)) X--- X (1—=P(P,,))
+ (1 =P, (P,)) X P(P,) XX (1= P,(P,))
I
+ P (P,)) X P(P,) XX P(P,,)
Alternatively, it can be represented as:
P(P,, P, Py
=1—=(1=P(P)) X (1 =P(P,))
XX (1= P(Py)) (6)

We note that P (P,,, P,,, -, P,,) is minimized when the indi-
vidual Ps are minimized. The effect is accentuated due to the
multiplicative nature of Equation 5. Thus, from the inequality
of Equation 4, we conclude:

Ps(Pll’
<<< P(P,,, P, P, l0OS (m)) forn, k<m (7)

P 5 PylOS (n)|vMM (k))

DONOVAN AND MADNICK IBM SYST J

That is, the security in a virtual machine environment is very
much better than in a conventional multiprogramming operating
system environment. This conclusion, as noted earlier, depends
upon the probabilistic independence of the security failures. In
a later section, we show that the independence condition is rea-
sonable and applicable.

Equations 3 and 4, P (P | 0s (n) | vMM (k)), are based upon the
probability of two independent events occurring—a security fail-
ure in P’s operating system (0S) and in the virtual machine
monitor (VvMM). This type of analysis is reasonable for consider-
ing the many sources of accidental reliability failures. In the
case of an attempt to deliberately violate security, the penetrator
would usually try to subvert the 0Os first and then, having taken
control of the 08, attempt to subvert the vMM.

In the situation of deliberate penetration, it is useful to consider
the work effort, W_(P | 0s (n)), which is a measure of the
amount of work required to find a way for program P to take
control of the operating system. The work effort may be in terms
of mandays, number of attempts, or other such measures. Ex-
pressed in terms of work effort, Equation 3 becomes:

W (P|Os (n))|VMM (k))
= W, (P|los (n)) + W, (os|vMM (k)) (8)

Note that unlike the probabilities of Equation 3, work efforts are
additive rather than multiplicative. The overall conclusions of
the preceding section also apply to a work effort analysis.

If the individual operating systems, 0OS, and the virtual machine
monitor, VMM, used identical security mechanisms and algo-
rithms, then any user action that resulted in penetration of one
could also penetrate the other; that is, first take control of the 08
and then, using the same technique, take control of the vMM.
This penetration is logically analogous to placing one safe inside
another safe —but having the same combination on both safes.
To combat this danger, the 0S and vMM must have redundant
security based upon independent mechanisms. Similar reasoning
has been applied in the specification of the PRIME modular com-
puter system being constructed at the University of California,
Berkeley. The constructors of PRIME use the term dynamic veri-
fication to mean ‘‘that every time a decision is made there is a
consistency check performed on the decision using independent
hardware and software.””

Table 1 illustrates redundant security mechanisms possible in a
VMM/OS environment using VM/370 and 0S/360 as example sys-
tems. Let us consider main memory security first. 0$/360 uses
the System/360-System/370 storage key hardware to isolate
one user’s memory area from invalid access by another user’s

NO. 2 + 1975 VIRTUAL MACHINE INTEGRITY

work
effort

redundant
security
mechanisms

Table 1 Examples of redundant security mechanisms in o VMM/OS environment

VMM Mechanism OS Mechanism
Function (e.g., VM]370) (e.g., 0S/360)

Main storage Dynamic address Storage protection
security translation (DAT) keys

Storage device Device address Volume label
security mapping verification and
data set passwords

Process allocation Clock comparator Priority interruption
security and time-slicing (and, optionally,
interval timer)

program. VM/370, on the other hand, uses the System/370 Dy-
namic Address Translation (DAT) hardware to provide a sepa-
rate virtual memory (i.e., address space) for each virtual ma-
chine —independent of the storage keys. Thus, a malicious
user would have to overwhelm both the storage key and the
DAT mechanisms to violate the isolation security of another
coexisting program on another virtual machine. The software
algorithms, of course, used by 08/360 and VM/370 for memory
security are quite different because the mechanisms that are
used are so different. Thus, it is highly unlikely that they would
both be susceptible to the same penetration techniques.

We find the same kind of redundant security in the area of sec-
ondary storage devices. 0S/360, especially with the Resource
Security System (RSS) option,30 provides an elaborate set of

mechanisms to restrict access to data sets (files). Each storage
volume has a recorded label that is read by 0S/360 to verify that
it is the correct volume to be used (i.e., Automatic Volume
Recognition, AVR). Furthermore, under RSS, the specific data
sets on the volume may be individually protected by means of
password codes or user authorization restrictions. VM/370, on
the other hand, may have the volumes assigned to the virtual
machines by the computer operator or a directory on the basis
of the physical storage device address being used. Once again,
the logical mapping of 0s/360 is independent of the physical
mapping of VM/370. These redundant security mechanisms can
be found in other areas.

Although most existing vMMs were not designed specifically to
provide such comprehensive isolation, they frequently include
substantial redundant security mechanisms. In order to provide
the needed isolation, future vMMs may be designed with in-
creased redundant security. Using these techniques, the in-
dependence of 0S and VMM penetration, assumed in Equation
3, can be attained.

DONOVAN AND MADNICK IBM SYST J

Use of VM/370 to develop high-integrity systems

The various techniques described in the section on hierarchically
structured operating systems for development of high-integrity
systems, although encouraging, do not provide an immediate
panacea for most users concerned about security and reliability.
Most of the current hierarchically structured operating systems
(e.g., OS/VS2 Release 2, MULTICS, etc.) are presently either
experimental, in limited use, or require large or specialized hard-
ware configurations. Even when these systems become more
readily available, the user will probably still be faced with a sub-
stantial conversion effort. In this section, we explore a simpler
and more immediate approach to increasing the integrity of cur-
rent systems by exploiting the virtual machine concept.

The following are three example situations requiring high-integ-
rity operations.

Departments A and B are two groups in the same company that
operate separate computer facilities (e.g., a System/360, Model
30 and a System/360, Model 40). Due to increased processing
loads and increased need for data interchange between depart-
ments A and B, it is recommended that they share a single larger
facility (such as a System/370, Model 145). This situation is
quite common. At M.LT., for example, the Registrar’s Office
(processing student records) operated a separate facility from the
Bursar’s Office (processing payroll, etc.) both of which operate
separately from the central research computer facility, which
operates a System/370, Model 165.

Department A decides to add a substantial new application,
such as on-line data acquisition. This can be handied by procur-
ing an additional computer to be dedicated to this application or
upgrading the present computer facility. The economy of scale
usually gained by consolidating with one computer must be
counterbalanced by the reliability required by the on-line appli-
cation coexisting with the current batch operation.

In many situations, Examples 1 and 2 may occur at the same
time forming a third example.

The vast majority of current-day computer installations have
small-to-medium-size hardware configurations using fairly sim-
ple operating systems. For example, it is estimated that over 50
percent of the current System/360 and System/370 installa-
tions use some form of the Disk Operating System (DOS).

08/vs2 Release 2, which potentially provides greater integrity,
requires a minimum configuration of from 768K to 1024K bytes

which is probably beyond the capabilities of most small-to-me-

NO. 2 * 1975 VIRTUAL MACHINE INTEGRITY

dium-size configurations and, furthermore, represents a sizable
conversion for an installation moving from a DOS environment.

The virtual machine approach, such as provided by vM/370,
provides an attractive interim alternative. Referring to Example
1 above, departments A and B can each run a separate copy of
DOS on separate virtual machines under vM/370. In addition to
eliminating the need for any massive conversion, the depart-
ments are protected from each other by vM/370’s security in ad-
dition to the facilities provided by DOS. In a similar manner,
Example 2 can be handled by running the new on-line data
acquisition application on a separate virtual machine from the
current DOS batch processing work load. In fact, the on-line
application may even utilize a different operating system, such as
08/360 or CMS, if that facilitates the implementation or improves
integrity.

The vM/370 software insulates the application subsystem in one
virtual machine from an integrity malfunction in the virtual
machine of another application subsystem. This insulation is
especially important when new applications are being tested
concurrently with the use of existing applications.

Conclusion

In this paper, we have shown how a hierarchically structured
operating system can provide substantially better software relia-
bility and security than a conventional two-level multiprogram-
ming operating system approach. A virtual machine facility,
such as vM/370, makes it possible to convert a two-level con-
ventional operating system into a three-level hierarchically
structured operating system. Furthermore, by using redundant
security mechanisms, a high degree of security is attainable.

ACKNOWLEDGMENT

The authors wish to acknowledge the suggestions offered by the
reviewers of this paper. As noted by the reviewers, several of
the concepts advocated by the authors, such as hierarchical sys-
tems and virtual machines, are controversial. The reader should
use the references for further information on these subjects.

This paper is an extension of work originally reported in the
Proceedings of the ACM Workshop on Virtual Computer Sys-
tems by Madnick and Donovan.*®

This work was supported, in part, by the i1BM Data Security
Study, by the Advanced Research Projects Agency, Depart-
ment of Defense, under Office of Naval Research Contract
Number Nonr-4102(01), and by the Center for Information

DONOVAN AND MADNICK IBM SYST J

Systems Research at the Massachusetts Institute of Technology
Alfred P. Sloan School of Management.

CITED REFERENCES

1. G. Kahn, “An approach to system correctness,” Third ACM Symposium on
Operating System Principles, Stanford University, Stanford, California, 86—
94 (October 1971).

. G.). Popek, “Protection structures,” Computer 7, No. 6, 22-33 (June
1974).

. J. Scherf, Data Security: A Comprehensive and Annotated Bibliography,
Master’s Thesis, Massachusetts Institute of Technology, Alfred P. Sloan
School of Management, Cambridge, Massachusetts (1973).

. S. E. Madnick and J. W. Alsop, ““A modular approach to file system de-
sign,” AFIPS Conference Proceedings, Spring Joint Computer Conference
34, 1-14 (1969).

. S. E. Madnick and J. J. Donovan, Operating Systems, McGraw-Hill Book
Co., Inc., New York, New York (1974).

. G. Smith, The State of the Art of Computer Security, IBM Study Report,
Massachusetts Institute of Technology, Alfred P. Sloan School of Manage-
ment, Cambridge, Massachusetts (1974).

. E. W. Dijkstra, “The structure of the T.H.E. multiprogramming system,”
Communications of the ACM 8, No. 9, 341 -346 (May 1968).

. Introduction to OS/VS2 Release 2, Form No. GC28-0661, IBM Corpora-
tion, Data Processing Division, White Plains, New York (February 1973).

. A. L. Scherr, “Design of IBM OS/VS2 Release 2,” AFIPS Conference
Proceedings, National Computer Conference, 42, 387 -394 (1973).

. E. 1. Organick, The MULTICS System: An Examination of its Structure,
MIT Press, Cambridge, Massachusetts (1972).

. PDP-10 Timesharing Handbook, Digital Equipment Corporation, Maynard,
Massachusetts (1973).

. B6700 Information Processing Systems, Burroughs Corporation, Detroit,
Michigan (1972).

. E. 1. Organick, Computer System Organization— The B7500/B6700 Series,
Academic Press New York, New York (1973).

. R. P. Goldberg, “Survey of virtual machine research,” Computer 7, No. 6,
34-45 (1974).

. IBM Virtual Machine Facility/370: Introduction, Form No. GC20-1800,
IBM Corporation, Data Processing Division, White Plains, New York (July
1972).

. S. E. Madnick, “Time-sharing systems: Virtual machine concept vs.
conventional approach,” Modern Data 2, No. 3, 34-36 (March 1969).

. R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J. Hatfield, **Virtual
storage and virtual machine concepts,” IBM Systems Journal 11, No. 2,
99130 (1972).

. R. P. Goldberg, “Virtual machines: Semantics and examples,” Proceedings
of IEEE Computer Society Conference, 141 -142 (September 1971).

. R. S. Goldberg, Architectural Principles for Virtual Computer Systems,
Ph.D. dissertation, Harvard University, Cambridge, Massachusetts (No-
vember 1972).

. C. J. Young, “Extended architecture and hypervisor performance”,
Proceedings of the ACM Workshop on Virtual Computer Systems, Cam-
bridge, Massachusetts (1973).

. F. R. Horton, ‘““‘Virtual machine assist: Performance,” Guide 37, Boston,
Massachusetts (1973).

. IBM Virtual Machine Facility/370: Release 2 Planning Guide, Form No.
GC20-1814, IBM Corporation, Data Processing Division, White Plains,
New York (1973).

1975 VIRTUAL MACHINE INTEGRITY

. DOS/VM Reference Manual, PRIME Computer, Inc., Framingham,
Massachusetts (1974).

. J. Hogg and P. Madderom, “The virtual machine facility —- How to fake a
360,” Internal Note, University of British Columbia and University of
Michigan Computer Center (1973).

. G. J. Popek and C. Kline, “Verifiably secure operating systems software,”
AFIPS Conference Proceedings, National Computer Conference 43,
145-151 (1974).

. S. E. Madnick and J. J. Donovan, “An approach to information system
isolation and security in a shared facility,” Working Paper 648 —673, Alfred
P. Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, Massachusetts (March 1973).

. C. R. Attanasio, “Virtual machines and data security,” Proceedings of the
ACM Workshop on Virtual Computer Systems, Cambridge, Massachusetts
(1973).

. J. P. Buzen, P. P. Chen, and R. P. Goldberg, “Virtual machine techniques
for improving system reliability,” Proceedings of the ACM Workshop on
Virtual Computer Systems, Cambridge, Massachusetts (1973).

. R. S. Fabry, “Dynamic verification of operating system decisions,”
Communications of the ACM 16, No. 11, 659 -668 (November 1973).

. OS/MVT With Resource Security— Installation and System Programmers
Guide, Form Wo. GH20-1021, IBM Corporation, Data Processing
Division, White Plains, New York (December 1971).

Reprint Form No. G321-5010

202 DONOVAN AND MADNICK IBM SYST J

